CH10   Exercise

1. Convert the given parametric form of a curve 
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    into an implicit form, using the implicitization method.

2. The equations for various conics are given below:

(a) 
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Determine the type of curve represented by each equation.

3. Generate at least five points on a circle which is centered at (2, 3) and has radius of 3 units, using the parametric iteration formulas.

4. A parametric cubic curve passes through the points (0, 0), (2, 4), (4, 3), (5, -2), which are parameterized at 
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 and 1, respectively. Determine the geometric coefficient matrix and the slope of the curve when t = 0.5.

5. Fit a natural cubic spline through the points (0, 0), (0, 1), (3, 2), (4, 3) and (4, 5). Determine the point on the third segment t = 0.4.
6. A cubic Bezier curve is described by the four control points[0  0  0], [4  2  2],  [8  6  4], [12  0  0]. Find the tangent to the curve at 
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7. Knowing that a uniform cubic B-spline does not interpolate the first and last control vertices, determine the position of its starting and ending points as a function of the four control vertices, 
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8. Use a uniform quadratic B-spline curve with four control points to describe an ellipse whose major axis has a length of four unit and minor axis two units, as shown in the accompanying figure.
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9. Derive the transformation needed to convert the Hermite control conditions into the Bezier control conditions.

10. Given a Bezier curve defined by the following control points:(0, 0, 0), (3, 5, 4),   (6, 3, 2), determine the piecewise quadratic interpolating polynomial that would describe the same curve.
11. Derive the transformation needed to convert the control vertices of a periodic cubic B-spline curve into those of a cubic Bezier that represents the same curve.

12. The control points of a periodic cubic B-spline curve are (0, 0), (2, 2), (4, 3), and (5, 4). Determine the value of x when y =2 for a point on the curve.

13. Given the control vertices for a Bezier curve 
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 determine the point on the curve at t = 0.5. For the same control vertices, use a fourth order, nonperiodic B-spline and determine the same point on the curve   
( t = 0.5). Compare the results.
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