

 Tutorial Index

The tutorials on this page may contain mistakes, poor commenting, and should not be considered
the best resource to learn OpenGL from. What you do with the code is up to you. I am merely trying
to make the learning process a little easier for those people new to OpenGL. If you are serious about
learning OpenGL, you should spend the money and invest in the OpenGL Red Book (ISBN 0-201-
46138-2) and OpenGL Blue Book (ISBN 0-201-46140 -4). I have the second edition of each book,
and although they can be difficult for the new OpenGL programmer to understand, they are by far
the best books written on the subject of OpenGL. Another book I would recommend is the OpenGL
Superbible, although opinions vary. It is also important that you have a solid understanding of the
language you plan to use. Although I do comment the non-GL lines, I am self-taught, and may not
always write proper or even good code. It's up to you to take what you have learned from this site
and apply it to projects of your own. Play around with the code, read books, ask me questions if
need be. Once you have surpassed the code on this site or even before, check out more
professional sites, such as Nate's Programming Page or OpenGL.org . Although Nate's site is
inactive at the moment, it contains tons of excellent example programs, that are well written, and
really show off what OpenGL is capable of. Also be sure to visit the many OpenGL links on my page.
Each site I link to is an incredible asset the OpenGL community. Most of these sites are run by
talented individuals that not only know their GL, they also program alot better than I do. Please keep
all of this in mind while browsing my site. I hope you enjoy what I have to offer, and hope to see
projects created by yourself in the near future!

One final note, if you see code that you feel is to similar to someone else's code, please contact me.
I assure you, any code I borrow from or learn from either comes from the MSDN or from sites
created to help teach people in a similar way that my site teaches GL. I never intentionally take
code, and never would without giving the proper person credit. There may be instances where I get
code from a free site not knowing that site took it from someone else, so if that happens, please
contact me. I will either rewrite the code, or remove it from my program. Most the code should be
original however, I only borrow when I absolutely have no idea how to accomplish something, and
even then I make sure I understand the code before I decide to include it in my program. If you spot
mistakes in any of the tutorials, no matter how tiny the mistake may be, please let me know.

One important thing to note about my base code is that it was written in 1997. It has undergone
many changes, and it is definitely not borrowed from any other sites. It will more than likely be
altered in the future. If I am not the one that modifies it, the person responsible for the changes will
be credited.

Setting Up OpenGL In MacOS:

This is not a tutorial, but a step by step walkthrough
done by Tony Parker on how to install OpenGL and Glut
under Mac OS. Tony has kindly ported the OpenGL
tutorials I've done to Mac OS with GLUT. I hope
everyone enjoys the ports.

I know alot of people have asked for Mac ports so
support Tony by telling him how much you enjoy the
ports. Without his work converting the projects there
wouldn't be a Mac port.

Setting Up OpenGL In Solaris:

This is not a tutorial, but a step by step walkthrough

Jeff Molofee's OpenGL Windows Tutorials

Page 1 of 10

done by Lakmal Gunasekara on how to install OpenGL
and Glut under Solaris. Lakmal has kindly ported most
of the OpenGL tutorials I've done to both Irix and
Solaris. I hope everyone enjoys the ports.

If you'd like to port the code to another OS or Language,
please contact me, and let me know. Before you start
porting, keep in mind that I'd prefer all the code to be
ported, rather than just a few of the tutorials. That way,
people learning from a port can learn at the same rate
as the VC guys.

Setting Up OpenGL In MacOS X Using GLUT:

This tutorial was written by Raal Goff and will teach you
how to get OpenGL working on MacOS X using GLUT.
Nothing really different aside from the headers and
environment, but definitely a useful resource for anyone
using this cool looking new OS. If you enjoy the
information email Raal and let him know.

Now that OpenGL is the API of choice for Mac users, I
hope to see alot more demos, projects and games from
all of you Mac users! It's good to see Apple supporting
such a strong API. This tutorial may also be useful to
those of you interested in using GLUT instead of the
framework from lesson 1.

Setting Up An OpenGL Window:

In this tutorial, I will teach you how to set up, and use
OpenGL in a Windows environment. The program you
create in this tutorial will display an empty OpenGL
window, switch the computer into fullscreen or
windowed mode, and wait for you to press ESC or close
the Window to exit. It doesn't sound like much, but this
program will be the framework for every other tutorial I
release in the next while.

It's very important to understand how OpenGL works,
what goes into creating an OpenGL Window, and how to
write simple easy to understand code. You can
download the code at the end of the tutorial, but I
definitely recommend you read over the tutorial at least
once, before you start programming in OpenGL.

Your First Polygon:

Using the source code from the first tutorial, we will now
add code to create a Triangle, and a Square on the
screen. I know you're probably thinking to yourself "a
triangle and square... oh joy", but it really is a BIG deal.
Just about everything you create in OpenGL will be
created out of triangles and squares. If you don't
understand how to create a simple little triangle in Three
Dimensional space, you'll be completely lost down the
road. So read through this chapter and learn.

Once you've read through this chapter, you should
understand the X axis, Y axis and Z axis. You will learn
about translation left, right, up, down, into and out of the
screen. You should understand how to place an object
on the screen exactly where you want it to be. You will

Jeff Molofee's OpenGL Windows Tutorials

Page 2 of 10

also learn a bit about the depth buffer (placing objects
into the screen).

Colors:

Expanding on the second tutorial I will teach you how to
create spectacular colors in OpenGL with very little
effort. You will learn about both flat coloring and smooth
coloring. The triangle on the left uses smooth coloring.
The square on the right is using flat coloring. Notice how
the colors on the triangle blend together.

Color adds alot to an OpenGL project. By understanding
both flat and smooth coloring, you can greatly enhance
the way your OpenGL demos look.

Rotation:

Moving right along. In this tutorial I'll teach you how to
rotate both the triangle and the quad. The triangle will
rotate on the Y axis, and the quad will rotate on the X
axis. This tutorial will introduce 2 variables. rtri is used to
store the angle of the triangle, and rquad will store the
angle of the quad.

It's easy to create a scene made up of polygons. Adding
motion to those object makes the scene come alive. In
later tutorials I'll teach you how to rotate an object
around a point on the screen causing the object to move
around the screen rather than spin on its axis.

Solid Objects:

Now that we have setup, polygons, quads, colors and
rotation figured out, it's time to build 3D objects. We'll
build the objects using polygons and quads. This time
we'll expand on the last tutorial, and turn the triangle into
a colorful pyramid, and turn the square into a solid cube.
The pyramid will use blended colors, the cube will have
a different color for each face.

Building an object in 3D can be very time consuming,
but the results are usually worth it. Your imagination is
the limit!

Texture Mapping:

You asked for it, so here it is... Texture Mapping!!! In this
tutorial I'll teach you how map a bitmap image onto the
six side of a cube. We'll use the GL code from lesson
one to create this project. It's easier to start with an
empty GL window than to modify the last tutorial.

You'll find the code from lesson one is extremely
valuable when it comes to developing a project quickly.
The code in lesson one sets everything up for you, all
you have to do is concentrate on programming the effect
(s).

Jeff Molofee's OpenGL Windows Tutorials

Page 3 of 10

Texture Filters, Lighting & Keyboard Control:

Ok, I hope you've been understanding everything up till
now, because this is a huge tutorial. I'm going to attempt
to teach you 2 new ways to filter your textures, simple
lighting, keyboard control, and probably more :) If you
don't feel confident with what you've learned up to this
lesson, go back and review. Play around with the code
in the other tutorials. Don't rush. It's better to take your
time and learn each lesson well, than to jump in, and
only know enough to get things done.

* Blending:

There was a reason for the wait. A fellow programmer
from the totally cool site Hypercosm, had asked if he
could write a tutorial on blending. Lesson eight was
going to be a blending tutorial anyways. So the timing
was perfect! This tutorial expands on lesson seven.
Blending is a very cool effect... I hope you all enjoy the
tutorial. The author of this tutorial is Tom Stanis. He's
put alot of effort into the tutorial, so let him know what
you think. Blending is not an easy topic to cover.

Moving Bitmaps In 3D Space:

This tutorial covers a few of the topics you guys had
requested. You wanted to know how to move the
objects you've made around the screen in 3D. You
wanted to know how to draw a bitmap to the screen,
without the black part of the image covering up what's
behind it. You wanted simple animation and more uses
for blending. This tutorial will teach you all of that. You'll
notice there's no spinning boxes. The previous tutorials
covered the basics of OpenGL. Each tutorial expanded
on the last. This tutorial is a combination of everything
that you have learned up till now, along with information
on how to move your object in 3D. This tutorial is a little
more advanced, so make sure you understand the
previous tutorials before you jump into this tutorial.

* Loading And Moving Through A 3D World:

The tutorial you have all been waiting for! This tutorial
was made by a fellow programmer named Lionel Brits.
In this lesson you will learn how to load a 3D world from
a data file, and move through the 3D world. The code is
made using lesson 1 code, however, the tutorial web
page only explains the NEW code used to load the 3D
scene, and move around inside the 3D world. Download
the VC++ code, and follow through it as you read the
tutorial. Keys to try out are [B]lend, [F]iltering, [L]ighting
(light does not move with the scene however), and Page
Up/Down. I hope you enjoy Lionel's contribution to the
site. When I have time I'll make the Tutorial easier to
follow.

* OpenGL Flag Effect:

Jeff Molofee's OpenGL Windows Tutorials

Page 4 of 10

This tutorial code brought to you by Bosco. The same
guy that created the totally cool mini demo called
worthless. He enjoyed everyones reaction to his demo,
and decided to go one step further and explain how he
does the cool effect at the end of his demo. This tutorial
builds on the code from lesson 6. By the end of the
tutorial you should be able to bend fold and manipulate
textures of your own. It's definitely a nice effect, and alot
better than flat non moving textures. If you enjoy the
tutorial, please email bosco and let him know.

Display Lists:

Want to know how to speed up you OpenGL programs?
Tired of writing lots of code every time you want to put
an object on the screen? If so, this tutorial is definitely
for you. Learn how to use OpenGL display lists. Prebuild
objects and display them on the screen with just one line
of code. Speed up your programs by using precompiled
objects in your programs. Stop writing the same code
over and over. Let display lists do all the work for you! In
this tutorial we'll build the Q-Bert pyramids using just a
few lines of code thanks to display lists.

Bitmap Fonts:

I think the question I get asked most often in email is
"how can I display text on the screen using OpenGL?".
You could always texture map text onto your screen. Of
course you have very little control over the text, and
unless you're good at blending, the text usually ends up
mixing with the images on the screen. If you'd like an
easy way to write the text you want anywhere you want
on the screen in any color you want, using any of your
computers built in fonts, then this tutorial is definitely for
you. Bitmaps font's are 2D scalable fonts, they can not
be rotated. They always face forward.

Outline Fonts:

Bitmap fonts not good enough? Do you need control
over where the fonts are on the Z axis? Do you need 3D
fonts (fonts with actual depth)? Do you need wireframe
fonts? If so, Outline fonts are the perfect solution. You
can move them along the Z axis, and they resize. You
can spin them around on an axis (something you can't
do with bitmap fonts), and because proper normals are
generated for each character, they can be lit up with
lighting. You can build Outline fonts using any of the
fonts installed on your computer. Definitely a nice font to
use in games and demos.

Texture Mapped Fonts:

Hopefully my last font tutorial {grin}. This time we learn a
quick and fairly nice looking way to texture map fonts,

Jeff Molofee's OpenGL Windows Tutorials

Page 5 of 10

and any other 3D object on your screen. By playing
around with the code, you can create some pretty cool
special effects, Everything from normal texture mapped
object to sphere mapped objects. In case you don't
know... Sphere mapping creates a metalic looking object
that reflects anything from a pattern to a picture.

* Cool Looking Fog:

This tutorial code was generously donated to the site by
Chris Aliotta. It based on the code from lesson 7, that
why you're seeing the famous crate again :) It's a pretty
short tutorial aimed at teaching you the art of fog. You'll
learn how to use 3 different fog filters, how to change
the color of the fog, and how to set how far into the
screen the fog starts and how far into the screen it ends.
Definitely a nice effect to know!

* 2D Texture Font:

The original version of this tutorial code was written by
Giuseppe D'Agata. In this tutorial you will learn how to
write any character or phrase you want to the screen
using texture mapped quads. You will learn how to read
one of 256 different characters from a 256x256 texture
map, and finally I will show you how to place each
character on the screen using pixels rather than units.
Even if you're not interested in drawing 2D texture
mapped characters to the screen, there is lots to learn
from this tutorial. Definitely worth reading!

* Quadratics:

This tutorial code was written by GB Schmick the
wonderful site op over at TipTup. It will introduce you to
the wonderful world of quadratics. With quadratics you
can easily create complex objects such as spheres,
discs, cylinders and cones. These object can be created
with just one line of code. With some fancy math and
planning it should be possible to morph these objects
from one object into another. Please let GB Schmick
know what you think of the tutorial, it's always nice when
visitors contribute to the site, it benefits us all. Everyone
that has contributed a tutorial or project deserves credit,
please let them know their work is appreciated!

Particle Engine Using Triangle Strips:

Have you ever wanted to create an explosion, water
fountain, flaming star, or some other cool effect in your

Jeff Molofee's OpenGL Windows Tutorials

Page 6 of 10

OpenGL program, but writing a particle engine was
either too hard, or just too complex? If so, this tutorial is
for you. You'll learn how to program a simple but nice
looking particle engine. I've thrown in a few extras like a
rainbow mode, and lots of keyboard interaction. You'll
also learn how to create OpenGL triangle strips. I hope
you find the code both useful and entertaining.

Masking:

Up until now we've been blending our images onto the
screen. Although this is effective, and it adds our image
to the scene, a transparent object is not always pretty.
Lets say you're making a game and you want solid text,
or an odd shaped console to pop up. With the blending
we have been using up until now, the scene will shine
through our objects. By combining some fancy blending
with an image mask, your text can be solid. You can
also place solid oddly shaped images onto the screen. A
tree with solid branches and non transparent leaves or a
window, with transparent glass and a solid frame. Lots
of possiblities!

Lines, Antialiasing, Timing, Ortho View And Simple
Sounds:

This is my first large tutorial. In this tutorial you will learn
about: Lines, Anti-Aliasing, Orthographic Projection,
Timing, Basic Sound Effects, and Simple Game Logic.
Hopefully there's enough in this tutorial to keep
everyone happy :) I spent 2 days coding this tutorial,
and about 2 weeks writing this HTML file. If you've ever
played Amidar, the game you write in this tutorial may
bring back memories. You have to fill in a grid while
avoiding nasty enemies. A special item appears from
time to time to help make life easier. Learn lots and
have fun doing it!

* Bump-Mapping, Multi-Texturing & Extensions:

This tutorial code was written by Jens Schneider. Right
off the start I'd like to point out that this is an advanced
tutorial. If you're still uncertain about the basics, please
go back and read the previous tutorials. If you're a new
GL programmer, this lesson may be a bit much. In this
lesson, you will modify the code from lesson 6 to
support hardware multi-texturing on cards that support
it, along with a really cool visual effect called bump-
mapping. Please let Jens Schneider know what you
think of the tutorial, it's always nice when visitors
contribute to the site, it benefits us all. Everyone that
has contributed a tutorial or project deserves credit,
please let them know their work is appreciated!

* Using Direct Input With OpenGL:

This tutorial code was written by Justin Eslinger and is
based on lesson 10. Instead of focusing on OpenGL this
tutorial will teach you how to use DirectInput in your

Jeff Molofee's OpenGL Windows Tutorials

Page 7 of 10

OpenGL programs. I have had many requests for such a
tutorial, so here it is. The code in lesson 10 will be
modified to allow you to look around with the mouse and
move with the arrow keys. Something you should know
if you plan to write that killer 3D engine :) I hope you
appreciate Justin's work. He spent alot of time making
the tutorial unique (reading textures from the data file,
etc), and I spent alot of time tweaking things, and
making the HTML look pretty. If you enjoy this tutorial let
him know!

* Sphere Mapping Quadratics In OpenGL:

This tutorial code was written by GB Schmick and is
based on his quadratics tutorial (lesson 18). In lesson 15
(texture mapped fonts) I talked a little bit about sphere
mapping. I explained how to auto-generate texture
coordinates, and how to set up sphere mapping, but
because lesson 15 was fairly simple I decided to keep
the tutorial simple, leaving out alot of details in regards
to sphere mapping. Now that the tutorials are a little
more advanced it's time to dive into the world of sphere
mapping. TipTup did an excellent job on the tutorial, so
if you appreciate his work, let him know!

Tokens, Extensions, Scissor Testing And TGA
Loading:

In this tutorial I will teach you how to read and parse
what OpenGL extensions are supported by your video
card. I will also show you how to use scissor testing to
create a cool scrolling window effect. And most
importantly I will show you how to load and use TGA
(targa) image files as textures in projects of your own.
TGA files support the alpha channel, allowing you to
create some great blending effects, and they are easy to
create and work with. Not only that, by using TGA files,
we no longer depend on the glAUX library. Something
I'm sure alot of you guys will appreciate!

* Morphing & Loading Objects From A File:

This tutorial code was written by Piotr Cieslak. Learn
how to load simple objects from a text file, and morph
smoothly from one object into another. The effect in this
tutorial has to be seen to be appreciated. The effect
taught in this demo can be used to animated objects
similar to the swimming dolphin in my Dolphin demo, or
to twist and bend objects into many different shapes.
You can also modify the code to use lines or solid
polygons. Great effect! Hope you appreciate Piotr's
work!

* Clipping & Reflections Using The Stencil Buffer:

This tutorial was written by Banu Cosmin. It
demonstrates how to create extremely realistic

Jeff Molofee's OpenGL Windows Tutorials

Page 8 of 10

reflections using the stencil buffer, clipping, and multi-
texturing. This tutorial is more advanced than previous
tutorials, so please make sure you've read the previous
tutorials before jumping in. It's also important to note this
tutorial will not run on video cards that do not support
the stencil buffer (voodoo 1, 2, perhaps more). If you
appreciate Banu's work, let him know!

* Shadows:

This is an advanced tutorial. Before you decide to try out
shadows, make sure you completely understand the
base code, and make sure you are familiar with the
stencil buffer. This tutorial was made possible by both
Banu Cosmin & Brett Porter. Banu wrote the original
code. Brett cleaned the code up, combined it into one
file, and wrote the HTML for the tutorial. The effect is
amazing! Shadows that actual wrap around objects, and
distort on the walls and floor. Thanks to Banu and Brett
for their hard work, this is truely a great tutorial!

* Bezier Patches / Fullscreen Fix:

David Nikdel is the man behind this super cool tutorial.
Learn how to create bezier patches. Learn how to alter a
surface by modifying control points. The surface being
altered is fully texture mapped, the animation is smooth!
Left and Right arrow keys rotate the object while the Up
and Down arrows raise and lower the resolution. This
tutorial also eliminates the fullscreen problems a few of
you have been having! Thanks to David for modifying
the code! If you appreciate his work, let him know!

* Blitter Function, RAW Texture Loading:

This tutorial was written by Andreas Löffler. In this
tutorial you will learn how to load .RAW image files. You
will also learn how to write your own blitter routine to
modify textures after they have been loaded. You can
copy sections of the first texture into a second texture,
you can blend textures together, and you can stretch
textures. The same routine can be modified to create
realtime plasma and other cool effects! If you enjoy the
tutorial let Andreas know!

* Collision Detection:

The tutorial you have all been waiting for. This amazing
tutorial was written by Dimitrios Christopoulos. In this
tutorial you will learn the basics of collision detection,

Jeff Molofee's OpenGL Windows Tutorials

Page 9 of 10

collision response, and physically based modelling
effects. This tutorial concentrates more on how collision
detection works than on the actual code, although all of
the important code is explained. It's important to note,
this is an ADVANCED tutorial. Don't expect to read
through the tutorial once and understand everything
about collision detection. It's a complex topic, this
tutorial will get you started.

* Model Loading:

Brett Porter is the author of this tutorial. What can I
say... Another incredible tutorial! This tutorial will teach
you how to load in and display texture mapped
Milkshape3D models. This tutorial is quite advanced so
make sure you understand the previous tutorials before
you attempt the code in this tutorial. It sounds as though
Brett is planning a future tutorial on Skeletal Animation
so if you enjoy this tutorial, show him your support!
Email him and let him know you appreciate his work!

I am not a guru programmer. I am an average programmer, learning new things about OpenGL every day.

I do not claim to know everything. I do not guarantee my code is bug free. I have made every
effort humanly possible to eliminate all bugs but this is not always an easy task.

Please keep this in mind while going through the tutorials!

Jeff Molofee's OpenGL Windows Tutorials

Page 10 of 10

Jeff Molofee's OpenGL Windows Tutorial #1

Page 1 of 19

#include <windows.h>
#include <gl\gl.h> // Header File For The OpenGL32 Library
#include <gl\glu.h>
#include <gl\glaux.h>

 Lesson 1

Welcome to my OpenGL tutorials. I am an average guy with a passion for OpenGL! The first time I
heard about OpenGL was back when 3Dfx released their Hardware accelerated OpenGL driver for
the Voodoo 1 card. Immediately I knew OpenGL was something I had to learn. Unfortunately, it was
very hard to find any information about OpenGL in books or on the net. I spent hours trying to make
code work and even more time begging people for help in email and on IRC. I found that those
people that understood OpenGL considered themselves elite, and had no interest in sharing their
knowledge. VERY frustrating!

I created this web site so that people interested in learning OpenGL would have a place to come if
they needed help. In each of my tutorials I try to explain, in as much detail as humanly possible,
what each line of code is doing. I try to keep my code simple (no MFC code to learn)! An absolute
newbie to both Visual C++ and OpenGL should be able to go through the code, and have a pretty
good idea of what's going on. My site is just one of many sites offering OpenGL tutorials. If you're a
hardcore OpenGL programmer, my site may be too simplistic, but if you're just starting out, I feel
my site has a lot to offer!

This tutorial was completely rewritten January 2000. This tutorial will teach you how to set up an
OpenGL window. The window can be windowed or fullscreen, any size you want, any resolution you
want, and any color depth you want. The code is very flexible and can be used for all your OpenGL
projects. All my tutorials will be based on this code! I wrote the code to be flexible, and powerful at
the same time. All errors are reported. There should be no memory leaks, and the code is easy to
read and easy to modify. Thanks to Fredric Echols for his modifications to the code!

I'll start this tutorial by jumping right into the code. The first thing you will have to do is build a
project in Visual C++. If you don't know how to do that, you should not be learning OpenGL, you
should be learning Visual C++. The downloadable code is Visual C++ 6.0 code. Some versions of
VC++ require that bool is changed to BOOL, true is changed to TRUE, and false is changed to
FALSE. By making the changes mentioned, I have been able to compile the code on Visual C++
4.0 and 5.0 with no other problems.

After you have created a new Win32 Application (NOT a console application) in Visual C++, you
will need to link the OpenGL libraries. In Visual C++ go to Project, Settings, and then click on the
LINK tab. Under "Object/Library Modules" at the beginning of the line (before kernel32.lib) add
OpenGL32.lib GLu32.lib and GLaux.lib. Once you've done this click on OK. You're now ready to
write an OpenGL Windows program.

The first 4 lines include the header files for each library we are using. The lines look like this:

Jeff Molofee's OpenGL Windows Tutorial #1

Page 2 of 19

HDC hDC=NULL; // Private GDI Device Context
HGLRC hRC=NULL; // Permanent Rendering Context
HWND hWnd=NULL;
HINSTANCE hInstance; // Holds The Instance Of The Application

bool keys[256];
bool active=TRUE;
bool fullscreen=TRUE; // Fullscreen Flag Set To Fullscreen Mode By Default

LRESULT CALLBACK WndProc(HWND, UINT, WPARAM, LPARAM); // Declaration For WndProc

Next you need to set up all the variables you plan to use in your program. This program will create
a blank OpenGL window, so we won't need to set up a lot of variables just yet. The few variables
that we do set up are very important, and will be used in just about every OpenGL program you
write using this code.

The first line sets up a Rendering Context. Every OpenGL program is linked to a Rendering
Context. A Rendering Context is what links OpenGL calls to the Device Context. The OpenGL
Rendering Context is defined as hRC. In order for your program to draw to a Window you need to
create a Device Context, this is done in the second line. The Windows Device Context is defined as
hDC. The DC connects the Window to the GDI (Graphics Device Interface). The RC connects
OpenGL to the DC.

In the third line the variable hWnd will hold the handle assigned to our window by Windows, and
finally, the fourth line creates an Instance (occurrence) for our program.

The first line below sets up an array that we will use to monitor key presses on the keyboard. There
are many ways to watch for key presses on the keyboard, but this is the way I do it. It's reliable,
and it can handle more than one key being pressed at a time.

The active variable will be used to tell our program whether or not our Window has been minimized
to the taskbar or not. If the Window has been minimized we can do anything from suspend the
code to exit the program. I like to suspend the program. That way it won't keep running in the
background when it's minimized.

The variable fullscreen is fairly obvious. If our program is running in fullscreen mode, fullscreen will
be TRUE, if our program is running in Windowed mode, fullscreen will be FALSE. It's important to
make this global so that each procedure knows if the program is running in fullscreen mode or not.

Now we have to define WndProc(). The reason we have to do this is because CreateGLWindow()
has a reference to WndProc() but WndProc() comes after CreateGLWindow(). In C if we want to
access a procedure or section of code that comes after the section of code we are currently in we
have to declare the section of code we wish to access at the top of our program. So in the following
line we define WndProc() so that CreateGLWindow() can make reference to WndProc().

Jeff Molofee's OpenGL Windows Tutorial #1

Page 3 of 19

GLvoid ReSizeGLScene(GLsizei width, GLsizei height) // Resize And Initialize The GL Window
{
 if (height==0)
 {
 height=1; // Making Height Equal One
 }

 glViewport(0, 0, width, height); // Reset The Current Viewport

 glMatrixMode(GL_PROJECTION);
 glLoadIdentity(); // Reset The Projection Matrix

 // Calculate The Aspect Ratio Of The Window
 gluPerspective(45.0f,(GLfloat)width/(GLfloat)height,0.1f,100.0f);

 glMatrixMode(GL_MODELVIEW); // Select The Modelview Matrix
 glLoadIdentity(); // Reset The Modelview Matrix
}

int InitGL(GLvoid) // All Setup For OpenGL Goes Here
{

The job of the next section of code is to resize the OpenGL scene whenever the window (assuming
you are using a Window rather than fullscreen mode) has been resized. Even if you are not able to
resize the window (for example, you're in fullscreen mode), this routine will still be called at least
once when the program is first run to set up our perspective view. The OpenGL scene will be
resized based on the width and height of the window it's being displayed in.

The following lines set the screen up for a perspective view. Meaning things in the distance get
smaller. This creates a realistic looking scene. The perspective is calculated with a 45 degree
viewing angle based on the windows width and height. The 0.1f, 100.0f is the starting point and
ending point for how deep we can draw into the screen.

glMatrixMode(GL_PROJECTION) indicates that the next 2 lines of code will affect the projection
matrix. The perspective matrix is responsible for adding perspective to our scene. glLoadIdentity() is
similar to a reset. It restores the selected matrix to it's original state. After glLoadIdentity() has
been called we set up our perspective view for the scene. glMatrixMode(GL_MODELVIEW)
indicates that any new transformations will affect the modelview matrix. The modelview matrix is
where our object information is stored. Lastly we reset the modelview matrix. Don't worry if you
don't understand this stuff, I will be explaining it all in later tutorials. Just know that it HAS to be
done if you want a nice perspective scene.

In the next section of code we do all of the setup for OpenGL. We set what color to clear the
screen to, we turn on the depth buffer, enable smooth shading, etc. This routine will not be called
until the OpenGL Window has been created. This procedure returns a value but because our
initialization isn't that complex we wont worry about the value for now.

 The next line enables smooth shading. Smooth shading blends colors nicely across a polygon, and
smoothes out lighting. I will explain smooth shading in more detail in another tutorial.

Jeff Molofee's OpenGL Windows Tutorial #1

Page 4 of 19

 glShadeModel(GL_SMOOTH); // Enables Smooth Shading

 glClearColor(0.0f, 0.0f, 0.0f, 0.0f);

 glClearDepth(1.0f);
 glEnable(GL_DEPTH_TEST); // Enables Depth Testing
 glDepthFunc(GL_LEQUAL);

 glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST); // Really Nice Perspective Calculations

 return TRUE;
}

The following line sets the color of the screen when it clears. If you don't know how colors work, I'll
quickly explain. The color values range from 0.0f to 1.0f. 0.0f being the darkest and 1.0f being the
brightest. The first parameter after glClearColor is the Red Intensity, the second parameter is for
Green and the third is for Blue. The higher the number is to 1.0f, the brighter that specific color will
be. The last number is an Alpha value. When it comes to clearing the screen, we wont worry about
the 4th number. For now leave it at 0.0f. I will explain its use in another tutorial.

You create different colors by mixing the three primary colors for light (red, green, blue). Hope you
learned primaries in school. So, if you had glClearColor(0.0f,0.0f,1.0f,0.0f) you would be clearing the
screen to a bright blue. If you had glClearColor(0.5f,0.0f,0.0f,0.0f) you would be clearing the screen
to a medium red. Not bright (1.0f) and not dark (0.0f). To make a white background, you would set
all the colors as high as possible (1.0f). To make a black background you would set all the colors
to as low as possible (0.0f).

The next three lines have to do with the Depth Buffer. Think of the depth buffer as layers into the
screen. The depth buffer keeps track of how deep objects are into the screen. We won't really be
using the depth buffer in this program, but just about every OpenGL program that draws on the
screen in 3D will use the depth buffer. It sorts out which object to draw first so that a square you
drew behind a circle doesn't end up on top of the circle. The depth buffer is a very important part of
OpenGL.

 Next we tell OpenGL we want the best perspective correction to be done. This causes a very tiny
performance hit, but makes the perspective view look a bit better.

Finally we return TRUE. If we wanted to see if initialization went ok, we could check to see if TRUE
or FALSE was returned. You can add code of your own to return FALSE if an error happens. For
now we won't worry about it.

Jeff Molofee's OpenGL Windows Tutorial #1

Page 5 of 19

int DrawGLScene(GLvoid)
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Clear The Screen And The Depth Buffer
 glLoadIdentity(); // Reset The Current Modelview Matrix
 return TRUE;
}

GLvoid KillGLWindow(GLvoid) // Properly Kill The Window
{

 if (fullscreen)
 {

 ChangeDisplaySettings(NULL,0);
 ShowCursor(TRUE); // Show Mouse Pointer
 }

This section is where all of your drawing code will go. Anything you plan to display on the screen
will go in this section of code. Each tutorial after this one will add code to this section of the
program. If you already have an understanding of OpenGL, you can try creating basic shapes by
adding OpenGL code below glLoadIdentity() and before return TRUE. If you're new to OpenGL, wait
for my next tutorial. For now all we will do is clear the screen to the color we previously decided on,
clear the depth buffer and reset the scene. We wont draw anything yet.

The return TRUE tells our program that there were no problems. If you wanted the program to stop
for some reason, adding a return FALSE line somewhere before return TRUE will tell our program
that the drawing code failed. The program will then quit.

The next section of code is called just before the program quits. The job of KillGLWindow() is to
release the Rendering Context, the Device Context and finally the Window Handle. I've added a lot
of error checking. If the program is unable to destroy any part of the Window, a message box with
an error message will pop up, telling you what failed. Making it a lot easier to find problems in your
code.

The first thing we do in KillGLWindow() is check to see if we are in fullscreen mode. If we are, we'll
switch back to the desktop. We should destroy the Window before disabling fullscreen mode, but
on some video cards if we destroy the Window BEFORE we disable fullscreen mode, the desktop
will become corrupt. So we'll disable fullscreen mode first. This will prevent the desktop from
becoming corrupt, and works well on both Nvidia and 3dfx video cards!

We use ChangeDisplaySettings(NULL,0) to return us to our original desktop. Passing NULL as the
first parameter and 0 as the second parameter forces Windows to use the values currently stored in
the Windows registry (the default resolution, bit depth, frequency, etc) effectively restoring our
original desktop. After we've switched back to the desktop we make the cursor visible again.

Jeff Molofee's OpenGL Windows Tutorial #1

Page 6 of 19

 if (hRC) // Do We Have A Rendering Context?
 {

 if (!wglMakeCurrent(NULL,NULL))
 {

 MessageBox(NULL,"Release Of DC And RC Failed.","SHUTDOWN ERROR",MB_OK | MB_ICONINFORMATION);
 }

 if (!wglDeleteContext(hRC)) // Are We Able To Delete The RC?
 {

 MessageBox(NULL,"Release Rendering Context Failed.","SHUTDOWN ERROR",MB_OK | MB_ICONINFORMATION);
 }
 hRC=NULL; // Set RC To NULL
 }

 The code below checks to see if we have a Rendering Context (hRC). If we don't, the program will
jump to the section of code below that checks to see if we have a Device Context.

If we have a Rendering Context, the code below will check to see if we are able to release it (detach
the hRC from the hDC). Notice the way I'm checking for errors. I'm basically telling our program to
try freeing it (with wglMakeCurrent(NULL,NULL), then I check to see if freeing it was successful or
not. Nicely combining a few lines of code into one line.

If we were unable to release the DC and RC contexts, MessageBox() will pop up an error message
letting us know the DC and RC could not be released. NULL means the message box has no
parent Window. The text right after NULL is the text that appears in the message box.
"SHUTDOWN ERROR" is the text that appears at the top of the message box (title). Next we have
MB_OK, this means we want a message box with one button labelled "OK".
MB_ICONINFORMATION makes a lower case i in a circle appear inside the message box (makes
it stand out a bit more).

 Next we try to delete the Rendering Context. If we were unsuccessful an error message will pop up.

 If we were unable to delete the Rendering Context the code below will pop up a message box letting
us know that deleting the RC was unsuccessful. hRC will be set to NULL.

 Now we check to see if our program has a Device Context and if it does, we try to release it. If we're
unable to release the Device Context an error message will pop up and hDC will be set to NULL.

Jeff Molofee's OpenGL Windows Tutorial #1

Page 7 of 19

 if (hDC && !ReleaseDC(hWnd,hDC)) // Are We Able To Release The DC
 {
 MessageBox(NULL,"Release Device Context Failed.","SHUTDOWN ERROR",MB_OK | MB_ICONINFORMATION);
 hDC=NULL; // Set DC To NULL
 }

 if (hWnd && !DestroyWindow(hWnd)) // Are We Able To Destroy The Window?
 {
 MessageBox(NULL,"Could Not Release hWnd.","SHUTDOWN ERROR",MB_OK | MB_ICONINFORMATION);
 hWnd=NULL;
 }

 if (!UnregisterClass("OpenGL",hInstance)) // Are We Able To Unregister Class
 {
 MessageBox(NULL,"Could Not Unregister Class.","SHUTDOWN ERROR",MB_OK | MB_ICONINFORMATION);
 hInstance=NULL;
 }
}

BOOL CreateGLWindow(char* title, int width, int height, int bits, bool fullscreenflag)
{

 GLuint PixelFormat;

Now we check to see if there is a Window Handle and if there is, we try to destroy the Window
using DestroyWindow(hWnd). If we are unable to destroy the Window, an error message will pop
up and hWnd will be set to NULL.

Last thing to do is unregister our Windows Class. This allows us to properly kill the window, and
then reopen another window without receiving the error message "Windows Class already
registered".

The next section of code creates our OpenGL Window. I spent a lot of time trying to decide if I
should create a fixed fullscreen Window that doesn't require a lot of extra code, or an easy to
customize user friendly Window that requires a lot more code. I decided the user friendly Window
with a lot more code would be the best choice. I get asked the following questions all the time in
email: How can I create a Window instead of using fullscreen? How do I change the Window's title?
How do I change the resolution or pixel format of the Window? The following code does all of that!
Therefore it's better learning material and will make writing OpenGL programs of your own a lot
easier!

As you can see the procedure returns BOOL (TRUE or FALSE), it also takes 5 parameters: title of
the Window, width of the Window, height of the Window, bits (16/24/32), and finally
fullscreenflag TRUE for fullscreen or FALSE for windowed. We return a boolean value that will tell
us if the Window was created successfully.

 When we ask Windows to find us a pixel format that matches the one we want, the number of the
mode that Windows ends up finding for us will be stored in the variable PixelFormat.

Jeff Molofee's OpenGL Windows Tutorial #1

Page 8 of 19

 WNDCLASS wc; // Windows Class Structure

 DWORD dwExStyle;
 DWORD dwStyle; // Window Style

 RECT WindowRect; // Grabs Rectangle Upper Left / Lower Right Values
 WindowRect.left=(long)0; // Set Left Value To 0
 WindowRect.right=(long)width;
 WindowRect.top=(long)0;
 WindowRect.bottom=(long)height;

 fullscreen=fullscreenflag; // Set The Global Fullscreen Flag

wc will be used to hold our Window Class structure. The Window Class structure holds information
about our window. By changing different fields in the Class we can change how the window looks
and behaves. Every window belongs to a Window Class. Before you create a window, you MUST
register a Class for the window.

dwExStyle and dwStyle will store the Extended and normal Window Style Information. I use
variables to store the styles so that I can change the styles depending on what type of window I
need to create (A popup window for fullscreen or a window with a border for windowed mode)

The following 5 lines of code grab the upper left, and lower right values of a rectangle. We'll use
these values to adjust our window so that the area we draw on is the exact resolution we want.
Normally if we create a 640x480 window, the borders of the window take up some of our resolution.

In the next line of code we make the global variable fullscreen equal fullscreenflag. So if we
made our Window fullscreen, the variable fullscreenflag would be TRUE. If we didn't make the
variable fullscreen equal fullscreenflag, the variable fullscreen would stay FALSE. If we were
killing the window, and the computer was in fullscreen mode, but the variable fullscreen was FALSE
instead of TRUE like it should be, the computer wouldn't switch back to the desktop, because it
would think it was already showing the desktop. God I hope that makes sense. Basically to sum it
up, fullscreen has to equal whatever fullscreenflag equals, otherwise there will be problems.

In the next section of code, we grab an instance for our Window, then we define the Window Class.

The style CS_HREDRAW and CS_VREDRAW force the Window to redraw whenever it is resized.
CS_OWNDC creates a private DC for the Window. Meaning the DC is not shared across
applications. WndProc is the procedure that watches for messages in our program. No extra
Window data is used so we zero the two fields. Then we set the instance. Next we set hIcon to
NULL meaning we don't want an ICON in the Window, and for a mouse pointer we use the standard
arrow. The background color doesn't matter (we set that in GL). We don't want a menu in this
Window so we set it to NULL, and the class name can be any name you want. I'll use "OpenGL" for
simplicity.

Jeff Molofee's OpenGL Windows Tutorial #1

Page 9 of 19

 hInstance = GetModuleHandle(NULL); // Grab An Instance For Our Window
 wc.style = CS_HREDRAW | CS_VREDRAW | CS_OWNDC; // Redraw On Move, And Own DC For Window
 wc.lpfnWndProc = (WNDPROC) WndProc;
 wc.cbClsExtra = 0;
 wc.cbWndExtra = 0;
 wc.hInstance = hInstance;
 wc.hIcon = LoadIcon(NULL, IDI_WINLOGO); // Load The Default Icon
 wc.hCursor = LoadCursor(NULL, IDC_ARROW);
 wc.hbrBackground = NULL; // No Background Required For GL
 wc.lpszMenuName = NULL;
 wc.lpszClassName = "OpenGL"; // Set The Class Name

 if (!RegisterClass(&wc)) // Attempt To Register The Window Class
 {
 MessageBox(NULL,"Failed To Register The Window Class.","ERROR",MB_OK|MB_ICONEXCLAMATION);
 return FALSE;
 }

 if (fullscreen)
 {

 DEVMODE dmScreenSettings; // Device Mode
 memset(&dmScreenSettings,0,sizeof(dmScreenSettings)); // Makes Sure Memory's Cleared
 dmScreenSettings.dmSize=sizeof(dmScreenSettings); // Size Of The Devmode Structure
 dmScreenSettings.dmPelsWidth = width; // Selected Screen Width
 dmScreenSettings.dmPelsHeight = height; // Selected Screen Height
 dmScreenSettings.dmBitsPerPel = bits;
 dmScreenSettings.dmFields=DM_BITSPERPEL|DM_PELSWIDTH|DM_PELSHEIGHT;

 Now we register the Class. If anything goes wrong, an error message will pop up. Clicking on OK in
the error box will exit the program.

 Now we check to see if the program should run in fullscreen mode or windowed mode. If it should
be fullscreen mode, we'll attempt to set fullscreen mode.

The next section of code is something people seem to have a lot of problems with... switching to
fullscreen mode. There are a few very important things you should keep in mind when switching to
full screen mode. Make sure the width and height that you use in fullscreen mode is the same as
the width and height you plan to use for your window, and most importantly, set fullscreen mode
BEFORE you create your window. In this code, you don't have to worry about the width and height,
the fullscreen and the window size are both set to be the size requested.

In the code above we clear room to store our video settings. We set the width, height and bits that
we want the screen to switch to. In the code below we try to set the requested full screen mode.
We stored all the information about the width, height and bits in dmScreenSettings. In the line
below ChangeDisplaySettings tries to switch to a mode that matches what we stored in
dmScreenSettings. I use the parameter CDS_FULLSCREEN when switching modes, because it's
supposed to remove the start bar at the bottom of the screen, plus it doesn't move or resize the
windows on your desktop when you switch to fullscreen mode and back.

Jeff Molofee's OpenGL Windows Tutorial #1

Page 10 of 19

 // Try To Set Selected Mode And Get Results. NOTE: CDS_FULLSCREEN Gets Rid Of Start Bar.
 if (ChangeDisplaySettings(&dmScreenSettings,CDS_FULLSCREEN)!=DISP_CHANGE_SUCCESSFUL)
 {

 // If The Mode Fails, Offer Two Options. Quit Or Run In A Window.
 if (MessageBox(NULL,"The Requested Fullscreen Mode Is Not Supported By\nYour Video Card. Use Windowed Mode Instead?","NeHe GL",MB_YESNO|MB_ICONEXCLAMATION)==IDYES)
 {

 fullscreen=FALSE; // Select Windowed Mode (Fullscreen=FALSE)
 }
 else
 {

 // Pop Up A Message Box Letting User Know The Program Is Closing.
 MessageBox(NULL,"Program Will Now Close.","ERROR",MB_OK|MB_ICONSTOP);
 return FALSE;
 }
 }
 }

 if (fullscreen)
 {

 If the mode couldn't be set the code below will run. If a matching fullscreen mode doesn't exist, a
messagebox will pop up offering two options... The option to run in a window or the option to quit.

 If the user decided to use windowed mode, the variable fullscreen becomes FALSE, and the
program continues running.

If the user decided to quit, a messagebox will pop up telling the user that the program is about to
close. FALSE will be returned telling our program that the window was not created successfully.
The program will then quit.

Because the fullscreen code above may have failed and the user may have decided to run the
program in a window instead, we check once again to see if fullscreen is TRUE or FALSE before
we set up the screen / window type.

If we are still in fullscreen mode we'll set the extended style to WS_EX_APPWINDOW, which force
a top level window down to the taskbar once our window is visible. For the window style we'll create
a WS_POPUP window. This type of window has no border around it, making it perfect for fullscreen
mode.

Finally, we disable the mouse pointer. If your program is not interactive, it's usually nice to disable
the mouse pointer when in fullscreen mode. It's up to you though.

Jeff Molofee's OpenGL Windows Tutorial #1

Page 11 of 19

 dwExStyle=WS_EX_APPWINDOW; // Window Extended Style
 dwStyle=WS_POPUP; // Windows Style
 ShowCursor(FALSE); // Hide Mouse Pointer
 }
 else
 {

 dwExStyle=WS_EX_APPWINDOW | WS_EX_WINDOWEDGE; // Window Extended Style
 dwStyle=WS_OVERLAPPEDWINDOW;
 }

 AdjustWindowRectEx(&WindowRect, dwStyle, FALSE, dwExStyle); // Adjust Window To True Requested Size

 if (!(hWnd=CreateWindowEx(dwExStyle, // Extended Style For The Window
 "OpenGL", // Class Name
 title,
 WS_CLIPSIBLINGS | // Required Window Style
 WS_CLIPCHILDREN | // Required Window Style
 dwStyle, // Selected Window Style
 0, 0,
 WindowRect.right-WindowRect.left, // Calculate Adjusted Window Width
 WindowRect.bottom-WindowRect.top, // Calculate Adjusted Window Height
 NULL,
 NULL,
 hInstance,
 NULL)))

If we're using a window instead of fullscreen mode, we'll add WS_EX_WINDOWEDGE to the
extended style. This gives the window a more 3D look. For style we'll use
WS_OVERLAPPEDWINDOW instead of WS_POPUP. WS_OVERLAPPEDWINDOW creates a
window with a title bar, sizing border, window menu, and minimize / maximize buttons.

The line below adjust our window depending on what style of window we are creating. The
adjustment will make our window exactly the resolution we request. Normally the borders will
overlap parts of our window. By using the AdjustWindowRectEx command none of our OpenGL
scene will be covered up by the borders, instead, the window will be made larger to account for the
pixels needed to draw the window border. In fullscreen mode, this command has no effect.

In the next section of code, we're going to create our window and check to see if it was created
properly. We pass CreateWindowEx() all the parameters it requires. The extended style we decided
to use. The class name (which has to be the same as the name you used when you registered the
Window Class). The window title. The window style. The top left position of your window (0,0 is a
safe bet). The width and height of the window. We don't want a parent window, and we don't want a
menu so we set both these parameters to NULL. We pass our window instance, and finally we
NULL the last parameter.

Notice we include the styles WS_CLIPSIBLINGS and WS_CLIPCHILDREN along with the style of
window we've decided to use. WS_CLIPSIBLINGS and WS_CLIPCHILDREN are both REQUIRED
for OpenGL to work properly. These styles prevent other windows from drawing over or into our
OpenGL Window.

Jeff Molofee's OpenGL Windows Tutorial #1

Page 12 of 19

 {
 KillGLWindow();
 MessageBox(NULL,"Window Creation Error.","ERROR",MB_OK|MB_ICONEXCLAMATION);
 return FALSE;
 }

 static PIXELFORMATDESCRIPTOR pfd= // pfd Tells Windows How We Want Things To Be
 {
 sizeof(PIXELFORMATDESCRIPTOR),
 1,
 PFD_DRAW_TO_WINDOW |
 PFD_SUPPORT_OPENGL |
 PFD_DOUBLEBUFFER, // Must Support Double Buffering
 PFD_TYPE_RGBA,
 bits,
 0, 0, 0, 0, 0, 0, // Color Bits Ignored
 0,
 0,
 0,
 0, 0, 0, 0,
 16,
 0,
 0,
 PFD_MAIN_PLANE,
 0,
 0, 0, 0
 };

 if (!(hDC=GetDC(hWnd)))
 {
 KillGLWindow();
 MessageBox(NULL,"Can't Create A GL Device Context.","ERROR",MB_OK|MB_ICONEXCLAMATION);
 return FALSE;
 }

Next we check to see if our window was created properly. If our window was created, hWnd will
hold the window handle. If the window wasn't created the code below will pop up an error message
and the program will quit.

The next section of code describes a Pixel Format. We choose a format that supports OpenGL and
double buffering, along with RGBA (red, green, blue, alpha channel). We try to find a pixel format
that matches the bits we decided on (16bit,24bit,32bit). Finally we set up a 16bit Z-Buffer. The
remaining parameters are either not used or are not important (aside from the stencil buffer and the
(slow) accumulation buffer).

If there were no errors while creating the window, we'll attempt to get an OpenGL Device Context. If
we can't get a DC an error message will pop onto the screen, and the program will quit (return
FALSE).

Jeff Molofee's OpenGL Windows Tutorial #1

Page 13 of 19

 if (!(PixelFormat=ChoosePixelFormat(hDC,&pfd)))
 {
 KillGLWindow();
 MessageBox(NULL,"Can't Find A Suitable PixelFormat.","ERROR",MB_OK|MB_ICONEXCLAMATION);
 return FALSE;
 }

 if(!SetPixelFormat(hDC,PixelFormat,&pfd)) // Are We Able To Set The Pixel Format?
 {
 KillGLWindow();
 MessageBox(NULL,"Can't Set The PixelFormat.","ERROR",MB_OK|MB_ICONEXCLAMATION);
 return FALSE;
 }

 if (!(hRC=wglCreateContext(hDC))) // Are We Able To Get A Rendering Context?
 {
 KillGLWindow();
 MessageBox(NULL,"Can't Create A GL Rendering Context.","ERROR",MB_OK|MB_ICONEXCLAMATION);
 return FALSE;
 }

 if(!wglMakeCurrent(hDC,hRC))
 {
 KillGLWindow();
 MessageBox(NULL,"Can't Activate The GL Rendering Context.","ERROR",MB_OK|MB_ICONEXCLAMATION);
 return FALSE;
 }

If we managed to get a Device Context for our OpenGL window we'll try to find a pixel format that
matches the one we described above. If Windows can't find a matching pixel format, an error
message will pop onto the screen and the program will quit (return FALSE).

 If windows found a matching pixel format we'll try setting the pixel format. If the pixel format cannot
be set, an error message will pop up on the screen and the program will quit (return FALSE).

 If the pixel format was set properly we'll try to get a Rendering Context. If we can't get a Rendering
Context an error message will be displayed on the screen and the program will quit (return FALSE).

If there have been no errors so far, and we've managed to create both a Device Context and a
Rendering Context all we have to do now is make the Rendering Context active. If we can't make
the Rendering Context active an error message will pop up on the screen and the program will quit
(return FALSE).

Jeff Molofee's OpenGL Windows Tutorial #1

Page 14 of 19

 ShowWindow(hWnd,SW_SHOW); // Show The Window
 SetForegroundWindow(hWnd); // Slightly Higher Priority
 SetFocus(hWnd);
 ReSizeGLScene(width, height);

 if (!InitGL())
 {
 KillGLWindow();
 MessageBox(NULL,"Initialization Failed.","ERROR",MB_OK|MB_ICONEXCLAMATION);
 return FALSE;
 }

 return TRUE;
}

LRESULT CALLBACK WndProc(HWND hWnd, // Handle For This Window
 UINT uMsg,
 WPARAM wParam,
 LPARAM lParam)
{

 switch (uMsg)
 {

If everything went smoothly, and our OpenGL window was created we'll show the window, set it to
be the foreground window (giving it more priority) and then set the focus to that window. Then we'll
call ReSizeGLScene passing the screen width and height to set up our perspective OpenGL
screen.

Finally we jump to InitGL() where we can set up lighting, textures, and anything else that needs to
be setup. You can do your own error checking in InitGL(), and pass back TRUE (everythings OK) or
FALSE (somethings not right). For example, if you were loading textures in InitGL() and had an
error, you may want the program to stop. If you send back FALSE from InitGL() the lines of code
below will see the FALSE as an error message and the program will quit.

 If we've made it this far, it's safe to assume the window creation was successful. We return TRUE
to WinMain() telling WinMain() there were no errors. This prevents the program from quitting.

 This is where all the window messages are dealt with. When we registred the Window Class we
told it to jump to this section of code to deal with window messages.

 The code below sets uMsg as the value that all the case statements will be compared to. uMsg will
hold the name of the message we want to deal with.

Jeff Molofee's OpenGL Windows Tutorial #1

Page 15 of 19

 case WM_ACTIVATE: // Watch For Window Activate Message
 {
 if (!HIWORD(wParam))
 {
 active=TRUE;
 }
 else
 {
 active=FALSE;
 }

 return 0; // Return To The Message Loop
 }

 case WM_SYSCOMMAND:
 {
 switch (wParam)
 {
 case SC_SCREENSAVE:
 case SC_MONITORPOWER:
 return 0; // Prevent From Happening
 }
 break;
 }

 case WM_CLOSE:
 {
 PostQuitMessage(0);
 return 0; // Jump Back
 }

 case WM_KEYDOWN: // Is A Key Being Held Down?

if uMsg is WM_ACTIVE we check to see if our window is still active. If our window has been
minimized the variable active will be FALSE. If our window is active, the variable active will be
TRUE.

If the message is WM_SYSCOMMAND (system command) we'll compare wParam against the
case statements. If wParam is SC_SCREENSAVE or SC_MONITORPOWER either a screensaver
is trying to start or the monitor is trying to enter power saving mode. By returning 0 we prevent both
those things from happening.

If uMsg is WM_CLOSE the window has been closed. We send out a quit message that the main
loop will intercept. The variable done will be set to TRUE, the main loop in WinMain() will stop, and
the program will close.

If a key is being held down we can find out what key it is by reading wParam. I then make that
keys cell in the array keys[] become TRUE. That way I can read the array later on and find out
which keys are being held down. This allows more than one key to be pressed at the same time.

Jeff Molofee's OpenGL Windows Tutorial #1

Page 16 of 19

 {
 keys[wParam] = TRUE;
 return 0; // Jump Back
 }

 case WM_KEYUP:
 {
 keys[wParam] = FALSE;
 return 0; // Jump Back
 }

 case WM_SIZE:
 {
 ReSizeGLScene(LOWORD(lParam),HIWORD(lParam)); // LoWord=Width, HiWord=Height
 return 0; // Jump Back
 }
 }

 // Pass All Unhandled Messages To DefWindowProc
 return DefWindowProc(hWnd,uMsg,wParam,lParam);
}

int WINAPI WinMain(HINSTANCE hInstance, // Instance
 HINSTANCE hPrevInstance, // Previous Instance
 LPSTR lpCmdLine,
 int nCmdShow) // Window Show State
{

If a key has been released we find out which key it was by reading wParam. We then make that
keys cell in the array keys[] equal FALSE. That way when I read the cell for that key I'll know if it's
still being held down or if it's been released. Each key on the keyboard can be represented by a
number from 0-255. When I press the key that represents the number 40 for example, keys[40] will
become TRUE. When I let go, it will become FALSE. This is how we use cells to store keypresses.

Whenever we resize our window uMsg will eventually become the message WM_SIZE. We read
the LOWORD and HIWORD values of lParam to find out the windows new width and height. We
pass the new width and height to ReSizeGLScene(). The OpenGL Scene is then resized to the new
width and height.

 Any messages that we don't care about will be passed to DefWindowProc so that Windows can
deal with them.

 This is the entry point of our Windows Application. This is where we call our window creation
routine, deal with window messages, and watch for human interaction.

Jeff Molofee's OpenGL Windows Tutorial #1

Page 17 of 19

 MSG msg;
 BOOL done=FALSE;

 // Ask The User Which Screen Mode They Prefer
 if (MessageBox(NULL,"Would You Like To Run In Fullscreen Mode?", "Start FullScreen?",MB_YESNO|MB_ICONQUESTION)==IDNO)
 {
 fullscreen=FALSE; // Windowed Mode
 }

 // Create Our OpenGL Window
 if (!CreateGLWindow("NeHe's OpenGL Framework",640,480,16,fullscreen))
 {
 return 0; // Quit If Window Was Not Created
 }

 while(!done)
 {

 if (PeekMessage(&msg,NULL,0,0,PM_REMOVE)) // Is There A Message Waiting?
 {

We set up two variables. msg will be used to check if there are any waiting messages that need to
be dealt with. the variable done starts out being FALSE. This means our program is not done
running. As long as done remains FALSE, the program will continue to run. As soon as done is
changed from FALSE to TRUE, our program will quit.

This section of code is completely optional. It pops up a messagebox that asks if you would like to
run the program in fullscreen mode. If the user clicks on the NO button, the variable fullscreen
changes from TRUE (it's default) to FALSE and the program runs in windowed mode instead of
fullscreen mode.

This is how we create our OpenGL window. We pass the title, the width, the height, the color
depth, and TRUE (fullscreen) or FALSE (window mode) to CreateGLWindow. That's it! I'm pretty
happy with the simplicity of this code. If the window was not created for some reason, FALSE will
be returned and our program will immediately quit (return 0).

 This is the start of our loop. As long as done equals FALSE the loop will keep repeating.

The first thing we have to do is check to see if any window messages are waiting. By using
PeekMessage() we can check for messages without halting our program. A lot of programs use
GetMessage(). It works fine, but with GetMessage() your program doesn't do anything until it
receives a paint message or some other window message.

Jeff Molofee's OpenGL Windows Tutorial #1

Page 18 of 19

 if (msg.message==WM_QUIT) // Have We Received A Quit Message?
 {
 done=TRUE;
 }
 else
 {

 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }
 }
 else
 {

 // Draw The Scene. Watch For ESC Key And Quit Messages From DrawGLScene()
 if ((active && !DrawGLScene()) || keys[VK_ESCAPE]) // Updating View Only If Active
 {
 done=TRUE;
 }
 else
 {

 SwapBuffers(hDC); // Swap Buffers (Double Buffering)
 }

In the next section of code we check to see if a quit message was issued. If the current message
is a WM_QUIT message caused by PostQuitMessage(0) the variable done is set to TRUE,
causing the program to quit.

 If the message isn't a quit message we translate the message then dispatch the message so that
WndProc() or Windows can deal with it.

If there were no messages we'll draw our OpenGL scene. The first line of code below checks to see
if the window is active. The scene is rendered and the returned value is checked. If DrawGLScene()
returns FALSE or the ESC key is pressed the variable done is set to TRUE, causing the program
to quit.

If everything rendered fine, we swap the buffer (By using double buffering we get smooth flicker free
animation). By using double buffering, we are drawing everything to a hidden screen that we can not
see. When we swap the buffer, the screen we see becomes the hidden screen, and the screen that
was hidden becomes visible. This way we don't see our scene being drawn out. It just instantly
appears.

 The next bit of code is new and has been added just recently (05-01-00). It allows us to press the
F1 key to switch from fullscreen mode to windowed mode or windowed mode to fullscreen mode.

Jeff Molofee's OpenGL Windows Tutorial #1

Page 19 of 19

 if (keys[VK_F1]) // Is F1 Being Pressed?
 {
 keys[VK_F1]=FALSE; // If So Make Key FALSE
 KillGLWindow();
 fullscreen=!fullscreen;
 // Recreate Our OpenGL Window
 if (!CreateGLWindow("NeHe's OpenGL Framework",640,480,16,fullscreen))
 {
 return 0; // Quit If Window Was Not Created
 }
 }
 }
 }

 // Shutdown
 KillGLWindow();
 return (msg.wParam);
}

 If the done variable is no longer FALSE, the program quits. We kill the OpenGL window properly so
that everything is freed up, and we exit the program.

In this tutorial I have tried to explain in as much detail, every step involved in setting up, and
creating a fullscreen OpenGL program of your own, that will exit when the ESC key is pressed and
monitor if the window is active or not. I've spent roughly 2 weeks writing the code, one week fixing
bugs & talking with programming gurus, and 2 days (roughly 22 hours writing this HTML file). If you
have comments or questions please email me. If you feel I have incorrectly commented something
or that the code could be done better in some sections, please let me know. I want to make the
best OpenGL tutorials I can and I'm interested in hearing your feedback.

Jeff Molofee (NeHe)

* DOWNLOAD Visual C++ Code For This Lesson.
* DOWNLOAD Delphi Code For This Lesson. (Conversion by Peter De Jaegher)
* DOWNLOAD ASM Code For This Lesson. (Conversion by Foolman)
* DOWNLOAD Visual Fortran Code For This Lesson. (Conversion by Jean-Philippe Perois)
* DOWNLOAD Linux Code For This Lesson. (Conversion by Richard Campbell)
* DOWNLOAD Irix Code For This Lesson. (Conversion by Lakmal Gunasekara)
* DOWNLOAD Solaris Code For This Lesson. (Conversion by Lakmal Gunasekara)
* DOWNLOAD Mac OS Code For This Lesson. (Conversion by Anthony Parker)
* DOWNLOAD Power Basic Code For This Lesson. (Conversion by Angus Law)
* DOWNLOAD BeOS Code For This Lesson. (Conversion by Chris Herborth)
* DOWNLOAD Java Code For This Lesson. (Conversion by Darren Hodges)

 Back To NeHe Productions!

Jeff Molofee's OpenGL Mac OS Tutorial (By Anthony Parker's)

Page 1 of 2

 #include <GL/gl.h>
 #include <GL/glu.h>
 #include <GL/glut.h>
 #include "tk.h"

 #define kWindowWidth 400
 #define kWindowHeight 300

 GLvoid InitGL(GLvoid);
 GLvoid DrawGLScene(GLvoid);
 GLvoid ReSizeGLScene(int Width, int Height);

 int main(int argc, char** argv)
 {

 OpenGL On MacOS

So you've been wanting to setup OpenGL on MacOS? Here's the place to learn what you need and
how you need to do it.

What You'll Need:

First and foremost, you'll need a compiler. By far the best and most popular on the Macintosh is
Metrowerks Codewarrior. If you're a student, get the educational version - there's no difference
between it and the professional version and it'll cost you a lot less.

Next, you'll need the OpenGL SDK (that's Software Development Kit) from Apple. Now we're ready
to create an OpenGL program!

Getting Started with GLUT:

Ok, here is the beginning of the program, where we include headers:

The first is the standard OpenGL calls, the other three provide additional calls which we will use in
our programs.

Next, we define some constants:

 We use these for the height and width of our window. Next, the function prototypes:

 ... and the main() function:

Jeff Molofee's OpenGL Mac OS Tutorial (By Anthony Parker's)

Page 2 of 2

 glutInit(&argc, argv);
 glutInitDisplayMode (GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH);
 glutInitWindowSize (kWindowWidth, kWindowHeight);
 glutInitWindowPosition (100, 100);
 glutCreateWindow (argv[0]);

 InitGL();

 glutDisplayFunc(DrawGLScene);
 glutReshapeFunc(ReSizeGLScene);

 glutMainLoop();

 return 0;
 }

glutInit(), glutInitDisplayMode(), glutInitWindowSize(), glutInitWindowPosition(), and
glutCreateWindow() all set up our OpenGL program. InitGL() does the same thing in the Mac
program as in the Windows program. glutDisplayFunc(DrawGLScene) tells GLUT that we want the
DrawGLScene function to be used when we want to draw the scene. glutReshapeFunc
(ReSizeGLScene) tells GLUT that we want the ReSizeGLScene function to be used if the window is
resized.

Later, we will use glutKeyboardFunc(), which tells GLUT which function we want to use when a key
is pressed, and glutIdleFunc() which tells GLUT which function it will call repeatedly (we'll use it to
spin stuff in space).

Finally, glutMainLoop() starts the program. Once this is called, it will only return to the main()
function when the program is quitting.

You're done!

Well, that's about it. Most everything else is the same as NeHe's examples. I suggest you look at
the Read Me included with the MacOS ports, as it has more detail on specific changes from the
examples themselves.

Have fun!

Tony Parker, asp@usc.edu

Back To NeHe Productions!

Jeff Molofee's OpenGL Solaris Tutorial (By Lakmal Gunasekara's)

Page 1 of 4

http://www.sunfreeware.com/

> pkgadd gcc-xxxversion

> admintool

 OpenGL Under Solaris

This document describes (quick and dirty) how to install OpenGL and GLUT libraries under Solaris
7 on a Sun workstation.

The Development Tools:

Make sure you have a Solaris DEVELOPER installation on your machine. This means you have all
the header files that are nessesary for program development under Solaris installed. The easiest
way is to install Solaris as a development version. This can be done from the normal Solaris
installation CD ROM.

After you've done this you should have your /usr/include and /usr/openwin/include directories filled
with nice liddle header files.

The C Compiler:

Sun doesn't ship a C or C++ compiler with Solaris. But you're lucky. You don't have to pay :-)

 There you find gcc the GNU Compiler Collection for Solaris precompiled and ready for easy
installation. Get the version you like and install it.

 This will install gcc under /usr/local. You can also do this with admintool:

Browse->Software
Edit->Add

Then choose Source: "Hard disk" and specify the directory that you've stored the package in.

I recommend also downloading and installation of the libstdc++ library if nessesary for you gcc
version.

The OpenGL library

OpenGL should be shipped with Solaris these days. Check if you've already installed it.

Jeff Molofee's OpenGL Solaris Tutorial (By Lakmal Gunasekara's)

Page 2 of 4

> cd /usr/openwin/lib

> ls libGL*

libGL.so@ libGLU.so@ libGLw.so@
libGL.so.1* libGLU.so.1* libGLw.so.1*

> cd /usr/openwin/include/GL

> ls

gl.h glu.h glxmd.h glxtokens.h
glmacros.h glx.h glxproto.h

http://www.sun.com/software/graphics/OpenGL/Developer/FAQ-1.1.2.html

http://www.sun.com/solaris/opengl/

 This should print:

This means that you have the libraries already installed (runtime version).

But are the header files also there?

 This should print:

I have it. But what version is it?

This is a FAQ.

Helps you with questions dealing with OpenGL on Sun platforms.

Yes cool. Seems they're ready. Skip the rest of this step and go to GLUT.

You don't already have OpenGL? Your version is too old? Download a new one:

Jeff Molofee's OpenGL Solaris Tutorial (By Lakmal Gunasekara's)

Page 3 of 4

http://www.sun.com/software/graphics/OpenGL/Demos/index.html

http://reality.sgi.com/opengl/glut3/glut3.html#sun

> LD_LIBRARY_PATH=/lib:/usr/lib:/usr/openwin/lib:/usr/dt/lib:/usr/local/lib:/usr/local/sparc_solaris/glut-3.7/lib/glut

> export LD_LIBRARY_PATH

>setenv LD_LIBRARY_PATH /lib:/usr/lib:/usr/openwin/lib:/usr/dt/lib:/usr/local/lib:/usr/local/sparc_solaris/glut-3.7/lib/glut

> echo $LD_LIBRARY_PATH

/lib:/usr/lib:/usr/openwin/lib:/usr/dt/lib:/usr/local/lib:/usr/local/sparc_solaris/glut-3.7/lib/glut

Helps you. Make sure to get the nessesary patches for your OS version and install them. BTW.
You need root access to do this. Ask you local sysadmin to do it for you. Follow the online guide
for installation.

GLUT

Now you have OpenGL but not GLUT. Where can you get it? Look right here:

 Following the links will take you to this location:

I've personally downloaded the 32bit version unless I run the 64 bit kernel of Solaris. I've installed
GLUT under /usr/local. This is normally a good place for stuff like this.

Well I have it, but when I try to run the samples in progs/ it claims that it can't find libglut.a. To tell
your OS where to look for runtime libraries you need to add the path to GLUT to your variable
LD_LIBRARY_PATH.

If you're using /bin/sh do something like this:

 If you're using a csh do something like this:

 Verify that everything is correct:

Jeff Molofee's OpenGL Solaris Tutorial (By Lakmal Gunasekara's)

Page 4 of 4

Congratulations you're done!

That's it folks. Now you should be ready to compile and run NeHe's OpenGL tutorials.

If you find spelling mistakes (I'm not a native english speaking beeing), errors in my description,
outdated links, or have a better install procedure please contact me.

- Lakmal Gunasekara 1999 for NeHe Productions.

Back To NeHe Productions!

#include <GLUT/glut.h>

#define kWindowWidth 400
#define kWindowHeight 300

GLvoid InitGL(GLvoid);
GLvoid DrawGLScene(GLvoid);
GLvoid ReSizeGLScene(int Width, int Height);

OpenGL On MacOS X

Public Beta

So you've been wanting to setup OpenGL on MacOS X? Here's the place to learn what you need
and how you need to do it. This is a direct port from the MacOS ports, so if something seems
familiar, thats why ;)

What You'll Need:

You will need a compiler. Two compilers are currently available, Apple's "Project Builder" and
Metrowerks CodeWarrior. Project Builder is being made free in Mid-October(2000), so this tutorial
will demonstrate how to make a GLUT project in Project Builder.

Getting Started with Project Builder:

This bit is easy. Just choose "File->New Project" and select a "Cocoa Application." Now choose the
name of your project, and your project IDE will pop up.

Now goto the "Project" Menu and "Add Framework..." to add the GLUT.framework

Getting Started with GLUT:

Ok, here is the beginning of the program, where we include headers, notice there is only one
header, as opposed to three:

The first is the standard OpenGL calls, the other three provide additional calls which we will use in
our programs.

Next, we define some constants:

 We use these for the height and width of our window. Next, the function prototypes:

 ... and the main() function:

Jeff Molofee's OpenGL Mac OS X Tutorial (By Raal Goff)

Page 1 of 2

int main(int argc, char** argv)
{
 glutInit(&argc, argv);
 glutInitDisplayMode (GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH);
 glutInitWindowSize (kWindowWidth, kWindowHeight);
 glutInitWindowPosition (100, 100);
 glutCreateWindow (argv[0]);

 InitGL();

 glutDisplayFunc(DrawGLScene);
 glutReshapeFunc(ReSizeGLScene);

 glutMainLoop();

 return 0;
}

glutInit(), glutInitDisplayMode(), glutInitWindowSize(), glutInitWindowPosition(), and
glutCreateWindow() all set up our OpenGL program. InitGL() does the same thing in the Mac
program as in the Windows program. glutDisplayFunc(DrawGLScene) tells GLUT that we want the
DrawGLScene function to be used when we want to draw the scene. glutReshapeFunc
(ReSizeGLScene) tells GLUT that we want the ReSizeGLScene function to be used if the window is
resized.

Later, we will use glutKeyboardFunc(), which tells GLUT which function we want to use when a key
is pressed, and glutIdleFunc() which tells GLUT which function it will call repeatedly (we'll use it to
spin stuff in space).

Finally, glutMainLoop() starts the program. Once this is called, it will only return to the main()
function when the program is quitting.

All Done!

Notice the only real difference here is that we are changing the headers. Pretty simple!

In later tutorials there will be some bigger differences, but for now its just as simple as changing the
headers and adding the framework.

Have fun!

R.Goff (unreality@mac.com)

Jeff Molofee's OpenGL Mac OS X Tutorial (By Raal Goff)

Page 2 of 2

Jeff Molofee's OpenGL Windows Tutorial #2

Page 1 of 3

int DrawGLScene(GLvoid) // Here's Where We Do All The Drawing
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Clear The Screen And The Depth Buffer
 glLoadIdentity(); // Reset The View

 glTranslatef(-1.5f,0.0f,-6.0f); // Move Left 1.5 Units And Into The Screen 6.0

 Lesson 2

In the first tutorial I taught you how to create an OpenGL Window. In this tutorial I will teach you
how to create both Triangles and Quads. We will create a triangle using GL_TRIANGLES, and a
square using GL_QUADS.

Using the code from the first tutorial, we will be adding to the DrawGLScene() procedure. I will
rewrite the entire procedure below. If you plan to modify the last lesson, you can replace the
DrawGLScene() procedure with the code below, or just add the lines of code below that do not exist
in the last tutorial.

When you do a glLoadIdentity() what you are doing is moving back to the center of the screen with
the X axis running left to right, the Y axis moving up and down, and the Z axis moving into, and out
of the screen. The center of an OpenGL screen is 0.0f on the X and Y axis. To the left of center
would be a negative number. To the right would be a positive number. Moving towards the top of the
screen would be a positive number, moving to the bottom of the screen would be a negative
number. Moving deeper into the screen is a negative number, moving towards the viewer would be a
positive number.

glTranslatef(x, y, z) moves along the X, Y and Z axis, in that order. The line of code below moves
left on the X axis 1.5 units. It does not move on the Y axis at all (0.0), and it moves into the screen
6.0 units. When you translate, you are not moving a set amount from the center of the screen, you
are moving a set amount from wherever you currently were on the screen.

Now that we have moved to the left half of the screen, and we've set the view deep enough into the
screen (6.0) that we can see our entire scene we will create the Triangle. glBegin(GL_TRIANGLES)
means we want to start drawing a triangle, and glEnd() tells OpenGL we are done creating the
triangle. Typically if you want 3 points, use GL_TRIANGLES. Drawing triangles is fairly fast on most
video cards. If you want 4 points use GL_QUADS to make life easier. From what I've heard, most
video cards just draw to triangles anyways. Finally if you want more than 4 points, use
GL_POLYGON.

In our simple program, we draw just one triangle. If we wanted to draw a second triangle, we could
include another 3 lines of code (3 points) right after the first three. All six lines of code would be
between glBegin(GL_TRIANGLES) and glEnd(). There's no point in putting a glBegin
(GL_TRIANGLES) and a glEnd() around every group of 3 points if we're drawing all triangles. This
applies to quads as well. If you know you're drawing all quads, you can include the second four
lines of code right after the first four lines. A polygon on the other hand (GL_POLYGON) can be
made up of any amount of point so it doesn't matter how many lines you have between glBegin
(GL_POLYGON) and glEnd().

Jeff Molofee's OpenGL Windows Tutorial #2

Page 2 of 3

 glBegin(GL_TRIANGLES); // Drawing Using Triangles
 glVertex3f(0.0f, 1.0f, 0.0f); // Top
 glVertex3f(-1.0f,-1.0f, 0.0f); // Bottom Left
 glVertex3f(1.0f,-1.0f, 0.0f); // Bottom Right
 glEnd(); // Finished Drawing The Triangle

 glTranslatef(3.0f,0.0f,0.0f); // Move Right 3 Units

 glBegin(GL_QUADS); // Draw A Quad
 glVertex3f(-1.0f, 1.0f, 0.0f); // Top Left
 glVertex3f(1.0f, 1.0f, 0.0f); // Top Right
 glVertex3f(1.0f,-1.0f, 0.0f); // Bottom Right
 glVertex3f(-1.0f,-1.0f, 0.0f); // Bottom Left
 glEnd(); // Done Drawing The Quad
 return TRUE; // Keep Going
}

 if (keys[VK_F1]) // Is F1 Being Pressed?
 {
 keys[VK_F1]=FALSE; // If So Make Key FALSE
 KillGLWindow(); // Kill Our Current Window
 fullscreen=!fullscreen; // Toggle Fullscreen / Windowed Mode
 // Recreate Our OpenGL Window (Modified)
 if (!CreateGLWindow("NeHe's First Polygon Tutorial",640,480,16,fullscreen))
 {
 return 0; // Quit If Window Was Not Created
 }

The first line after glBegin, sets the first point of our polygon. The first number of glVertex is for the
X axis, the second number is for the Y axis, and the third number is for the Z axis. So in the first
line, we don't move on the X axis. We move up one unit on the Y axis, and we don't move on the Z
axis. This gives us the top point of the triangle. The second glVertex moves left one unit on the X
axis and down one unit on the Y axis. This gives us the bottom left point of the triangle. The third
glVertex moves right one unit, and down one unit. This gives us the bottom right point of the
triangle. glEnd() tells OpenGL there are no more points. The filled triangle will be displayed.

Now that we have the triangle displayed on the left half of the screen, we need to move to the right
half of the screen to display the square. In order to do this we use glTranslate again. This time we
must move to the right, so X must be a positive value. Because we've already moved left 1.5 units,
to get to the center we have to move right 1.5 units. After we reach the center we have to move
another 1.5 units to the right of center. So in total we need to move 3.0 units to the right.

Now we create the square. We'll do this using GL_QUADS. A quad is basically a 4 sided polygon.
Perfect for making a square. The code for creating a square is very similar to the code we used to
create a triangle. The only difference is the use of GL_QUADS instead of GL_TRIANGLES, and an
extra glVertex3f for the 4th point of the square. We'll draw the square top left, top right, bottom
right, bottom left.

 Finally change the code to toggle window / fullscreen mode so that the title at the top of the window
is proper.

Jeff Molofee's OpenGL Windows Tutorial #2

Page 3 of 3

 }

In this tutorial I have tried to explain in as much detail, every step involved in drawing polygons, and
quads on the screen using OpenGL. If you have comments or questions please email me. If you
feel I have incorrectly commented something or that the code could be done better in some
sections, please let me know. I want to make the best OpenGL tutorials I can. I'm interested in
hearing your feedback.

Jeff Molofee (NeHe)

* DOWNLOAD Visual C++ Code For This Lesson.
* DOWNLOAD Delphi Code For This Lesson. (Conversion by Peter De Jaegher)
* DOWNLOAD ASM Code For This Lesson. (Conversion by Foolman)
* DOWNLOAD Visual Fortran Code For This Lesson. (Conversion by Jean-Philippe Perois)
* DOWNLOAD Linux Code For This Lesson. (Conversion by Richard Campbell)
* DOWNLOAD Irix Code For This Lesson. (Conversion by Lakmal Gunasekara)
* DOWNLOAD Solaris Code For This Lesson. (Conversion by Lakmal Gunasekara)
* DOWNLOAD Mac OS Code For This Lesson. (Conversion by Anthony Parker)
* DOWNLOAD Power Basic Code For This Lesson. (Conversion by Angus Law)
* DOWNLOAD BeOS Code For This Lesson. (Conversion by Chris Herborth)
* DOWNLOAD Java Code For This Lesson. (Conversion by Darren Hodges)

Back To NeHe Productions!

Jeff Molofee's OpenGL Windows Tutorial #3

Page 1 of 3

int DrawGLScene(GLvoid) // Here's Where We Do All The Drawing
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Clear The Screen And The Depth Buffer
 glLoadIdentity(); // Reset The Current Modelview Matrix

 glTranslatef(-1.5f,0.0f,-6.0f); // Left 1.5 Then Into Screen Six Units

 glBegin(GL_TRIANGLES); // Begin Drawing Triangles

 glColor3f(1.0f,0.0f,0.0f); // Set The Color To Red
 glVertex3f(0.0f, 1.0f, 0.0f); // Move Up One Unit From Center (Top Point)

 glColor3f(0.0f,1.0f,0.0f); // Set The Color To Green
 glVertex3f(-1.0f,-1.0f, 0.0f); // Left And Down One Unit (Bottom Left)

 Lesson 3

In the last tutorial I taught you how to display Triangles and Quads on the screen. In this tutorial I
will teach you how to add 2 different types of coloring to the triangle and quad. Flat coloring will
make the quad one solid color. Smooth coloring will blend the 3 colors specified at each point
(vertex) of the triangle together, creating a nice blend of colors.

Using the code from the last tutorial, we will be adding to the DrawGLScene procedure. I will rewrite
the entire procedure below, so if you plan to modify the last lesson, you can replace the
DrawGLScene procedure with the code below, or just add code to the DrawGLScene procedure that
is not already in the last tutorial.

If you remember from the last tutorial, this is the section of code to draw the triangle on the left half
of the screen. The next line of code will be the first time we use the command glColor3f(r,g,b). The
three parameters in the brackets are red, green and blue intensity values. The values can be from
0.0f to 1.0f. It works the same way as the color values we use to clear the background of the
screen.

We are setting the color to red (full red intensity, no green, no blue). The line of code right after that
is the first vertex (the top of the triangle), and will be drawn using the current color which is red.
Anything we draw from now on will be red until we change the color to something other than red.

We've placed the first vertex on the screen, setting it's color to red. Now before we place the
second vertex we'll change the color to green. That way the second vertex which is the left corner of
the triangle will be set to green.

Jeff Molofee's OpenGL Windows Tutorial #3

Page 2 of 3

 glColor3f(0.0f,0.0f,1.0f); // Set The Color To Blue
 glVertex3f(1.0f,-1.0f, 0.0f); // Right And Down One Unit (Bottom Right)
 glEnd(); // Done Drawing A Triangle

 glTranslatef(3.0f,0.0f,0.0f); // From Right Point Move 3 Units Right

 glColor3f(0.5f,0.5f,1.0f); // Set The Color To Blue One Time Only
 glBegin(GL_QUADS); // Start Drawing Quads
 glVertex3f(-1.0f, 1.0f, 0.0f); // Left And Up 1 Unit (Top Left)
 glVertex3f(1.0f, 1.0f, 0.0f); // Right And Up 1 Unit (Top Right)
 glVertex3f(1.0f,-1.0f, 0.0f); // Left And Up One Unit (Bottom Right)
 glVertex3f(-1.0f,-1.0f, 0.0f); // Left And Up One Unit (Bottom Left)
 glEnd(); // Done Drawing A Quad
 return TRUE; // Keep Going
}

 if (keys[VK_F1]) // Is F1 Being Pressed?
 {
 keys[VK_F1]=FALSE; // If So Make Key FALSE
 KillGLWindow(); // Kill Our Current Window
 fullscreen=!fullscreen; // Toggle Fullscreen / Windowed Mode
 // Recreate Our OpenGL Window (Modified)
 if (!CreateGLWindow("NeHe's Color Tutorial",640,480,16,fullscreen))
 {
 return 0; // Quit If Window Was Not Created
 }
 }

Now we're on the third and final vertex. Just before we draw it, we set the color to blue. This will be
the right corner of the triangle. As soon as the glEnd() command is issued, the polygon will be filled
in. But because it has a different color at each vertex, rather than one solid color throughout, the
color will spread out from each corner, eventually meeting in the middle, where the colors will blend
together. This is smooth coloring.

Now we will draw a solid blue colored square. It's important to remember that anything drawn after
the color has been set will be drawn in that color. Every project you create down the road will use
coloring in one way or another. Even in scenes where everything is texture mapped, glColor3f can
still be used to tint the color of textures, etc. More on that later.

So to draw our square all one color, all we have to do is set the color once to a color we like (blue
in this example), then draw the square. The color blue will be used for each vertex because we're
not telling OpenGL to change the color at each vertex. The final result... a blue square.

 Finally change the code to toggle window / fullscreen mode so that the title at the top of the window
is proper.

Jeff Molofee's OpenGL Windows Tutorial #3

Page 3 of 3

In this tutorial I have tried to explain in as much detail, how to add flat and smooth coloring to your
OpenGL polygons. Play around with the code, try changing the red, green and blue values to
different numbers. See what colors you can come up with. If you have comments or questions
please email me. If you feel I have incorrectly commented something or that the code could be
done better in some sections, please let me know. I want to make the best OpenGL tutorials I can.
I'm interested in hearing your feedback.

Jeff Molofee (NeHe)

* DOWNLOAD Visual C++ Code For This Lesson.
* DOWNLOAD Delphi Code For This Lesson. (Conversion by Peter De Jaegher)
* DOWNLOAD ASM Code For This Lesson. (Conversion by Foolman)
* DOWNLOAD Visual Fortran Code For This Lesson. (Conversion by Jean-Philippe Perois)
* DOWNLOAD Linux Code For This Lesson. (Conversion by Richard Campbell)
* DOWNLOAD Irix Code For This Lesson. (Conversion by Lakmal Gunasekara)
* DOWNLOAD Solaris Code For This Lesson. (Conversion by Lakmal Gunasekara)
* DOWNLOAD Mac OS Code For This Lesson. (Conversion by Anthony Parker)
* DOWNLOAD Power Basic Code For This Lesson. (Conversion by Angus Law)
* DOWNLOAD BeOS Code For This Lesson. (Conversion by Chris Herborth)
* DOWNLOAD Java Code For This Lesson. (Conversion by Darren Hodges)

Back To NeHe Productions!

Jeff Molofee's OpenGL Windows Tutorial #4

Page 1 of 4

#include <windows.h> // Header File For Windows
#include <gl\gl.h> // Header File For The OpenGL32 Library
#include <gl\glu.h> // Header File For The GLu32 Library
#include <gl\glaux.h> // Header File For The GLaux Library

HDC hDC=NULL; // Private GDI Device Context
HGLRC hRC=NULL; // Permanent Rendering Context
HWND hWnd=NULL; // Holds Our Window Handle

bool keys[256]; // Array Used For The Keyboard Routine
bool active=TRUE; // Window Active Flag
bool fullscreen=TRUE; // Fullscreen Flag Set To TRUE By Default

GLfloat rtri; // Angle For The Triangle
GLfloat rquad; // Angle For The Quad

int DrawGLScene(GLvoid) // Here's Where We Do All The Drawing
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Clear The Screen And The Depth Buffer
 glLoadIdentity(); // Reset The View
 glTranslatef(-1.5f,0.0f,-6.0f); // Move Into The Screen And Left

 Lesson 4

In the last tutorial I taught you how to add color to triangles and quads. In this tutorial I will teach
you how to rotate these colored objects around an axis.

Using the code from the last tutorial, we will be adding to a few places in the code. I will rewrite the
entire section of code below so it's easy for you to figure out what's been added, and what needs to
be replaced.

We'll start off by adding the two variables to keep track of the rotation for each object. We do this
right at the beginning of the program. You'll notice below I've added two lines after BOOL keys[256].
These lines set up two floating point variables that we can use to spin the objects with very fine
accuracy. Floating point allows decimal numbers. Meaning we're not stuck using 1, 2, 3 for the
angle, we can use 1.1, 1.7, 2.3, or even 1.015 for fine accuracy. You'll find that floating point
numbers are essential to OpenGL programming.

Now we need to modify the DrawGLScene() code. I will rewrite the entire procedure. This should
make it easier for you to see what changes I have made to the original code. I'll explain why lines
have been modified, and what exactly it is that the new lines do. The next section of code is
exactly the same as in the last tutorial.

Jeff Molofee's OpenGL Windows Tutorial #4

Page 2 of 4

 glRotatef(rtri,0.0f,1.0f,0.0f); // Rotate The Triangle On The Y axis

 glBegin(GL_TRIANGLES); // Start Drawing A Triangle
 glColor3f(1.0f,0.0f,0.0f); // Set Top Point Of Triangle To Red
 glVertex3f(0.0f, 1.0f, 0.0f); // First Point Of The Triangle
 glColor3f(0.0f,1.0f,0.0f); // Set Left Point Of Triangle To Green
 glVertex3f(-1.0f,-1.0f, 0.0f); // Second Point Of The Triangle
 glColor3f(0.0f,0.0f,1.0f); // Set Right Point Of Triangle To Blue
 glVertex3f(1.0f,-1.0f, 0.0f); // Third Point Of The Triangle
 glEnd(); // Done Drawing The Triangle

The next line of code is new. glRotatef(Angle,Xvector,Yvector,Zvector) is responsible for rotating the
object around an axis. You will get alot of use out of this command. Angle is some number (usually
stored in a variable) that represents how much you would like to spin the object. Xvector, Yvector
and Zvector parameters together represent the vector about which the rotation will occur. If you use
values (1,0,0), you are describing a vector which travels in a direction of 1 unit along the x axis
towards the right. Values (-1,0,0) describes a vector that travels in a direction of 1 unit along the x
axis, but this time towards the left.

D. Michael Traub: has supplied the above explanation of the Xvector, Yvector and Zvector
parameters.

To better understand X, Y and Z rotation I'll explain using examples...

X Axis - You're working on a table saw. The bar going through the center of the blade runs left to
right (just like the x axis in OpenGL). The sharp teeth spin around the x axis (bar running through
the center of the blade), and appear to be cutting towards or away from you depending on which
way the blade is being spun. When we spin something on the x axis in OpenGL it will spin the
same way.

Y Axis - Imagine that you are standing in the middle of a field. There is a huge tornado coming
straight at you. The center of a tornado runs from the sky to the ground (up and down, just like the
y axis in OpenGL). The dirt and debris in the tornado spins around the y axis (center of the tornado)
from left to right or right to left. When you spin something on the y axis in OpenGL it will spin the
same way.

Z Axis - You are looking at the front of a fan. The center of the fan points towards you and away
from you (just like the z axis in OpenGL). The blades of the fan spin around the z axis (center of the
fan) in a clockwise or counterclockwise direction. When You spin something on the z axis in
OpenGL it will spin the same way.

So in the following line of code, if rtri was equal to 7, we would spin 7 on the Y axis (left to right).
You can try experimenting with the code. Change the 0.0f's to 1.0f's, and the 1.0f to a 0.0f to spin
the triangle on the X and Y axes at the same time.

The next section of code has not changed. It draws a colorful smooth blended triangle. The triangle
will be drawn on the left side of the screen, and will be rotated on it's Y axis causing it to spin left to
right.

Jeff Molofee's OpenGL Windows Tutorial #4

Page 3 of 4

 glLoadIdentity(); // Reset The Current Modelview Matrix
 glTranslatef(1.5f,0.0f,-6.0f); // Move Right 1.5 Units And Into The Screen 6.0
 glRotatef(rquad,1.0f,0.0f,0.0f); // Rotate The Quad On The X axis

 glColor3f(0.5f,0.5f,1.0f); // Set The Color To A Nice Blue Shade
 glBegin(GL_QUADS); // Start Drawing A Quad
 glVertex3f(-1.0f, 1.0f, 0.0f); // Top Left Of The Quad
 glVertex3f(1.0f, 1.0f, 0.0f); // Top Right Of The Quad
 glVertex3f(1.0f,-1.0f, 0.0f); // Bottom Right Of The Quad
 glVertex3f(-1.0f,-1.0f, 0.0f); // Bottom Left Of The Quad
 glEnd(); // Done Drawing The Quad

 rtri+=0.2f; // Increase The Rotation Variable For The Triangle
 rquad-=0.15f; // Decrease The Rotation Variable For The Quad
 return TRUE; // Keep Going
}

You'll notice in the code below, that we've added another glLoadIdentity(). We do this to reset the
view. If we didn't reset the view. If we translated after the object had been rotated, you would get
very unexpected results. Because the axis has been rotated, it may not be pointing in the direction
you think. So if we translate left on the X axis, we may end up moving up or down instead,
depending on how much we've rotated on each axis. Try taking the glLoadIdentity() line out to see
what I mean.

Once the scene has been reset, so X is running left to right, Y up and down, and Z in and out, we
translate. You'll notice we're only moving 1.5 to the right instead of 3.0 like we did in the last
lesson. When we reset the screen, our focus moves to the center of the screen. meaning we're no
longer 1.5 units to the left, we're back at 0.0. So to get to 1.5 on the right side of zero we dont have
to move 1.5 from left to center then 1.5 to the right (total of 3.0) we only have to move from center to
the right which is just 1.5 units.

After we have moved to our new location on the right side of the screen, we rotate the quad, on the
X axis. This will cause the square to spin up and down.

 This section of code remains the same. It draws a blue square made from one quad. It will draw the
square on the right side of the screen in it's rotated position.

The next two lines are new. Think of rtri, and rquad as containers. At the top of our program we
made the containers (GLfloat rtri, and GLfloat rquad). When we built the containers they had
nothing in them. The first line below ADDS 0.2 to that container. So each time we check the value
in the rtri container after this section of code, it will have gone up by 0.2. The rquad container
decreases by 0.15. So every time we check the rquad container, it will have gone down by 0.15.
Going down will cause the object to spin the opposite direction it would spin if you were going up.

Try chaning the + to a - in the line below see how the object spins the other direction. Try changing
the values from 0.2 to 1.0. The higher the number, the faster the object will spin. The lower the
number, the slower it will spin.

Jeff Molofee's OpenGL Windows Tutorial #4

Page 4 of 4

 if (keys[VK_F1]) // Is F1 Being Pressed?
 {
 keys[VK_F1]=FALSE; // If So Make Key FALSE
 KillGLWindow(); // Kill Our Current Window
 fullscreen=!fullscreen; // Toggle Fullscreen / Windowed Mode
 // Recreate Our OpenGL Window (Modified)
 if (!CreateGLWindow("NeHe's Rotation Tutorial",640,480,16,fullscreen))
 {
 return 0; // Quit If Window Was Not Created
 }
 }

 Finally change the code to toggle window / fullscreen mode so that the title at the top of the window
is proper.

In this tutorial I have tried to explain in as much detail as possible, how to rotate objects around an
axis. Play around with the code, try spinning the objects, on the Z axis, the X & Y, or all three :) If
you have comments or questions please email me. If you feel I have incorrectly commented
something or that the code could be done better in some sections, please let me know. I want to
make the best OpenGL tutorials I can. I'm interested in hearing your feedback.

Jeff Molofee (NeHe)

* DOWNLOAD Visual C++ Code For This Lesson.
* DOWNLOAD Delphi Code For This Lesson. (Conversion by Peter De Jaegher)
* DOWNLOAD ASM Code For This Lesson. (Conversion by Foolman)
* DOWNLOAD Visual Fortran Code For This Lesson. (Conversion by Jean-Philippe Perois)
* DOWNLOAD Linux Code For This Lesson. (Conversion by Richard Campbell)
* DOWNLOAD Irix Code For This Lesson. (Conversion by Lakmal Gunasekara)
* DOWNLOAD Solaris Code For This Lesson. (Conversion by Lakmal Gunasekara)
* DOWNLOAD Mac OS Code For This Lesson. (Conversion by Anthony Parker)
* DOWNLOAD Power Basic Code For This Lesson. (Conversion by Angus Law)
* DOWNLOAD BeOS Code For This Lesson. (Conversion by Chris Herborth)
* DOWNLOAD Java Code For This Lesson. (Conversion by Darren Hodges)

Back To NeHe Productions!

Jeff Molofee's OpenGL Windows Tutorial #5

Page 1 of 5

int DrawGLScene(GLvoid) // Here's Where We Do All The Drawing
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Clear The Screen And The Depth Buffer
 glLoadIdentity(); // Reset The View
 glTranslatef(-1.5f,0.0f,-6.0f); // Move Left And Into The Screen

 glRotatef(rtri,0.0f,1.0f,0.0f); // Rotate The Pyramid On It's Y Axis

 glBegin(GL_TRIANGLES); // Start Drawing The Pyramid

 glColor3f(1.0f,0.0f,0.0f); // Red
 glVertex3f(0.0f, 1.0f, 0.0f); // Top Of Triangle (Front)
 glColor3f(0.0f,1.0f,0.0f); // Green
 glVertex3f(-1.0f,-1.0f, 1.0f); // Left Of Triangle (Front)
 glColor3f(0.0f,0.0f,1.0f); // Blue
 glVertex3f(1.0f,-1.0f, 1.0f); // Right Of Triangle (Front)

 Lesson 5

Expanding on the last tutorial, we'll now make the object into TRUE 3D object, rather than 2D
objects in a 3D world. We will do this by adding a left, back, and right side to the triangle, and a
left, right, back, top and bottom to the square. By doing this, we turn the triangle into a pyramid,
and the square into a cube.

We'll blend the colors on the pyramid, creating a smoothly colored object, and for the square we'll
color each face a different color.

A few of you have taken the code from the last tutorial, and made 3D objects of your own. One
thing I've been asked quite a bit is "how come my objects are not spinning on their axis? It seems
like they are spinning all over the screen". In order for your object to spin around an axis, it has to
be designed AROUND that axis. You have to remember that the center of any object should be 0
on the X, 0 on the Y, and 0 on the Z.

The following code will create the pyramid around a central axis. The top of the pyramid is one high
from the center, the bottom of the pyramid is one down from the center. The top point is right in the
middle (zero), and the bottom points are one left from center, and one right from center.

Note that all triangles are drawn in a counterclockwise rotation. This is important, and will be
explained in a future tutorial, for now, just know that it's good practice to make objects either
clockwise or counterclockwise, but you shouldn't mix the two unless you have a reason to.

We start off by drawing the Front Face. Because all of the faces share the top point, we will make
this point red on all of the triangles. The color on the bottom two points of the triangles will
alternate. The front face will have a green left point and a blue right point. Then the triangle on the
right side will have a blue left point and a green right point. By alternating the bottom two colors on
each face, we make a common colored point at the bottom of each face.

Jeff Molofee's OpenGL Windows Tutorial #5

Page 2 of 5

 glColor3f(1.0f,0.0f,0.0f); // Red
 glVertex3f(0.0f, 1.0f, 0.0f); // Top Of Triangle (Right)
 glColor3f(0.0f,0.0f,1.0f); // Blue
 glVertex3f(1.0f,-1.0f, 1.0f); // Left Of Triangle (Right)
 glColor3f(0.0f,1.0f,0.0f); // Green
 glVertex3f(1.0f,-1.0f, -1.0f); // Right Of Triangle (Right)

 glColor3f(1.0f,0.0f,0.0f); // Red
 glVertex3f(0.0f, 1.0f, 0.0f); // Top Of Triangle (Back)
 glColor3f(0.0f,1.0f,0.0f); // Green
 glVertex3f(1.0f,-1.0f, -1.0f); // Left Of Triangle (Back)
 glColor3f(0.0f,0.0f,1.0f); // Blue
 glVertex3f(-1.0f,-1.0f, -1.0f); // Right Of Triangle (Back)

 glColor3f(1.0f,0.0f,0.0f); // Red
 glVertex3f(0.0f, 1.0f, 0.0f); // Top Of Triangle (Left)
 glColor3f(0.0f,0.0f,1.0f); // Blue
 glVertex3f(-1.0f,-1.0f,-1.0f); // Left Of Triangle (Left)
 glColor3f(0.0f,1.0f,0.0f); // Green
 glVertex3f(-1.0f,-1.0f, 1.0f); // Right Of Triangle (Left)
 glEnd(); // Done Drawing The Pyramid

Now we draw the right face. Notice then the two bottom point are drawn one to the right of center,
and the top point is drawn one up on the y axis, and right in the middle of the x axis. causing the
face to slope from center point at the top out to the right side of the screen at the bottom.

Notice the left point is drawn blue this time. By drawing it blue, it will be the same color as the right
bottom corner of the front face. Blending blue outwards from that one corner across both the front
and right face of the pyramid.

Notice how the remaining three faces are included inside the same glBegin(GL_TRIANGLES) and
glEnd() as the first face. Because we're making this entire object out of triangles, OpenGL will know
that every three points we plot are the three points of a triangle. Once it's drawn three points, if
there are three more points, it will assume another triangle needs to be drawn. If you were to put
four points instead of three, OpenGL would draw the first three and assume the fourth point is the
start of a new triangle. It would not draw a Quad. So make sure you don't add any extra points by
accident.

 Now for the back face. Again the colors switch. The left point is now green again, because the
corner it shares with the right face is green.

Finally we draw the left face. The colors switch one last time. The left point is blue, and blends with
the right point of the back face. The right point is green, and blends with the left point of the front
face.

We're done drawing the pyramid. Because the pyramid only spins on the Y axis, we will never see
the bottom, so there is no need to put a bottom on the pyramid. If you feel like experimenting, try
adding a bottom using a quad, then rotate on the X axis to see if you've done it correctly. Make
sure the color used on each corner of the quad matches up with the colors being used at the four
corners of the pyramid.

Jeff Molofee's OpenGL Windows Tutorial #5

Page 3 of 5

 glLoadIdentity();
 glTranslatef(1.5f,0.0f,-7.0f); // Move Right And Into The Screen

 glRotatef(rquad,1.0f,1.0f,1.0f); // Rotate The Cube On X, Y & Z

 glBegin(GL_QUADS); // Start Drawing The Cube

 glColor3f(0.0f,1.0f,0.0f); // Set The Color To Blue
 glVertex3f(1.0f, 1.0f,-1.0f); // Top Right Of The Quad (Top)
 glVertex3f(-1.0f, 1.0f,-1.0f); // Top Left Of The Quad (Top)
 glVertex3f(-1.0f, 1.0f, 1.0f); // Bottom Left Of The Quad (Top)
 glVertex3f(1.0f, 1.0f, 1.0f); // Bottom Right Of The Quad (Top)

 glColor3f(1.0f,0.5f,0.0f); // Set The Color To Orange
 glVertex3f(1.0f,-1.0f, 1.0f); // Top Right Of The Quad (Bottom)
 glVertex3f(-1.0f,-1.0f, 1.0f); // Top Left Of The Quad (Bottom)
 glVertex3f(-1.0f,-1.0f,-1.0f); // Bottom Left Of The Quad (Bottom)
 glVertex3f(1.0f,-1.0f,-1.0f); // Bottom Right Of The Quad (Bottom)

Now we'll draw the cube. It's made up of six quads. All of the quads are drawn in a counter
clockwise order. Meaning the first point is the top right, the second point is the top left, third point
is bottom left, and finally bottom right. When we draw the back face, it may seem as though we are
drawing clockwise, but you have to keep in mind that if we were behind the cube looking at the front
of it, the left side of the screen is actually the right side of the quad, and the right side of the screen
would actually be the left side of the quad.

Notice we move the cube a little further into the screen in this lesson. By doing this, the size of the
cube appears closer to the size of the pyramid. If you were to move it only 6 units into the screen,
the cube would appear much larger than the pyramid, and parts of it might get cut off by the sides
of the screen. You can play around with this setting, and see how moving the cube further into the
screen makes it appear smaller, and moving it closer makes it appear larger. The reason this
happens is perspective. Objects in the distance should appear smaller :)

We'll start off by drawing the top of the cube. We move up one unit from the center of the cube.
Notice that the Y axis is always one. We then draw a quad on the Z plane. Meaning into the
screen. We start off by drawing the top right point of the top of the cube. The top right point would
be one unit right, and one unit into the screen. The second point would be one unit to the left, and
unit into the screen. Now we have to draw the bottom of the quad towards the viewer. so to do this,
instead of going into the screen, we move one unit towards the screen. Make sense?

The bottom is drawn the exact same way as the top, but because it's the bottom, it's drawn down
one unit from the center of the cube. Notice the Y axis is always minus one. If we were under the
cube, looking at the quad that makes the bottom, you would notice the top right corner is the
corner closest to the viewer, so instead of drawing in the distance first, we draw closest to the
viewer first, then on the left side closest to the viewer, and then we go into the screen to draw the
bottom two points.

If you didn't really care about the order the polygons were drawn in (clockwise or not), you could
just copy the same code for the top quad, move it down on the Y axis to -1, and it would work, but
ignoring the order the quad is drawn in can cause weird results once you get into fancy things such
as texture mapping.

Jeff Molofee's OpenGL Windows Tutorial #5

Page 4 of 5

 glColor3f(1.0f,0.0f,0.0f); // Set The Color To Red
 glVertex3f(1.0f, 1.0f, 1.0f); // Top Right Of The Quad (Front)
 glVertex3f(-1.0f, 1.0f, 1.0f); // Top Left Of The Quad (Front)
 glVertex3f(-1.0f,-1.0f, 1.0f); // Bottom Left Of The Quad (Front)
 glVertex3f(1.0f,-1.0f, 1.0f); // Bottom Right Of The Quad (Front)

 glColor3f(1.0f,1.0f,0.0f); // Set The Color To Yellow
 glVertex3f(1.0f,-1.0f,-1.0f); // Top Right Of The Quad (Back)
 glVertex3f(-1.0f,-1.0f,-1.0f); // Top Left Of The Quad (Back)
 glVertex3f(-1.0f, 1.0f,-1.0f); // Bottom Left Of The Quad (Back)
 glVertex3f(1.0f, 1.0f,-1.0f); // Bottom Right Of The Quad (Back)

 glColor3f(0.0f,0.0f,1.0f); // Set The Color To Blue
 glVertex3f(-1.0f, 1.0f, 1.0f); // Top Right Of The Quad (Left)
 glVertex3f(-1.0f, 1.0f,-1.0f); // Top Left Of The Quad (Left)
 glVertex3f(-1.0f,-1.0f,-1.0f); // Bottom Left Of The Quad (Left)
 glVertex3f(-1.0f,-1.0f, 1.0f); // Bottom Right Of The Quad (Left)

 glColor3f(1.0f,0.0f,1.0f); // Set The Color To Violet
 glVertex3f(1.0f, 1.0f,-1.0f); // Top Right Of The Quad (Right)
 glVertex3f(1.0f, 1.0f, 1.0f); // Top Left Of The Quad (Right)
 glVertex3f(1.0f,-1.0f, 1.0f); // Bottom Left Of The Quad (Right)
 glVertex3f(1.0f,-1.0f,-1.0f); // Bottom Right Of The Quad (Right)
 glEnd(); // Done Drawing The Quad

 rtri+=0.2f; // Increase The Rotation Variable For The Triangle
 rquad-=0.15f; // Decrease The Rotation Variable For The Quad
 return TRUE; // Keep Going

Now we draw the front of the Quad. We move one unit towards the screen, and away from the
center to draw the front face. Notice the Z axis is always one. In the pyramid the Z axis was not
always one. At the top, the Z axis was zero. If you tried changing the Z axis to zero in the following
code, you'd notice that the corner you changed it on would slope into the screen. That's not
something we want to do right now :)

 The back face is a quad the same as the front face, but it's set deeper into the screen. Notice the Z
axis is now minus one for all of the points.

Now we only have two more quads to draw and we're done. As usual, you'll notice one axis is
always the same for all the points. In this case the X axis is always minus one. That's because
we're always drawing to the left of center because this is the left face.

This is the last face to complete the cube. The X axis is always one. Drawing is counter clockwise.
If you wanted to, you could leave this face out, and make a box :)

Or if you felt like experimenting, you could always try changing the color of each point on the cube
to make it blend the same way the pyramid blends. You can see an example of a blended cube by
downloading Evil's first GL demo from my web page. Run it and press TAB. You'll see a beautifully
colored cube, with colors flowing across all the faces.

Jeff Molofee's OpenGL Windows Tutorial #5

Page 5 of 5

}

By the end of this tutorial, you should have a better understanding of how objects are created in 3D
space. You have to think of the OpenGL screen as a giant piece of graph paper, with many
transparent layers behind it. Almost like a giant cube made of of points. Some of the points move
left to right, some move up and down, and some move further back in the cube. If you can visualize
the depth into the screen, you shouldn't have any problems designing new 3D objects.

If you're having a hard time understanding 3D space, don't get frustrated. It can be difficult to grasp
right off the start. An object like the cube is a good example to learn from. If you notice, the back
face is drawn exactly the same as the front face, it's just further into the screen. Play around with
the code, and if you just can't grasp it, email me, and I'll try to answer your questions.

Jeff Molofee (NeHe)

* DOWNLOAD Visual C++ Code For This Lesson.
* DOWNLOAD Delphi Code For This Lesson. (Conversion by Peter De Jaegher)
* DOWNLOAD ASM Code For This Lesson. (Conversion by Foolman)
* DOWNLOAD Visual Fortran Code For This Lesson. (Conversion by Jean-Philippe Perois)
* DOWNLOAD Linux Code For This Lesson. (Conversion by Richard Campbell)
* DOWNLOAD Irix Code For This Lesson. (Conversion by Lakmal Gunasekara)
* DOWNLOAD Solaris Code For This Lesson. (Conversion by Lakmal Gunasekara)
* DOWNLOAD Mac OS Code For This Lesson. (Conversion by Anthony Parker)
* DOWNLOAD Power Basic Code For This Lesson. (Conversion by Angus Law)
* DOWNLOAD BeOS Code For This Lesson. (Conversion by Chris Herborth)
* DOWNLOAD Java Code For This Lesson. (Conversion by Darren Hodges)

Back To NeHe Productions!

Jeff Molofee's OpenGL Windows Tutorial #6

Page 1 of 7

#include <windows.h>
#include <stdio.h> // Header File For Standard Input/Output
#include <gl\gl.h> // Header File For The OpenGL32 Library
#include <gl\glu.h>
#include <gl\glaux.h>

HDC hDC=NULL; // Private GDI Device Context
HGLRC hRC=NULL; // Permanent Rendering Context
HWND hWnd=NULL;
HINSTANCE hInstance; // Holds The Instance Of The Application

bool keys[256];
bool active=TRUE;
bool fullscreen=TRUE; // Fullscreen Flag

GLfloat xrot;
GLfloat yrot;
GLfloat zrot;

GLuint texture[1];

LRESULT CALLBACK WndProc(HWND, UINT, WPARAM, LPARAM); // Declaration For WndProc

 Lesson 6

Learning how to texture map has many benefits. Lets say you wanted a missile to fly across the
screen. Up until this tutorial we'd probably make the entire missile out of polygons, and fancy
colors. With texture mapping, you can take a real picture of a missile and make the picture fly
across the screen. Which do you think will look better? A photograph or an object made up of
triangles and squares? By using texture mapping, not only will it look better, but your program will
run faster. The texture mapped missile would only be one quad moving across the screen. A
missile made out of polygons could be made up of hundreds or thousands of polygons. The single
texture mapped quad will use alot less processing power.

Lets start off by adding five new lines of code to the top of lesson one. The first new line is #include
<stdio.h>. Adding this header file allows us to work with files. In order to use fopen() later in the
code we need to include this line. Then we add three new floating point variables... xrot, yrot and
zrot. These variables will be used to rotate the cube on the x axis, the y axis, and the z axis. The
last line GLuint texture[1] sets aside storage space for one texture. If you wanted to load in more
than one texture, you would change the number one to the number of textures you wish to load.

Now immediately after the above code, and before ReSizeGLScene(), we want to add the following
section of code. The job of this code is to load in a bitmap file. If the file doesn't exist NULL is sent
back meaning the texture couldn't be loaded. Before I start explaining the code there are a few
VERY important things you need to know about the images you plan to use as textures. The image
height and width MUST be a power of 2. The width and height must be at least 64 pixels, and for
compatability reasons, shouldn't be more than 256 pixels. If the image you want to use is not 64,
128 or 256 pixels on the width or height, resize it in an art program. There are ways around this
limitation, but for now we'll just stick to standard texture sizes.

First thing we do is create a file handle. A handle is a value used to identify a resource so that our

Jeff Molofee's OpenGL Windows Tutorial #6

Page 2 of 7

AUX_RGBImageRec *LoadBMP(char *Filename) // Loads A Bitmap Image
{
 FILE *File=NULL; // File Handle

 if (!Filename)
 {
 return NULL;
 }

 File=fopen(Filename,"r"); // Check To See If The File Exists

 if (File) // Does The File Exist?
 {
 fclose(File);
 return auxDIBImageLoad(Filename); // Load The Bitmap And Return A Pointer
 }

 return NULL;
}

int LoadGLTextures()
{

program can access it. We set the handle to NULL to start off.

Next we check to make sure that a filename was actually given. The person may have use
LoadBMP() without specifying the file to load, so we have to check for this. We don't want to try
loading nothing :)

 If a filename was given, we check to see if the file exists. The line below tries to open the file.

 If we were able to open the file it obviously exists. We close the file with fclose(File) then we return
the image data. auxDIBImageLoad(Filename) reads in the data.

If we were unable to open the file we'll return NULL. which means the file couldn't be loaded. Later
on in the program we'll check to see if the file was loaded. If it wasn't we'll quit the program with an
error message.

 This is the section of code that loads the bitmap (calling the code above) and converts it into a
texture.

Jeff Molofee's OpenGL Windows Tutorial #6

Page 3 of 7

 int Status=FALSE; // Status Indicator

 AUX_RGBImageRec *TextureImage[1]; // Create Storage Space For The Texture

 memset(TextureImage,0,sizeof(void *)*1); // Set The Pointer To NULL

 // Load The Bitmap, Check For Errors, If Bitmap's Not Found Quit
 if (TextureImage[0]=LoadBMP("Data/NeHe.bmp"))
 {
 Status=TRUE;

 glGenTextures(1, &texture[0]);

 // Typical Texture Generation Using Data From The Bitmap
 glBindTexture(GL_TEXTURE_2D, texture[0]);

We'll set up a variable called Status. We'll use this variable to keep track of whether or not we were
able to load the bitmap and build a texture. We set Status to FALSE (meaning nothing has been
loaded or built) by default.

 Now we create an image record that we can store our bitmap in. The record will hold the bitmap
width, height, and data.

 We clear the image record just to make sure it's empty.

Now we load the bitmap and convert it to a texture. TextureImage[0]=LoadBMP("Data/NeHe.bmp")
will jump to our LoadBMP() code. The file named NeHe.bmp in the Data directory will be loaded. If
everything goes well, the image data is stored in TextureImage[0], Status is set to TRUE, and we
start to build our texture.

Now that we've loaded the image data into TextureImage[0], we will build a texture using this data.
The first line glGenTextures(1, &texture[0]) tells OpenGL we want to build one texture (increase the
number if you load more than one texture), and we want the texture to be stored in slot 0 of texture
[]. Remember at the very beginning of this tutorial we created room for one texture with the line
GLuint texture[1]. Although you'd think the first texture would be stored at &texture[1] instead of
&texture[0], it wont work. The first actual storage area is 0. If we wanted two textures we would use
GLuint texture[2] and the second texture would be stored at texture[1].

The second line glBindTexture(GL_TEXTURE_2D, texture[0]) tells OpenGL that texture[0] (the first
texture) will be a 2D texture. 2D textures have both height (on the Y axes) and width (on the X
axes). The main function of glBindTexture is to point OpenGL to available memory. In this case
we're telling OpenGL there is memory available at &texture[0]. When we create the texture, it will
be stored in this memory space. Basically glBindTexture() points to ram that holds or will hold our
texture.

Jeff Molofee's OpenGL Windows Tutorial #6

Page 4 of 7

 // Generate The Texture
 glTexImage2D(GL_TEXTURE_2D, 0, 3, TextureImage[0]->sizeX, TextureImage[0]-

 glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_LINEAR); // Linear Filtering
 glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_LINEAR); // Linear Filtering
 }

 if (TextureImage[0])
 {
 if (TextureImage[0]->data) // If Texture Image Exists
 {
 free(TextureImage[0]->data);
 }

 free(TextureImage[0]);
 }

 return Status;
}

Next we create the actual texture. The following line tells OpenGL the texture will be a 2D texture
(GL_TEXTURE_2D). Zero represents the images level of detail, this is usually left at zero. Three is
the number of data components. Because the image is made up of red data, green data and blue
data, there are three components. TextureImage[0]->sizeX is the width of the texture. If you know
the width, you can put it here, but it's easier to let the computer figure it out for you. TextureImage
[0]->sizey is the height of the texture. zero is the border. It's usually left at zero. GL_RGB tells
OpenGL the image data we are using is made up of red, green and blue data in that order.
GL_UNSIGNED_BYTE means the data that makes up the image is made up of unsigned bytes,
and finally... TextureImage[0]->data tells OpenGL where to get the texture data from. In this case it
points to the data stored in the TextureImage[0] record.

The next two lines tell OpenGL what type of filtering to use when the image is larger
(GL_TEXTURE_MAG_FILTER) or stretched on the screen than the original texture, or when it's
smaller (GL_TEXTURE_MIN_FILTER) on the screen than the actual texture. I usually use
GL_LINEAR for both. This makes the texture look smooth way in the distance, and when it's up
close to the screen. Using GL_LINEAR requires alot of work from the processor/video card, so if
your system is slow, you might want to use GL_NEAREST. A texture that's filtered with
GL_NEAREST will appear blocky when it's stretched. You can also try a combination of both.
Make it filter things up close, but not things in the distance.

Now we free up any ram that we may have used to store the bitmap data. We check to see if the
bitmap data was stored in TextureImage[0]. If it was we check to see if the data has been stored. If
data was stored, we erase it. Then we free the image structure making sure any used memory is
freed up.

 Finally we return the status. If everything went OK, the variable Status will be TRUE. If anything
went wrong, Status will be FALSE.

Jeff Molofee's OpenGL Windows Tutorial #6

Page 5 of 7

int InitGL(GLvoid) // All Setup For OpenGL Goes Here
{
 if (!LoadGLTextures())
 {
 return FALSE;
 }

 glEnable(GL_TEXTURE_2D); // Enable Texture Mapping
 glShadeModel(GL_SMOOTH); // Enable Smooth Shading
 glClearColor(0.0f, 0.0f, 0.0f, 0.5f);
 glClearDepth(1.0f);
 glEnable(GL_DEPTH_TEST); // Enables Depth Testing
 glDepthFunc(GL_LEQUAL);
 glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST); // Really Nice Perspective Calculations
 return TRUE;
}

int DrawGLScene(GLvoid)
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Clear Screen And Depth Buffer
 glLoadIdentity(); // Reset The Current Matrix
 glTranslatef(0.0f,0.0f,-5.0f);

 glRotatef(xrot,1.0f,0.0f,0.0f);
 glRotatef(yrot,0.0f,1.0f,0.0f);
 glRotatef(zrot,0.0f,0.0f,1.0f);

I've added a few lines of code to InitGL. I'll repost the entire section of code, so it's easy to see the
lines that I've added, and where they go in the code. The first line if (!LoadGLTextures()) jumps to
the routine above which loads the bitmap and makes a texture from it. If LoadGLTextures() fails for
any reason, the next line of code will return FALSE. If everything went OK, and the texture was
created, we enable 2D texture mapping. If you forget to enable texture mapping your object will
usually appear solid white, which is definitely not good.

Now we draw the textured cube. You can replace the DrawGLScene code with the code below, or
you can add the new code to the original lesson one code. This section will be heavily commented
so it's easy to understand. The first two lines of code glClear() and glLoadIdentity() are in the
original lesson one code. glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT) will clear
the screen to the color we selected in InitGL(). In this case, the screen will be cleared to blue. The
depth buffer will also be cleared. The view will then be reset with glLoadIdentity().

 The following three lines of code will rotate the cube on the x axis, then the y axis, and finally the z
axis. How much it rotates on each axis will depend on the value stored in xrot, yrot and zrot.

The next line of code selects which texture we want to use. If there was more than one texture you
wanted to use in your scene, you would select the texture using glBindTexture(GL_TEXTURE_2D,
texture[number of texture to use]). If you wanted to change textures, you would bind to the new
texture. One thing to note is that you can NOT bind a texture inside glBegin() and glEnd(), you have
to do it before or after glBegin(). Notice how we use glBindTextures to specify which texture to
create and to select a specific texture.

Jeff Molofee's OpenGL Windows Tutorial #6

Page 6 of 7

 glBindTexture(GL_TEXTURE_2D, texture[0]); // Select Our Texture

 glBegin(GL_QUADS);
 // Front Face
 glTexCoord2f(0.0f, 0.0f); glVertex3f(-1.0f, -1.0f, 1.0f); // Bottom Left Of The Texture and Quad
 glTexCoord2f(1.0f, 0.0f); glVertex3f(1.0f, -1.0f, 1.0f); // Bottom Right Of The Texture and Quad
 glTexCoord2f(1.0f, 1.0f); glVertex3f(1.0f, 1.0f, 1.0f); // Top Right Of The Texture and Quad
 glTexCoord2f(0.0f, 1.0f); glVertex3f(-1.0f, 1.0f, 1.0f); // Top Left Of The Texture and Quad
 // Back Face
 glTexCoord2f(1.0f, 0.0f); glVertex3f(-1.0f, -1.0f, -1.0f); // Bottom Right Of The Texture and Quad
 glTexCoord2f(1.0f, 1.0f); glVertex3f(-1.0f, 1.0f, -1.0f); // Top Right Of The Texture and Quad
 glTexCoord2f(0.0f, 1.0f); glVertex3f(1.0f, 1.0f, -1.0f); // Top Left Of The Texture and Quad
 glTexCoord2f(0.0f, 0.0f); glVertex3f(1.0f, -1.0f, -1.0f); // Bottom Left Of The Texture and Quad
 // Top Face
 glTexCoord2f(0.0f, 1.0f); glVertex3f(-1.0f, 1.0f, -1.0f); // Top Left Of The Texture and Quad
 glTexCoord2f(0.0f, 0.0f); glVertex3f(-1.0f, 1.0f, 1.0f); // Bottom Left Of The Texture and Quad
 glTexCoord2f(1.0f, 0.0f); glVertex3f(1.0f, 1.0f, 1.0f); // Bottom Right Of The Texture and Quad
 glTexCoord2f(1.0f, 1.0f); glVertex3f(1.0f, 1.0f, -1.0f); // Top Right Of The Texture and Quad
 // Bottom Face
 glTexCoord2f(1.0f, 1.0f); glVertex3f(-1.0f, -1.0f, -1.0f); // Top Right Of The Texture and Quad
 glTexCoord2f(0.0f, 1.0f); glVertex3f(1.0f, -1.0f, -1.0f); // Top Left Of The Texture and Quad
 glTexCoord2f(0.0f, 0.0f); glVertex3f(1.0f, -1.0f, 1.0f); // Bottom Left Of The Texture and Quad
 glTexCoord2f(1.0f, 0.0f); glVertex3f(-1.0f, -1.0f, 1.0f); // Bottom Right Of The Texture and Quad
 // Right face
 glTexCoord2f(1.0f, 0.0f); glVertex3f(1.0f, -1.0f, -1.0f); // Bottom Right Of The Texture and Quad
 glTexCoord2f(1.0f, 1.0f); glVertex3f(1.0f, 1.0f, -1.0f); // Top Right Of The Texture and Quad
 glTexCoord2f(0.0f, 1.0f); glVertex3f(1.0f, 1.0f, 1.0f); // Top Left Of The Texture and Quad
 glTexCoord2f(0.0f, 0.0f); glVertex3f(1.0f, -1.0f, 1.0f); // Bottom Left Of The Texture and Quad
 // Left Face
 glTexCoord2f(0.0f, 0.0f); glVertex3f(-1.0f, -1.0f, -1.0f); // Bottom Left Of The Texture and Quad
 glTexCoord2f(1.0f, 0.0f); glVertex3f(-1.0f, -1.0f, 1.0f); // Bottom Right Of The Texture and Quad
 glTexCoord2f(1.0f, 1.0f); glVertex3f(-1.0f, 1.0f, 1.0f); // Top Right Of The Texture and Quad
 glTexCoord2f(0.0f, 1.0f); glVertex3f(-1.0f, 1.0f, -1.0f); // Top Left Of The Texture and Quad
 glEnd();

create and to select a specific texture.

To properly map a texture onto a quad, you have to make sure the top right of the texture is
mapped to the top right of the quad. The top left of the texture is mapped to the top left of the quad,
the bottom right of the texture is mapped to the bottom right of the quad, and finally, the bottom left
of the texture is mapped to the bottom left of the quad. If the corners of the texture do not match
the same corners of the quad, the image may appear upside down, sideways, or not at all.

The first value of glTexCoord2f is the X coordinate. 0.0f is the left side of the texture. 0.5f is the
middle of the texture, and 1.0f is the right side of the texture. The second value of glTexCoord2f is
the Y coordinate. 0.0f is the bottom of the texture. 0.5f is the middle of the texture, and 1.0f is the
top of the texture.

So now we know the top left coordinate of a texture is 0.0f on X and 1.0f on Y, and the top left
vertex of a quad is -1.0f on X, and 1.0f on Y. Now all you have to do is match the other three texture
coordinates up with the remaining three corners of the quad.

Try playing around with the x and y values of glTexCoord2f. Changing 1.0f to 0.5f will only draw the
left half of a texture from 0.0f (left) to 0.5f (middle of the texture). Changing 0.0f to 0.5f will only draw
the right half of a texture from 0.5f (middle) to 1.0f (right).

Jeff Molofee's OpenGL Windows Tutorial #6

Page 7 of 7

 xrot+=0.3f;
 yrot+=0.2f;
 zrot+=0.4f;
 return true;
}

Now we increase the value of xrot, yrot and zrot. Try changing the number each variable increases
by to make the cube spin faster or slower, or try changing a + to a - to make the cube spin the
other direction.

You should now have a better understanding of texture mapping. You should be able to texture map
the surface of any quad with an image of your choice. Once you feel confident with your
understanding of 2D texture mapping, try adding six different textures to the cube.

Texture mapping isn't to difficult to understand once you understand texture coordinates. If you're
having problems understanding any part of this tutorial, let me know. Either I'll rewrite that section of
the tutorial, or I'll reply back to you in email. Have fun creating texture mapped scenes of your
own :)

Jeff Molofee (NeHe)

* DOWNLOAD Visual C++ Code For This Lesson.
* DOWNLOAD Visual Fortran Code For This Lesson. (Conversion by Jean-Philippe Perois)
* DOWNLOAD Delphi Code For This Lesson. (Conversion by Brad Choate)
* DOWNLOAD Linux Code For This Lesson. (Conversion by Richard Campbell)
* DOWNLOAD Irix Code For This Lesson. (Conversion by Lakmal Gunasekara)
* DOWNLOAD Solaris Code For This Lesson. (Conversion by Lakmal Gunasekara)
* DOWNLOAD Mac OS Code For This Lesson. (Conversion by Anthony Parker)
* DOWNLOAD Power Basic Code For This Lesson. (Conversion by Angus Law)
* DOWNLOAD BeOS Code For This Lesson. (Conversion by Chris Herborth)
* DOWNLOAD Java Code For This Lesson. (Conversion by Darren Hodges)

Back To NeHe Productions!

Jeff Molofee's OpenGL Windows Tutorial #7

Page 1 of 11

#include <windows.h>
#include <stdio.h> // Header File For Standard Input/Output
#include <gl\gl.h> // Header File For The OpenGL32 Library
#include <gl\glu.h>
#include <gl\glaux.h>

HDC hDC=NULL; // Private GDI Device Context
HGLRC hRC=NULL; // Permanent Rendering Context
HWND hWnd=NULL;
HINSTANCE hInstance; // Holds The Instance Of The Application

bool keys[256];
bool active=TRUE;
bool fullscreen=TRUE; // Fullscreen Flag

BOOL light;
BOOL lp;
BOOL fp;

GLfloat xrot;
GLfloat yrot;
GLfloat xspeed;
GLfloat yspeed;

 Lesson 7

In this tutorial I'll teach you how to use three different texture filters. I'll teach you how to move an
object using keys on the keyboard, and I'll also teach you how to apply simple lighting to your
OpenGL scene. Lots covered in this tutorial, so if the previous tutorials are giving you problems, go
back and review. It's important to have a good understanding of the basics before you jump into the
following code.

We're going to be modifying the code from lesson one again. As usual, if there are any major
changes, I will write out the entire section of code that has been modified. We'll start off by adding a
few new variables to the program.

The lines below are new. We're going to add three boolean variables. BOOL means the variable can
only be TRUE or FALSE. We create a variable called light to keep track of whether or not the
lighting is on or off. The variables lp and fp are used to store whether or not the 'L' or 'F' key has
been pressed. I'll explain why we need these variables later on in the code. For now, just know that
they are important.

Now we're going to set up five variables that will control the angle on the x axis (xrot), the angle on
the y axis (yrot), the speed the crate is spinning at on the x axis (xspeed), and the speed the
crate is spinning at on the y axis (yspeed). We'll also create a variable called z that will control
how deep into the screen (on the z axis) the crate is.

Jeff Molofee's OpenGL Windows Tutorial #7

Page 2 of 11

GLfloat z=-5.0f; // Depth Into The Screen

GLfloat LightAmbient[]= { 0.5f, 0.5f, 0.5f, 1.0f }; // Ambient Light Values

GLfloat LightDiffuse[]= { 1.0f, 1.0f, 1.0f, 1.0f }; // Diffuse Light Values

GLfloat LightPosition[]= { 0.0f, 0.0f, 2.0f, 1.0f }; // Light Position

Now we set up the arrays that will be used to create the lighting. We'll use two different types of
light. The first type of light is called ambient light. Ambient light is light that doesn't come from any
particular direction. All the objects in your scene will be lit up by the ambient light. The second type
of light is called diffuse light. Diffuse light is created by your light source and is reflected off the
surface of an object in your scene. Any surface of an object that the light hits directly will be very
bright, and areas the light barely gets to will be darker. This creates a nice shading effect on the
sides of our crate.

Light is created the same way color is created. If the first number is 1.0f, and the next two are 0.0f,
we will end up with a bright red light. If the third number is 1.0f, and the first two are 0.0f, we will
have a bright blue light. The last number is an alpha value. We'll leave it at 1.0f for now.

So in the line below, we are storing the values for a white ambient light at half intensity (0.5f).
Because all the numbers are 0.5f, we will end up with a light that's halfway between off (black) and
full brightness (white). Red, blue and green mixed at the same value will create a shade from black
(0.0f) to white(1.0f). Without an ambient light, spots where there is no diffuse light will appear very
dark.

In the next line we're storing the values for a super bright, full intensity diffuse light. All the values
are 1.0f. This means the light is as bright as we can get it. A diffuse light this bright lights up the
front of the crate nicely.

Finally we store the position of the light. The first three numbers are the same as glTranslate's three
numbers. The first number is for moving left and right on the x plane, the second number is for
moving up and down on the y plane, and the third number is for moving into and out of the screen
on the z plane. Because we want our light hitting directly on the front of the crate, we don't move
left or right so the first value is 0.0f (no movement on x), we don't want to move up and down, so the
second value is 0.0f as well. For the third value we want to make sure the light is always in front of
the crate. So we'll position the light off the screen, towards the viewer. Lets say the glass on your
monitor is at 0.0f on the z plane. We'll position the light at 2.0f on the z plane. If you could actually
see the light, it would be floating in front of the glass on your monitor. By doing this, the only way
the light would be behind the crate is if the crate was also in front of the glass on your monitor. Of
course if the crate was no longer behind the glass on your monitor, you would no longer see the
crate, so it doesn't matter where the light is. Does that make sense?

There's no real easy way to explain the third parameter. You should know that -2.0f is going to be
closer to you than -5.0f. and -100.0f would be WAY into the screen. Once you get to 0.0f, the
image is so big, it fills the entire monitor. Once you start going into positive values, the image no
longer appears on the screen cause it has "gone past the screen". That's what I mean when I say
out of the screen. The object is still there, you just can't see it anymore.

Leave the last number at 1.0f. This tells OpenGL the designated coordinates are the position of the
light source. More about this in a later tutorial.

Jeff Molofee's OpenGL Windows Tutorial #7

Page 3 of 11

GLuint filter;
GLuint texture[3];

LRESULT CALLBACK WndProc(HWND, UINT, WPARAM, LPARAM); // Declaration For WndProc

AUX_RGBImageRec *LoadBMP(char *Filename) // Loads A Bitmap Image
{
 FILE *File=NULL; // File Handle

 if (!Filename)
 {
 return NULL;
 }

 File=fopen(Filename,"r"); // Check To See If The File Exists

 if (File) // Does The File Exist?
 {
 fclose(File);
 return auxDIBImageLoad(Filename); // Load The Bitmap And Return A Pointer
 }
 return NULL;
}

int LoadGLTextures()
{
 int Status=FALSE; // Status Indicator

The filter variable below is to keep track of which texture to display. The first texture (texture 0) is
made using gl_nearest (no smoothing). The second texture (texture 1) uses gl_linear filtering which
smooths the image out quite a bit. The third texture (texture 2) uses mipmapped textures, creating
a very nice looking texture. The variable filter will equal 0, 1 or 2 depending on the texture we want
to use. We start off with the first texture.

GLuint texture[3] creates storage space for the three different textures. The textures will be stored
at texture[0], texture[1] and texture[2].

Now we load in a bitmap, and create three different textures from it. This tutorial uses the glaux
library to load in the bitmap, so make sure you have the glaux library included before you try
compiling the code. I know Delphi, and Visual C++ both have glaux libraries. I'm not sure about
other languages. I'm only going to explain what the new lines of code do, if you see a line I haven't
commented on, and you're wondering what it does, check tutorial six. It explains loading, and
building texture maps from bitmap images in great detail.

Immediately after the above code, and before ReSizeGLScene(), we want to add the following
section of code. This is the same code we used in lesson 6 to load in a bitmap file. Nothing has
changed. If you're not sure what any of the following lines do, read tutorial six. It explains the code
below in detail.

 This is the section of code that loads the bitmap (calling the code above) and converts it into 3
textures. Status is used to keep track of whether or not the texture was loaded and created.

Jeff Molofee's OpenGL Windows Tutorial #7

Page 4 of 11

 AUX_RGBImageRec *TextureImage[1]; // Create Storage Space For The Texture

 memset(TextureImage,0,sizeof(void *)*1); // Set The Pointer To NULL

 // Load The Bitmap, Check For Errors, If Bitmap's Not Found Quit
 if (TextureImage[0]=LoadBMP("Data/Crate.bmp"))
 {
 Status=TRUE;

 glGenTextures(3, &texture[0]);

 // Create Nearest Filtered Texture
 glBindTexture(GL_TEXTURE_2D, texture[0]);
 glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_NEAREST); (NEW)
 glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_NEAREST); (NEW)
 glTexImage2D(GL_TEXTURE_2D, 0, 3, TextureImage[0]->sizeX, TextureImage[0]-

 // Create Linear Filtered Texture
 glBindTexture(GL_TEXTURE_2D, texture[1]);
 glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_LINEAR);
 glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_LINEAR);
 glTexImage2D(GL_TEXTURE_2D, 0, 3, TextureImage[0]->sizeX, TextureImage[0]-

Now we load the bitmap and convert it to a texture. TextureImage[0]=LoadBMP("Data/Crate.bmp")
will jump to our LoadBMP() code. The file named Crate.bmp in the Data directory will be loaded. If
everything goes well, the image data is stored in TextureImage[0], Status is set to TRUE, and we
start to build our texture.

Now that we've loaded the image data into TextureImage[0], we'll use the data to build 3 textures.
The line below tells OpenGL we want to build three textures, and we want the texture to be stored
in texture[0], texture[1] and texture[2].

In tutorial six, we used linear filtered texture maps. They require a hefty amount of processing
power, but they look real nice. The first type of texture we're going to create in this tutorial uses
GL_NEAREST. Basically this type of texture has no filtering at all. It takes very little processing
power, and it looks real bad. If you've ever played a game where the textures look all blocky, it's
probably using this type of texture. The only benefit of this type of texture is that projects made
using this type of texture will usually run pretty good on slow computers.

You'll notice we're using GL_NEAREST for both the MIN and MAG. You can mix GL_NEAREST
with GL_LINEAR, and the texture will look a bit better, but we're intested in speed, so we'll use low
quality for both. The MIN_FILTER is the filter used when an image is drawn smaller than the original
texture size. The MAG_FILTER is used when the image is bigger than the original texture size.

The next texture we build is the same type of texture we used in tutorial six. Linear filtered. The
only thing that has changed is that we are storing this texture in texture[1] instead of texture[0]
because it's our second texture. If we stored it in texture[0] like above, it would overwrite the
GL_NEAREST texture (the first texture).

Jeff Molofee's OpenGL Windows Tutorial #7

Page 5 of 11

 // Create MipMapped Texture
 glBindTexture(GL_TEXTURE_2D, texture[2]);
 glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_LINEAR);
 glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_LINEAR_MIPMAP_NEAREST);

 gluBuild2DMipmaps(GL_TEXTURE_2D, 3, TextureImage[0]->sizeX, TextureImage[0]
 }

 if (TextureImage[0])
 {
 if (TextureImage[0]->data) // If Texture Image Exists
 {
 free(TextureImage[0]->data);
 }

 free(TextureImage[0]);
 }

Now for a new way to make textures. Mipmapping! You may have noticed that when you make an
image very tiny on the screen, alot of the fine details disappear. Patterns that used to look nice
start looking real bad. When you tell OpenGL to build a mipmapped texture OpenGL tries to build
different sized high quality textures. When you draw a mipmapped texture to the screen OpenGL
will select the BEST looking texture from the ones it built (texture with the most detail) and draw it
to the screen instead of resizing the original image (which causes detail loss).

I had said in tutorial six there was a way around the 64,128,256,etc limit that OpenGL puts on
texture width and height. gluBuild2DMipmaps is it. From what I've found, you can use any bitmap
image you want (any width and height) when building mipmapped textures. OpenGL will
automatically size it to the proper width and height.

Because this is texture number three, we're going to store this texture in texture[2]. So now we
have texture[0] which has no filtering, texture[1] which uses linear filtering, and texture[2] which
uses mipmapped textures. We're done building the textures for this tutorial.

The following line builds the mipmapped texture. We're creating a 2D texture using three colors
(red, green, blue). TextureImage[0]->sizeX is the bitmaps width, TextureImage[0]->sizeY is the
bitmaps height, GL_RGB means we're using Red, Green, Blue colors in that order.
GL_UNSIGNED_BYTE means the data that makes the texture is made up of bytes, and
TextureImage[0]->data points to the bitmap data that we're building the texture from.

Now we free up any ram that we may have used to store the bitmap data. We check to see if the
bitmap data was stored in TextureImage[0]. If it was we check to see if the data has been stored. If
data was stored, we erase it. Then we free the image structure making sure any used memory is
freed up.

 Finally we return the status. If everything went OK, the variable Status will be TRUE. If anything
went wrong, Status will be FALSE.

Jeff Molofee's OpenGL Windows Tutorial #7

Page 6 of 11

 return Status;
}

int InitGL(GLvoid) // All Setup For OpenGL Goes Here
{
 if (!LoadGLTextures())
 {
 return FALSE;
 }

 glEnable(GL_TEXTURE_2D); // Enable Texture Mapping
 glShadeModel(GL_SMOOTH); // Enable Smooth Shading
 glClearColor(0.0f, 0.0f, 0.0f, 0.5f);
 glClearDepth(1.0f);
 glEnable(GL_DEPTH_TEST); // Enables Depth Testing
 glDepthFunc(GL_LEQUAL);
 glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST); // Really Nice Perspective Calculations

 glLightfv(GL_LIGHT1, GL_AMBIENT, LightAmbient);

 glLightfv(GL_LIGHT1, GL_DIFFUSE, LightDiffuse);

 glLightfv(GL_LIGHT1, GL_POSITION,LightPosition); // Position The Light

Now we load the textures, and initialize the OpenGL settings. The first line of InitGL loads the
textures using the code above. After the textures have been created, we enable 2D texture mapping
with glEnable(GL_TEXTURE_2D). The shade mode is set to smooth shading, The background color
is set to black, we enable depth testing, then we enable nice perspective calculations.

Now we set up the lighting. The line below will set the amount of ambient light that light1 will give
off. At the beginning of this tutorial we stored the amount of ambient light in LightAmbient. The
values we stored in the array will be used (half intensity ambient light).

Next we set up the amount of diffuse light that light number one will give off. We stored the amount
of diffuse light in LightDiffuse. The values we stored in this array will be used (full intensity white
light).

Now we set the position of the light. We stored the position in LightPosition. The values we stored
in this array will be used (right in the center of the front face, 0.0f on x, 0.0f on y, and 2 unit towards
the viewer {coming out of the screen} on the z plane).

Finally, we enable light number one. We haven't enabled GL_LIGHTING though, so you wont see
any lighting just yet. The light is set up, and positioned, it's even enabled, but until we enable
GL_LIGHTING, the light will not work.

Jeff Molofee's OpenGL Windows Tutorial #7

Page 7 of 11

 glEnable(GL_LIGHT1);
 return TRUE;
}

int DrawGLScene(GLvoid)
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Clear The Screen And The Depth Buffer
 glLoadIdentity(); // Reset The View

 glTranslatef(0.0f,0.0f,z); // Translate Into/Out Of The Screen By z

 glRotatef(xrot,1.0f,0.0f,0.0f);
 glRotatef(yrot,0.0f,1.0f,0.0f);

 glBindTexture(GL_TEXTURE_2D, texture[filter]);

 glBegin(GL_QUADS); // Start Drawing Quads

In the next section of code, we're going to draw the texture mapped cube. I will comment a few of
the line only because they are new. If you're not sure what the uncommented lines do, check
tutorial number six.

The next three lines of code position and rotate the texture mapped cube. glTranslatef(0.0f,0.0f,z)
moves the cube to the value of z on the z plane (away from and towards the viewer). glRotatef
(xrot,1.0f,0.0f,0.0f) uses the variable xrot to rotate the cube on the x axis. glRotatef
(yrot,1.0f,0.0f,0.0f) uses the variable yrot to rotate the cube on the y axis.

The next line is similar to the line we used in tutorial six, but instead of binding texture[0], we are
binding texture[filter]. Any time we press the 'F' key, the value in filter will increase. If this value is
higher than two, the variable filter is set back to zero. When the program starts the filter will be set
to zero. This is the same as saying glBindTexture(GL_TEXTURE_2D, texture[0]). If we press 'F'
once more, the variable filter will equal one, which is the same as saying glBindTexture
(GL_TEXTURE_2D, texture[1]). By using the variable filter we can select any of the three textures
we've made.

glNormal3f is new to my tutorials. A normal is a line pointing straight out of the middle of a polygon
at a 90 degree angle. When you use lighting, you need to specify a normal. The normal tells
OpenGL which direction the polygon is facing... which way is up. If you don't specify normals, all
kinds of weird things happen. Faces that shouldn't light up will light up, the wrong side of a polygon
will light up, etc. The normal should point outwards from the polygon.

Looking at the front face you'll notice that the normal is positive on the z axis. This means the
normal is pointing at the viewer. Exactly the direction we want it pointing. On the back face, the
normal is pointing away from the viewer, into the screen. Again exactly what we want. If the cube is
spun 180 degrees on either the x or y axis, the front will be facing into the screen and the back will
be facing towards the viewer. No matter what face is facing the viewer, the normal of that face will
also be pointing towards the viewer. Because the light is close to the viewer, any time the normal is
pointing towards the viewer it's also pointing towards the light. When it does, the face will light up.
The more a normal points towards the light, the brighter that face is. If you move into the center of
the cube you'll notice it's dark. The normals are point out, not in, so there's no light inside the box,

Jeff Molofee's OpenGL Windows Tutorial #7

Page 8 of 11

 // Front Face
 glNormal3f(0.0f, 0.0f, 1.0f);
 glTexCoord2f(0.0f, 0.0f); glVertex3f(-1.0f, -1.0f, 1.0f); // Point 1 (Front)
 glTexCoord2f(1.0f, 0.0f); glVertex3f(1.0f, -1.0f, 1.0f); // Point 2 (Front)
 glTexCoord2f(1.0f, 1.0f); glVertex3f(1.0f, 1.0f, 1.0f); // Point 3 (Front)
 glTexCoord2f(0.0f, 1.0f); glVertex3f(-1.0f, 1.0f, 1.0f); // Point 4 (Front)
 // Back Face
 glNormal3f(0.0f, 0.0f,-1.0f);
 glTexCoord2f(1.0f, 0.0f); glVertex3f(-1.0f, -1.0f, -1.0f); // Point 1 (Back)
 glTexCoord2f(1.0f, 1.0f); glVertex3f(-1.0f, 1.0f, -1.0f); // Point 2 (Back)
 glTexCoord2f(0.0f, 1.0f); glVertex3f(1.0f, 1.0f, -1.0f); // Point 3 (Back)
 glTexCoord2f(0.0f, 0.0f); glVertex3f(1.0f, -1.0f, -1.0f); // Point 4 (Back)
 // Top Face
 glNormal3f(0.0f, 1.0f, 0.0f);
 glTexCoord2f(0.0f, 1.0f); glVertex3f(-1.0f, 1.0f, -1.0f); // Point 1 (Top)
 glTexCoord2f(0.0f, 0.0f); glVertex3f(-1.0f, 1.0f, 1.0f); // Point 2 (Top)
 glTexCoord2f(1.0f, 0.0f); glVertex3f(1.0f, 1.0f, 1.0f); // Point 3 (Top)
 glTexCoord2f(1.0f, 1.0f); glVertex3f(1.0f, 1.0f, -1.0f); // Point 4 (Top)
 // Bottom Face
 glNormal3f(0.0f,-1.0f, 0.0f);
 glTexCoord2f(1.0f, 1.0f); glVertex3f(-1.0f, -1.0f, -1.0f); // Point 1 (Bottom)
 glTexCoord2f(0.0f, 1.0f); glVertex3f(1.0f, -1.0f, -1.0f); // Point 2 (Bottom)
 glTexCoord2f(0.0f, 0.0f); glVertex3f(1.0f, -1.0f, 1.0f); // Point 3 (Bottom)
 glTexCoord2f(1.0f, 0.0f); glVertex3f(-1.0f, -1.0f, 1.0f); // Point 4 (Bottom)
 // Right face
 glNormal3f(1.0f, 0.0f, 0.0f);
 glTexCoord2f(1.0f, 0.0f); glVertex3f(1.0f, -1.0f, -1.0f); // Point 1 (Right)
 glTexCoord2f(1.0f, 1.0f); glVertex3f(1.0f, 1.0f, -1.0f); // Point 2 (Right)
 glTexCoord2f(0.0f, 1.0f); glVertex3f(1.0f, 1.0f, 1.0f); // Point 3 (Right)
 glTexCoord2f(0.0f, 0.0f); glVertex3f(1.0f, -1.0f, 1.0f); // Point 4 (Right)
 // Left Face
 glNormal3f(-1.0f, 0.0f, 0.0f);
 glTexCoord2f(0.0f, 0.0f); glVertex3f(-1.0f, -1.0f, -1.0f); // Point 1 (Left)
 glTexCoord2f(1.0f, 0.0f); glVertex3f(-1.0f, -1.0f, 1.0f); // Point 2 (Left)
 glTexCoord2f(1.0f, 1.0f); glVertex3f(-1.0f, 1.0f, 1.0f); // Point 3 (Left)
 glTexCoord2f(0.0f, 1.0f); glVertex3f(-1.0f, 1.0f, -1.0f); // Point 4 (Left)
 glEnd(); // Done Drawing Quads

 xrot+=xspeed;
 yrot+=yspeed;
 return TRUE;
}

exactly as it should be.

The next two lines increase xrot and yrot by the amount stored in xspeed, and yspeed. If the
value in xspeed or yspeed is high, xrot and yrot will increase quickly. The faster xrot, or yrot
increases, the faster the cube spins on that axis.

Now we move down to WinMain(). Were going to add code to turn lighting on and off, spin the crate,
change the filter and move the crate into and out of the screen. Closer to the bottom of WinMain()
you will see the command SwapBuffers(hDC). Immediately after this line, add the following code.

This code checks to see if the letter 'L' has been pressed on the keyboard. The first line checks to
see if 'L' is being pressed. If 'L' is being pressed, but lp isn't false, meaning 'L' has already been
pressed once or it's being held down, nothing will happen.

Jeff Molofee's OpenGL Windows Tutorial #7

Page 9 of 11

 SwapBuffers(hDC); // Swap Buffers (Double Buffering)
 if (keys['L'] && !lp)
 {

 lp=TRUE; // lp Becomes TRUE
 light=!light;

 if (!light)
 {
 glDisable(GL_LIGHTING);
 }
 else
 {
 glEnable(GL_LIGHTING);
 }
 }

 if (!keys['L'])
 {
 lp=FALSE; // If So, lp Becomes FALSE
 }

pressed once or it's being held down, nothing will happen.

If lp was false, meaning the 'L' key hasn't been pressed yet, or it's been released, lp becomes true.
This forces the person to let go of the 'L' key before this code will run again. If we didn't check to
see if the key was being held down, the lighting would flicker off and on over and over, because the
program would think you were pressing the 'L' key over and over again each time it came to this
section of code.

Once lp has been set to true, telling the computer that 'L' is being held down, we toggle lighting off
and on. The variable light can only be true of false. So if we say light=!light, what we are actually
saying is light equals NOT light. Which in english translates to if light equals true make light not
true (false), and if light equals false, make light not false (true). So if light was true, it becomes
false, and if light was false it becomes true.

Now we check to see what light ended up being. The first line translated to english means: If light
equals false. So if you put it all together, the lines do the following: If light equals false, disable
lighting. This turns all lighting off. The command 'else' translates to: if it wasn't false. So if light
wasn't false, it must have been true, so we turn lighting on.

The following line checks to see if we stopped pressing the 'L' key. If we did, it makes the variable
lp equal false, meaning the 'L' key isn't pressed. If we didn't check to see if the key was released,
we'd be able to turn lighting on once, but because the computer would always think 'L' was being
held down so it wouldn't let us turn it back off.

Jeff Molofee's OpenGL Windows Tutorial #7

Page 10 of 11

 if (keys['F'] && !fp)
 {
 fp=TRUE; // fp Becomes TRUE
 filter+=1;
 if (filter>2)
 {
 filter=0; // If So, Set filter To 0
 }
 }
 if (!keys['F'])
 {
 fp=FALSE; // If So, fp Becomes FALSE
 }

 if (keys[VK_PRIOR])
 {
 z-=0.02f; // If So, Move Into The Screen
 }

 if (keys[VK_NEXT]) // Is Page Down Being Pressed?
 {
 z+=0.02f; // If So, Move Towards The Viewer
 }

 if (keys[VK_UP]) // Is Up Arrow Being Pressed?
 {
 xspeed-=0.01f;
 }
 if (keys[VK_DOWN]) // Is Down Arrow Being Pressed?
 {
 xspeed+=0.01f;

Now we do something similar with the 'F' key. if the key is being pressed, and it's not being held
down or it's never been pressed before, it will make the variable fp equal true meaning the key is
now being held down. It will then increase the variable called filter. If filter is greater than 2 (which
would be texture[3], and that texture doesn't exist), we reset the variable filter back to zero.

The next four lines check to see if we are pressing the 'Page Up' key. If we are it decreases the
variable z. If this variable decreases, the cube will move into the distance because of the
glTranslatef(0.0f,0.0f,z) command used in the DrawGLScene procedure.

These four lines check to see if we are pressing the 'Page Down' key. If we are it increases the
variable z and moves the cube towards the viewer because of the glTranslatef(0.0f,0.0f,z) command
used in the DrawGLScene procedure.

Now all we have to check for is the arrow keys. By pressing left or right, xspeed is increased or
decreased. By pressing up or down, yspeed is increased or decreased. Remember further up in
the tutorial I said that if the value in xspeed or yspeed was high, the cube would spin faster. The
longer you hold down an arrow key, the faster the cube will spin in that direction.

Jeff Molofee's OpenGL Windows Tutorial #7

Page 11 of 11

 }
 if (keys[VK_RIGHT])
 {
 yspeed+=0.01f;
 }
 if (keys[VK_LEFT]) // Is Left Arrow Being Pressed?
 {
 yspeed-=0.01f;
 }

 if (keys[VK_F1]) // Is F1 Being Pressed?
 {
 keys[VK_F1]=FALSE; // If So Make Key FALSE
 KillGLWindow();
 fullscreen=!fullscreen;
 // Recreate Our OpenGL Window
 if (!CreateGLWindow("NeHe's Textures, Lighting & Keyboard Tutorial",640,480,16,fullscreen))
 {
 return 0; // Quit If Window Was Not Created
 }
 }
 }
 }
 }

 // Shutdown
 KillGLWindow();
 return (msg.wParam);
}

 Like all the previous tutorials, make sure the title at the top of the window is correct.

By the end of this tutorial you should be able to create and interact with high quality, realistic
looking, textured mapped objects made up of quads. You should understand the benefits of each of
the three filters used in this tutorial. By pressing specific keys on the keyboard you should be able
to interact with the object(s) on the screen, and finally, you should know how to apply simple
lighting to a scene making the scene appear more realistic.

Jeff Molofee (NeHe)

* DOWNLOAD Visual C++ Code For This Lesson.
* DOWNLOAD Visual Fortran Code For This Lesson. (Conversion by Jean-Philippe Perois)
* DOWNLOAD Delphi Code For This Lesson. (Conversion by Brad Choate)
* DOWNLOAD Linux Code For This Lesson. (Conversion by Richard Campbell)
* DOWNLOAD Irix Code For This Lesson. (Conversion by Lakmal Gunasekara)
* DOWNLOAD Solaris Code For This Lesson. (Conversion by Lakmal Gunasekara)
* DOWNLOAD Mac OS Code For This Lesson. (Conversion by Anthony Parker)
* DOWNLOAD Power Basic Code For This Lesson. (Conversion by Angus Law)
* DOWNLOAD BeOS Code For This Lesson. (Conversion by Chris Herborth)
* DOWNLOAD Java Code For This Lesson. (Conversion by Darren Hodges)

Back To NeHe Productions!

Jeff Molofee's OpenGL Tutorial #8 (By Tom Stanis)

Page 1 of 4

 Lesson 8

Simple Transparency
Most special effects in OpenGL rely on some type of blending. Blending is used to combine the
color of a given pixel that is about to be drawn with the pixel that is already on the screen. How the
colors are combined is based on the alpha value of the colors, and/or the blending function that is
being used. Alpha is a 4th color component usually specified at the end. In the past you have used
GL_RGB to specify color with 3 components. GL_RGBA can be used to specify alpha as well. In
addition, we can use glColor4f() instead of glColor3f().

Most people think of Alpha as how opaque a material is. An alpha value of 0.0 would mean that the
material is completely transparent. A value of 1.0 would be totally opaque.

The Blending Equation

If you are uncomfortable with math, and just want to see how to do transparency, skip this section.
If you want to understand how blending works, this section is for you.

(Rs Sr + Rd Dr, Gs Sg + Gd Dg, Bs Sb + Bd Db, As Sa + Ad Da)

OpenGL will calculate the result of blending two pixels based on the above equation. The s and r
subscripts specify the source and destination pixels. The S and D components are the blend
factors. These values indicate how you would like to blend the pixels. The most common values for
S and D are (As, As, As, As) (AKA source alpha) for S and (1, 1, 1, 1) - (As, As, As, As) (AKA one
minus src alpha) for D. This will yield a blending equation that looks like this:

(Rs As + Rd (1 - As), Gs As + Gd (1 - As), Bs As + Bs (1 - As), As As + Ad (1 - As))

This equation will yield transparent/translucent style effects.

Blending in OpenGL

We enable blending just like everything else. Then we set the equation, and turn off depth buffer
writing when drawing transparent objects, since we still want objects behind the translucent shapes
to be drawn. This isn't the proper way to blend, but most the time in simple projects it will work fine.

Rui Martins Adds: The correct way is to draw all the transparent (with alpha < 1.0) polys after you
have drawn the entire scene, and to draw them in reverse depth order (farthest first).

This is due to the fact that blending two polygons (1 and 2) in different order gives different results,
i.e. (assuming poly 1 is nearest to the viewer, the correct way would be to draw poly 2 first and then
poly 1. If you look at it, like in reality, all the light comming from behind these two polys (which are
transparent) has to pass poly 2 first and then poly 1 before it reaches the eye of the viewer.

You should SORT THE TRANSPARENT POLYGONS BY DEPTH and draw them AFTER THE
ENTIRE SCENE HAS BEEN DRAWN, with the DEPTH BUFFER ENABLED, or you will get
incorrect results. I know this sometimes is a pain, but this is the correct way to do it.

Jeff Molofee's OpenGL Tutorial #8 (By Tom Stanis)

Page 2 of 4

#include <windows.h> // Header File For Windows
#include <stdio.h> // Header File For Standard Input/Output
#include <gl\gl.h> // Header File For The OpenGL32 Library
#include <gl\glu.h> // Header File For The GLu32 Library
#include <gl\glaux.h> // Header File For The GLaux Library

HDC hDC=NULL; // Private GDI Device Context
HGLRC hRC=NULL; // Permanent Rendering Context
HWND hWnd=NULL; // Holds Our Window Handle
HINSTANCE hInstance; // Holds The Instance Of The Application

bool keys[256]; // Array Used For The Keyboard Routine
bool active=TRUE; // Window Active Flag Set To TRUE By Default
bool fullscreen=TRUE; // Fullscreen Flag Set To Fullscreen Mode By Default
bool light; // Lighting ON/OFF
bool blend; // Blending OFF/ON? (NEW)
bool lp; // L Pressed?
bool fp; // F Pressed?
bool bp; // B Pressed? (NEW)

GLfloat xrot; // X Rotation
GLfloat yrot; // Y Rotation
GLfloat xspeed; // X Rotation Speed
GLfloat yspeed; // Y Rotation Speed

GLfloat z=-5.0f; // Depth Into The Screen

GLfloat LightAmbient[]= { 0.5f, 0.5f, 0.5f, 1.0f }; // Ambient Light Values
GLfloat LightDiffuse[]= { 1.0f, 1.0f, 1.0f, 1.0f }; // Diffuse Light Values
GLfloat LightPosition[]= { 0.0f, 0.0f, 2.0f, 1.0f }; // Light Position

GLuint filter; // Which Filter To Use
GLuint texture[3]; // Storage for 3 textures

LRESULT CALLBACK WndProc(HWND, UINT, WPARAM, LPARAM); // Declaration For WndProc

 texture1 = auxDIBImageLoad("Data/glass.bmp"); // Load The Glass Bitmap (MODIFIED)

 glColor4f(1.0f,1.0f,1.0f,0.5f); // Full Brightness, 50% Alpha
 glBlendFunc(GL_SRC_ALPHA,GL_ONE); // Blending Function For Translucency Based On Source Alpha Value

We'll be using the code from lesson seven. We start off by adding two new variables to the top of
the code. I'll rewrite the entire section of code for clarity.

Move down to LoadGLTextures(). Find the line that says texture1 = auxDIBImageLoad
("Data/crate.bmp"), change it to the line below. We're using a stained glass type texture for this
tutorial instead of the crate texture.

Add the following two lines somewhere in the InitGL() section of code. What this line does is sets
the drawing brightness of the object to full brightness with 50% alpha (opacity). This means when
blending is enabled, the object will be 50% transparent. The second line sets the type of blending
we're going to use.

Rui Martins Adds: An alpha value of 0.0 would mean that the material is completely transparent. A
value of 1.0 would be totally opaque.

Jeff Molofee's OpenGL Tutorial #8 (By Tom Stanis)

Page 3 of 4

 if (keys[VK_LEFT]) // Is Left Arrow Being Pressed?
 {
 yspeed-=0.01f; // If So, Decrease yspeed
 }

 if (keys['B'] && !bp) // Is B Key Pressed And bp FALSE?
 {
 bp=TRUE; // If So, bp Becomes TRUE
 blend = !blend; // Toggle blend TRUE / FALSE
 if(blend) // Is blend TRUE?
 {
 glEnable(GL_BLEND); // Turn Blending On
 glDisable(GL_DEPTH_TEST); // Turn Depth Testing Off
 }
 else // Otherwise
 {
 glDisable(GL_BLEND); // Turn Blending Off
 glEnable(GL_DEPTH_TEST); // Turn Depth Testing On
 }
 }
 if (!keys['B']) // Has B Key Been Released?
 {
 bp=FALSE; // If So, bp Becomes FALSE
 }

 Look for the following section of code, it can be found at the very bottom of lesson seven.

Right under the above code, we want to add the following lines. The lines below watch to see if the
'B' key has been pressed. If it has been pressed, the computer checks to see if blending is off or
on. If blending is on, the computer turns it off. If blending was off, the computer will turn it on.

But how can we specify the color if we are using a texture map? Simple, in modulated texture
mode, each pixel that is texture mapped is multiplied by the current color. So, if the color to be
drawn is (0.5, 0.6, 0.4), we multiply it times the color and we get (0.5, 0.6, 0.4, 0.2) (alpha is
assumed to be 1.0 if not specified).

Thats it! Blending is actually quite simple to do in OpenGL.

Note (11/13/99)

I (NeHe) have modified the blending code so the output of the object looks more like it should.
Using Alpha values for the source and destination to do the blending will cause artifacting. Causing
back faces to appear darker, along with side faces. Basically the object will look very screwy. The
way I do blending may not be the best way, but it works, and the object appears to look like it
should when lighting is enabled. Thanks to Tom for the initial code, the way he was blending was
the proper way to blend with alpha values, but didn't look as attractive as people expected :)

The code was modified once again to address problems that some video cards had with
glDepthMask(). It seems this command would not effectively enable and disable depth buffer testing
on some cards, so I've changed back to the old fashioned glEnable and Disable of Depth Testing.

Jeff Molofee's OpenGL Tutorial #8 (By Tom Stanis)

Page 4 of 4

 Alpha from texture map.

The alpha value that is used for transparency can be read from a texture map just like color, to do
this, you will need to get alpha into the image you want to load, and then use GL_RGBA for the
color format in calls to glTexImage2D().

Questions?

If you have any questions, feel free to contact me at stanis@cs.wisc.edu.

Tom Stanis

* DOWNLOAD Visual C++ Code For This Lesson.
* DOWNLOAD Visual Fortran Code For This Lesson. (Conversion by Jean-Philippe Perois)
* DOWNLOAD Delphi Code For This Lesson. (Conversion by Marc Aarts)
* DOWNLOAD Linux Code For This Lesson. (Conversion by Richard Campbell)
* DOWNLOAD Irix Code For This Lesson. (Conversion by Lakmal Gunasekara)
* DOWNLOAD Solaris Code For This Lesson. (Conversion by Lakmal Gunasekara)
* DOWNLOAD Mac OS Code For This Lesson. (Conversion by Anthony Parker)
* DOWNLOAD Power Basic Code For This Lesson. (Conversion by Angus Law)
* DOWNLOAD BeOS Code For This Lesson. (Conversion by Chris Herborth)
* DOWNLOAD Java Code For This Lesson. (Conversion by Darren Hodges)

Back To NeHe Productions!

Jeff Molofee's OpenGL Windows Tutorial #9

Page 1 of 8

#include <windows.h> // Header File For Windows
#include <stdio.h> // Header File For Standard Input/Output
#include <gl\gl.h> // Header File For The OpenGL32 Library
#include <gl\glu.h> // Header File For The GLu32 Library
#include <gl\glaux.h> // Header File For The GLaux Library

HDC hDC=NULL; // Private GDI Device Context
HGLRC hRC=NULL; // Permanent Rendering Context
HWND hWnd=NULL; // Holds Our Window Handle
HINSTANCE hInstance; // Holds The Instance Of The Application

bool keys[256]; // Array Used For The Keyboard Routine
bool active=TRUE; // Window Active Flag Set To TRUE By Default
bool fullscreen=TRUE; // Fullscreen Flag Set To Fullscreen Mode By Default

BOOL twinkle; // Twinkling Stars
BOOL tp; // 'T' Key Pressed?

const num=50; // Number Of Stars To Draw

 Lesson 9

Welcome to Tutorial 9. By now you should have a very good understanding of OpenGL. You've
learned everything from setting up an OpenGL Window, to texture mapping a spinning object while
using lighting and blending. This will be the first semi-advanced tutorial. You'll learn the following:
Moving bitmaps around the screen in 3D, removing the black pixels around the bitmap (using
blending), adding color to a black & white texture and finally you'll learn how to create fancy colors
and simple animation by mixing different colored textures together.

We'll be modifying the code from lesson one for this tutorial. We'll start off by adding a few new
variables to the beginning of the program. I'll rewrite the entire section of code so it's easier to see
where the changes are being made.

The following lines are new. twinkle and tp are BOOLean variables meaning they can be TRUE or
FALSE. twinkle will keep track of whether or not the twinkle effect has been enabled. tp is used to
check if the 'T' key has been pressed or released. (pressed tp=TRUE, relased tp=FALSE).

num will keep track of how many stars we draw to the screen. It's defined as a CONSTant. This
means it can never change within the code. The reason we define it as a constant is because you
can not redefine an array. So if we've set up an array of only 50 stars and we decided to increase
num to 51 somewhere in the code, the array can not grow to 51, so an error would occur. You can
change this value to whatever you want it to be in this line only. Don't try to change the value of
num later on in the code unless you want disaster to occur.

Jeff Molofee's OpenGL Windows Tutorial #9

Page 2 of 8

typedef struct // Create A Structure For Star
{
 int r, g, b; // Stars Color
 GLfloat dist; // Stars Distance From Center
 GLfloat angle; // Stars Current Angle
}
stars; // Structures Name Is Stars
stars star[num]; // Make 'star' Array Of 'num' Using Info From The Structure 'stars'

GLfloat zoom=-15.0f; // Viewing Distance Away From Stars
GLfloat tilt=90.0f; // Tilt The View
GLfloat spin; // Spin Twinkling Stars

GLuint loop; // General Loop Variable
GLuint texture[1]; // Storage For One Texture

LRESULT CALLBACK WndProc(HWND, UINT, WPARAM, LPARAM); // Declaration For WndProc

Now we create a structure. The word structure sounds intimidating, but it's not really. A structure is
a group simple data (variables, etc) representing a larger similar group. In english :) We know that
we're keeping track of stars. You'll see that the 7th line below is stars;. We know each star will
have 3 values for color, and all these values will be integer values. The 3rd line int r,g,b sets up 3
integer values. One for red (r), one for green (g), and one for blue (b). We know each star will be a
different distance from the center of the screen, and can be place at one of 360 different angles from
the center. If you look at the 4th line below, we make a floating point value called dist. This will
keep track of the distance. The 5th line creates a floating point value called angle. This will keep
track of the stars angle.

So now we have this group of data that describes the color, distance and angle of a star on the
screen. Unfortunately we have more than one star to keep track of. Instead of creating 50 red
values, 50 green values, 50 blue values, 50 distance values and 50 angle values, we just create an
array called star. Each number in the star array will hold all of the information in our structure called
stars. We make the star array in the 8th line below. If we break down the 8th line: stars star[num].
This is what we come up with. The type of array is going to be stars. stars is a structure. So the
array is going to hold all of the information in the structure. The name of the array is star. The
number of arrays is [num]. So because num=50, we now have an array called star. Our array
stores the elements of the structure stars. Alot easier than keeping track of each star with seperate
variables. Which would be a very stupid thing to do, and would not allow us to add remove stars by
changing the const value of num.

Next we set up variables to keep track of how far away from the stars the viewer is (zoom), and
what angle we're seeing the stars from (tilt). We make a variable called spin that will spin the
twinkling stars on the z axis, which makes them look like they are spinning at their current
location.

loop is a variable we'll use in the program to draw all 50 stars, and texture[1] will be used to store
the one b&w texture that we load in. If you wanted more textures, you'd increase the value from one
to however many textures you decide to use.

Jeff Molofee's OpenGL Windows Tutorial #9

Page 3 of 8

AUX_RGBImageRec *LoadBMP(char *Filename) // Loads A Bitmap Image
{
 FILE *File=NULL; // File Handle

 if (!Filename) // Make Sure A Filename Was Given
 {
 return NULL; // If Not Return NULL
 }

 File=fopen(Filename,"r"); // Check To See If The File Exists

 if (File) // Does The File Exist?
 {
 fclose(File); // Close The Handle
 return auxDIBImageLoad(Filename); // Load The Bitmap And Return A Pointer
 }
 return NULL; // If Load Failed Return NULL
}

int LoadGLTextures() // Load Bitmaps And Convert To Textures
{
 int Status=FALSE; // Status Indicator

 AUX_RGBImageRec *TextureImage[1]; // Create Storage Space For The Texture

 memset(TextureImage,0,sizeof(void *)*1); // Set The Pointer To NULL

 // Load The Bitmap, Check For Errors, If Bitmap's Not Found Quit
 if (TextureImage[0]=LoadBMP("Data/Star.bmp"))
 {
 Status=TRUE; // Set The Status To TRUE

 glGenTextures(1, &texture[0]); // Create One Texture

 // Create Linear Filtered Texture
 glBindTexture(GL_TEXTURE_2D, texture[0]);
 glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_LINEAR);
 glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_LINEAR);
 glTexImage2D(GL_TEXTURE_2D, 0, 3, TextureImage[0]->sizeX, TextureImage[0]-
 }

 if (TextureImage[0]) // If Texture Exists
 {
 if (TextureImage[0]->data) // If Texture Image Exists
 {
 free(TextureImage[0]->data); // Free The Texture Image Memory
 }

 free(TextureImage[0]); // Free The Image Structure

Right after the line above we add code to load in our texture. I shouldn't have to explain the code in
great detail. It's the same code we used to load the textures in lesson 6, 7 and 8. The bitmap we
load this time is called star.bmp. We generate only one texture using glGenTextures(1, &texture
[0]). The texture will use linear filtering.

 This is the section of code that loads the bitmap (calling the code above) and converts it into a
textures. Status is used to keep track of whether or not the texture was loaded and created.

Jeff Molofee's OpenGL Windows Tutorial #9

Page 4 of 8

 }

 return Status; // Return The Status
}

int InitGL(GLvoid) // All Setup For OpenGL Goes Here
{
 if (!LoadGLTextures()) // Jump To Texture Loading Routine
 {
 return FALSE; // If Texture Didn't Load Return FALSE
 }

 glEnable(GL_TEXTURE_2D); // Enable Texture Mapping
 glShadeModel(GL_SMOOTH); // Enable Smooth Shading
 glClearColor(0.0f, 0.0f, 0.0f, 0.5f); // Black Background
 glClearDepth(1.0f); // Depth Buffer Setup
 glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST); // Really Nice Perspective Calculations
 glBlendFunc(GL_SRC_ALPHA,GL_ONE); // Set The Blending Function For Translucency
 glEnable(GL_BLEND); // Enable Blending

 for (loop=0; loop<num; loop++) // Create A Loop That Goes Through All The Stars
 {
 star[loop].angle=0.0f; // Start All The Stars At Angle Zero

 star[loop].dist=(float(loop)/num)*5.0f; // Calculate Distance From The Center
 star[loop].r=rand()%256; // Give star[loop] A Random Red Intensity
 star[loop].g=rand()%256; // Give star[loop] A Random Green Intensity
 star[loop].b=rand()%256; // Give star[loop] A Random Blue Intensity
 }

Now we set up OpenGL to render the way we want. We're not going to be using Depth Testing in
this project, so make sure if you're using the code from lesson one that you remove glDepthFunc
(GL_LEQUAL); and glEnable(GL_DEPTH_TEST); otherwise you'll see some very bad results. We're
using texture mapping in this code however so you'll want to make sure you add any lines that are
not in lesson 1. You'll notice we're enabling texture mapping, along with blending.

The following code is new. It sets up the starting angle, distance, and color of each star. Notice
how easy it is to change the information in the structure. The loop will go through all 50 stars. To
change the angle of star[1] all we have to do is say star[1].angle={some number} . It's that simple!

I calculate the distance by taking the current star (which is the value of loop) and dividing it by the
maximum amount of stars there can be. Then I multiply the result by 5.0f. Basically what this does
is moves each star a little bit farther than the previous star. When loop is 50 (the last star), loop
divided by num will be 1.0f. The reason I multiply by 5.0f is because 1.0f*5.0f is 5.0f. 5.0f is the very
edge of the screen. I don't want stars going off the screen so 5.0f is perfect. If you set the zoom
further into the screen you could use a higher number than 5.0f, but your stars would be alot
smaller (because of perspective).

You'll notice that the colors for each star are made up of random values from 0 to 255. You might
be wondering how we can use such large values when normally the colors are from 0.0f to 1.0f.
When we set the color we'll use glColor4ub instead of glColor4f. ub means Unsigned Byte. A byte
can be any value from 0 to 255. In this program it's easier to use bytes than to come up with a
random floating point value.

Jeff Molofee's OpenGL Windows Tutorial #9

Page 5 of 8

 return TRUE; // Initialization Went OK
}

int DrawGLScene(GLvoid) // Here's Where We Do All The Drawing
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Clear The Screen And The Depth Buffer
 glBindTexture(GL_TEXTURE_2D, texture[0]); // Select Our Texture

 for (loop=0; loop<num; loop++) // Loop Through All The Stars
 {
 glLoadIdentity(); // Reset The View Before We Draw Each Star
 glTranslatef(0.0f,0.0f,zoom); // Zoom Into The Screen (Using The Value In 'zoom')
 glRotatef(tilt,1.0f,0.0f,0.0f); // Tilt The View (Using The Value In 'tilt')

 glRotatef(star[loop].angle,0.0f,1.0f,0.0f); // Rotate To The Current Stars Angle
 glTranslatef(star[loop].dist,0.0f,0.0f); // Move Forward On The X Plane

 glRotatef(-star[loop].angle,0.0f,1.0f,0.0f); // Cancel The Current Stars Angle
 glRotatef(-tilt,1.0f,0.0f,0.0f); // Cancel The Screen Tilt

The Resize code is the same, so we'll jump to the drawing code. If you're using the code from
lesson one, delete the DrawGLScene code, and just copy what I have below. There's only 2 lines of
code in lesson one anyways, so there's not a lot to delete.

Now we move the star. The star starts off in the middle of the screen. The first thing we do is spin
the scene on the y axis. If we spin 90 degrees, the x axis will no longer run left to right, it will run
into and out of the screen. As an example to help clarify. Imagine you were in the center of a room.
Now imagine that the left wall had -x written on it, the front wall had -z written on it, the right wall
had +x written on it, and the wall behind you had +z written on it. If the room spun 90 degrees to
the right, but you did not move, the wall in front of you would no longer say -z it would say -x. All of
the walls would have moved. -z would be in front +z behind, -x would be in front, and +x would be
behind you. Make sense? By rotating the scene, we change the direction of the x and z planes.

The next line of code moves to a positive value on the x plane. Normally a positive value on x would
move us to the right side of the screen (where +x usually is), but because we've rotated on the y
plane, the +x could be anywhere. If we rotated by 180 degrees, it would be on the left side of the
screen instead of the right. So when we move forward on the positive x plane, we could be moving
left, right, forward or backward.

Now for some tricky code. The star is actually a flat texture. Now if you drew a flat quad in the
middle of the screen and texture mapped it, it would look fine. It would be facing you like it should.
But if you rotated on the y axis by 90 degrees, the texture would be facing the right and left sides of
the screen. All you'd see is a thin line. We don't want that to happen. We want the stars to face the
screen all the time, no matter how much we rotate and tilt the screen.

We do this by cancelling any rotations that we've made, just before we draw the star. You cancel
the rotations in reverse order. So above we tilted the screen, then we rotated to the stars current
angle. In reverse order, we'd un-rotate (new word) the stars current angle. To do this we use the
negative value of the angle, and rotate by that. So if we rotated the star by 10 degrees, rotating it
back -10 degrees will make the star face the screen once again on that axis. So the first line below
cancels the rotation on the y axis. Now we need to until the screen on the x axis. So to do that we
just tilt the screen by -tilt. After we've cancelled the x and y rotations, the star will face the screen
completely.

Jeff Molofee's OpenGL Windows Tutorial #9

Page 6 of 8

 if (twinkle) // Twinkling Stars Enabled
 {
 // Assign A Color Using Bytes
 glColor4ub(star[(num-loop)-1].r,star[(num-loop)-1].g,star[(num-loop)
 glBegin(GL_QUADS); // Begin Drawing The Textured Quad
 glTexCoord2f(0.0f, 0.0f); glVertex3f(-1.0f,-1.0f, 0.0f);
 glTexCoord2f(1.0f, 0.0f); glVertex3f(1.0f,-1.0f, 0.0f);
 glTexCoord2f(1.0f, 1.0f); glVertex3f(1.0f, 1.0f, 0.0f);
 glTexCoord2f(0.0f, 1.0f); glVertex3f(-1.0f, 1.0f, 0.0f);
 glEnd(); // Done Drawing The Textured Quad
 }

 glRotatef(spin,0.0f,0.0f,1.0f); // Rotate The Star On The Z Axis
 // Assign A Color Using Bytes
 glColor4ub(star[loop].r,star[loop].g,star[loop].b,255);
 glBegin(GL_QUADS); // Begin Drawing The Textured Quad
 glTexCoord2f(0.0f, 0.0f); glVertex3f(-1.0f,-1.0f, 0.0f);
 glTexCoord2f(1.0f, 0.0f); glVertex3f(1.0f,-1.0f, 0.0f);
 glTexCoord2f(1.0f, 1.0f); glVertex3f(1.0f, 1.0f, 0.0f);
 glTexCoord2f(0.0f, 1.0f); glVertex3f(-1.0f, 1.0f, 0.0f);
 glEnd(); // Done Drawing The Textured Quad

 spin+=0.01f; // Used To Spin The Stars
 star[loop].angle+=float(loop)/num; // Changes The Angle Of A Star
 star[loop].dist-=0.01f; // Changes The Distance Of A Star

If twinkle is TRUE, we'll draw a non-spinning star on the screen. To get a different color, we take
the maximum number of stars (num) and subtract the current stars number (loop), then subtract 1
because our loop only goes from 0 to num-1. If the result was 10 we'd use the color from star
number 10. That way the color of the two stars is usually different. Not a good way to do it, but
effective. The last value is the alpha value. The lower the value, the darker the star is.

If twinkle is enabled, each star will be drawn twice. This will slow down the program a little
depending on what type of computer you have. If twinkle is enabled, the colors from the two stars
will mix together creating some really nice colors. Also because this star does not spin, it will
appear as if the stars are animated when twinkling is enabled. (look for yourself if you don't
understand what I mean).

Notice how easy it is to add color to the texture. Even though the texture is black and white, it will
become whatever color we select before we draw the texture. Also take note that we're using bytes
for the color values rather than floating point numbers. Even the alpha value is a byte.

 Now we draw the main star. The only difference from the code above is that this star is always
drawn, and this star spins on the z axis.

Here's where we do all the movement. We spin the normal stars by increasing the value of spin.
Then we change the angle of each star. The angle of each star is increased by loop/num. What
this does is spins the stars that are farther from the center faster. The stars closer to the center
spin slower. Finally we decrease the distance each star is from the center of the screen. This
makes the stars look as if they are being sucked into the middle of the screen.

Jeff Molofee's OpenGL Windows Tutorial #9

Page 7 of 8

 if (star[loop].dist<0.0f) // Is The Star In The Middle Yet
 {
 star[loop].dist+=5.0f; // Move The Star 5 Units From The Center
 star[loop].r=rand()%256; // Give It A New Red Value
 star[loop].g=rand()%256; // Give It A New Green Value
 star[loop].b=rand()%256; // Give It A New Blue Value
 }
 }
 return TRUE; // Everything Went OK
}

 SwapBuffers(hDC); // Swap Buffers (Double Buffering)
 if (keys['T'] && !tp) // Is T Being Pressed And Is tp FALSE
 {
 tp=TRUE; // If So, Make tp TRUE
 twinkle=!twinkle; // Make twinkle Equal The Opposite Of What It Is
 }

 if (!keys['T']) // Has The T Key Been Released
 {
 tp=FALSE; // If So, make tp FALSE
 }

 if (keys[VK_UP]) // Is Up Arrow Being Pressed
 {
 tilt-=0.5f; // Tilt The Screen Up
 }

 if (keys[VK_DOWN]) // Is Down Arrow Being Pressed
 {
 tilt+=0.5f; // Tilt The Screen Down

The lines below check to see if the stars have hit the center of the screen or not. When a star hits
the center of the screen it's given a new color, and is moved 5 units from the center, so it can start
it's journey back to the center as a new star.

Now we're going to add code to check if any keys are being pressed. Go down to WinMain(). Look
for the line SwapBuffers(hDC). We'll add our key checking code right under that line. lines of code.

The lines below check to see if the T key has been pressed. If it has been pressed and it's not
being held down the following will happen. If twinkle is FALSE, it will become TRUE. If it was
TRUE, it will become FALSE. Once T is pressed tp will become TRUE. This prevents the code from
running over and over again if you hold down the T key.

 The code below checks to see if you've let go of the T key. If you have, it makes tp=FALSE.
Pressing the T key will do nothing unless tp is FALSE, so this section of code is very important.

 The rest of the code checks to see if the up arrow, down arrow, page up or page down keys are
being pressed.

Jeff Molofee's OpenGL Windows Tutorial #9

Page 8 of 8

 }

 if (keys[VK_PRIOR]) // Is Page Up Being Pressed
 {
 zoom-=0.2f; // Zoom Out
 }

 if (keys[VK_NEXT]) // Is Page Down Being Pressed
 {
 zoom+=0.2f; // Zoom In
 }

 if (keys[VK_F1]) // Is F1 Being Pressed?
 {
 keys[VK_F1]=FALSE; // If So Make Key FALSE
 KillGLWindow(); // Kill Our Current Window
 fullscreen=!fullscreen; // Toggle Fullscreen / Windowed Mode
 // Recreate Our OpenGL Window
 if (!CreateGLWindow("NeHe's Textures, Lighting & Keyboard Tutorial",640,480,16,fullscreen))
 {
 return 0; // Quit If Window Was Not Created
 }
 }
 }
}

 Like all the previous tutorials, make sure the title at the top of the window is correct.

In this tutorial I have tried to explain in as much detail how to load in a gray scale bitmap image,
remove the black space around the image (using blending), add color to the image, and move the
image around the screen in 3D. I've also shown you how to create beautiful colors and animation by
overlapping a second copy of the bitmap on top of the original bitmap. Once you have a good
understanding of everything I've taught you up till now, you should have no problems making 3D
demos ofyour own. All the basics have been covered!

Jeff Molofee (NeHe)

* DOWNLOAD Visual C++ Code For This Lesson.
* DOWNLOAD Visual Fortran Code For This Lesson. (Conversion by Jean-Philippe Perois)
* DOWNLOAD Delphi Code For This Lesson. (Conversion by Marc Aarts)
* DOWNLOAD Linux Code For This Lesson. (Conversion by Richard Campbell)
* DOWNLOAD Irix Code For This Lesson. (Conversion by Lakmal Gunasekara)
* DOWNLOAD Solaris Code For This Lesson. (Conversion by Lakmal Gunasekara)
* DOWNLOAD Mac OS Code For This Lesson. (Conversion by Anthony Parker)
* DOWNLOAD Power Basic Code For This Lesson. (Conversion by Angus Law)
* DOWNLOAD BeOS Code For This Lesson. (Conversion by Chris Herborth)
* DOWNLOAD Java Code For This Lesson. (Conversion by Darren Hodges)

Back To NeHe Productions!

Jeff Molofee's OpenGL Windows Tutorial #10 (By Lionel Brits)

Page 1 of 6

typedef struct tagSECTOR // Build Our Sector Structure
{
 int numtriangles; // Number Of Triangles In Sector
 TRIANGLE* triangle; // Pointer To Array Of Triangles
} SECTOR; // Call It SECTOR

typedef struct tagTRIANGLE // Build Our Triangle Structure
{
 VERTEX vertex[3]; // Array Of Three Vertices
} TRIANGLE; // Call It TRIANGLE

typedef struct tagVERTEX // Build Our Vertex Structure
{
 float x, y, z; // 3D Coordinates
 float u, v; // Texture Coordinates
} VERTEX; // Call It VERTEX

 Lesson 10

This tutorial was created by Lionel Brits (ßetelgeuse). This lesson only explains the sections of
code that have been added. By adding just the lines below, the program will not run. If you're
interested to know where each of the lines of code below go, download the source code, and follow
through it, as you read the tutorial.

Welcome to the infamous Tutorial 10. By now you have a spinning cube or a couple of stars, and
you have the basic feel for 3D programming. But wait! Don't run off and start to code Quake IV just
yet. Spinning cubes just aren't going to make cool deathmatch opponents :-) These days you need
a large, complicated and dynamic 3D world with 6 degrees of freedom and fancy effects like
mirrors, portals, warping and of course, high framerates. This tutorial explains the basic "structure"
of a 3D world, and also how to move around in it.

Data structure

While it is perfectly alright to code a 3D environment as a long series of numbers, it becomes
increasingly hard as the complexity of the environment goes up. For this reason, we must
catagorize our data into a more workable fashion. At the top of our list is the sector. Each 3D world
is basically a collection of sectors. A sector can be a room, a cube, or any enclosed volume.

 A sector holds a series of polygons, so the next catagory will be the triangle (we will stick to
triangles for now, as they are alot easier to code.)

The triangle is basically a polygon made up of vertices (plural of vertex), which brings us to our last
catagory. The vertex holds the real data that OpenGL is interested in. We define each point on the
triangle with it's position in 3D space (x, y, z) as well as it's texture coordinates (u, v).

Jeff Molofee's OpenGL Windows Tutorial #10 (By Lionel Brits)

Page 2 of 6

// Previous Declaration: char* worldfile = "data\\world.txt";
void SetupWorld() // Setup Our World
{
 FILE *filein; // File To Work With
 filein = fopen(worldfile, "rt"); // Open Our File

 ...
 (read our data)
 ...

 fclose(filein); // Close Our File
 return; // Jump Back
}

void readstr(FILE *f,char *string) // Read In A String

{
 do return; // Start A Loop
 {
 fgets(string, 255, f); // Read One Line
 } while ((string[0] == '/') || (string[0] == '\n')); // See If It Is Worthy Of Processing
 return; // Jump Back
}

int numtriangles; // Number Of Triangles In Sector

Loading files

Storing our world data inside our program makes our program quite static and boring. Loading
worlds from disk, however, gives us much more flexibility as we can test different worlds without
having to recompile our program. Another advantage is that the user can interchange worlds and
modify them without having to know the in's and out's of our program. The type of data file we are
going to be using will be text. This makes for easy editing, and less code. We will leave binary files
for a later date.

The question is, how do we get our data from our file. First, we create a new function called
SetupWorld(). We define our file as filein, and we open it for read-only access. We must also close
our file when we are done. Let us take a look at the code so far:

Our next challenge is to read each individual line of text into a variable. This can be done in a
number of ways. One problem is that not all lines in the file will contain meaningful information.
Blank lines and comments shouldn't be read. Let us create a function called readstr(). This function
will read one meaningful line of text into an initialised string. Here's the code:

Next, we must read in the sector data. This lesson will deal with one sector only, but it is easy to
implement a multi-sector engine. Let us turn back to SetupWorld().Our program must know how
many triangles are in our sector. In our data file, we will define the number of triangles as follows:

NUMPOLLIES n

Here's the code to read the number of triangles:

Jeff Molofee's OpenGL Windows Tutorial #10 (By Lionel Brits)

Page 3 of 6

char oneline[255]; // String To Store Data In
...
readstr(filein,oneline); // Get Single Line Of Data
sscanf(oneline, "NUMPOLLIES %d\n", &numtriangles); // Read In Number Of Triangles

// Previous Declaration: SECTOR sector1;
char oneline[255]; // String To Store Data In
int numtriangles; // Number Of Triangles In Sector
float x, y, z, u, v; // 3D And Texture Coordinates
...
sector1.triangle = new TRIANGLE[numtriangles]; // Allocate Memory For numtriangles And Set Pointer
sector1.numtriangles = triangles; // Define The Number Of Triangles In Sector 1
// Step Through Each Triangle In Sector
for (int triloop = 0; triloop < numtriangles; triloop++) // Loop Through All The Triangles
{
 // Step Through Each Vertex In Triangle
 for (int vertloop = 0; vertloop < 3; vertloop++) // Loop Through All The Vertices
 {
 readstr(filein,oneline); // Read String To Work With
 // Read Data Into Respective Vertex Values
 sscanf(oneline, "%f %f %f %f %f %f %f", &x, &y, &z, &u, &v);
 // Store Values Into Respective Vertices
 sector1.triangle[triloop].vertex[vertloop].x = x; // Sector 1, Triangle triloop, Vertice vertloop, x Value=x
 sector1.triangle[triloop].vertex[vertloop].y = y; // Sector 1, Triangle triloop, Vertice vertloop, y Value=y
 sector1.triangle[triloop].vertex[vertloop].z = z; // Sector 1, Triangle triloop, Vertice vertloop, z Value=z
 sector1.triangle[triloop].vertex[vertloop].u = u; // Sector 1, Triangle triloop, Vertice vertloop, u Value=u
 sector1.triangle[triloop].vertex[vertloop].v = v; // Sector 1, Triangle triloop, Vertice vertloop, v Value=v
 }
}

 The rest of our world-loading process will use the same process. Next, we initialize our sector and
read some data into it:

Each triangle in our data file is declared as follows:

X1 Y1 Z1 U1 V1
X2 Y2 Z2 U2 V2
X3 Y3 Z3 U3 V3

Displaying Worlds

Now that we can load our sector into memory, we need to display it on screen. So far we have done
some minor rotations and translations, but our camera was always centered at the origin (0,0,0).
Any good 3D engine would have the user be able to walk around and explore the world, and so will
ours. One way of doing this is to move the camera around and draw the 3D environment relative to
the camera position. This is slow and hard to code. What we will do is this:

1. Rotate and translate the camera position according to user commands
2. Rotate the world around the origin in the opposite direction of the camera rotation (giving the

illusion that the camera has been rotated)
3. Translate the world in the opposite manner that the camera has been translated (again,

giving the illusion that the camera has moved)

This is pretty simple to implement. Let's start with the first stage (Rotation and translation of the
camera).

Jeff Molofee's OpenGL Windows Tutorial #10 (By Lionel Brits)

Page 4 of 6

if (keys[VK_RIGHT]) // Is The Right Arrow Being Pressed?
{
 yrot -= 1.5f; // Rotate The Scene To The Left
}

if (keys[VK_LEFT]) // Is The Left Arrow Being Pressed?
{
 yrot += 1.5f; // Rotate The Scene To The Right
}

if (keys[VK_UP]) // Is The Up Arrow Being Pressed?
{
 xpos -= (float)sin(yrot*piover180) * 0.05f; // Move On The X-Plane Based On Player Direction
 zpos -= (float)cos(yrot*piover180) * 0.05f; // Move On The Z-Plane Based On Player Direction
 if (walkbiasangle >= 359.0f) // Is walkbiasangle>=359?
 {
 walkbiasangle = 0.0f; // Make walkbiasangle Equal 0
 }
 else // Otherwise
 {
 walkbiasangle+= 10; // If walkbiasangle < 359 Increase It By 10
 }
 walkbias = (float)sin(walkbiasangle * piover180)/20.0f; // Causes The Player To Bounce
}

if (keys[VK_DOWN]) // Is The Down Arrow Being Pressed?
{
 xpos += (float)sin(yrot*piover180) * 0.05f; // Move On The X-Plane Based On Player Direction
 zpos += (float)cos(yrot*piover180) * 0.05f; // Move On The Z-Plane Based On Player Direction
 if (walkbiasangle <= 1.0f) // Is walkbiasangle<=1?
 {
 walkbiasangle = 359.0f; // Make walkbiasangle Equal 359
 }
 else // Otherwise
 {
 walkbiasangle-= 10; // If walkbiasangle > 1 Decrease It By 10
 }
 walkbias = (float)sin(walkbiasangle * piover180)/20.0f; // Causes The Player To Bounce
}

int DrawGLScene(GLvoid) // Draw The OpenGL Scene
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Clear Screen And Depth Buffer
 glLoadIdentity(); // Reset The Current Matrix

That was fairly simple. When either the left or right cursor key is pressed, the rotation variable yrot
is incremented or decremented appropriatly. When the forward or backwards cursor key is pressed,
a new location for the camera is calculated using the sine and cosine calculations (some
trigonometry required :-). Piover180 is simply a conversion factor for converting between degrees
and radians.

Next you ask me: What is this walkbias? It's a word I invented :-) It's basically an offset that occurs
when a person walks around (head bobbing up and down like a buoy. It simply adjusts the camera's
Y position with a sine wave. I had to put this in, as simply moving forwards and backwards didn't
look to great.

Now that we have these variables down, we can proceed with steps two and three. This will be done
in the display loop, as our program isn't complicated enough to merit a seperate function.

Jeff Molofee's OpenGL Windows Tutorial #10 (By Lionel Brits)

Page 5 of 6

 GLfloat x_m, y_m, z_m, u_m, v_m; // Floating Point For Temp X, Y, Z, U And V Vertices
 GLfloat xtrans = -xpos; // Used For Player Translation On The X Axis
 GLfloat ztrans = -zpos; // Used For Player Translation On The Z Axis
 GLfloat ytrans = -walkbias-0.25f; // Used For Bouncing Motion Up And Down
 GLfloat sceneroty = 360.0f - yrot; // 360 Degree Angle For Player Direction

 int numtriangles; // Integer To Hold The Number Of Triangles

 glRotatef(lookupdown,1.0f,0,0); // Rotate Up And Down To Look Up And Down
 glRotatef(sceneroty,0,1.0f,0); // Rotate Depending On Direction Player Is Facing

 glTranslatef(xtrans, ytrans, ztrans); // Translate The Scene Based On Player Position
 glBindTexture(GL_TEXTURE_2D, texture[filter]); // Select A Texture Based On filter

 numtriangles = sector1.numtriangles; // Get The Number Of Triangles In Sector 1

 // Process Each Triangle
 for (int loop_m = 0; loop_m < numtriangles; loop_m++) // Loop Through All The Triangles
 {
 glBegin(GL_TRIANGLES); // Start Drawing Triangles
 glNormal3f(0.0f, 0.0f, 1.0f); // Normal Pointing Forward
 x_m = sector1.triangle[loop_m].vertex[0].x; // X Vertex Of 1st Point
 y_m = sector1.triangle[loop_m].vertex[0].y; // Y Vertex Of 1st Point
 z_m = sector1.triangle[loop_m].vertex[0].z; // Z Vertex Of 1st Point
 u_m = sector1.triangle[loop_m].vertex[0].u; // U Texture Coord Of 1st Point
 v_m = sector1.triangle[loop_m].vertex[0].v; // V Texture Coord Of 1st Point
 glTexCoord2f(u_m,v_m); glVertex3f(x_m,y_m,z_m); // Set The TexCoord And Vertice

 x_m = sector1.triangle[loop_m].vertex[1].x; // X Vertex Of 2nd Point
 y_m = sector1.triangle[loop_m].vertex[1].y; // Y Vertex Of 2nd Point
 z_m = sector1.triangle[loop_m].vertex[1].z; // Z Vertex Of 2nd Point
 u_m = sector1.triangle[loop_m].vertex[1].u; // U Texture Coord Of 2nd Point
 v_m = sector1.triangle[loop_m].vertex[1].v; // V Texture Coord Of 2nd Point
 glTexCoord2f(u_m,v_m); glVertex3f(x_m,y_m,z_m); // Set The TexCoord And Vertice

 x_m = sector1.triangle[loop_m].vertex[2].x; // X Vertex Of 3rd Point
 y_m = sector1.triangle[loop_m].vertex[2].y; // Y Vertex Of 3rd Point
 z_m = sector1.triangle[loop_m].vertex[2].z; // Z Vertex Of 3rd Point
 u_m = sector1.triangle[loop_m].vertex[2].u; // U Texture Coord Of 3rd Point
 v_m = sector1.triangle[loop_m].vertex[2].v; // V Texture Coord Of 3rd Point
 glTexCoord2f(u_m,v_m); glVertex3f(x_m,y_m,z_m); // Set The TexCoord And Vertice
 glEnd(); // Done Drawing Triangles
 }
 return TRUE; // Jump Back
}

And voila! We have drawn our first frame. This isn't exactly Quake but hey, we aren't exactly
Carmack's or Abrash's. While running the program, you may want to press F, B, PgUp and
PgDown to see added effects. PgUp/Down simply tilts the camera up and down (the same process
as panning from side to side.) The texture included is simply a mud texture with a bumpmap of my
school ID picture; that is, if NeHe decided to keep it :-).

So now you're probably thinking where to go next. Don't even consider using this code to make a
full-blown 3D engine, since that's not what it's designed for. You'll probably want more than one
sector in your game, especially if you're going to implement portals. You'll also want to have
polygons with more than 3 vertices, again, essential for portal engines. My current implementation
of this code allows for multiple sector loading and does backface culling (not drawing polygons that
face away from the camera). I'll write a tutorial on that soon, but as it uses alot of math, I'm going to
write a tutorial on matrices first.

NeHe (05/01/00): I've added FULL comments to each of the lines listed in this tutorial. Hopefully
things make more sense now. Only a few of the lines had comments after them, now they all do :)

Jeff Molofee's OpenGL Windows Tutorial #10 (By Lionel Brits)

Page 6 of 6

Please, if you have any problems with the code/tutorial (this is my first tutorial, so my explanations
are a little vague), don't hesitate to email me mailto:iam@cadvision.com Until next time,

Lionel Brits (ßetelgeuse)

* DOWNLOAD Visual C++ Code For This Lesson.
* DOWNLOAD Linux Code For This Lesson. (Conversion by Richard Campbell)
* DOWNLOAD Visual Fortran Code For This Lesson. (Conversion by Jean-Philippe Perois)
* DOWNLOAD Delphi Code For This Lesson. (Conversion by Marc Aarts)
* DOWNLOAD Mac OS Code For This Lesson. (Conversion by Anthony Parker)
* DOWNLOAD Power Basic Code For This Lesson. (Conversion by Angus Law)
* DOWNLOAD Java Code For This Lesson. (Conversion by Darren Hodges)

Back To NeHe Productions!

Jeff Molofee's OpenGL Windows Tutorial #11 (By Bosco)

Page 1 of 5

#include <math.h> // For The Sin() Function

float points[45][45][3]; // The Array For The Points On The Grid Of Our "Wave"
int wiggle_count = 0; // Counter Used To Control How Fast Flag Waves
GLfloat hold; // Temporarily Holds A Floating Point Value

 if (TextureImage[0]=LoadBMP("Data/Tim.bmp")) // Load The Bitmap

 glPolygonMode(GL_BACK, GL_FILL); // Back Face Is Filled In
 glPolygonMode(GL_FRONT, GL_LINE); // Front Face Is Drawn With Lines

 Lesson 11

Well greetings all. For those of you that want to see what we are doing here, you can check it out
at the end of my demo/hack Worthless! I am bosco and I will do my best to teach you guys how to
do the animated, sine-wave picture. This tutorial is based on NeHe's tutorial #6 and you should have
at least that much knowledge. You should download the source package and place the bitmap I've
included in a directory called data where your source code is. Or use your own texture if it's an
appropriate size to be used as a texture with OpenGL.

First things first. Open Tutorial #6 in Visual C++ and add the following include statement right after
the other #include statements. The #include below allows us to work with complex math such as
sine and cosine.

We'll use the array points to store the individual x, y & z coordinates of our grid. The grid is 45
points by 45 points, which in turn makes 44 quads x 44 quads. wiggle_count will be used to keep
track of how fast the texture waves. Every three frames looks pretty good, and the variable hold will
store a floating point value to smooth out the waving of the flag. These lines can be added at the top
of the program, somewhere under the last #include line, and before the GLuint texture[1] line.

 Move down the the LoadGLTextures() procedure. We want to use the texture called Tim.bmp. Find
LoadBMP("Data/NeHe.bmp") and replace it with LoadBMP("Data/Tim.bmp").

 Now add the following code to the bottom of the InitGL() function before return TRUE.

Jeff Molofee's OpenGL Windows Tutorial #11 (By Bosco)

Page 2 of 5

 // Loop Through The X Plane
 for(float float_x = 0.0f; float_x < 9.0f; float_x += 0.2f)
 {
 // Loop Through The Y Plane
 for(float float_y = 0.0f; float_y < 9.0f; float_y += 0.2f)
 {
 // Apply The Wave To Our Mesh
 points[int(float_x*5.0f)][int(float_y*5.0f)][0] = float_x - 4.4f;
 points[int(float_x*5.0f)][int(float_y*5.0f)][1] = float_y - 4.4f;
 points[int(float_x*5.0f)][int(float_y*5.0f)][2] = float(sin(((float_x*40.0f)/360.0f)*3.14159f*2.0f));
 }
 }

int DrawGLScene(GLvoid) // Draw Our GL Scene
{
 int x, y; // Loop Variables
 float float_x, float_y, float_xb, float_yb; // Used To Break The Flag Into Tiny Quads

 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Clear The Screen And Depth Buffer
 glLoadIdentity(); // Reset The Current Matrix

These simply specify that we want back facing polygons to be filled completely and that we want
front facing polygons to be outlined only. Mostly personal preference at this point. Has to do with
the orientation of the polygon or the direction of the vertices. See the Red Book for more information
on this. Incidentally, while I'm at it, let me plug the book by saying it's one of the driving forces
behind me learning OpenGL, not to mention NeHe's site! Thanks NeHe. Buy The Programmer's
Guide to OpenGL from Addison-Wesley. It's an invaluable resource as far as I'm concerned. Ok,
back to the tutorial.

Right below the code above, and above return TRUE, add the following lines.

Ok, before I said our grid is 45 points by 45 points. Well to accomplish this without having to push
our scene back too far, we merely use a world coordinate of 9x9 and space the points 0.2 units
apart.

The two loops above initialize the points on our grid. I initialize variables in my loop to localize them
in my mind as merely loop variables. Not sure it's kosher. To come up with the array reference we
have to multiply our loop variable by 5 (i.e. 45 / 9 = 5). I subtract 4.4 from each of the coordinates
to put the "wave" centered on the origin. The same effect could be accomplished with a translate,
but I prefer this method.

The final value points[x][y][2] statement is our sine value. The sin() function requires radians. We
take our degree value, which is our float_x multiplied by 40.0f. Once we have that, to convert to
radians we take the degree, divide by 360.0f, multiply by pi, or an approximation and then multiply
by 2.0f.

I'm going to re-write the DrawGLScene function from scratch so clean it out and it replace with the
following code.

 Different variables used for controlling the loops. See the code below but most of these serve no
"specific" purpose other than controlling loops and storing temporary values.

Jeff Molofee's OpenGL Windows Tutorial #11 (By Bosco)

Page 3 of 5

 glTranslatef(0.0f,0.0f,-12.0f); // Translate 17 Units Into The Screen

 glRotatef(xrot,1.0f,0.0f,0.0f); // Rotate On The X Axis
 glRotatef(yrot,0.0f,1.0f,0.0f); // Rotate On The Y Axis
 glRotatef(zrot,0.0f,0.0f,1.0f); // Rotate On The Z Axis

 glBindTexture(GL_TEXTURE_2D, texture[0]); // Select Our Texture

 glBegin(GL_QUADS); // Start Drawing Our Quads
 for(x = 0; x < 44; x++) // Loop Through The X Plane 0
 {
 for(y = 0; y < 44; y++) // Loop Through The Y Plane 0
 {

 float_x = float(x)/44.0f; // Create A Floating Point X Value
 float_y = float(y)/44.0f; // Create A Floating Point Y Value
 float_xb = float(x+1)/44.0f; // Create A Floating Point Y Value+0.0227f
 float_yb = float(y+1)/44.0f; // Create A Floating Point Y Value+0.0227f

 glTexCoord2f(float_x, float_y); // First Texture Coordinate (Bottom Left)
 glVertex3f(points[x][y][0], points[x][y][1], points[x][y][2]);

 glTexCoord2f(float_x, float_yb); // Second Texture Coordinate (Top Left)
 glVertex3f(points[x][y+1][0], points[x][y+1][1], points[x][y+1][2]);

 glTexCoord2f(float_xb, float_yb); // Third Texture Coordinate (Top Right)
 glVertex3f(points[x+1][y+1][0], points[x+1][y+1][1], points[x+1][y+1][2]);

 glTexCoord2f(float_xb, float_y); // Fourth Texture Coordinate (Bottom Right)
 glVertex3f(points[x+1][y][0], points[x+1][y][1], points[x+1][y][2]);
 }
 }
 glEnd(); // Done Drawing Our Quads

 You've seen all of this before as well. Same as in tutorial #6 except I merely push my scene back
away from the camera a bit more.

 Merely starts the loop to draw our polygons. I use integers here to keep from having to use the int()
function as I did earlier to get the array reference returned as an integer.

We use the four variables above for the texture coordinates. Each of our polygons (square in the
grid), has a 1/44 x 1/44 section of the texture mapped on it. The loops will specify the lower left
vertex and then we just add to it accordingly to get the other three (i.e. x+1 or y+1).

The lines above merely make the OpenGL calls to pass all the data we talked about. Four separate
calls to each glTexCoord2f() and glVertex3f(). Continue with the following. Notice the quads are
drawn clockwise. This means the face you see initially will be the back. The back is filled in. The
front is made up of lines.

If you drew in a counter clockwise order the face you'd initially see would be the front face, meaning
you would see the grid type texture instead of the filled in face.

Jeff Molofee's OpenGL Windows Tutorial #11 (By Bosco)

Page 4 of 5

 if(wiggle_count == 2) // Used To Slow Down The Wave (Every 2nd Frame Only)
 {

 for(y = 0; y < 45; y++) // Loop Through The Y Plane
 {
 hold=points[0][y][2]; // Store Current Value One Left Side Of Wave
 for(x = 0; x < 44; x++) // Loop Through The X Plane
 {
 // Current Wave Value Equals Value To The Right
 points[x][y][2] = points[x+1][y][2];
 }
 points[44][y][2]=hold; // Last Value Becomes The Far Left Stored Value
 }
 wiggle_count = 0; // Set Counter Back To Zero
 }
 wiggle_count++; // Increase The Counter

 xrot+=0.3f; // Increase The X Rotation Variable
 yrot+=0.2f; // Increase The Y Rotation Variable
 zrot+=0.4f; // Increase The Z Rotation Variable

 return TRUE; // Jump Back
}

 If we've drawn two scenes, then we want to cycle our sine values giving us "motion".

What we do here is store the first value of each line, we then move the wave to the left one, causing
the image to wave. The value we stored is then added to the end to create a never ending wave
across the face of the texture. Then we reset the counter wiggle_count to keep our animation
going.

The above code was modified by NeHe (Feb 2000), to fix a flaw in the ripple going across the
surface of the texture. The ripple is now smooth.

Standard NeHe rotation values. :) And that's it folks. Compile and you should have a nice rotating
bitmapped "wave". I'm not sure what else to say except, whew.. This was LONG! But I hope you
guys can follow it/get something out of it. If you have any questions, want me to clear something up
or tell me how god awful, lol, I code, then send me a note.

This was a blast, but very energy/time consuming. It makes me appreciate the likes of NeHe ALOT
more now. Thanks all.

Bosco (bosco4@home.com)

* DOWNLOAD Visual C++ Code For This Lesson.
* DOWNLOAD Linux Code For This Lesson. (Conversion by Richard Campbell)
* DOWNLOAD Visual Fortran Code For This Lesson. (Conversion by Jean-Philippe Perois)
* DOWNLOAD Delphi Code For This Lesson. (Conversion by Marc Aarts)
* DOWNLOAD Mac OS Code For This Lesson. (Conversion by Anthony Parker)
* DOWNLOAD Power Basic Code For This Lesson. (Conversion by Angus Law)
* DOWNLOAD Java Code For This Lesson. (Conversion by Darren Hodges)

Jeff Molofee's OpenGL Windows Tutorial #11 (By Bosco)

Page 5 of 5

Back To NeHe Productions!

Jeff Molofee's OpenGL Windows Tutorial #12

Page 1 of 9

#include <windows.h> // Header File For Windows
#include <stdio.h> // Header File For Standard Input/Output
#include <gl\gl.h> // Header File For The OpenGL32 Library
#include <gl\glu.h> // Header File For The GLu32 Library
#include <gl\glaux.h> // Header File For The GLaux Library

HDC hDC=NULL; // Private GDI Device Context
HGLRC hRC=NULL; // Permanent Rendering Context
HWND hWnd=NULL; // Holds Our Window Handle
HINSTANCE hInstance; // Holds The Instance Of The Application

bool keys[256]; // Array Used For The Keyboard Routine
bool active=TRUE; // Window Active Flag Set To TRUE By Default
bool fullscreen=TRUE; // Fullscreen Flag Set To Fullscreen Mode By Default

 Lesson 12

In this tutorial I'll teach you how to use Display Lists. Not only do display lists speed up your code,
they also cut down on the number of lines of code you need to write when creating a simple GL
scene.

For example. Lets say you're making the game asteroids. Each level starts off with at least 2
asteroids. So you sit down with your graph paper (grin), and figure out how to make a 3D asteroid.
Once you have everything figured out, you build the asteroid in OpenGL using Polygons or Quads.
Lets say the asteroid is octagonal (8 sides). If you're smart you'll create a loop, and draw the
asteroid once inside the loop. You'll end up with roughly 18 lines or more of code to make the
asteroid. Creating the asteroid each time it's drawn to the screen is hard on your system. Once you
get into more complex objects you'll see what I mean.

So what's the solution? Display Lists!!! By using a display list, you create the object just once. You
can texture map it, color it, whatever you want to do. You give the display list a name. Because it's
an asteroid we'll call the display list 'asteroid'. Now any time I want to draw the textured / colored
asteroid on the screen, all I have to do is call glCallList(asteroid). the premade asteroid will instantly
appear on the screen. Because the asteroid has already built in the display list, OpenGL doesn't
have to figure out how to build it. It's prebuilt in memory. This takes alot of strain off your processor
and allows your programs to run alot faster!

So are you ready to learn? :) We'll call this the Q-Bert Display List demo. What you'll end up with is
a Q-Bert type screen made up of 15 cubes. Each cube is made up of a TOP, and a BOX. The top
will be a seperate display list so that we can color it a darker shade. The box is a cube without the
top :)

This code is based around lesson 6. I'll rewrite most of the program so it's easier to see where I've
made changes. The follow lines of code are standard code used in just about all the lessons.

Jeff Molofee's OpenGL Windows Tutorial #12

Page 2 of 9

GLuint texture[1]; // Storage For One Texture
GLuint box; // Storage For The Display List
GLuint top; // Storage For The Second Display List
GLuint xloop; // Loop For X Axis
GLuint yloop; // Loop For Y Axis

GLfloat xrot; // Rotates Cube On The X Axis
GLfloat yrot; // Rotates Cube On The Y Axis

static GLfloat boxcol[5][3]= // Array For Box Colors
{
 // Bright: Red, Orange, Yellow, Green, Blue
 {1.0f,0.0f,0.0f},{1.0f,0.5f,0.0f},{1.0f,1.0f,0.0f},{0.0f,1.0f,0.0f},{0.0f,1.0f,1.0f}
};

static GLfloat topcol[5][3]= // Array For Top Colors
{
 // Dark: Red, Orange, Yellow, Green, Blue
 {.5f,0.0f,0.0f},{0.5f,0.25f,0.0f},{0.5f,0.5f,0.0f},{0.0f,0.5f,0.0f},{0.0f,0.5f,0.5f}
};

LRESULT CALLBACK WndProc(HWND, UINT, WPARAM, LPARAM); // Declaration For WndProc

GLvoid BuildList() // Build Box Display List
{

Now we set up our variables. First we set up storage for one texture. Then we create two new
variables for our 2 display lists. These variable will act as pointers to where the display list is stored
in ram. They're called box and top.
,
After that we have 2 variables called xloop and yloop which are used to position the cubes on the
screen and 2 variables called xrot and yrot that are used to rotate the cubes on the x axis and y
axis.

Next we create two color arrays. The first one boxcol stores the color values for Bright Red,
Orange, Yellow, Green and Blue. Each value inside the {}'s represent a red, green and blue value.
Each group of {}'s is a specific color.

The second color array we create is for Dark Red, Dark Orange, Dark Yellow, Dark Green and Dark
Blue. The dark colors will be used to draw the top of the boxes. We want the lid to be darker than
the rest of the box.

 Now we build the actual Display List. If you notice, all the code to build the box is in the first list,
and all the code to build the top is in the other list. I'll try to explain this section in alot of detail.

We start off by telling OpenGL we want to build 2 lists. glGenLists(2) creates room for the two lists,
and returns a pointer to the first list. 'box' will hold the location of the first list. Whenever we call box
the first list will be drawn.

Jeff Molofee's OpenGL Windows Tutorial #12

Page 3 of 9

 box=glGenLists(2); // Building Two Lists

 glNewList(box,GL_COMPILE); // New Compiled box Display List

 glBegin(GL_QUADS);
 // Bottom Face
 glTexCoord2f(1.0f, 1.0f); glVertex3f(-1.0f, -1.0f, -1.0f);
 glTexCoord2f(0.0f, 1.0f); glVertex3f(1.0f, -1.0f, -1.0f);
 glTexCoord2f(0.0f, 0.0f); glVertex3f(1.0f, -1.0f, 1.0f);
 glTexCoord2f(1.0f, 0.0f); glVertex3f(-1.0f, -1.0f, 1.0f);
 // Front Face
 glTexCoord2f(0.0f, 0.0f); glVertex3f(-1.0f, -1.0f, 1.0f);
 glTexCoord2f(1.0f, 0.0f); glVertex3f(1.0f, -1.0f, 1.0f);
 glTexCoord2f(1.0f, 1.0f); glVertex3f(1.0f, 1.0f, 1.0f);
 glTexCoord2f(0.0f, 1.0f); glVertex3f(-1.0f, 1.0f, 1.0f);
 // Back Face
 glTexCoord2f(1.0f, 0.0f); glVertex3f(-1.0f, -1.0f, -1.0f);
 glTexCoord2f(1.0f, 1.0f); glVertex3f(-1.0f, 1.0f, -1.0f);
 glTexCoord2f(0.0f, 1.0f); glVertex3f(1.0f, 1.0f, -1.0f);
 glTexCoord2f(0.0f, 0.0f); glVertex3f(1.0f, -1.0f, -1.0f);
 // Right face
 glTexCoord2f(1.0f, 0.0f); glVertex3f(1.0f, -1.0f, -1.0f);
 glTexCoord2f(1.0f, 1.0f); glVertex3f(1.0f, 1.0f, -1.0f);
 glTexCoord2f(0.0f, 1.0f); glVertex3f(1.0f, 1.0f, 1.0f);
 glTexCoord2f(0.0f, 0.0f); glVertex3f(1.0f, -1.0f, 1.0f);

Now we're going to build the first list. We've already freed up room for two lists, and we know that
box points to the area we're going to store the first list. So now all we have to do is tell OpenGL
where the list should go, and what type of list to make.

We use the command glNewList() to do the job. You'll notice box is the first parameter. This tells
OpenGL to store the list in the memory location that box points to. The second parameter
GL_COMPILE tells OpenGL we want to prebuild the list in memory so that OpenGL doesn't have to
figure out how to create the object ever time we draw it.

GL_COMPILE is similar to programming. If you write a program, and load it into your compiler, you
have to compile it every time you want to run it. If it's already compiled into an .EXE file, all you
have to do is click on the .exe to run it. No compiling needed. Once GL has compiled the display
list, it's ready to go, no more compiling required. This is where we get the speed boost from using
display lists.

The next section of code draws the box without the top. It wont appear on the screen. It will be
stored in the display list.

You can put just about any command you want between glNewList() and glEndList(). You can set
colors, you can change textures, etc. The only type of code you CAN'T add is code that would
change the display list on the fly. Once the display list is built, you CAN'T change it.

If you added the line glColor3ub(rand()%255,rand()%255,rand()%255) into the code below, you
might think that each time you draw the object to the screen it will be a different color. But because
the list is only CREATED once, the color will not change each time you draw it to the screen.
Whatever color the object was when it was first made is the color it will remain.

If you want to change the color of the display list, you have to change it BEFORE you draw the
display list to the screen. I'll explain more on this later.

Jeff Molofee's OpenGL Windows Tutorial #12

Page 4 of 9

 // Left Face
 glTexCoord2f(0.0f, 0.0f); glVertex3f(-1.0f, -1.0f, -1.0f);
 glTexCoord2f(1.0f, 0.0f); glVertex3f(-1.0f, -1.0f, 1.0f);
 glTexCoord2f(1.0f, 1.0f); glVertex3f(-1.0f, 1.0f, 1.0f);
 glTexCoord2f(0.0f, 1.0f); glVertex3f(-1.0f, 1.0f, -1.0f);
 glEnd();

 glEndList();

 top=box+1;

 glNewList(top,GL_COMPILE);

 glBegin(GL_QUADS);
 // Top Face
 glTexCoord2f(0.0f, 1.0f); glVertex3f(-1.0f, 1.0f, -1.0f);
 glTexCoord2f(0.0f, 0.0f); glVertex3f(-1.0f, 1.0f, 1.0f);
 glTexCoord2f(1.0f, 0.0f); glVertex3f(1.0f, 1.0f, 1.0f);
 glTexCoord2f(1.0f, 1.0f); glVertex3f(1.0f, 1.0f, -1.0f);
 glEnd();

 glEndList();
}

We tell OpenGL we're done making out list with the command glEndList(). Anything between
glNewList() and glEndList is part of the Display List, anything before glNewList() or after glEndList()
is not part of the current display list.

Now we'll make our second display list. To find out where the second display list is stored in
memory, we take the value of the old display list (box) and add one to it. The code below will make
'top' equal the location of the second display list.

 Now that we know where to store the second display list, we can build it. We do this the same way
we built the first display list, but this time we tell OpenGL to store the list at 'top' instead of 'box'.

 The following section of code just draws the top of the box. It's a simple quad drawn on the Z plane.

 Again we tell OpenGL we're done building our second list with the command glEndList(). That's it.
We've successfully created 2 display lists.

Jeff Molofee's OpenGL Windows Tutorial #12

Page 5 of 9

 if (TextureImage[0]=LoadBMP("Data/Cube.bmp")) // Load The Bitmap

int InitGL(GLvoid) // All Setup For OpenGL Goes Here
{
 if (!LoadGLTextures()) // Jump To Texture Loading Routine
 {
 return FALSE; // If Texture Didn't Load Return FALSE
 }
 BuildLists(); // Jump To The Code That Creates Our Display Lists
 glEnable(GL_TEXTURE_2D); // Enable Texture Mapping
 glShadeModel(GL_SMOOTH); // Enable Smooth Shading
 glClearColor(0.0f, 0.0f, 0.0f, 0.5f); // Black Background
 glClearDepth(1.0f); // Depth Buffer Setup
 glEnable(GL_DEPTH_TEST); // Enables Depth Testing
 glDepthFunc(GL_LEQUAL); // The Type Of Depth Testing To Do

 glEnable(GL_LIGHT0); // Quick And Dirty Lighting (Assumes Light0 Is Set Up)
 glEnable(GL_LIGHTING); // Enable Lighting
 glEnable(GL_COLOR_MATERIAL); // Enable Material Coloring

 glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST); // Nice Perspective Correction
 return TRUE; // Initialization Went OK

The bitmap/texture building code is the same code we used in previous tutorials to load and build a
texture. We want a texture that we can map onto all 6 sides of each cube. I've decided to use
mipmapping to make the texture look real smooth. I hate seeing pixels :) The name of the texture
to load is called 'cube.bmp'. It's stored in a directory called data. Find LoadBMP and change that
line to look like the line below.

Resizing code is exactly the same as the code in Lesson 6.

The init code only has a few changes. I've added the line BuildList(). This will jump to the section of
code that builds the display lists. Notice that BuildList() is after LoadGLTextures(). It's important to
know the order things should go in. First we build the textures, so when we create our display lists,
there's a texture already created that we can map onto the cube.

The next three lines of code enable quick and dirty lighting. Light0 is predefined on most video
cards, so it saves us the hassle of setting up lights. After we enable light0 we enable lighting. If
light0 isn't working on your video card (you see blackness), just disable lighting.

The last line GL_COLOR_MATERIAL lets us add color to texture maps. If we don't enable material
coloring, the textures will always be their original color. glColor3f(r,g,b) will have no affect on the
coloring. So it's important to enable this.

 Finally we set the perspective correction to look nice, and we return TRUE letting our program know
that initialization went OK.

Jeff Molofee's OpenGL Windows Tutorial #12

Page 6 of 9

int DrawGLScene(GLvoid) // Here's Where We Do All The Drawing
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Clear The Screen And The Depth Buffer

 glBindTexture(GL_TEXTURE_2D, texture[0]); // Select The Texture

 for (yloop=1;yloop<6;yloop++) // Loop Through The Y Plane
 {

 for (xloop=0;xloop<yloop;xloop++) // Loop Through The X Plane
 {

 glLoadIdentity(); // Reset The View

Now for the drawing code. As usual, I got a little crazy with the math. No SIN, and COS, but it's still
a little strange :) We start off as usual by clearing the screen and depth buffer.

Then we bind a texture to the cube. I could have added this line inside the display list code, but by
leaving it outside the display list, I can change the texture whenever I want. If I added the line
glBindTexture(GL_TEXTURE_2D, texture[0]) inside the display list code, the display list would be
built with whatever texture I selected permanently mapped onto it.

Now for the fun stuff. We have a loop called yloop. This loop is used to position the cubes on the Y
axis (up and down). We want 5 rows of cubes up and down, so we make a loop from 1 to less than
6 (which is 5).

We have another loop called xloop. It's used to position the cubes on the X axis (left to right). The
number of cubes drawn left to right depends on what row we're on. If we're on the top row, xloop will
only go from 0 to 1 (drawing one cube). the next row xloop will go from 0 to 2 (drawing 2 cubes),
etc.

 We reset our view with glLoadIdentity().

The next line translates to a specific spot on the screen. It looks confussing, but it's actually not.
On the X axis, the following happens:

We move to the right 1.4 units so that the pyramid is in the center of the screen. Then we multiply
xloop by 2.8 and add the 1.4 to it. (we multiply by 2.8 so that the cubes are not on top of eachother
(2.8 is roughly the width of the cubes when they're rotated 45 degrees). Finally we subtract
yloop*1.4. This moves the cubes left depending on what row we're on. If we didn't move to the left,
the pyramid would line up on the left side (wouldn't really look a pyramid would it).

On the Y axis we subtract yloop from 6 otherwise the pyramid would be built upside down. Then we
multiply the result by 2.4. Otherwise the cubes would be on top of eachother on the y axis (2.4 is
roughly the height of each cube). Then we subtract 7 so that the pyramid starts at the bottom of the
screen and is built upwards.

Jeff Molofee's OpenGL Windows Tutorial #12

Page 7 of 9

 // Position The Cubes On The Screen
 glTranslatef(1.4f+(float(xloop)*2.8f)-(float(yloop)*1.4f),((6.0f

 glRotatef(45.0f-(2.0f*yloop)+xrot,1.0f,0.0f,0.0f); // Tilt The Cubes Up And Down
 glRotatef(45.0f+yrot,0.0f,1.0f,0.0f);

 glColor3fv(boxcol[yloop-1]); // Select A Box Color

 glCallList(box); // Draw The Box

 glColor3fv(topcol[yloop-1]); // Select The Top Color

Finally, on the Z axis we move into the screen 20 units. That way the pyramid fits nicely on the
screen.

Now we rotate on the x axis. We'll tilt the cube towards the view by 45 degrees minus 2 multiplied
by yloop. Perspective mode tilts the cubes automatically, so I subtract to compensate for the tilt.
Not the best way to do it, but it works :)

Finally we add xrot. This gives us keyboard control over the angle. (fun to play around with).

After we've rotated on the x axis, we rotate 45 degrees on the y axis, and add yrot so we have
keyboard control on the y axis.

Next we select a box color (bright) before we actually draw the box portion of the cube. Notice we're
using glColor3fv(). What this does is loads all three values (red, green, blue) from inside the {}'s at
once and sets the color. 3fv stands for 3 values, floating point, v is a pointer to an array. The color
we select is yloop-1 which gives us a different color for each row of the cubes. If we used xloop-1
we'd get a different color for each column.

Now that the color is set, all we have to do is draw our box. Instead of writing out all the code to
draw a box, all we do is call our display list. We do this with the command glCallList(box). box tells
OpenGL to select the box display list. The box display list is the cube without its top.

The box will be drawn using the color we selected with glColor3fv(), at the position we translated to.

Now we select a top color (darker) before we draw the top of the box. If you actually wanted to
make Q-Bert, you'd change this color whenever Q-Bert jumped on the box. The color depends on
the row (yloop-1).

 Finally, the only thing left to do is draw the top display list. This will add a darker colored lid to the
box. That's it. Very easy!

Jeff Molofee's OpenGL Windows Tutorial #12

Page 8 of 9

 glCallList(top); // Draw The Top
 }
 }
 return TRUE; // Jump Back
}

 SwapBuffers(hDC); // Swap Buffers (Double Buffering)
 if (keys[VK_LEFT]) // Left Arrow Being Pressed?
 {
 yrot-=0.2f; // If So Spin Cubes Left
 }
 if (keys[VK_RIGHT]) // Right Arrow Being Pressed?
 {
 yrot+=0.2f; // If So Spin Cubes Right
 }
 if (keys[VK_UP]) // Up Arrow Being Pressed?
 {
 xrot-=0.2f; // If So Tilt Cubes Up
 }
 if (keys[VK_DOWN]) // Down Arrow Being Pressed?
 {
 xrot+=0.2f; // If So Tilt Cubes Down
 }

 if (keys[VK_F1]) // Is F1 Being Pressed?
 {
 keys[VK_F1]=FALSE; // If So Make Key FALSE
 KillGLWindow(); // Kill Our Current Window
 fullscreen=!fullscreen; // Toggle Fullscreen / Windowed Mode
 // Recreate Our OpenGL Window
 if (!CreateGLWindow("NeHe's Display List Tutorial",640,480,16,fullscreen))
 {
 return 0; // Quit If Window Was Not Created
 }
 }
 }
}

The remaining changes have all been made in WinMain(). The code has been added right after our
SwapBuffers(hDC) line. It check to see if we are pressing left, right, up or down, and moves the
cubes accordingly.

 Like all the previous tutorials, make sure the title at the top of the window is correct.

By the end of this tutorial you should have a good understanding of how display lists work, how to
create them, and how to display them on the screen. Display lists are great. Not only do they
simplify coding complex projects, they also give you that little bit of extra speed required to
maintain high framerates.

I hope you've enjoy the tutorial. If you have any questions or feel somethings not clear, please email
me and let me know.

Jeff Molofee (NeHe)

Jeff Molofee's OpenGL Windows Tutorial #12

Page 9 of 9

* DOWNLOAD Visual C++ Code For This Lesson.
* DOWNLOAD Linux Code For This Lesson. (Conversion by Richard Campbell)
* DOWNLOAD Delphi Code For This Lesson. (Conversion by Marc Aarts)
* DOWNLOAD Visual Fortran Code For This Lesson. (Conversion by Jean-Philippe Perois)
* DOWNLOAD Java Code For This Lesson. (Conversion by Darren Hodges)
* DOWNLOAD Mac OS Code For This Lesson. (Conversion by Anthony Parker)

Back To NeHe Productions!

Jeff Molofee's OpenGL Windows Tutorial #13

Page 1 of 8

#include <windows.h> // Header File For Windows
#include <math.h> // Header File For Windows Math Library (ADD)
#include <stdio.h> // Header File For Standard Input/Output (ADD)
#include <stdarg.h> // Header File For Variable Argument Routines (ADD)
#include <gl\gl.h> // Header File For The OpenGL32 Library
#include <gl\glu.h> // Header File For The GLu32 Library
#include <gl\glaux.h> // Header File For The GLaux Library

HDC hDC=NULL; // Private GDI Device Context
HGLRC hRC=NULL; // Permanent Rendering Context
HWND hWnd=NULL; // Holds Our Window Handle
HINSTANCE hInstance; // Holds The Instance Of The Application

 Lesson 13

Welcome to yet another Tutorial. This time on I'll be teaching you how to use Bitmap Fonts. You
may be saying to yourself "what's so hard about putting text onto the screen". If you've ever tried it,
it's not that easy!

Sure you can load up an art program, write text onto an image, load the image into your OpenGL
program, turn on blending then map the text onto the screen. But this is time consuming, the final
result usually looks blurry or blocky depending on the type of filtering you use, and unless your
image has an alpha channel your text will end up transparent (blended with the objects on the
screen) once it's mapped to the screen.

If you've ever used Wordpad, Microsoft Word or some other Word Processor, you may have noticed
all the different types of Font's avaialable. This tutorial will teach you how to use the exact same
fonts in your own OpenGL programs. As a matter of fact... Any font you install on your computer
can be used in your demos.

Not only do Bitmap Fonts looks 100 times better than graphical fonts (textures). You can change
the text on the fly. No need to make textures for each word or letter you want to write to the screen.
Just position the text, and use my handy new gl command to display the text on the screen.

I tried to make the command as simple as possible. All you do is type glPrint("Hello"). It's that
easy. Anyways. You can tell by the long intro that I'm pretty happy with this tutorial. It took me
roughly 1 1/2 hours to create the program. Why so long? Because there is literally no information
available on using Bitmap Fonts, unless of course you enjoy MFC code. In order to keep the code
simple I decided it would be nice if I wrote it all in simple to understand C code :)

A small note, this code is Windows specific. It uses the wgl functions of Windows to build the font.
Apparently Apple has agl support that should do the same thing, and X has glx. Unfortunately I
can't guarantee this code is portable. If anyone has platform independant code to draw fonts to the
screen, send it my way and I'll write another font tutorial.

We start off with the typical code from lesson 1. We'll be adding the stdio.h header file for standard
input/output operations; the stdarg.h header file to parse the text and convert variables to text, and
finally the math.h header file so we can move the text around the screen using SIN and COS.

Jeff Molofee's OpenGL Windows Tutorial #13

Page 2 of 8

GLuint base; // Base Display List For The Font Set
GLfloat cnt1; // 1st Counter Used To Move Text & For Coloring
GLfloat cnt2; // 2nd Counter Used To Move Text & For Coloring

bool keys[256]; // Array Used For The Keyboard Routine
bool active=TRUE; // Window Active Flag Set To TRUE By Default
bool fullscreen=TRUE; // Fullscreen Flag Set To Fullscreen Mode By Default

LRESULT CALLBACK WndProc(HWND, UINT, WPARAM, LPARAM); // Declaration For WndProc

GLvoid BuildFont(GLvoid) // Build Our Bitmap Font
{
 HFONT font; // Windows Font ID

 base = glGenLists(96); // Storage For 96 Characters

 font = CreateFont(-24, // Height Of Font (NEW)

 0, // Width Of Font

We're going to add 3 new variables as well. base will hold the number of the first display list we
create. Each character requires it's own display list. The character 'A' is 65 in the display list, 'B' is
66, 'C' is 67, etc. So 'A' would be stored in display list base+65.

Next we add two counters (cnt1 & cnt2). These counters will count up at different rates, and are
used to move the text around the screen using SIN and COS. This creates a semi-random looking
movement on the screen. We'll also use the counters to control the color of the letters (more on
this later).

The following section of code builds the actual font. This was the most difficult part of the code to
write. 'HFONT font' in simple english tells Windows we are going to be manipulating a Windows
font.

Next we define base. We do this by creating a group of 96 display lists using glGenLists(96). After
the display lists are created, the variable base will hold the number of the first list.

Now for the fun stuff. We're going to create our font. We start off by specifying the size of the font.
You'll notice it's a negative number. By putting a minus, we're telling windows to find us a font
based on the CHARACTER height. If we use a positive number we match the font based on the
CELL height.

 Then we specify the cell width. You'll notice I have it set to 0. By setting values to 0, windows will
use the default value. You can play around with this value if you want. Make the font wide, etc.

Jeff Molofee's OpenGL Windows Tutorial #13

Page 3 of 8

 0, // Angle Of Escapement
 0, // Orientation Angle

 FW_BOLD, // Font Weight

 FALSE, // Italic
 FALSE, // Underline
 FALSE, // Strikeout

 ANSI_CHARSET, // Character Set Identifier

 OUT_TT_PRECIS, // Output Precision

Angle of Escapement will rotate the font. Unfortunately this isn't a very useful feature. Unless your
at 0, 90, 180, and 270 degrees, the font usually gets cropped to fit inside it's invisible square
border. Orientation Angle quoted from MSDN help Specifies the angle, in tenths of degrees,
between each character's base line and the x-axis of the device. Unfortunately I have no idea what
that means :(

Font weight is a great parameter. You can put a number from 0 - 1000 or you can use one of the
predefined values. FW_DONTCARE is 0, FW_NORMAL is 400, FW_BOLD is 700 and FW_BLACK
is 900. There are alot more predefined values, but those 4 give some good variety. The higher the
value, the thicker the font (more bold).

 Italic, Underline and Strikeout can be either TRUE or FALSE. Basically if underline is TRUE, the
font will be underlined. If it's FALSE it wont be. Pretty simple :)

Character set Identifier describes the type of Character set you wish to use. There are too many
types to explain. CHINESEBIG5_CHARSET, GREEK_CHARSET, RUSSIAN_CHARSET,
DEFAULT_CHARSET, etc. ANSI is the one I use, although DEFAULT would probably work just as
well.

If you're interested in using a font such as Webdings or Wingdings, you need to use
SYMBOL_CHARSET instead of ANSI_CHARSET.

Output Precision is very important. It tells Windows what type of character set to use if there is
more than one type available. OUT_TT_PRECIS tells Windows that if there is more than one type of
font to choose from with the same name, select the TRUETYPE version of the font. Truetype fonts
always look better, especially when you make them large. You can also use
OUT_TT_ONLY_PRECIS, which ALWAYS trys to use a TRUETYPE Font.

Jeff Molofee's OpenGL Windows Tutorial #13

Page 4 of 8

 CLIP_DEFAULT_PRECIS, // Clipping Precision

 ANTIALIASED_QUALITY, // Output Quality

 FF_DONTCARE|DEFAULT_PITCH, // Family And Pitch

 "Courier New"); // Font Name

 SelectObject(hDC, font); // Selects The Font We Created

 wglUseFontBitmaps(hDC, 32, 96, base); // Builds 96 Characters Starting At Character 32
}

GLvoid KillFont(GLvoid) // Delete The Font
{
 glDeleteLists(base, 96); // Delete All 96 Characters
}

 Clipping Precision is the type of clipping to do on the font if it goes outside the clipping region. Not
much to say about this, just leave it set to default.

Output Quality is very important.you can have PROOF, DRAFT, NONANTIALIASED, DEFAULT or
ANTIALIASED. We all know that ANTIALIASED fonts look good :) Antialiasing a font is the same
effect you get when you turn on font smoothing in Windows. It makes everything look less jagged.

Next we have the Family and Pitch settings. For pitch you can have DEFAULT_PITCH,
FIXED_PITCH and VARIABLE_PITCH, and for family you can have FF_DECORATIVE,
FF_MODERN, FF_ROMAN, FF_SCRIPT, FF_SWISS, FF_DONTCARE. Play around with them to
find out what they do. I just set them both to default.

Finally... We have the actual name of the font. Boot up Microsoft Word or some other text editor.
Click on the font drop down menu, and find a font you like. To use the font, replace 'Courier New'
with the name of the font you'd rather use.

Now we select the font by relating it to our DC, and build the 96 display lists starting at character
32 (which is a blank space). You can build all 256 if you'd like, just make sure you build 256
display lists using glGenLists. Make sure you delete all 256 display lists when you quit the
program, and make sure you set 32 to 0 and 96 to 255 in the line below.

The following code is pretty simple. It deletes the 96 display lists from memory starting at the first
list specified by 'base'. I'm not sure if windows would do this for you, but it's better to be safe than
sorry :)

Jeff Molofee's OpenGL Windows Tutorial #13

Page 5 of 8

GLvoid glPrint(const char *fmt, ...) // Custom GL "Print" Routine
{

 char text[256]; // Holds Our String
 va_list ap; // Pointer To List Of Arguments

 if (fmt == NULL) // If There's No Text
 return; // Do Nothing

 va_start(ap, fmt); // Parses The String For Variables
 vsprintf(text, fmt, ap); // And Converts Symbols To Actual Numbers
 va_end(ap); // Results Are Stored In Text

 glPushAttrib(GL_LIST_BIT); // Pushes The Display List Bits
 glListBase(base - 32); // Sets The Base Character to 32

 Now for my handy dandy GL text routine. You call this section of code with the command glPrint
("message goes here"). The text is stored in the char string *fmt.

The first line below creates storage space for a 256 character string. text is the string we will end
up printing to the screen. The second line below creates a pointer that points to the list of
arguments we pass along with the string. If we send any variables along with the text, this will point
to them.

 The next two lines of code check to see if there's anything to display? If there's no text, fmt will
equal nothing (NULL), and nothing will be drawn to the screen.

The following three lines of code convert any symbols in the text to the actual numbers the symbols
represent. The final text and any converted symbols are then stored in the character string called
"text". I'll explain symbols in more detail down below.

We then push the GL_LIST_BIT, this prevents glListBase from affecting any other display lists we
may be using in our program.

The command glListBase(base-32) is a little hard to explain. Say we draw the letter 'A', it's
represented by the number 65. Without glListBase(base-32) OpenGL wouldn't know where to find
this letter. It would look for it at display list 65, but if base was equal to 1000, 'A' would actually be
stored at display list 1065. So by setting a base starting point, OpenGL knows where to get the
proper display list from. The reason we subtract 32 is because we never made the first 32 display
lists. We skipped them. So we have to let OpenGL know this by subtracting 32 from the base
value. I hope that makes sense.

Jeff Molofee's OpenGL Windows Tutorial #13

Page 6 of 8

 glCallLists(strlen(text), GL_UNSIGNED_BYTE, text); // Draws The Display List Text
 glPopAttrib(); // Pops The Display List Bits
}

int InitGL(GLvoid) // All Setup For OpenGL Goes Here
{
 glShadeModel(GL_SMOOTH); // Enable Smooth Shading
 glClearColor(0.0f, 0.0f, 0.0f, 0.5f); // Black Background
 glClearDepth(1.0f); // Depth Buffer Setup
 glEnable(GL_DEPTH_TEST); // Enables Depth Testing
 glDepthFunc(GL_LEQUAL); // The Type Of Depth Testing To Do
 glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST); // Really Nice Perspective Calculations

 BuildFont(); // Build The Font

 return TRUE; // Initialization Went OK
}

Now that OpenGL knows where the Letters are located, we can tell it to write the text to the
screen. glCallLists is a very interesting command. It's capable of putting more than one display list
on the screen at a time.

The line below does the following. First it tells OpenGL we're going to be displaying lists to the
screen. strlen(text) finds out how many letters we're going to send to the screen. Next it needs to
know what the largest list number were sending to it is going to be. We're not sending any more
than 255 characters. So we can use an UNSIGNED_BYTE. (remember a byte is any value from 0 -
255). Finally we tell it what to display by passing the string 'text'.

In case you're wondering why the letters don't pile on top of eachother. Each display list for each
character knows where the right side of the letter is. After the letter is drawn, OpenGL translates to
the right side of the drawn letter. The next letter or object drawn will be drawn starting at the last
location GL translated to, which is to the right of the last letter.

Finally we pop the GL_LIST_BIT setting GL back to how it was before we set our base setting using
glListBase(base-32).

 The only thing different in the Init code is the line BuildFont(). This jumps to the code above that
builds the font so OpenGL can use it later on.

Now for the drawing code. We start off by clearing the screen and the depth buffer. We call
glLoadIdentity() to reset everything. Then we translate one unit into the screen. If we don't translate,
the text wont show up. Bitmap fonts work better when you use an ortho projection rather than a
perspective projection, but ortho looks bad, so to make it work in projection, translate.

You'll notice that if you translate even deeper into the screen the size of the font does not shrink
like you'd expect it to. What actually happens when you translate deeper is that you have more
control over where the text is on the screen. If you tranlate 1 unit into the screen, you can place the
text anywhere from -0.5 to +0.5 on the X axis. If you tranlate 10 units into the screen, you place the
text from -5 to +5. It just gives you more control instead of using decimal places to position the text
at exact locations. Nothing will change the size of the text. Not even glScalef(x,y,z). If you want the
font bigger or smaller, make it bigger or smaller when you create it!

Jeff Molofee's OpenGL Windows Tutorial #13

Page 7 of 8

int DrawGLScene(GLvoid) // Here's Where We Do All The Drawing
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Clear The Screen And The Depth Buffer
 glLoadIdentity(); // Reset The View
 glTranslatef(0.0f,0.0f,-1.0f); // Move One Unit Into The Screen

 // Pulsing Colors Based On Text Position
 glColor3f(1.0f*float(cos(cnt1)),1.0f*float(sin(cnt2)),1.0f-0.5f*float(cos(cnt1+cnt2)));

 // Position The Text On The Screen
 glRasterPos2f(-0.45f+0.05f*float(cos(cnt1)), 0.35f*float(sin(cnt2)));

Now we use some fancy math to make the colors pulse. Don't worry if you don't understand what
I'm doing. I like to take advantage of as many variables and stupid tricks as I can to achieve
results :)

In this case I'm using the two counters we made to move the text around the screen to change the
red, green and blue colors. Red will go from -1.0 to 1.0 using COS and counter 1. Green will also go
from -1.0 to 1.0 using SIN and counter 2. Blue will go from 0.5 to 1.5 using COS and counter 1 and
2. That way blue will never be 0, and the text should never completely fade out. Stupid, but it
works :)

Now for a new command. glRasterPos2f(x,y) will position the Bitmapped Font on the screen. The
center of the screen is still 0,0. Notice there's no Z position. Bitmap Fonts only use the X axis
(left/right) and Y axis (up/down). Because we translate one unit into the screen, the far left is -0.5,
and the far right is +0.5. You'll notice that I move 0.45 pixels to the left on the X axis. This moves
the text into the center of the screen. Otherwise it would be more to the right of the screen because
it would be drawn from the center to the right.

The fancy(?) math does pretty much the same thing as the color setting math does. It moves the
text on the x axis from -0.50 to -0.40 (remember, we subtract 0.45 right off the start). This keeps
the text on the screen at all times. It swings left and right using COS and counter 1. It moves from -
0.35 to +0.35 on the Y axis using SIN and counter 2.

Now for my favorite part... Writing the actual text to the screen. I tried to make it super easy, and
very user friendly. You'll notice it looks alot like an OpenGL call, combined with the good old
fashioned Print statement :) All you do to write the text to the screen is glPrint("{any text you
want}"). It's that easy. The text will be drawn onto the screen at the exact spot you positioned it.

Shawn T. sent me modified code that allows glPrint to pass variables to the screen. This means
that you can increase a counter and display the results on the screen! It works like this... In the line
below you see our normal text. Then there's a space, a dash, a space, then a "symbol" (%7.2f).
Now you may look at %7.2f and say what the heck does that mean. It's very simple. % is like a
marker saying don't print 7.2f to the screen, because it represents a variable. The 7 means a
maximum of 7 digits will be displayed to the left of the decimal place. Then the decimal place, and
right after the decimal place is a 2. The 2 means that only two digits will be displayed to the right of
the decimal place. Finally, the f. The f means that the number we want to display is a floating point
number. We want to display the value of cnt1 on the screen. As an example, if cnt1 was equal to
300.12345f the number we would end up seeing on the screen would be 300.12. The 3, 4, and 5
after the decimal place would be cut off because we only want 2 digits to appear after the decimal
place.

I know if you're an experienced C programmer, this is absolute basic stuff, but there may be people

Jeff Molofee's OpenGL Windows Tutorial #13

Page 8 of 8

 glPrint("Active OpenGL Text With NeHe - %7.2f", cnt1); // Print GL Text To The Screen

 cnt1+=0.051f; // Increase The First Counter
 cnt2+=0.005f; // Increase The Second Counter
 return TRUE; // Everything Went OK
}

 if (!UnregisterClass("OpenGL",hInstance)) // Are We Able To Unregister Class
 {
 MessageBox(NULL,"Could Not Unregister Class.","SHUTDOWN ERROR",MB_OK | MB_ICONINFORMATION);
 hInstance=NULL; // Set hInstance To NULL
 }

 KillFont(); // Destroy The Font
}

out there that have never used printf. If you're interested in learning more about symbols, buy a
book, or read through the MSDN.

 The last thing to do is increase both the counters by different amounts so the colors pulse and the
text moves.

 The last thing to do is add KillFont() to the end of KillGLWindow() just like I'm showing below. It's
important to add this line. It cleans things up before we exit our program.

That's it... Everything you need to know in order to use Bitmap Fonts in your own OpenGL projects.
I've searched the net looking for a tutorial similar to this one, and have found nothing. Perhaps my
site is the first to cover this topic in easy to understand C code? Anyways. Enjoy the tutorial, and
happy coding!

Jeff Molofee (NeHe)

* DOWNLOAD Visual C++ Code For This Lesson.
* DOWNLOAD Linux Code For This Lesson. (Conversion by Richard Campbell)
* DOWNLOAD Delphi Code For This Lesson. (Conversion by Marc Aarts)
* DOWNLOAD Visual Fortran Code For This Lesson. (Conversion by Jean-Philippe Perois)
* DOWNLOAD Mac OS Code For This Lesson. (Conversion by Anthony Parker)

Back To NeHe Productions!

Jeff Molofee's OpenGL Windows Tutorial #14

Page 1 of 9

#include <windows.h> // Header File For Windows
#include <math.h> // Header File For Windows Math Library (ADD)
#include <stdio.h> // Header File For Standard Input/Output (ADD)
#include <stdarg.h> // Header File For Variable Argument Routines (ADD)
#include <gl\gl.h> // Header File For The OpenGL32 Library
#include <gl\glu.h> // Header File For The GLu32 Library
#include <gl\glaux.h> // Header File For The GLaux Library

HDC hDC=NULL; // Private GDI Device Context
HGLRC hRC=NULL; // Permanent Rendering Context
HWND hWnd=NULL; // Holds Our Window Handle
HINSTANCE hInstance; // Holds The Instance Of The Application

GLuint base; // Base Display List For The Font Set (ADD)
GLfloat rot; // Used To Rotate The Text (ADD)

bool keys[256]; // Array Used For The Keyboard Routine
bool active=TRUE; // Window Active Flag Set To TRUE By Default
bool fullscreen=TRUE; // Fullscreen Flag Set To Fullscreen Mode By Default

 Lesson 14

This tutorial is a sequel to the last tutorial. In tutorial 13 I taught you how to use Bitmap Fonts. In
this tutorial I'll teach you how to use Outline Fonts.

The way we create Outline fonts is fairly similar to the way we made the Bitmap font in lesson 13.
However... Outline fonts are about 100 times more cool! You can size Outline fonts. Outline font's
can move around the screen in 3D, and outline fonts can have thickness! No more flat 2D
characters. With Outline fonts, you can turn any font installed on your computer into a 3D font for
OpenGL, complete with proper normals so the characters light up really nice when light shines on
them.

A small note, this code is Windows specific. It uses the wgl functions of Windows to build the font.
Apparently Apple has agl support that should do the same thing, and X has glx. Unfortunately I
can't guarantee this code is portable. If anyone has platform independant code to draw fonts to the
screen, send it my way and I'll write another font tutorial.

We start off with the typical code from lesson 1. We'll be adding the stdio.h header file for standard
input/output operations; the stdarg.h header file to parse the text and convert variables to text, and
finally the math.h header file so we can move the text around the screen using SIN and COS.

We're going to add 2 new variables. base will hold the number of the first display list we create.
Each character requires it's own display list. The character 'A' is 65 in the display list, 'B' is 66, 'C'
is 67, etc. So 'A' would be stored in display list base+65.

Next we add a variable called rot. rot will be used to spin the text around on the screen using both
SIN and COS. It will also be used to pulse the colors.

Jeff Molofee's OpenGL Windows Tutorial #14

Page 2 of 9

GLYPHMETRICSFLOAT gmf[256]; // Storage For Information About Our Font

LRESULT CALLBACK WndProc(HWND, UINT, WPARAM, LPARAM); // Declaration For WndProc

GLvoid BuildFont(GLvoid) // Build Our Bitmap Font
{
 HFONT font; // Windows Font ID

 base = glGenLists(256); // Storage For 256 Characters

 font = CreateFont(-12, // Height Of Font

 0, // Width Of Font

 0, // Angle Of Escapement
 0, // Orientation Angle

GLYPHMETRICSFLOAT gmf[256] will hold information about the placement and orientation for
each of our 256 outline font display lists. We select a letter by using gmf[num]. num is the number
of the display list we want to know something about. Later in the code I'll show you how to find out
the width of each character so that you can automatically center the text on the screen. Keep in
mind that each character can be a different width. glyphmetrics will make our lives a whole lot
easier.

The following section of code builds the actual font similar to the way we made our Bitmap font.
Just like in lesson 13, this section of code was the hardest part for me to figure out.

'HFONT font' will hold our Windows font ID.

Next we define base. We do this by creating a group of 256 display lists using glGenLists(256).
After the display lists are created, the variable base will hold the number of the first list.

More fun stuff. We're going to create our Outline font. We start off by specifying the size of the font.
You'll notice it's a negative number. By putting a minus, we're telling windows to find us a font
based on the CHARACTER height. If we use a positive number we match the font based on the
CELL height.

 Then we specify the cell width. You'll notice I have it set to 0. By setting values to 0, windows will
use the default value. You can play around with this value if you want. Make the font wide, etc.

Angle of Escapement will rotate the font. Orientation Angle quoted from MSDN help Specifies the
angle, in tenths of degrees, between each character's base line and the x-axis of the device.
Unfortunately I have no idea what that means :(

Jeff Molofee's OpenGL Windows Tutorial #14

Page 3 of 9

 FW_BOLD, // Font Weight

 FALSE, // Italic
 FALSE, // Underline
 FALSE, // Strikeout

 ANSI_CHARSET, // Character Set Identifier

 OUT_TT_PRECIS, // Output Precision

 CLIP_DEFAULT_PRECIS, // Clipping Precision

 ANTIALIASED_QUALITY, // Output Quality

Font weight is a great parameter. You can put a number from 0 - 1000 or you can use one of the
predefined values. FW_DONTCARE is 0, FW_NORMAL is 400, FW_BOLD is 700 and FW_BLACK
is 900. There are alot more predefined values, but those 4 give some good variety. The higher the
value, the thicker the font (more bold).

 Italic, Underline and Strikeout can be either TRUE or FALSE. Basically if underline is TRUE, the
font will be underlined. If it's FALSE it wont be. Pretty simple :)

Character set Identifier describes the type of Character set you wish to use. There are too many
types to explain. CHINESEBIG5_CHARSET, GREEK_CHARSET, RUSSIAN_CHARSET,
DEFAULT_CHARSET, etc. ANSI is the one I use, although DEFAULT would probably work just as
well.

If you're interested in using a font such as Webdings or Wingdings, you need to use
SYMBOL_CHARSET instead of ANSI_CHARSET.

Output Precision is very important. It tells Windows what type of character set to use if there is
more than one type available. OUT_TT_PRECIS tells Windows that if there is more than one type of
font to choose from with the same name, select the TRUETYPE version of the font. Truetype fonts
always look better, especially when you make them large. You can also use
OUT_TT_ONLY_PRECIS, which ALWAYS trys to use a TRUETYPE Font.

 Clipping Precision is the type of clipping to do on the font if it goes outside the clipping region. Not
much to say about this, just leave it set to default.

Output Quality is very important.you can have PROOF, DRAFT, NONANTIALIASED, DEFAULT or
ANTIALIASED. We all know that ANTIALIASED fonts look good :) Antialiasing a font is the same
effect you get when you turn on font smoothing in Windows. It makes everything look less jagged.

Jeff Molofee's OpenGL Windows Tutorial #14

Page 4 of 9

 FF_DONTCARE|DEFAULT_PITCH, // Family And Pitch

 "Comic Sans MS"); // Font Name

 SelectObject(hDC, font); // Selects The Font We Created

 wglUseFontOutlines(hDC, // Select The Current DC
 0, // Starting Character
 255, // Number Of Display Lists To Build
 base, // Starting Display Lists

 0.0f, // Deviation From The True Outlines
 0.2f, // Font Thickness In The Z Direction
 WGL_FONT_POLYGONS, // Use Polygons, Not Lines
 gmf); // Address Of Buffer To Recieve Data
}

Next we have the Family and Pitch settings. For pitch you can have DEFAULT_PITCH,
FIXED_PITCH and VARIABLE_PITCH, and for family you can have FF_DECORATIVE,
FF_MODERN, FF_ROMAN, FF_SCRIPT, FF_SWISS, FF_DONTCARE. Play around with them to
find out what they do. I just set them both to default.

Finally... We have the actual name of the font. Boot up Microsoft Word or some other text editor.
Click on the font drop down menu, and find a font you like. To use the font, replace 'Comic Sans
MS' with the name of the font you'd rather use.

 Now we select the font by relating it to our DC.

Now for the new code. We build our Outline font using a new command wglUseFontOutlines. We
select our DC, the starting character, the number of characters to create and the 'base' display list
value. All very similar to the way we built our Bitmap font.

That's not all however. We then set the deviation level. The closer to 0.0f, the smooth the font will
look. After we set the deviation, we get to set the font thickness. This describes how thick the font
is on the Z axis. 0.0f will produce a flat 2D looking font and 1.0f will produce a font with some depth.

The parameter WGL_FONT_POLYGONS tells OpenGL to create a solid font using polygons. If we
use WGL_FONT_LINES instead, the font will be wireframe (made of lines). It's also important to
note that if you use GL_FONT_LINES, normals will not be generated so lighting will not work
properly.

The last parameter gmf points to the address buffer for the display list data.

Jeff Molofee's OpenGL Windows Tutorial #14

Page 5 of 9

GLvoid KillFont(GLvoid) // Delete The Font
{
 glDeleteLists(base, 256); // Delete All 256 Characters
}

GLvoid glPrint(const char *fmt, ...) // Custom GL "Print" Routine
{

 float length=0; // Used To Find The Length Of The Text
 char text[256]; // Holds Our String
 va_list ap; // Pointer To List Of Arguments

 if (fmt == NULL) // If There's No Text
 return; // Do Nothing

 va_start(ap, fmt); // Parses The String For Variables
 vsprintf(text, fmt, ap); // And Converts Symbols To Actual Numbers
 va_end(ap); // Results Are Stored In Text

The following code is pretty simple. It deletes the 256 display lists from memory starting at the first
list specified by base. I'm not sure if Windows would do this for you, but it's better to be safe than
sorry :)

Now for my handy dandy GL text routine. You call this section of code with the command glPrint
("message goes here"). Exactly the same way you drew Bitmap fonts to the screen in lesson 13.
The text is stored in the char string fmt.

The first line below sets up a variable called length. We'll use this variable to find out how our string
of text is. The second line creates storage space for a 256 character string. text is the string we
will end up printing to the screen. The third line creates a pointer that points to the list of arguments
we pass along with the string. If we send any variables along with the text, this pointer will point to
them.

 The next two lines of code check to see if there's anything to display? If there's no text, fmt will
equal nothing (NULL), and nothing will be drawn to the screen.

The following three lines of code convert any symbols in the text to the actual numbers the symbols
represent. The final text and any converted symbols are then stored in the character string called
"text". I'll explain symbols in more detail down below.

Jeff Molofee's OpenGL Windows Tutorial #14

Page 6 of 9

 for (unsigned int loop=0;loop<(strlen(text));loop++) // Loop To Find Text Length
 {
 length+=gmf[text[loop]].gmfCellIncX; // Increase Length By Each Characters Width
 }

 glTranslatef(-length/2,0.0f,0.0f); // Center Our Text On The Screen

 glPushAttrib(GL_LIST_BIT); // Pushes The Display List Bits
 glListBase(base); // Sets The Base Character to 0

Thanks to Jim Williams for suggesting the code below. I was centering the text manually. His
method works alot better :)

We start off by making a loop that goes through all the text character by character. strlen(text)
gives us the length of our text. After we've set up the loop, we will increase the value of length by
the width of each character. When we are done the value stored in length will be the width of our
entire string. So if we were printing "hello" and by some fluke each character was exactly 10 units
wide, we'd increase the value of length by the width of the first letter 10. Then we'd check the width
of the second letter. The width would also be 10, so length would become 10+10 (20). By the time
we were done checking all 4 letters length would equal 40 (4*10).

The code that gives us the width of each character is gmf[text[loop]].gmfCellIncX. remember that
gmf stores information out each display list. If loop is equal to 0 text[loop] will be the first
character in our string. If loop is equal to 1 text[loop] will be the second character in our string.
gmfCellIncX tells us how wide the selected character is. gmfCellIncX is actually the distance that
our display moves to the right after the character has been drawn so that each character isn't drawn
on top of eachother. Just so happens that distance is our width :) You can also find out the
character height with the command gmfCellIncY. This might come in handy if you're drawing text
vertically on the screen instead of horizontally.

Finally we take the length that we calculate and make it a negative number (because we have to
move left of center to center our text). We then divide the length by 2. We don't want all the text to
move left of center, just half the text!

We then push the GL_LIST_BIT, this prevents glListBase from affecting any other display lists we
may be using in our program.

The command glListBase(base) tells OpenGL where to find the proper display list for each
character.

Now that OpenGL knows where the characters are located, we can tell it to write the text to the
screen. glCallLists writes the entire string of text to the screen at once by making multiple display
list calls for you.

The line below does the following. First it tells OpenGL we're going to be displaying lists to the
screen. strlen(text) finds out how many letters we're going to send to the screen. Next it needs to
know what the largest list number were sending to it is going to be. We're still not sending any
more than 255 characters. So we can use an UNSIGNED_BYTE. (a byte represents a number from
0 - 255 which is exactly what we need). Finally we tell it what to display by passing the string text.

Jeff Molofee's OpenGL Windows Tutorial #14

Page 7 of 9

 glCallLists(strlen(text), GL_UNSIGNED_BYTE, text); // Draws The Display List Text
 glPopAttrib(); // Pops The Display List Bits
}

int InitGL(GLvoid) // All Setup For OpenGL Goes Here
{
 glShadeModel(GL_SMOOTH); // Enable Smooth Shading
 glClearColor(0.0f, 0.0f, 0.0f, 0.5f); // Black Background
 glClearDepth(1.0f); // Depth Buffer Setup
 glEnable(GL_DEPTH_TEST); // Enables Depth Testing
 glDepthFunc(GL_LEQUAL); // The Type Of Depth Testing To Do
 glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST); // Really Nice Perspective Calculations
 glEnable(GL_LIGHT0); // Enable Default Light (Quick And Dirty)
 glEnable(GL_LIGHTING); // Enable Lighting
 glEnable(GL_COLOR_MATERIAL); // Enable Coloring Of Material

 BuildFont(); // Build The Font

 return TRUE; // Initialization Went OK
}

int DrawGLScene(GLvoid) // Here's Where We Do All The Drawing
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Clear The Screen And The Depth Buffer
 glLoadIdentity(); // Reset The View

In case you're wondering why the letters don't pile on top of eachother. Each display list for each
character knows where the right side of the character is. After the letter is drawn to the screen,
OpenGL translates to the right side of the drawn letter. The next letter or object drawn will be drawn
starting at the last location GL translated to, which is to the right of the last letter.

Finally we pop the GL_LIST_BIT setting GL back to how it was before we set our base setting using
glListBase(base).

Resizing code is exactly the same as the code in Lesson 1 so we'll skip over it.

There are a few new lines at the end of the InitGL code. The line BuildFont() from lesson 13 is still
there, along with new code to do quick and dirty lighting. Light0 is predefined on most video cards
and will light up the scene nicely with no effort on my part :)

I've also added the command glEnable(GL_Color_Material). Because the characters are 3D objects
you need to enable Material Coloring, otherwise changing the color with glColor3f(r,g,b) will not
change the color of the text. If you're drawing shapes of your own to the screen while you write text
enable material coloring before you write the text, and disable it after you've drawn the text,
otherwise all the object on your screen will be colored.

Now for the drawing code. We start off by clearing the screen and the depth buffer. We call
glLoadIdentity() to reset everything. Then we translate ten units into the screen. Outline fonts look
great in perspective mode. The further into the screen you translate, the smaller the font becomes.
The closer you translate, the larger the font becomes.

Outline fonts can also be manipulated by using the glScalef(x,y,z) command. If you want the font 2
times taller, use glScalef(1.0f,2.0f,1.0f). the 2.0f is on the y axis, which tells OpenGL to draw the
list twice as tall. If the 2.0f was on the x axis, the character would be twice as wide.

Jeff Molofee's OpenGL Windows Tutorial #14

Page 8 of 9

 glTranslatef(0.0f,0.0f,-10.0f); // Move Ten Units Into The Screen

 glRotatef(rot,1.0f,0.0f,0.0f); // Rotate On The X Axis
 glRotatef(rot*1.5f,0.0f,1.0f,0.0f); // Rotate On The Y Axis
 glRotatef(rot*1.4f,0.0f,0.0f,1.0f); // Rotate On The Z Axis

 // Pulsing Colors Based On The Rotation
 glColor3f(1.0f*float(cos(rot/20.0f)),1.0f*float(sin(rot/25.0f)),1.0f-0.5f*float(cos(rot/17.0f)));

 glPrint("NeHe - %3.2f",rot/50); // Print GL Text To The Screen

 rot+=0.5f; // Increase The Rotation Variable
 return TRUE; // Everything Went OK
}

 if (!UnregisterClass("OpenGL",hInstance)) // Are We Able To Unregister Class
 {
 MessageBox(NULL,"Could Not Unregister Class.","SHUTDOWN ERROR",MB_OK | MB_ICONINFORMATION);
 hInstance=NULL; // Set hInstance To NULL
 }

 KillFont(); // Destroy The Font
}

After we've translated into the screen, we want the text to spin. The next 3 lines rotate the screen
on all three axes. I multiply rot by different numbers to make each rotation happen at a different
speed.

Now for the crazy color cycling. As usual, I make use of the only variable that counts up (rot). The
colors pulse up and down using COS and SIN. I divide the value of rot by different numbers so that
each color isn't increasing at the same speed. The final results are nice.

My favorite part... Writing the text to the screen. I've used the same command we used to write
Bitmap fonts to the screen. All you have to do to write the text to the screen is glPrint("{any text
you want}"). It's that easy!

In the code below we'll print NeHe, a space, a dash, a space, and then whatever number is stored
in rot divided by 50 (to slow down the counter a bit). If the number is larger that 999.99 the 4th digit
to the left will be cut off (we're requesting only 3 digits to the left of the decimal place). Only 2 digits
will be displayed after the decimal place.

 Then we increase the rotation variable so the colors pulse and the text spins.

 The last thing to do is add KillFont() to the end of KillGLWindow() just like I'm showing below. It's
important to add this line. It cleans things up before we exit our program.

Jeff Molofee's OpenGL Windows Tutorial #14

Page 9 of 9

At the end of this tutorial you should be able to use Outline Fonts in your own OpenGL projects.
Just like lesson 13, I've searched the net looking for a tutorial similar to this one, and have found
nothing. Could my site be the first to cover this topic in great detail while explaining everything in
easy to understand C code? Enjoy the tutorial, and happy coding!

Jeff Molofee (NeHe)

* DOWNLOAD Visual C++ Code For This Lesson.
* DOWNLOAD Delphi Code For This Lesson. (Conversion by Marc Aarts)
* DOWNLOAD Visual Fortran Code For This Lesson. (Conversion by Jean-Philippe Perois)

Back To NeHe Productions!

Jeff Molofee's OpenGL Windows Tutorial #15

Page 1 of 7

#include <windows.h> // Header File For Windows
#include <math.h> // Header File For Windows Math Library
#include <stdio.h> // Header File For Standard Input/Output
#include <gl\gl.h> // Header File For The OpenGL32 Library
#include <gl\glu.h> // Header File For The GLu32 Library
#include <gl\glaux.h> // Header File For The GLaux Library

HDC hDC=NULL; // Private GDI Device Context
HGLRC hRC=NULL; // Permanent Rendering Context
HWND hWnd=NULL; // Holds Our Window Handle
HINSTANCE hInstance; // Holds The Instance Of The Application

bool keys[256]; // Array Used For The Keyboard Routine
bool active=TRUE; // Window Active Flag Set To TRUE By Default
bool fullscreen=TRUE; // Fullscreen Flag Set To Fullscreen Mode By Default

GLuint texture[1]; // One Texture Map (NEW)
GLuint base; // Base Display List For The Font Set

GLfloat rot; // Used To Rotate The Text

LRESULT CALLBACK WndProc(HWND, UINT, WPARAM, LPARAM); // Declaration For WndProc

 Lesson 15

After posting the last two tutorials on bitmap and outlined fonts, I received quite a few emails from
people wondering how they could texture map the fonts. You can use autotexture coordinate
generation. This will generate texture coordinates for each of the polygons on the font.

A small note, this code is Windows specific. It uses the wgl functions of Windows to build the font.
Apparently Apple has agl support that should do the same thing, and X has glx. Unfortunately I
can't guarantee this code is portable. If anyone has platform independant code to draw fonts to the
screen, send it my way and I'll write another font tutorial.

We'll build our Texture Font demo using the code from lesson 14. If any of the code has changed in
a particular section of the program, I'll rewrite the entire section of code so that it's easier to see the
changes that I have made.

The following section of code is similar to the code in lesson 14, but this time we're not going to
include the stdarg.h file.

 We're going to add one new integer variable here called texture[]. It will be used to store our
texture. The last three lines were in tutorial 14 and have not changed in this tutorial.

Jeff Molofee's OpenGL Windows Tutorial #15

Page 2 of 7

GLvoid BuildFont(GLvoid) // Build Our Bitmap Font
{
 GLYPHMETRICSFLOAT gmf[256]; // Address Buffer For Font Storage
 HFONT font; // Windows Font ID

 base = glGenLists(256); // Storage For 256 Characters
 font = CreateFont(-12, // Height Of Font
 0, // Width Of Font
 0, // Angle Of Escapement
 0, // Orientation Angle
 FW_BOLD, // Font Weight
 FALSE, // Italic
 FALSE, // Underline
 FALSE, // Strikeout

 SYMBOL_CHARSET, // Character Set Identifier

 OUT_TT_PRECIS, // Output Precision
 CLIP_DEFAULT_PRECIS, // Clipping Precision
 ANTIALIASED_QUALITY, // Output Quality
 FF_DONTCARE|DEFAULT_PITCH, // Family And Pitch

 "Wingdings"); // Font Name (Modified)

The following section of code has some minor changes. In this tutorial I'm going to use the
wingdings font to display a skull and crossbones type object. If you want to display text instead,
you can leave the code the same as it was in lesson 14, or change to a font of your own.

A few of you were wondering how to use the wingdings font, which is another reason I'm not using a
standard font. Wingdings is a SYMBOL font, and requires a few changes to make it work. It's not
as easy as telling Windows to use the wingdings font. If you change the font name to wingdings,
you'll notice that the font doesn't get selected. You have to tell Windows that the font is a symbol
font and not a standard character font. More on this later.

This is the magic line! Instead of using ANSI_CHARSET like we did in tutorial 14, we're going to
use SYMBOL_CHARSET. This tells Windows that the font we are building is not your typical font
made up of characters. A symbol font is usually made up of tiny pictures (symbols). If you forget to
change this line, wingdings, webdings and any other symbol font you may be trying to use will not
work.

 The next few lines have not changed.

 Now that we've selected the symbol character set identifier, we can select the wingdings font!

Jeff Molofee's OpenGL Windows Tutorial #15

Page 3 of 7

 SelectObject(hDC, font); // Selects The Font We Created

 wglUseFontOutlines(hDC, // Select The Current DC
 0, // Starting Character
 255, // Number Of Display Lists To Build
 base, // Starting Display Lists

 0.1f, // Deviation From The True Outlines

 0.2f, // Font Thickness In The Z Direction
 WGL_FONT_POLYGONS, // Use Polygons, Not Lines
 gmf); // Address Of Buffer To Recieve Data
}

AUX_RGBImageRec *LoadBMP(char *Filename) // Loads A Bitmap Image
{
 FILE *File=NULL; // File Handle

 if (!Filename) // Make Sure A Filename Was Given
 {
 return NULL; // If Not Return NULL
 }

 File=fopen(Filename,"r"); // Check To See If The File Exists

 if (File) // Does The File Exist?
 {
 fclose(File); // Close The Handle
 return auxDIBImageLoad(Filename); // Load The Bitmap And Return A Pointer
 }

 return NULL; // If Load Failed Return NULL

 The remaining lines of code have not changed.

I'm allowing for more deviation. This means GL will not try to follow the outline of the font as closely.
If you set deviation to 0.0f, you'll notice problems with the texturing on really curved surfaces. If you
allow for some deviation, most of the problems will disappear.

 The next three lines of code are still the same.

Right before ReSizeGLScene() we're going to add the following section of code to load our texture.
You might recognize the code from previous tutorials. We create storage for the bitmap image. We
load the bitmap image. We tell OpenGL to generate 1 texture, and we store this texture in texture
[0].

I'm creating a mipmapped texture only because it looks better. The name of the texture is
lights.bmp.

Jeff Molofee's OpenGL Windows Tutorial #15

Page 4 of 7

}

int LoadGLTextures() // Load Bitmaps And Convert To Textures
{
 int Status=FALSE; // Status Indicator

 AUX_RGBImageRec *TextureImage[1]; // Create Storage Space For The Texture

 memset(TextureImage,0,sizeof(void *)*1); // Set The Pointer To NULL

 if (TextureImage[0]=LoadBMP("Data/Lights.bmp")) // Load The Bitmap
 {
 Status=TRUE; // Set The Status To TRUE

 glGenTextures(1, &texture[0]); // Create The Texture

 // Build Linear Mipmapped Texture
 glBindTexture(GL_TEXTURE_2D, texture[0]);
 gluBuild2DMipmaps(GL_TEXTURE_2D, 3, TextureImage[0]->sizeX, TextureImage[0]
 glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_LINEAR);
 glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_LINEAR_MIPMAP_NEAREST);

 // Texturing Contour Anchored To The Object
 glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, GL_OBJECT_LINEAR);
 // Texturing Contour Anchored To The Object
 glTexGeni(GL_T, GL_TEXTURE_GEN_MODE, GL_OBJECT_LINEAR);
 glEnable(GL_TEXTURE_GEN_S); // Auto Texture Generation
 glEnable(GL_TEXTURE_GEN_T); // Auto Texture Generation
 }

 if (TextureImage[0]) // If Texture Exists
 {
 if (TextureImage[0]->data) // If Texture Image Exists
 {
 free(TextureImage[0]->data); // Free The Texture Image Memory
 }

The next four lines of code will automatically generate texture coordinates for any object we draw to
the screen. The glTexGen command is extremely powerful, and complex, and to get into all the
math involved would be a tutorial on it's own. All you need to know is that GL_S and GL_T are
texture coordinates. By default they are set up to take the current x location on the screen and the
current y location on the screen and come up with a texture vertex. You'll notice the objects are not
textured on the z plane... just stripes appear. The front and back faces are textured though, and
that's all that matters. X (GL_S) will cover mapping the texture left to right, and Y (GL_T) will cover
mapping the texture up and down.

GL_TEXTURE_GEN_MODE lets us select the mode of texture mapping we want to use on the S
and T texture coordinates. You have 3 choices:

GL_EYE_LINEAR - The texture is fixed to the screen. It never moves. The object is mapped with
whatever section of the texture it is passing over.

GL_OBJECT_LINEAR - This is the mode we are using. The texture is fixed to the object moving
around the screen.

GL_SPHERE_MAP - Everyones favorite. Creates a metalic reflective type object.

It's important to note that I'm leaving out alot of code. We should be setting the
GL_OBJECT_PLANE as well, but by default it's set to the parameters we want. Buy a good book if
you're interested in learning more, or check out the MSDN help CD / DVD.

Jeff Molofee's OpenGL Windows Tutorial #15

Page 5 of 7

 free(TextureImage[0]); // Free The Image Structure
 }

 return Status; // Return The Status
}

int InitGL(GLvoid) // All Setup For OpenGL Goes Here
{
 if (!LoadGLTextures()) // Jump To Texture Loading Routine
 {
 return FALSE; // If Texture Didn't Load Return FALSE
 }
 BuildFont(); // Build The Font

 glShadeModel(GL_SMOOTH); // Enable Smooth Shading
 glClearColor(0.0f, 0.0f, 0.0f, 0.5f); // Black Background
 glClearDepth(1.0f); // Depth Buffer Setup
 glEnable(GL_DEPTH_TEST); // Enables Depth Testing
 glDepthFunc(GL_LEQUAL); // The Type Of Depth Testing To Do
 glEnable(GL_LIGHT0); // Quick And Dirty Lighting (Assumes Light0 Is Set Up)
 glEnable(GL_LIGHTING); // Enable Lighting
 glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST); // Really Nice Perspective Calculations

 glEnable(GL_TEXTURE_2D); // Enable Texture Mapping
 glBindTexture(GL_TEXTURE_2D, texture[0]); // Select The Texture
 return TRUE; // Initialization Went OK
}

int DrawGLScene(GLvoid) // Here's Where We Do All The Drawing
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Clear The Screen And The Depth Buffer
 glLoadIdentity(); // Reset The View

There are a few new lines at the end of the InitGL() code. BuildFont() has been moved underneath
our texture loading code. The line glEnable(GL_COLOR_MATERIAL) has been removed. If you plan
to apply colors to the texture using glColor3f(r,g,b) add the line glEnable(GL_COLOR_MATERIAL)
back into this section of code.

Enable 2D Texture Mapping, and select texture one. This will map texture one onto any 3D object
we draw to the screen. If you want more control, you can enable and disable texture mapping
yourself.

 The resize code hasn't changed, but our DrawGLScene code has.

Here's our first change. Instead of keeping the object in the middle of the screen, we're going to
spin it around the screen using COS and SIN (no surprise). We'll translate 3 units into the screen (-
3.0f). On the x axis, we'll swing from -1.1 at far left to +1.1 at the right. We'll be using the rot
variable to control the left right swing. We'll swing from +0.8 at top to -0.8 at the bottom. We'll use
the rot variable for this swinging motion as well. (might as well make good use of your variables).

Jeff Molofee's OpenGL Windows Tutorial #15

Page 6 of 7

 // Position The Text
 glTranslatef(1.1f*float(cos(rot/16.0f)),0.8f*float(sin(rot/20.0f)),-3.0f);

 glRotatef(rot,1.0f,0.0f,0.0f); // Rotate On The X Axis
 glRotatef(rot*1.2f,0.0f,1.0f,0.0f); // Rotate On The Y Axis
 glRotatef(rot*1.4f,0.0f,0.0f,1.0f); // Rotate On The Z Axis

 glTranslatef(-0.35f,-0.35f,0.1f); // Center On X, Y, Z Axis

 glPrint("N"); // Draw A Skull And Crossbones Symbol
 rot+=0.1f; // Increase The Rotation Variable
 return TRUE; // Keep Going
}

 if (!UnregisterClass("OpenGL",hInstance)) // Are We Able To Unregister Class
 {
 MessageBox(NULL,"Could Not Unregister Class.","SHUTDOWN ERROR",MB_OK | MB_ICONINFORMATION);
 hInstance=NULL; // Set hInstance To NULL
 }

 KillFont(); // Destroy The Font
}

 Now we do the normal rotations. This will cause the symbol to spin on the X, Y and Z axis.

We translate a little to the left, down, and towards the viewer to center the symbol on each axis.
Otherwise when it spins it doesn't look like it's spinning around it's own center. -0.35 is just a
number that worked. I had to play around with numbers for a bit because I'm not sure how wide the
font is, could vary with each font. Why the fonts aren't built around a central point I'm not sure.

Finally we draw our skull and crossbones symbol then increase the rot variable so our symbol
spins and moves around the screen. If you can't figure out how I get a skull and crossbones from
the letter 'N', do this: Run Microsoft Word or Wordpad. Go to the fonts drop down menu. Select the
Wingdings font. Type and uppercase 'N'. A skull and crossbones appears.

 The last thing to do is add KillFont() to the end of KillGLWindow() just like I'm showing below. It's
important to add this line. It cleans things up before we exit our program.

Jeff Molofee's OpenGL Windows Tutorial #15

Page 7 of 7

Even though I never went into extreme detail, you should have a pretty good understanding on how
to make OpenGL generate texture coordinates for you. You should have no problems mapping
textures to fonts of your own, or even other objects for that matter. And by changing just two lines
of code, you can enable sphere mapping, which is a really cool effect.

Jeff Molofee (NeHe)

* DOWNLOAD Visual C++ Code For This Lesson.
* DOWNLOAD Delphi Code For This Lesson. (Conversion by Marc Aarts)
* DOWNLOAD Visual Fortran Code For This Lesson. (Conversion by Jean-Philippe Perois)

Back To NeHe Productions!

Jeff Molofee's OpenGL Windows Tutorial #16 (By Chris Aliotta)

Page 1 of 3

bool gp; // G Pressed? (New)
GLuint filter; // Which Filter To Use
GLuint fogMode[]= { GL_EXP, GL_EXP2, GL_LINEAR }; // Storage For Three Types Of Fog
GLuint fogfilter= 0; // Which Fog To Use
GLfloat fogColor[4]= {0.5f, 0.5f, 0.5f, 1.0f}; // Fog Color

glClearColor(0.5f,0.5f,0.5f,1.0f); // We'll Clear To The Color Of The Fog

glFogi(GL_FOG_MODE, fogMode[fogfilter]); // Fog Mode
glFogfv(GL_FOG_COLOR, fogColor); // Set Fog Color
glFogf(GL_FOG_DENSITY, 0.35f); // How Dense Will The Fog Be
glHint(GL_FOG_HINT, GL_DONT_CARE); // Fog Hint Value
glFogf(GL_FOG_START, 1.0f); // Fog Start Depth
glFogf(GL_FOG_END, 5.0f); // Fog End Depth
glEnable(GL_FOG); // Enables GL_FOG

 Lesson 16

This tutorial brought to you by Chris Aliotta...

So you want to add fog to your OpenGL program? Well in this tutorial I will show you how to do
exactly that. This is my first time writing a tutorial, and I am still relatively new to OpenGL/C++
programming, so please, if you find anything that's wrong let me know and don't jump all over me.
This code is based on the code from lesson 7.

Data Setup:

We'll start by setting up all our variables needed to hold the information for fog. The variable
fogMode will be used to hold three types of fog: GL_EXP, GL_EXP2, and GL_LINEAR. I will
explain the differences between these three later on. The variables will start at the beginning of the
code after the line GLuint texture[3]. The variable fogfilter will be used to keep track of which fog
type we will be using. The variable fogColor will hold the color we wish the fog to be. I have also
added the boolean variable gp at the top of the code so we can tell if the 'g' key is being pressed
later on in this tutorial.

DrawGLScene Setup

Now that we have established our variables we will move down to InitGL. The glClearColor() line has
been modified to clear the screen to the same same color as the fog for a better effect. There isn't
much code involved to make fog work. In all you will find this to be very simplistic.

Jeff Molofee's OpenGL Windows Tutorial #16 (By Chris Aliotta)

Page 2 of 3

if (keys['G'] && !gp) // Is The G Key Being Pressed?
{
 gp=TRUE; // gp Is Set To TRUE
 fogfilter+=1; // Increase fogfilter By One
 if (fogfilter>2) // Is fogfilter Greater Than 2?
 {
 fogfilter=0; // If So, Set fogfilter To Zero
 }
 glFogi (GL_FOG_MODE, fogMode[fogfilter]); // Fog Mode
}
if (!keys['G']) // Has The G Key Been Released?
{
 gp=FALSE; // If So, gp Is Set To FALSE

Lets pick apart the first three lines of this code. The first line glEnable(GL_FOG); is pretty much
self explanatory. It basically initializes the fog.

The second line, glFogi(GL_FOG_MODE, fogMode[fogfilter]); establishes the fog filter mode. Now
earlier we declared the array fogMode. It held GL_EXP, GL_EXP2, and GL_LINEAR. Here is when
these variables come into play. Let me explain each one:

l GL_EXP - Basic rendered fog which fogs out all of the screen. It doesn't give much of a fog
effect, but gets the job done on older PC's.

l GL_EXP2 - Is the next step up from GL_EXP. This will fog out all of the screen, however it
will give more depth to the scene.

l GL_LINEAR - This is the best fog rendering mode. Objects fade in and out of the fog much
better.

The third line, glFogfv(GL_FOG_COLOR, fogcolor); sets the color of the fog. Earlier we had set
this to (0.5f,0.5f,0.5f,1.0f) using the variable fogcolor, giving us a nice grey color.

Next lets look at the last four lines of this code. The line glFogf(GL_FOG_DENSITY, 0.35f);
establishes how dense the fog will be. Increase the number and the fog becomes more dense,
decrease it and it becomes less dense.

The line glHint (GL_FOG_HINT, GL_DONT_CARE); establishes the hint. I used GL_DONT_CARE,
because I didn't care about the hint value. However here is an explanation of the different values for
this option, provided by Eric Desrosiers:

Eric Desrosiers Adds: Little explanation of glHint(GL_FOG_HINT, hintval);

hintval can be : GL_DONT_CARE, GL_NICEST or GL_FASTEST

gl_dont_care - Lets opengl choose the kind of fog (per vertex of per pixel) and an unknown formula.
gl_nicest - Makes the fog per pixel (look good)
glfastest - Makes the fog per vertex (faster, but less nice)

The next line glFogf(GL_FOG_START, 1.0f); will establish how close to the screen the fog should
start. You can change the number to whatever you want depending on where you want the fog to
start. The next line is similar, glFogf(GL_FOG_END, 5.0f);. This tells the OpenGL program how far
into the screen the fog should go.

Keypress Events

Now that we've setup the fog drawing code we will add the keyboard commands to cycle through
the different fog modes. This code goes down at the end of the program with all the other key
handling code.

Jeff Molofee's OpenGL Windows Tutorial #16 (By Chris Aliotta)

Page 3 of 3

}

That's it! We are done! You now have fog in your OpenGL program. I'd have to say that was pretty
painless. If you have any questions or comments feel free to contact me at chris@incinerated.com.
Also please stop by my website: http://www.incinerated.com/ and
http://www.incinerated.com/precursor.

Christopher Aliotta (Precursor)

* DOWNLOAD Visual C++ Code For This Lesson.
* DOWNLOAD Delphi Code For This Lesson. (Conversion by Marc Aarts)
* DOWNLOAD Mac OS Code For This Lesson. (Conversion by Anthony Parker)
* DOWNLOAD Java Code For This Lesson. (Conversion by Darren Hodges)

Back To NeHe Productions!

Jeff Molofee's OpenGL Windows Tutorial #17 (By Giuseppe D'Agata)

Page 1 of 13

#include <windows.h> // Header File For Windows
#include <math.h> // Header File For Windows Math Library (ADD)
#include <stdio.h> // Header File For Standard Input/Output (ADD)
#include <gl\gl.h> // Header File For The OpenGL32 Library
#include <gl\glu.h> // Header File For The GLu32 Library
#include <gl\glaux.h> // Header File For The GLaux Library

HDC hDC=NULL; // Private GDI Device Context
HGLRC hRC=NULL; // Permanent Rendering Context
HWND hWnd=NULL; // Holds Our Window Handle
HINSTANCE hInstance; // Holds The Instance Of The Application

bool keys[256]; // Array Used For The Keyboard Routine
bool active=TRUE; // Window Active Flag Set To TRUE By Default
bool fullscreen=TRUE; // Fullscreen Flag Set To Fullscreen Mode By Default

 Lesson 17

This tutorial brought to you by NeHe & Giuseppe D'Agata...

I know everyones probably sick of fonts. The text tutorials I've done so far not only display text, they
display 3D text, texture mapped text, and can handle variables. But what happens if you're porting
your project to a machine that doesn't support Bitmap or Outline fonts?

Thanks to Giuseppe D'Agata we have yet another font tutorial. What could possibly be left you
ask!? If you remember in the first Font tutorial I mentioned using textures to draw letters to the
screen. Usually when you use textures to draw text to the screen you load up your favorite art
program, select a font, then type the letters or phase you want to display. You then save the
bitmap and load it into your program as a texture. Not very efficient for a program that require alot of
text, or text that continually changes!

This program uses just ONE texture to display any of 256 different characters on the screen. Keep
in mind your average character is just 16 pixels wide and roughly 16 pixels tall. If you take your
standard 256x256 texture it's easy to see that you can fit 16 letters across, and you can have a
total of 16 rows up and down. If you need a more detailed explanation: The texture is 256 pixels
wide, a character is 16 pixels wide. 256 divided by 16 is 16 :)

So... Lets create a 2D textured font demo! This program expands on the code from lesson 1. In the
first section of the program, we include the math and stdio libraries. We need the math library to
move our letters around the screen using SIN and COS, and we need the stdio library to make sure
the bitmaps we want to use actually exist before we try to make textures out of them.

We're going to add a variable called base to point us to our display lists. We'll also add texture[2]
to hold the two textures we're going to create. Texture 1 will be the font texture, and texture 2 will
be a bump texture used to create our simple 3D object.

We add the variable loop which we will use to execute loops. Finally we add cnt1 and cnt2 which
we will use to move the text around the screen and to spin our simple 3D object.

Jeff Molofee's OpenGL Windows Tutorial #17 (By Giuseppe D'Agata)

Page 2 of 13

GLuint base; // Base Display List For The Font
GLuint texture[2]; // Storage For Our Font Texture
GLuint loop; // Generic Loop Variable

GLfloat cnt1; // 1st Counter Used To Move Text & For Coloring
GLfloat cnt2; // 2nd Counter Used To Move Text & For Coloring

LRESULT CALLBACK WndProc(HWND, UINT, WPARAM, LPARAM); // Declaration For WndProc

AUX_RGBImageRec *LoadBMP(char *Filename) // Loads A Bitmap Image
{
 FILE *File=NULL; // File Handle
 if (!Filename)
 {
 return NULL;
 }
 File=fopen(Filename,"r"); // Check To See If The File Exists
 if (File) // Does The File Exist?
 {
 fclose(File);
 return auxDIBImageLoad(Filename); // Load The Bitmap And Return A Pointer
 }
 return NULL;
}

int LoadGLTextures()
{
 int Status=FALSE; // Status Indicator
 AUX_RGBImageRec *TextureImage[2]; // Create Storage Space For The Textures

 memset(TextureImage,0,sizeof(void *)*2); // Set The Pointer To NULL

 if ((TextureImage[0]=LoadBMP("Data/Font.bmp")) && // Load The Font Bitmap
 (TextureImage[1]=LoadBMP("Data/Bumps.bmp"))) // Load The Texture Bitmap

 Now for the texture loading code. It's exactly the same as it was in the previous texture mapping
tutorials.

The follwing code has also changed very little from the code used in previous tutorials. If you're not
sure what each of the following lines do, go back and review.

Note that TextureImage[] is going to hold 2 rgb image records. It's very important to double check
code that deals with loading or storing our textures. One wrong number could result in a memory
leak or crash!

The next line is the most important line to watch. If you were to replace the 2 with any other
number, major problems will happen. Double check! This number should match the number you
used when you set up TextureImages[].

The two textures we're going to load are font.bmp (our font), and bumps.bmp. The second texture
can be replaced with any texture you want. I wasn't feeling very creative, so the texture I decided to
use may be a little drab.

Jeff Molofee's OpenGL Windows Tutorial #17 (By Giuseppe D'Agata)

Page 3 of 13

 {
 Status=TRUE;

 glGenTextures(2, &texture[0]);

 for (loop=0; loop<2; loop++)
 {
 // Build All The Textures
 glBindTexture(GL_TEXTURE_2D, texture[loop]);
 glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_LINEAR);
 glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_LINEAR);
 glTexImage2D(GL_TEXTURE_2D, 0, 3, TextureImage[loop]->sizeX, TextureImage[loop]
 }
 }

 for (loop=0; loop<2; loop++)
 {
 if (TextureImage[loop])
 {
 if (TextureImage[loop]->data)
 {
 free(TextureImage[loop]->data);
 }
 free(TextureImage[loop]); // Free The Image Structure
 }
 }
 return Status;
}

GLvoid BuildFont(GLvoid) // Build Our Font Display List
{

Another important line to double check. I can't begin to tell you how many emails I've received from
people asking "why am I only seeing one texture, or why are my textures all white!?!". Usually this
line is the problem. If you were to replace the 2 with a 1, only one texture would be created and the
second texture would appear all white. If you replaced the 2 with a 3 you're program may crash!

You should only have to call glGenTextures() once. After glGenTextures() you should generate all
your textures. I've seen people put a glGenTextures() line before each texture they create. Usually
they causes the new texture to overwrite any textures you've already created. It's a good idea to
decide how many textures you need to build, call glGenTextures() once, and then build all the
textures. It's not wise to put glGenTextures() inside a loop unless you have a reason to.

The following lines of code check to see if the bitmap data we loaded to build our textures is using
up ram. If it is, the ram is freed. Notice we check and free both rgb image records. If we used 3
different images to build our textures, we'd check and free 3 rgb image records.

Now we're going to build our actual font. I'll go through this section of code in some detail. It's not
really that complex, but there's a bit of math to understand, and I know math isn't something
everyone enjoys.

Jeff Molofee's OpenGL Windows Tutorial #17 (By Giuseppe D'Agata)

Page 4 of 13

 float cx;
 float cy;

 base=glGenLists(256);
 glBindTexture(GL_TEXTURE_2D, texture[0]); // Select Our Font Texture

 for (loop=0; loop<256; loop++)
 {

 cx=float(loop%16)/16.0f; // X Position Of Current Character
 cy=float(loop/16)/16.0f; // Y Position Of Current Character

 glNewList(base+loop,GL_COMPILE); // Start Building A List

 The following two variable will be used to hold the position of each letter inside the font texture. cx
will hold the position from left to right inside the texture, and cy will hold the position up and down.

Next we tell OpenGL we want to build 256 display lists. The variable base will point to the location
of the first display list. The second display list will be base+1, the third will be base+2, etc.

The second line of code below selects our font texture (texture[0]).

 Now we start our loop. The loop will build all 256 characters, storing each character in it's own
display lists.

The first line below may look a little puzzling. The % symbol means the remainder after loop is
divided by 16. cx will move us through the font texture from left to right. You'll notice later in the
code we subtract cy from 1 to move us from top to bottom instead of bottom to top. The % symbol
is fairly hard to explain but I will make an attempt.

All we are really concerned about is (loop%16) the /16.0f just converts the results into texture
coordinates. So if loop was equal to 16... cx would equal the remained of 16/16 which would be 0.
but cy would equal 16/16 which is 1. So we'd move down the height of one character, and we
wouldn't move to the right at all. Now if loop was equal to 17, cx would be equal to 17/16 which
would be 1.0625. The remainder .0625 is also equal to 1/16th. Meaning we'd move 1 character to
the right. cy would still be equal to 1 because we are only concerned with the number to the left of
the decimal. 18/16 would gives us 2 over 16 moving us 2 characters to the right, and still one
character down. If loop was 32, cx would once again equal 0, because there is no remained when
you divide 32 by 16, but cy would equal 2. Because the number to the left of the decimal would now
be 2, moving us down 2 characters from the top of our font texture. Does that make sense?

Whew :) Ok. So now we build our 2D font by selecting an individual character from our font texture
depending on the value of cx and cy. In the line below we add loop to the value of base if we didn't,
every letter would be built in the first display list. We definitely don't want that to happen so by
adding loop to base, each character we create is stored in the next available display list.

Jeff Molofee's OpenGL Windows Tutorial #17 (By Giuseppe D'Agata)

Page 5 of 13

 glBegin(GL_QUADS); // Use A Quad For Each Character

 glTexCoord2f(cx,1-cy-0.0625f);
 glVertex2i(0,0); // Vertex Coord (Bottom Left)

 glTexCoord2f(cx+0.0625f,1-cy-0.0625f);
 glVertex2i(16,0); // Vertex Coord (Bottom Right)

 glTexCoord2f(cx+0.0625f,1-cy);
 glVertex2i(16,16); // Vertex Coord (Top Right)

 glTexCoord2f(cx,1-cy);
 glVertex2i(0,16); // Vertex Coord (Top Left)
 glEnd(); // Done Building Our Quad (Character)

 Now that we've selected the display list we want to build, we create our character. This is done by
drawing a quad, and then texturing it with just a single character from the font texture.

cx and cy should be holding a very tiny floating point value from 0.0f to 1.0f. If both cx and cy were
equal to 0 the first line of code below would actually be: glTexCoord2f(0.0f,1-0.0f-0.0625f).
Remember that 0.0625 is exactly 1/16th of our texture, or the width / height of one character. The
texture coordinate below would be the bottom left point of our texture.

Notice we are using glVertex2i(x,y) instead of glVertex3f(x,y,z). Our font is a 2D font, so we don't
need the z value. Because we are using an Ortho screen, we don't have to translate into the
screen. All you have to do to draw to an Ortho screen is specify an x and y coordinate. Because
our screen is in pixels from 0 to 639 and 0 to 479, we don't have to use floating point or negative
values either :)

The way we set up our Ortho screen, (0,0) will be at the bottom left of our screen. (640,480) will be
the top right of the screen. 0 is the left side of the screen on the x axis, 639 is the right side of the
screen on the x axis. 0 is the bottom of the screen on the y axis and 479 is the top of the screen
on the y axis. Basically we've gotten rid of negative coordinates. This is also handy for people that
don't care about perspective and prefer to work with pixels rather than units :)

 The next texture coordinate is now 1/16th to the right of the last texture coordinate (exactly one
character wide). So this would be the bottom right texture point.

The third texture coordinate stays at the far right of our character, but moves up 1/16th of our
texture (exactly the height of one character). This will be the top right point of an individual
character.

 Finally we move left to set our last texture coordinate at the top left of our character.

Jeff Molofee's OpenGL Windows Tutorial #17 (By Giuseppe D'Agata)

Page 6 of 13

 glTranslated(10,0,0);
 glEndList();
 }
}

GLvoid KillFont(GLvoid)
{
 glDeleteLists(base,256); // Delete All 256 Display Lists
}

GLvoid glPrint(GLint x, GLint y, char *string, int set)
{

 if (set>1)
 {
 set=1;
 }

Finally, we translate 10 pixels to the right, placing us to the right of our texture. If we didn't
translate, the letters would all be drawn on top of eachother. Because our font is so narrow, we
don't want to move 16 pixels to the right. If we did, there would be big spaces between each letter.
Moving by just 10 pixels eliminates the spaces.

The following section of code is the same code we used in our other font tutorials to free the display
list before our program quits. All 256 display lists starting at base will be deleted. (good thing to
do!).

The next section of code is where all of our drawing is done. Everything is fairly new so I'll try to
explain each line in great detail. Just a small note: Alot can be added to this code, such as variable
support, character sizing, spacing, and alot of checking to restore things to how they were before
we decided to print.

glPrint() takes three parameters. The first is the x position on the screen (the position from left to
right). Next is the y position on the screen (up and down... 0 at the bottom, bigger numbers at the
top). Then we have our actual string (the text we want to print), and finally a variable called set. If
you have a look at the bitmap that Giuseppe D'Agata has made, you'll notice there are two different
character sets. The first character set is normal, and the second character set is italicized. If set is
0, the first character set is selected. If set is 1 or greater the second character set is selected.

 The first thing we do is make sure that set is either 0 or 1. If set is greater than 1, we'll make it
equal to 1.

 Now we select our Font texture. We do this just in case a different texture was selected before we
decided to print something to the screen.

Jeff Molofee's OpenGL Windows Tutorial #17 (By Giuseppe D'Agata)

Page 7 of 13

 glBindTexture(GL_TEXTURE_2D, texture[0]); // Select Our Font Texture

 glDisable(GL_DEPTH_TEST); // Disables Depth Testing

 glMatrixMode(GL_PROJECTION);
 glPushMatrix();

 glLoadIdentity(); // Reset The Projection Matrix
 glOrtho(0,640,0,480,-100,100);

 glMatrixMode(GL_MODELVIEW); // Select The Modelview Matrix
 glPushMatrix();
 glLoadIdentity(); // Reset The Modelview Matrix

 glTranslated(x,y,0);

Now we disable depth testing. The reason I do this is so that blending works nicely. If you don't
disable depth testing, the text may end up going behind something, or blending may not look right.
If you have no plan to blend the text onto the screen (so that black spaces do not show up around
our letters) you can leave depth testing on.

The next few lines are VERY important! We select our Projection Matrix. Right after that, we use a
command called glPushMatrix(). glPushMatrix stores the current matrix (projection). Kind of like
the memory button on a calculator.

Now that our projection matrix has been stored, we reset the matrix and set up our Ortho screen.
The first and third numbers (0) represent the bottom left of the screen. We could make the left side
of the screen equal -640 if we want, but why would we work with negatives if we don't need to. The
second and fourth numbers represent the top right of the screen. It's wise to set these values to
match the resolution you are currently in.

 Now we select our modelview matrix, and store it's current settings using glPushMatrix(). We then
reset the modelview matrix so we can work with it using our Ortho view.

With our perspective settings saved, and our Ortho screen set up, we can now draw our text. We
start by translating to the position on the screen that we want to draw our text at. We use
glTranslated() instead of glTranslatef() because we are working with actual pixels, so floating point
values are not important. After all, you can't have half a pixel :)

The line below will select which font set we want to use. If we want to use the second font set we
add 128 to the current base display list (128 is half of our 256 characters). By adding 128 we skip
over the first 128 characters.

Jeff Molofee's OpenGL Windows Tutorial #17 (By Giuseppe D'Agata)

Page 8 of 13

 glListBase(base-32+(128*set));

 glCallLists(strlen(string),GL_BYTE,string); // Write The Text To The Screen

 glMatrixMode(GL_PROJECTION);
 glPopMatrix();

 glMatrixMode(GL_MODELVIEW); // Select The Modelview Matrix
 glPopMatrix();

 glEnable(GL_DEPTH_TEST); // Enables Depth Testing
}

int InitGL(GLvoid) // All Setup For OpenGL Goes Here
{

 if (!LoadGLTextures())
 {
 return FALSE;
 }

Now all that's left for us to do is draw the letters to the screen. We do this exactly the same as we
did in all the other font tutorials. We use glCallLists(). strlen(sting) is the length of our string (how
many characters we want to draw), GL_BYTE means that each character is represented by a byte
(a byte is any value from 0 to 255). Finally, string holds the actual text we want to print to the
screen.

All we have to do now is restore our perspective view. We select the projection matrix and use
glPopMatrix() to recall the settings we previously stored with glPushMatrix(). It's important to
restore things in the opposite order you stored them in.

 Now we select the modelview matrix, and do the same thing. We use glPopMatrix() to restore our
modelview matrix to what it was before we set up our Ortho display.

 Finally, we enable depth testing. If you didn't disable depth testing in the code above, you don't
need this line.

 Nothing has changed in ReSizeGLScene() so we'll skip right to InitGL().

 We jump to our texture building code. If texture building fails for any reason, we return FALSE. This
lets our program know that an error has occurred and the program gracefully shuts down.

Jeff Molofee's OpenGL Windows Tutorial #17 (By Giuseppe D'Agata)

Page 9 of 13

 BuildFont();

 glClearColor(0.0f, 0.0f, 0.0f, 0.0f);
 glClearDepth(1.0); // Enables Clearing Of The Depth Buffer
 glDepthFunc(GL_LEQUAL);
 glBlendFunc(GL_SRC_ALPHA,GL_ONE); // Select The Type Of Blending
 glShadeModel(GL_SMOOTH); // Enables Smooth Color Shading
 glEnable(GL_TEXTURE_2D); // Enable 2D Texture Mapping
 return TRUE;
}

int DrawGLScene(GLvoid)
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Clear The Screen And The Depth Buffer
 glLoadIdentity(); // Reset The Modelview Matrix

 glBindTexture(GL_TEXTURE_2D, texture[1]); // Select Our Second Texture
 glTranslatef(0.0f,0.0f,-5.0f);
 glRotatef(45.0f,0.0f,0.0f,1.0f); // Rotate On The Z Axis 45 Degrees (Clockwise)

 glRotatef(cnt1*30.0f,1.0f,1.0f,0.0f);

 If there were no errors, we jump to our font building code. Not much can go wrong when building the
font so we don't bother with error checking.

Now we do our normal GL setup. We set the background clear color to black, the clear depth to
1.0. We choose a depth testing mode, along with a blending mode. We enable smooth shading,
and finally we enable 2D texture mapping.

The section of code below will create our scene. We draw the 3D object first and the text last so
that the text appears on top of the 3D object, instead of the 3D object covering up the text. The
reason I decide to add a 3D object is to show that both perspective and ortho modes can be used
at the same time.

We select our bumps.bmp texture so that we can build our simple little 3D object. We move into
the screen 5 units so that we can see the 3D object. We rotate on the z axis by 45 degrees. This
will rotate our quad 45 degrees clockwise and makes our quad look more like a diamond than a
square.

After we have done the 45 degree rotation, we spin the object on both the x axis and y axis based
on the variable cnt1 times 30. This causes our object to spin around as if the diamond is spinning
on a point.

Jeff Molofee's OpenGL Windows Tutorial #17 (By Giuseppe D'Agata)

Page 10 of 13

 glDisable(GL_BLEND);
 glColor3f(1.0f,1.0f,1.0f); // Bright White
 glBegin(GL_QUADS); // Draw Our First Texture Mapped Quad
 glTexCoord2d(0.0f,0.0f); // First Texture Coord
 glVertex2f(-1.0f, 1.0f); // First Vertex
 glTexCoord2d(1.0f,0.0f); // Second Texture Coord
 glVertex2f(1.0f, 1.0f); // Second Vertex
 glTexCoord2d(1.0f,1.0f); // Third Texture Coord
 glVertex2f(1.0f,-1.0f); // Third Vertex
 glTexCoord2d(0.0f,1.0f); // Fourth Texture Coord
 glVertex2f(-1.0f,-1.0f); // Fourth Vertex
 glEnd(); // Done Drawing The First Quad

 glRotatef(90.0f,1.0f,1.0f,0.0f); // Rotate On The X & Y Axis By 90 Degrees (Left To Right)
 glBegin(GL_QUADS); // Draw Our Second Texture Mapped Quad
 glTexCoord2d(0.0f,0.0f); // First Texture Coord
 glVertex2f(-1.0f, 1.0f); // First Vertex
 glTexCoord2d(1.0f,0.0f); // Second Texture Coord
 glVertex2f(1.0f, 1.0f); // Second Vertex
 glTexCoord2d(1.0f,1.0f); // Third Texture Coord
 glVertex2f(1.0f,-1.0f); // Third Vertex
 glTexCoord2d(0.0f,1.0f); // Fourth Texture Coord
 glVertex2f(-1.0f,-1.0f); // Fourth Vertex
 glEnd(); // Done Drawing Our Second Quad

 glEnable(GL_BLEND);
 glLoadIdentity(); // Reset The View

 // Pulsing Colors Based On Text Position
 glColor3f(1.0f*float(cos(cnt1)),1.0f*float(sin(cnt2)),1.0f-0.5f*float(cos(cnt1+cnt2)));

 We disable blending (we want the 3D object to appear solid), and set the color to bright white. We
then draw a single texture mapped quad.

Immediately after we've drawn the first quad, we rotate 90 degrees on both the x axis and y axis.
We then draw another quad. The second quad cuts through the middle of the first quad, creating a
nice looking shape.

 After both texture mapped quads have been drawn, we enable enable blending, and draw our text.

 We use the same fancy coloring code from our other text tutorials. The color is changed gradually
as the text moves across the screen.

Jeff Molofee's OpenGL Windows Tutorial #17 (By Giuseppe D'Agata)

Page 11 of 13

 glPrint(int((280+250*cos(cnt1))),int(235+200*sin(cnt2)),"NeHe",0); // Print GL Text To The Screen

 glColor3f(1.0f*float(sin(cnt2)),1.0f-0.5f*float(cos(cnt1+cnt2)),1.0f*float(cos(cnt1)));
 glPrint(int((280+230*cos(cnt2))),int(235+200*sin(cnt1)),"OpenGL",1); // Print GL Text To The Screen

 glColor3f(0.0f,0.0f,1.0f); // Set Color To Red
 glPrint(int(240+200*cos((cnt2+cnt1)/5)),2,"Giuseppe D'Agata",0); // Draw Text To The Screen

 glColor3f(1.0f,1.0f,1.0f); // Set Color To White
 glPrint(int(242+200*cos((cnt2+cnt1)/5)),2,"Giuseppe D'Agata",0); // Draw Offset Text To The Screen

 cnt1+=0.01f;
 cnt2+=0.0081f;
 return TRUE;
}

int WINAPI WinMain(HINSTANCE hInstance, // Instance
 HINSTANCE hPrevInstance, // Previous Instance
 LPSTR lpCmdLine,
 int nCmdShow) // Window Show State
{
 MSG msg;
 BOOL done=FALSE;

 // Ask The User Which Screen Mode They Prefer
 if (MessageBox(NULL,"Would You Like To Run In Fullscreen Mode?", "Start FullScreen?",MB_YESNO|MB_ICONQUESTION)==IDNO)
 {
 fullscreen=FALSE; // Windowed Mode
 }

Then we draw our text. We still use glPrint(). The first parameter is the x position. The second
parameter is the y position. The third parameter ("NeHe") is the text to write to the screen, and the
last parameter is the character set to use (0 - normal, 1 - italic).

As you can probably guess, we swing the text around the screen using COS and SIN, along with
both counters cnt1 and cnt2. If you don't understand what SIN and COS do, go back and read the
previous text tutorials.

We set the color to a dark blue and write the author's name at the bottom of the screen. We then
write his name to the screen again using bright white letters. The white letters are a little to the right
of the blue letters. This creates a shadowed look. (if blending wasn't enabled the effect wouldn't
work).

 The last thing we do is increase both our counters at different rates. This causes the text to move,
and the 3D object to spin.

 The code in KillGLWindow(), CreateGLWindow() and WndProc() has not changed so we'll skip over
it.

Jeff Molofee's OpenGL Windows Tutorial #17 (By Giuseppe D'Agata)

Page 12 of 13

 // Create Our OpenGL Window
 if (!CreateGLWindow("NeHe & Giuseppe D'Agata's 2D Font Tutorial",640,480,16,fullscreen))
 {
 return 0; // Quit If Window Was Not Created
 }

 while(!done)
 {
 if (PeekMessage(&msg,NULL,0,0,PM_REMOVE)) // Is There A Message Waiting?
 {
 if (msg.message==WM_QUIT) // Have We Received A Quit Message?
 {
 done=TRUE;
 }
 else
 {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }
 }
 else
 {
 // Draw The Scene. Watch For ESC Key And Quit Messages From DrawGLScene()
 if ((active && !DrawGLScene()) || keys[VK_ESCAPE]) // Active? Was There A Quit Received?
 {
 done=TRUE;
 }
 else
 {
 SwapBuffers(hDC); // Swap Buffers (Double Buffering)
 }
 }
 }

 // Shutdown

 if (!UnregisterClass("OpenGL",hInstance)) // Are We Able To Unregister Class
 {
 MessageBox(NULL,"Could Not Unregister Class.","SHUTDOWN ERROR",MB_OK | MB_ICONINFORMATION);
 hInstance=NULL; // Set hInstance To NULL
 }

 KillFont(); // Destroy The Font
}

 The title of our Window has changed.

 The last thing to do is add KillFont() to the end of KillGLWindow() just like I'm showing below. It's
important to add this line. It cleans things up before we exit our program.

Jeff Molofee's OpenGL Windows Tutorial #17 (By Giuseppe D'Agata)

Page 13 of 13

I think I can officially say that my site now teaches every possible way to write text to the screen
{grin}. All in all, I think this is a fairly good tutorial. The code can be used on any computer that can
run OpenGL, it's easy to use, and writing text to the screen using this method requires very little
processing power.

I'd like to thank Giuseppe D'Agata for the original version of this tutorial. I've modified it heavily, and
converted it to the new base code, but without him sending me the code I probably wouldn't have
written the tutorial. His version of the code had a few more options, such as spacing the characters,
etc, but I make up for it with the extremely cool 3D object {grin}.

I hope everyone enjoys this tutorial. If you have questions, email Giuseppe D'Agata or myself.

Giuseppe D'Agata

* DOWNLOAD Visual C++ Code For This Lesson.
* DOWNLOAD Delphi Code For This Lesson. (Conversion by Marc Aarts)
* DOWNLOAD Mac OS Code For This Lesson. (Conversion by Jörgen Isaksson)

Back To NeHe Productions!

Jeff Molofee's OpenGL Windows Tutorial #18 (By GB Schmick)

Page 1 of 5

#include <windows.h> // Header File For Windows
#include <stdio.h> // Header File For Standard Input/Output
#include <gl\gl.h> // Header File For The OpenGL32 Library
#include <gl\glu.h> // Header File For The GLu32 Library
#include <gl\glaux.h> // Header File For The GLaux Library

HDC hDC=NULL; // Private GDI Device Context
HGLRC hRC=NULL; // Permanent Rendering Context
HWND hWnd=NULL; // Holds Our Window Handle
HINSTANCE hInstance; // Holds The Instance Of The Application

bool keys[256]; // Array Used For The Keyboard Routine
bool active=TRUE; // Window Active Flag Set To TRUE By Default
bool fullscreen=TRUE; // Fullscreen Flag Set To Fullscreen Mode By Default
bool light; // Lighting ON/OFF
bool lp; // L Pressed?
bool fp; // F Pressed?
bool sp; // Spacebar Pressed?

int part1; // Start Of Disc (NEW)
int part2; // End Of Disc
int p1=0; // Increase 1
int p2=1; // Increase 2

GLfloat xrot; // X Rotation
GLfloat yrot; // Y Rotation
GLfloat xspeed; // X Rotation Speed
GLfloat yspeed; // Y Rotation Speed

GLfloat z=-5.0f; // Depth Into The Screen

GLUquadricObj *quadratic; // Storage For Our Quadratic Objects

GLfloat LightAmbient[]= { 0.5f, 0.5f, 0.5f, 1.0f }; // Ambient Light Values
GLfloat LightDiffuse[]= { 1.0f, 1.0f, 1.0f, 1.0f }; // Diffuse Light Values
GLfloat LightPosition[]= { 0.0f, 0.0f, 2.0f, 1.0f }; // Light Position

GLuint filter; // Which Filter To Use
GLuint texture[3]; // Storage for 3 textures
GLuint object=0; // Which Object To Draw (NEW)

LRESULT CALLBACK WndProc(HWND, UINT, WPARAM, LPARAM); // Declaration For WndProc

 Lesson 18

Quadratics
Quadratics are a way of drawing complex objects that would usually take a few for loops and some
background in trigonometry.

We'll be using the code from lesson seven. We will add 7 variables and modify the texture to add
some variety :)

Jeff Molofee's OpenGL Windows Tutorial #18 (By GB Schmick)

Page 2 of 5

 quadratic=gluNewQuadric(); // Create A Pointer To The Quadric Object
 gluQuadricNormals(quadratic, GLU_SMOOTH); // Create Smooth Normals (NEW)
 gluQuadricTexture(quadratic, GL_TRUE); // Create Texture Coords (NEW)

GLvoid glDrawCube() // Draw A Cube
{
 glBegin(GL_QUADS); // Start Drawing Quads
 // Front Face
 glNormal3f(0.0f, 0.0f, 1.0f); // Normal Facing Forward
 glTexCoord2f(0.0f, 0.0f); glVertex3f(-1.0f, -1.0f, 1.0f); // Bottom Left Of The Texture and Quad
 glTexCoord2f(1.0f, 0.0f); glVertex3f(1.0f, -1.0f, 1.0f); // Bottom Right Of The Texture and Quad
 glTexCoord2f(1.0f, 1.0f); glVertex3f(1.0f, 1.0f, 1.0f); // Top Right Of The Texture and Quad
 glTexCoord2f(0.0f, 1.0f); glVertex3f(-1.0f, 1.0f, 1.0f); // Top Left Of The Texture and Quad
 // Back Face
 glNormal3f(0.0f, 0.0f,-1.0f); // Normal Facing Away
 glTexCoord2f(1.0f, 0.0f); glVertex3f(-1.0f, -1.0f, -1.0f); // Bottom Right Of The Texture and Quad
 glTexCoord2f(1.0f, 1.0f); glVertex3f(-1.0f, 1.0f, -1.0f); // Top Right Of The Texture and Quad
 glTexCoord2f(0.0f, 1.0f); glVertex3f(1.0f, 1.0f, -1.0f); // Top Left Of The Texture and Quad
 glTexCoord2f(0.0f, 0.0f); glVertex3f(1.0f, -1.0f, -1.0f); // Bottom Left Of The Texture and Quad
 // Top Face
 glNormal3f(0.0f, 1.0f, 0.0f); // Normal Facing Up
 glTexCoord2f(0.0f, 1.0f); glVertex3f(-1.0f, 1.0f, -1.0f); // Top Left Of The Texture and Quad
 glTexCoord2f(0.0f, 0.0f); glVertex3f(-1.0f, 1.0f, 1.0f); // Bottom Left Of The Texture and Quad
 glTexCoord2f(1.0f, 0.0f); glVertex3f(1.0f, 1.0f, 1.0f); // Bottom Right Of The Texture and Quad
 glTexCoord2f(1.0f, 1.0f); glVertex3f(1.0f, 1.0f, -1.0f); // Top Right Of The Texture and Quad
 // Bottom Face
 glNormal3f(0.0f,-1.0f, 0.0f); // Normal Facing Down
 glTexCoord2f(1.0f, 1.0f); glVertex3f(-1.0f, -1.0f, -1.0f); // Top Right Of The Texture and Quad
 glTexCoord2f(0.0f, 1.0f); glVertex3f(1.0f, -1.0f, -1.0f); // Top Left Of The Texture and Quad
 glTexCoord2f(0.0f, 0.0f); glVertex3f(1.0f, -1.0f, 1.0f); // Bottom Left Of The Texture and Quad
 glTexCoord2f(1.0f, 0.0f); glVertex3f(-1.0f, -1.0f, 1.0f); // Bottom Right Of The Texture and Quad
 // Right face
 glNormal3f(1.0f, 0.0f, 0.0f); // Normal Facing Right
 glTexCoord2f(1.0f, 0.0f); glVertex3f(1.0f, -1.0f, -1.0f); // Bottom Right Of The Texture and Quad
 glTexCoord2f(1.0f, 1.0f); glVertex3f(1.0f, 1.0f, -1.0f); // Top Right Of The Texture and Quad
 glTexCoord2f(0.0f, 1.0f); glVertex3f(1.0f, 1.0f, 1.0f); // Top Left Of The Texture and Quad
 glTexCoord2f(0.0f, 0.0f); glVertex3f(1.0f, -1.0f, 1.0f); // Bottom Left Of The Texture and Quad
 // Left Face
 glNormal3f(-1.0f, 0.0f, 0.0f); // Normal Facing Left
 glTexCoord2f(0.0f, 0.0f); glVertex3f(-1.0f, -1.0f, -1.0f); // Bottom Left Of The Texture and Quad
 glTexCoord2f(1.0f, 0.0f); glVertex3f(-1.0f, -1.0f, 1.0f); // Bottom Right Of The Texture and Quad
 glTexCoord2f(1.0f, 1.0f); glVertex3f(-1.0f, 1.0f, 1.0f); // Top Right Of The Texture and Quad
 glTexCoord2f(0.0f, 1.0f); glVertex3f(-1.0f, 1.0f, -1.0f); // Top Left Of The Texture and Quad
 glEnd(); // Done Drawing Quads

Okay now move down to InitGL(), We're going to add 3 lines of code here to initialize our quadratic.
Add these 3 lines after you enable light1 but before you return true. The first line of code initializes
the Quadratic and creates a pointer to where it will be held in memory. If it can't be created it
returns 0. The second line of code creates smooth normals on the quadratic so lighting will look
great. Other possible values are GLU_NONE, and GLU_FLAT. Last we enable texture mapping on
our quadratic. Texture mapping is kind of awkward and never goes the way you planned as you can
tell from the crate texture.

Now I decided to keep the cube in this tutorial so you can see how the textures are mapped onto
the quadratic object. I decided to move the cube into its own function so when we write the draw
function it will appear more clean. Everybody should recognize this code. =P

Jeff Molofee's OpenGL Windows Tutorial #18 (By GB Schmick)

Page 3 of 5

}

int DrawGLScene(GLvoid) // Here's Where We Do All The Drawing
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Clear The Screen And The Depth Buffer
 glLoadIdentity(); // Reset The View
 glTranslatef(0.0f,0.0f,z); // Translate Into The Screen

 glRotatef(xrot,1.0f,0.0f,0.0f); // Rotate On The X Axis
 glRotatef(yrot,0.0f,1.0f,0.0f); // Rotate On The Y Axis

 glBindTexture(GL_TEXTURE_2D, texture[filter]); // Select A Filtered Texture

 // This Section Of Code Is New (NEW)
 switch(object) // Check object To Find Out What To Draw
 {
 case 0: // Drawing Object 1
 glDrawCube(); // Draw Our Cube
 break; // Done

 case 1: // Drawing Object 2
 glTranslatef(0.0f,0.0f,-1.5f); // Center The Cylinder
 gluCylinder(quadratic,1.0f,1.0f,3.0f,32,32); // Draw Our Cylinder
 break; // Done

Next is the DrawGLScene function, here I just wrote a simple if statement to draw the different
objects. Also I used a static variable (a local variable that keeps its value everytime it is called) for a
cool effect when drawing the partial disk. I'm going to rewrite the whole DrawGLScene function for
clarity.

You'll notice that when I talk about the parameters being used I ignore the actual first parameter
(quadratic). This parameter is used for all the objects we draw aside from the cube, so I ignore it
when I talk about the parameters.

The second object we create is going to be a Cylinder. The first parameter (1.0f) is the radius of the
cylinder at base (bottom). The second parameter (1.0f) is the radius of the cylinder at the top. The
third parameter (3.0f) is the height of the cylinder (how long it is). The fouth parameter (32) is how
many subdivisions there are "around" the Z axis, and finally, the fifth parameter (32) is the amount
of subdivisions "along" the Z axis. The more subdivisions there are the more detailed the object is.
By increase the amount of subdivisions you add more polygons to the object. So you end up
sacrificing speed for quality. Most of the time it's easy to find a happy medium.

The third object we create will be a CD shaped disc. The first parameter (0.5f) is the inner radius of
the disk. This value can be zero, meaning there will be no hole in the middle. The larger the inner
radius is, the bigger the hole in the middle of the disc will be. The second parameter (1.5f) is the
outer radius. This value should be larger than the inner radius. If you make this value a little bit
larger than the inner radius you will end up with a thing ring. If you make this value alot larger than
the inner radius you will end up with a thick ring. The third parameter (32) is the number of slices
that make up the disc. Think of slices like the slices in a pizza. The more slices you have, the
smoother the outer edge of the disc will be. Finally the fourth parameter (32) is the number of rings
that make up the disc. The rings are are similar to the tracks on a record. Circles inside circles.
These ring subdivide the disc from the inner radius to the outer radius, adding more detail. Again,
the more subdivisions there are, the slow it will run.

Jeff Molofee's OpenGL Windows Tutorial #18 (By GB Schmick)

Page 4 of 5

 case 2: // Drawing Object 3
 gluDisk(quadratic,0.5f,1.5f,32,32); // Draw A Disc (CD Shape)
 break; // Done

 case 3: // Drawing Object 4
 gluSphere(quadratic,1.3f,32,32); // Draw A Sphere
 break; // Done

 case 4: // Drawing Object 5
 glTranslatef(0.0f,0.0f,-1.5f); // Center The Cone
 gluCylinder(quadratic,1.0f,0.0f,3.0f,32,32); // A Cone With A Bottom Radius Of .5 And A Height Of 2
 break; // Done

 case 5: // Drawing Object 6
 part1+=p1; // Increase Start Angle
 part2+=p2; // Increase Sweep Angle

 if(part1>359) // 360 Degrees
 {
 p1=0; // Stop Increasing Start Angle
 part1=0; // Set Start Angle To Zero
 p2=1; // Start Increasing Sweep Angle
 part2=0; // Start Sweep Angle At Zero
 }
 if(part2>359) // 360 Degrees
 {
 p1=1; // Start Increasing Start Angle
 p2=0; // Stop Increasing Sweep Angle
 }
 gluPartialDisk(quadratic,0.5f,1.5f,32,32,part1,part2-part1); // A Disk Like The One Before
 break; // Done

Our fourth object is an object that I know many of you have been dying to figure out. The Sphere!
This one is quite simple. The first parameter is the radius of the sphere. In case you're not familiar
with radius/diameter, etc, the radius is the distance from the center of the object to the outside of
the object. In this case our radius is 1.3f. Next we have our subdivision "around" the Z axis (32),
and our subdivision "along" the Z axis (32). The more subdivisions you have the smoother the
sphere will look. Spheres usually require quite a few subdivisions to make them look smooth.

Our fifth object is created using the same command that we used to create a Cylinder. If you
remember, when we were creating the Cylinder the first two parameters controlled the radius of the
cylinder at the bottom and the top. To make a cone it makes sense that all we'd have to do is make
the radius at one end Zero. This will create a point at one end. So in the code below, we make the
radius at the top of the cylinder equal zero. This creates our point, which also creates our cone.

Our sixth object is created with gluPartialDisc. The object we create using this command will look
exactly like the disc we created above, but with the command gluPartialDisk there are two new
parameters. The fifth parameter (part1) is the start angle we want to start drawing the disc at. The
sixth parameter is the sweep angle. The sweep angle is the distance we travel from the current
angle. We'll increase the sweep angle, which causes the disc to be slowly drawn to the screen in a
clockwise direction. Once our sweep hits 360 degrees we start to increase the start angle. the
makes it appear as if the disc is being erased, then we start all over again!

Jeff Molofee's OpenGL Windows Tutorial #18 (By GB Schmick)

Page 5 of 5

 };

 xrot+=xspeed; // Increase Rotation On X Axis
 yrot+=yspeed; // Increase Rotation On Y Axis
 return TRUE; // Keep Going
}

 if (keys[' '] && !sp) // Is Spacebar Being Pressed?
 {
 sp=TRUE; // If So, Set sp To TRUE
 object++; // Cycle Through The Objects
 if(object>5) // Is object Greater Than 5?
 object=0; // If So, Set To Zero
 }
 if (!keys[' ']) // Has The Spacebar Been Released?
 {
 sp=FALSE; // If So, Set sp To FALSE
 }

 Now for the final part, they key input. Just add this where we check the rest of key input.

Thats all! Now you can draw quadratics in OpenGL. Some really impressive things can be done
with morphing and quadratics. The animated disc is an example of simple morphing.

GB Schmick (TipTup)
Everyone if you have time go check out my website, TipTup.Com 2000.

* DOWNLOAD Visual C++ Code For This Lesson.
* DOWNLOAD Delphi Code For This Lesson. (Conversion by Marc Aarts)
* DOWNLOAD Mac OS Code For This Lesson. (Conversion by Anthony Parker)

Back To NeHe Productions!

Jeff Molofee's OpenGL Windows Tutorial #19

Page 1 of 17

#include <windows.h> // Header File For Windows
#include <stdio.h> // Header File For Standard Input/Output (ADD)
#include <gl\gl.h> // Header File For The OpenGL32 Library
#include <gl\glu.h> // Header File For The GLu32 Library
#include <gl\glaux.h> // Header File For The GLaux Library

#define MAX_PARTICLES 1000 // Number Of Particles To Create (NEW)

HDC hDC=NULL; // Private GDI Device Context

 Lesson 19

Welcome to Tutorial 19. You've learned alot, and now you want to play. I will introduce one new
command in this tutorial... The triangle strip. It's very easy to use, and can help speed up your
programs when drawing alot of triangles.

In this tutorial I will teach you how to make a semi-complex Particle Engine. Once you understand
how particle engines work, creating effects such as fire, smoke, water fountains and more will be a
piece of cake!

I have to warn you however! Until today I had never written a particle engine. I had this idea that the
'famous' particle engine was a very complex piece of code. I've made attempts in the past, but
usually gave up after I realized I couldn't control all the points without going crazy.

You might not believe me when I tell you this, but this tutorial was written 100% from scratch. I
borrowed no ones ideas, and I had no technical information sitting in front of me. I started thinking
about particles, and all of a sudden my head filled with ideas (brain turning on?). Instead of thinking
about each particle as a pixel that had to go from point 'A' to point 'B', and do this or that, I decided
it would be better to think of each particle as an individual object responding to the environment
around it. I gave each particle life, random aging, color, speed, gravitational influence and more.

Soon I had a finished project. I looked up at the clock and realized aliens had come to get me once
again. Another 4 hours gone! I remember stopping now and then to drink coffee and blink, but 4
hours... ?

So, although this program in my opinion looks great, and works exactly like I wanted it to, it may
not be the proper way to make a particle engine. I don't care personally, as long as it works well,
and I can use it in my projects! If you are the type of person that needs to know you're conforming,
then spend hours browsing the net looking for information. Just be warned. The few code snippits
you do find may appear cryptic :)

This tutorial uses the base code from lesson 1. There is alot of new code however, so I'll rewrite any
section of code that contains changes (makes it easier to understand).

Using the code from lesson 1, we'll add 5 new lines of code at the top of our program. The first line
(stdio.h) allows us to read data from files. It's the same line we've added to previous tutorials the
use texture mapping. The second line defines how many particles were going to create and display
on the screen. Define just tells our program that MAX_PARTICLES will equal whatever value we
specify. In this case 1000. The third line will be used to toggle 'rainbow mode' off and on. We'll set it
to on by default. sp and rp are variables we'll use to prevent the spacebar or return key from rapidly
repeating when held down.

Jeff Molofee's OpenGL Windows Tutorial #19

Page 2 of 17

HGLRC hRC=NULL; // Permanent Rendering Context
HWND hWnd=NULL; // Holds Our Window Handle
HINSTANCE hInstance; // Holds The Instance Of The Application

bool keys[256]; // Array Used For The Keyboard Routine
bool active=TRUE; // Window Active Flag Set To TRUE By Default
bool fullscreen=TRUE; // Fullscreen Flag Set To Fullscreen Mode By Default
bool rainbow=true; // Rainbow Mode? (ADD)
bool sp; // Spacebar Pressed? (ADD)
bool rp; // Return Key Pressed? (ADD)

float slowdown=2.0f; // Slow Down Particles
float xspeed; // Base X Speed (To Allow Keyboard Direction Of Tail)
float yspeed; // Base Y Speed (To Allow Keyboard Direction Of Tail)
float zoom=-40.0f; // Used To Zoom Out

GLuint loop; // Misc Loop Variable
GLuint col; // Current Color Selection
GLuint delay; // Rainbow Effect Delay
GLuint texture[1]; // Storage For Our Particle Texture

The next 4 lines are misc variables. The variable slowdown controls how fast the particles move.
The higher the number, the slower they move. The lower the number, the faster they move. If the
value is set to low, the particles will move way too fast! The speed the particles travel at will affect
how they move on the screen. Slow particles will not shoot out as far. Keep this in mind.

The variables xspeed and yspeed allow us to control the direction of the tail. xspeed will be added
to the current speed a particle is travelling on the x axis. If xspeed is a positive value our particle
will be travelling more to the right. If xspeed is a negative value, our particle will travel more to the
left. The higher the value, the more it travels in that direction. yspeed works the same way, but on
the y axis. The reason I say 'MORE' in a specific direction is because other factors affect the
direction our particle travels. xspeed and yspeed help to move the particle in the direction we
want.

Finally we have the variable zoom. We use this variable to pan into and out of our scene. With
particle engines, it's nice to see more of the screen at times, and cool to zoom in real close other
times.

Now we set up a misc loop variable called loop. We'll use this to predefine the particles and to
draw the particles to the screen. col will be use to keep track of what color to make the particles.
delay will be used to cycle through the colors while in rainbow mode.

Finally, we set aside storage space for one texture (the particle texture). I decided to use a texture
rather than OpenGL points for a few reasons. The most important reason is because points are not
all that fast, and they look pretty blah. Secondly, textures are way more cool :) You can use a
square particle, a tiny picture of your face, a picture of a star, etc. More control!

Jeff Molofee's OpenGL Windows Tutorial #19

Page 3 of 17

typedef struct // Create A Structure For Particle
{
 bool active; // Active (Yes/No)
 float life; // Particle Life
 float fade; // Fade Speed

 float r; // Red Value
 float g; // Green Value
 float b; // Blue Value

 float x; // X Position
 float y; // Y Position
 float z; // Z Position

 float xi; // X Direction
 float yi; // Y Direction
 float zi; // Z Direction

Ok, now for the fun stuff. The next section of code creates a structure describing a single particle.
This is where we give the particle certain characteristics.

We start off with the boolean variable active. If this variable is TRUE, our particle is alive and
kicking. If it's FALSE our particle is dead or we've turned it off! In this program I don't use active,
but it's handy to include.

The variables life and fade control how long the particle is displayed, and how bright the particle is
while it's alive. The variable life is gradually decreased by the value stored in fade. In this program
that will cause some particles to burn longer than others.

The variables r, g and b hold the red intensity, green intensity and blue intensity of our particle. The
closer r is to 1.0f, the more red the particle will be. Making all 3 variables 1.0f will create a white
particle.

The variables x, y and z control where the particle will be displayed on the screen. x holds the
location of our particle on the x axis. y holds the location of our particle on the y axis, and finally z
holds the location of our particle on the z axis.

The next three variables are important. These three variables control how fast a particle is moving
on specific axis, and what direction to move. If xi is a negative value our particle will move left.
Positive it will move right. If yi is negative our particle will move down. Positive it will move up.
Finally, if zi is negative the particle will move into the screen, and postive it will move towards the
viewer.

Lastly, 3 more variables! Each of these variables can be thought of as gravity. If xg is a positive
value, our particle will pull to the right. If it's negative our particle will be pulled to the left. So if our
particle is moving left (negative) and we apply a positive gravity, the speed will eventually slow so
much that our particle will start moving the opposite direction. yg pulls up or down and zg pulls
towards or away from the viewer.

Jeff Molofee's OpenGL Windows Tutorial #19

Page 4 of 17

 float xg; // X Gravity
 float yg; // Y Gravity
 float zg; // Z Gravity

}
particles; // Particles Structure

particles particle[MAX_PARTICLES]; // Particle Array (Room For Particle Info)

static GLfloat colors[12][3]= // Rainbow Of Colors
{
 {1.0f,0.5f,0.5f},{1.0f,0.75f,0.5f},{1.0f,1.0f,0.5f},{0.75f,1.0f,0.5f},
 {0.5f,1.0f,0.5f},{0.5f,1.0f,0.75f},{0.5f,1.0f,1.0f},{0.5f,0.75f,1.0f},
 {0.5f,0.5f,1.0f},{0.75f,0.5f,1.0f},{1.0f,0.5f,1.0f},{1.0f,0.5f,0.75f}
};

LRESULT CALLBACK WndProc(HWND, UINT, WPARAM, LPARAM); // Declaration For WndProc

AUX_RGBImageRec *LoadBMP(char *Filename) // Loads A Bitmap Image
{
 FILE *File=NULL; // File Handle
 if (!Filename) // Make Sure A Filename Was Given
 {
 return NULL; // If Not Return NULL
 }

 File=fopen(Filename,"r"); // Check To See If The File Exists
 if (File) // Does The File Exist?
 {
 fclose(File); // Close The Handle
 return auxDIBImageLoad(Filename); // Load The Bitmap And Return A Pointer
 }
 return NULL; // If Load Failed Return NULL
}

 particles is the name of our structure.

Next we create an array called particle. This array will store MAX_PARTICLES. Translated into
english we create storage for 1000 (MAX_PARTICLES) particles. This storage space will store the
information for each individual particle.

We cut back on the amount of code required for this program by storing our 12 different colors in a
color array. For each color from 1 to 12 we store the red intensity, the green intensity, and finally
the blue intensity. The color table below stores 12 different colors fading from red to violet.

 Our bitmap loading code hasn't changed.

Jeff Molofee's OpenGL Windows Tutorial #19

Page 5 of 17

int LoadGLTextures() // Load Bitmaps And Convert To Textures
{
 int Status=FALSE; // Status Indicator

 AUX_RGBImageRec *TextureImage[1]; // Create Storage Space For The Texture

 memset(TextureImage,0,sizeof(void *)*1); // Set The Pointer To NULL

 if (TextureImage[0]=LoadBMP("Data/Particle.bmp")) // Load Particle Texture
 {
 Status=TRUE; // Set The Status To TRUE
 glGenTextures(1, &texture[0]); // Create One Textures

 glBindTexture(GL_TEXTURE_2D, texture[0]);
 glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_LINEAR);
 glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_LINEAR);
 glTexImage2D(GL_TEXTURE_2D, 0, 3, TextureImage[0]->sizeX, TextureImage[0]-
 }

 if (TextureImage[0]) // If Texture Exists
 {
 if (TextureImage[0]->data) // If Texture Image Exists
 {
 free(TextureImage[0]->data); // Free The Texture Image Memory
 }
 free(TextureImage[0]); // Free The Image Structure
 }
 return Status; // Return The Status
}

GLvoid ReSizeGLScene(GLsizei width, GLsizei height) // Resize And Initialize The GL Window
{
 if (height==0) // Prevent A Divide By Zero By
 {
 height=1; // Making Height Equal One
 }

 glViewport(0, 0, width, height); // Reset The Current Viewport

 glMatrixMode(GL_PROJECTION); // Select The Projection Matrix
 glLoadIdentity(); // Reset The Projection Matrix

 // Calculate The Aspect Ratio Of The Window
 gluPerspective(45.0f,(GLfloat)width/(GLfloat)height,0.1f,200.0f); (MODIFIED)

 This is the section of code that loads the bitmap (calling the code above) and converts it into a
textures. Status is used to keep track of whether or not the texture was loaded and created.

 Our texture loading code will load in our particle bitmap and convert it to a linear filtered texture.

 The only change I made to the resize code was a deeper viewing distance. Instead of 100.0f, we
can now view particles 200.0f units into the screen.

Jeff Molofee's OpenGL Windows Tutorial #19

Page 6 of 17

 glMatrixMode(GL_MODELVIEW); // Select The Modelview Matrix
 glLoadIdentity(); // Reset The Modelview Matrix
}

int InitGL(GLvoid) // All Setup For OpenGL Goes Here
{
 if (!LoadGLTextures())
 {
 return FALSE;
 }

 glShadeModel(GL_SMOOTH); // Enables Smooth Shading
 glClearColor(0.0f,0.0f,0.0f,0.0f); // Black Background
 glClearDepth(1.0f);
 glEnable(GL_DEPTH_TEST); // Enables Depth Testing
 glEnable(GL_BLEND);
 glBlendFunc(GL_SRC_ALPHA,GL_ONE); // Type Of Blending To Perform
 glHint(GL_PERSPECTIVE_CORRECTION_HINT,GL_NICEST); // Really Nice Perspective Calculations
 glHint(GL_POINT_SMOOTH_HINT,GL_NICEST);
 glEnable(GL_TEXTURE_2D); // Enable Texture Mapping
 glBindTexture(GL_TEXTURE_2D,texture[0]); // Select Our Texture

 for (loop=0;loop<MAX_PARTICLES;loop++)
 {
 particle[loop].active=true; // Make All The Particles Active
 particle[loop].life=1.0f; // Give All The Particles Full Life

 particle[loop].fade=float(rand()%100)/1000.0f+0.003f; // Random Fade Speed

 If you're using the lesson 1 code, replace it with the code below. I've added code to load in our
texture and set up blending for our particles.

 We enable smooth shading, clear our background to black, enable depth testing, blending and
texture mapping. After enabling texture mapping we select our particle texture.

The code below will initialize each of the particles. We start off by activating each particle. If a
particle is not active, it won't appear on the screen, no matter how much life it has.

After we've made the particle active, we give it life. I doubt the way I apply life, and fade the particles
is the best way, but once again, it works good! Full life is 1.0f. This also gives the particle full
brightness.

We set how fast the particle fades out by giving fade a random value. The variable life will be
reduced by fade each time the particle is drawn. The value we end up with will be a random value
from 0 to 99. We then divide it by 1000 so that we get a very tiny floating point value. Finally we
then add .003 to the final result so that the fade speed is never 0.

Jeff Molofee's OpenGL Windows Tutorial #19

Page 7 of 17

 particle[loop].r=colors[(loop+1)/(MAX_PARTICLES/12)][0]; // Select Red Rainbow Color
 particle[loop].g=colors[(loop+1)/(MAX_PARTICLES/12)][1]; // Select Green Rainbow Color
 particle[loop].b=colors[(loop+1)/(MAX_PARTICLES/12)][2]; // Select Blue Rainbow Color

 particle[loop].xi=float((rand()%50)-26.0f)*10.0f; // Random Speed On X Axis
 particle[loop].yi=float((rand()%50)-25.0f)*10.0f; // Random Speed On Y Axis
 particle[loop].zi=float((rand()%50)-25.0f)*10.0f; // Random Speed On Z Axis

 particle[loop].xg=0.0f;
 particle[loop].yg=-0.8f; // Set Vertical Pull Downward
 particle[loop].zg=0.0f;
 }
 return TRUE;
}

int DrawGLScene(GLvoid)
{

Now that our particle is active, and we've given it life, it's time to give it some color. For the initial
effect, we want each particle to be a different color. What I do is make each particle one of the 12
colors that we've built in our color table at the top of this program. The math is simple. We take our
loop variable and add one to it to prevent a divide by zero error. Then we divide loop by the number
of particles we plan to create divided by the number of colors in our table +1.

If loop is 0 the result would be 0+1/(1000/12)=0.012. Because the result is an integer value, that will
be rounded down to 0 (our first color). If loop was 1000 (maximum amount of particles), the result
would be 1000+1/(1000/12)=12.012. Rounded as an integer the result would be 12 which is our last
color.

Now we'll set the direction that each particle moves, along with the speed. We're going to multiply
the results by 10.0f to create a spectacular explosion when the program first starts.

We'll end up with either a positive or negative random value. This value will be used to move the
particle in a random direction at a random speed.

Finally, we set the amount of gravity acting on each particle. Unlike regular gravity that just pulls
things down, our gravity can pull up, down, left, right, forward or backward. To start out we want
semi strong gravity pulling downwards. To do this we set xg to 0.0f. No pull left or right on the x
plane. We set yg to -0.8f. This creates a semi-strong pull downwards. If the value was positive it
would pull upwards. We don't want the particles pulling towards or away from us so we'll set zg to
0.0f.

Now for the fun stuff. The next section of code is where we draw the particle, check for gravity, etc.
It's important that you understand what's going on, so please read carefully :)

We reset the Modelview Matrix only once. We'll position the particles using the glVertex3f()
command instead of using tranlations, that way we don't alter the modelview matrix while drawing
our particles.

Jeff Molofee's OpenGL Windows Tutorial #19

Page 8 of 17

 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Clear Screen And Depth Buffer
 glLoadIdentity(); // Reset The ModelView Matrix

We start off by creating a loop. This loop will update each one of our particles.

 for (loop=0;loop<MAX_PARTICLES;loop++)
 {

 if (particle[loop].active) // If The Particle Is Active
 {

 float x=particle[loop].x; // Grab Our Particle X Position
 float y=particle[loop].y; // Grab Our Particle Y Position
 float z=particle[loop].z+zoom;

 // Draw The Particle Using Our RGB Values, Fade The Particle Based On It's Life
 glColor4f(particle[loop].r,particle[loop].g,particle[loop].b,particle[loop].life);

 glBegin(GL_TRIANGLE_STRIP); // Build Quad From A Triangle Strip

First thing we do is check to see if the particle is active. If it's not active, it wont be updated. In this
program they're all active, all the time. But in a program of your own, you may want to make certain
particles inactive.

The next three variables x, y and z are temporary variables that we'll use to hold the particles x, y
and z position. Notice we add zoom to the z position so that our scene is moved into the screen
based on the value stored in zoom. particle[loop].x holds our x position for whatever particle we
are drawing (particle loop). particle[loop].y holds our y position for our particle and particle
[loop].z holds our z position.

Now that we have the particle position, we can color the particle. particle[loop].r holds the red
intensity of our particle, particle[loop].g holds our green intensity, and particle[loop].b holds our
blue intensity. Notice I use the particles life for the alpha value. As the particle dies, it becomes
more and more transparent, until it eventually doesn't exist. That's why the particles life should
never be more than 1.0f. If you need the particles to burn longer, try reducing the fade speed so that
the particle doesn't fade out as fast.

We have the particle position and the color is set. All that we have to do now is draw our particle.
Instead of using a textured quad, I've decided to use a textured triangle strip to speed the program
up a bit. Most 3D cards can draw triangles alot faster than they can draw quads. Some 3D cards
will convert the quad to two triangles for you, but some don't. So we'll do the work ourselves. We
start off by telling OpenGL we want to draw a triangle strip.

Jeff Molofee's OpenGL Windows Tutorial #19

Page 9 of 17

 glTexCoord2d(1,1); glVertex3f(x+0.5f,y+0.5f,z); // Top Right
 glTexCoord2d(0,1); glVertex3f(x-0.5f,y+0.5f,z); // Top Left
 glTexCoord2d(1,0); glVertex3f(x+0.5f,y-0.5f,z); // Bottom Right
 glTexCoord2d(0,0); glVertex3f(x-0.5f,y-0.5f,z); // Bottom Left

 glEnd(); // Done Building Triangle Strip

 particle[loop].x+=particle[loop].xi/(slowdown*1000); // Move On The X Axis By X Speed

Quoted directly from the red book: A triangle strip draws a series of
triangles (three sided polygons) using vertices V0, V1, V2, then V2,

V1, V3 (note the order), then V2, V3, V4, and so on. The ordering is to

ensure that the triangles are all drawn with the same orientation so
that the strip can correctly form part of a surface. Preserving the
orientation is important for some operations, such as culling. There
must be at least 3 points for anything to be drawn.

So the first triangle is drawn using vertices 0, 1 and 2. If you look at
the picture you'll see that vertex points 0, 1 and 2 do indeed make up the first triangle (top right, top
left, bottom right). The second triangle is drawn using vertices 2, 1 and 3. Again, if you look at the
picture, vertices 2, 1 and 3 create the second triangle (bottom right, top left, bottom left). Notice
that both triangles are drawn with the same winding (counter-clockwise orientation). I've seen quite
a few web sites that claim every second triangle is wound the opposite direction. This is not the
case. OpenGL will rearrange the vertices to ensure that all of the triangles are wound the same
way!

There are two good reasons to use triangle strips. First, after specifying the first three vertices for
the initial triangle, you only need to specify a single point for each additional triangle. That point will
be combined with 2 previous vertices to create a triangle. Secondly, by cutting back the amount of
data needed to create a triangle your program will run quicker, and the amount of code or data
required to draw an object is greatly reduced.

Note: The number of triangles you see on the screen will be the number of vertices you specify
minus 2. In the code below we have 4 vertices and we see two triangles.

 Finally we tell OpenGL that we are done drawing our triangle strip.

Now we can move the particle. The math below may look strange, but once again, it's pretty
simple. First we take the current particle x position. Then we add the x movement value to the
particle divided by slowdown times 1000. So if our particle was in the center of the screen on the x
axis (0), our movement variable (xi) for the x axis was +10 (moving us to the right) and slowdown
was equal to 1, we would be moving to the right by 10/(1*1000), or 0.01f. If we increase the
slowdown to 2 we'll only be moving at 0.005f. Hopefully that helps you understand how slowdown
works.

That's also why multiplying the start values by 10.0f made the pixels move alot faster, creating an
explosion.

We use the same formula for the y and z axis to move the particle around on the screen.

Jeff Molofee's OpenGL Windows Tutorial #19

Page 10 of 17

 particle[loop].y+=particle[loop].yi/(slowdown*1000); // Move On The Y Axis By Y Speed
 particle[loop].z+=particle[loop].zi/(slowdown*1000); // Move On The Z Axis By Z Speed

 particle[loop].xi+=particle[loop].xg;
 particle[loop].yi+=particle[loop].yg;
 particle[loop].zi+=particle[loop].zg;

 particle[loop].life-=particle[loop].fade; // Reduce Particles Life By 'Fade'

 if (particle[loop].life<0.0f)
 {

 particle[loop].life=1.0f;
 particle[loop].fade=float(rand()%100)/1000.0f+0.003f;

 particle[loop].x=0.0f;
 particle[loop].y=0.0f;
 particle[loop].z=0.0f;

After we've calculated where to move the particle to next, we have to apply gravity or resistance. In
the first line below, we do this by adding our resistance (xg) to the speed we are moving at (xi).

Lets say our moving speed was 10 and our resistance was 1. Each time our particle was drawn
resistance would act on it. So the second time it was drawn, resistance would act, and our moving
speed would drop from 10 to 9. This causes the particle to slow down a bit. The third time the
particle is drawn, resistance would act again, and our moving speed would drop to 8. If the particle
burns for more than 10 redraws, it will eventually end up moving the opposite direction because the
moving speed would become a negative value.

The resistance is applied to the y and z moving speed the same way it's applied to the x moving
speed.

The next line takes some life away from the particle. If we didn't do this, the particle would never
burn out. We take the current life of the particle and subtract the fade value for that particle. Each
particle will have a different fade value, so they'll all burn out at different speeds.

 Now we check to see if the particle is still alive after having life taken from it.

 If the particle is dead (burnt out), we'll rejuvenate it. We do this by giving it full life and a new fade
speed.

 We also reset the particles position to the center of the screen. We do this by resetting the x, y
and z positions of the particle to zero.

Jeff Molofee's OpenGL Windows Tutorial #19

Page 11 of 17

 particle[loop].xi=xspeed+float((rand()%60)-32.0f);
 particle[loop].yi=yspeed+float((rand()%60)-30.0f);
 particle[loop].zi=float((rand()%60)-30.0f);

 particle[loop].r=colors[col][0];
 particle[loop].g=colors[col][1];
 particle[loop].b=colors[col][2];
 }

 // If Number Pad 8 And Y Gravity Is Less Than 1.5 Increase Pull Upwards
 if (keys[VK_NUMPAD8] && (particle[loop].yg<1.5f)) particle[loop].yg+=0.01f;

 // If Number Pad 2 And Y Gravity Is Greater Than -1.5 Increase Pull Downwards
 if (keys[VK_NUMPAD2] && (particle[loop].yg>-1.5f)) particle[loop].yg

After the particle has been reset to the center of the screen, we give it a new moving speed /
direction. Notice I've increased the maximum and minimum speed that the particle can move at
from a random value of 50 to a value of 60, but this time we're not going to multiply the moving
speed by 10. We don't want an explosion this time around, we want slower moving particles.

Also notice that I add xspeed to the x axis moving speed, and yspeed to the y axis moving speed.
This gives us control over what direction the particles move later in the program.

Lastly we assign the particle a new color. The variable col holds a number from 0 to 11 (12 colors).
We use this variable to look of the red, green and blue intensities in our color table that we made at
the beginning of the program. The first line below sets the red (r) intensity to the red value stored in
colors[col][0]. So if col was 0, the red intensity would be 1.0f. The green and blue values are read
the same way.

If you don't understand how I got the value of 1.0f for the red intensity if col is 0, I'll explain in a bit
more detail. Look at the very top of the program. Find the line: static GLfloat colors[12][3]. Notice
there are 12 groups of 3 number. The first of the three number is the red intensity. The second value
is the green intensity and the third value is the blue intensity. [0], [1] and [2] below represent the
1st, 2nd and 3rd values I just mentioned. If col is equal to 0, we want to look at the first group. 11 is
the last group (12th color).

The line below controls how much gravity there is pulling upward. By pressing 8 on the number pad,
we increase the yg (y gravity) variable. This causes a pull upwards. This code is located here in the
program because it makes our life easier by applying the gravity to all of our particles thanks to the
loop. If this code was outside the loop we'd have to create another loop to do the same job, so we
might as well do it here.

 This line has the exact opposite affect. By pressing 2 on the number pad we decrease yg creating
a stronger pull downwards.

Jeff Molofee's OpenGL Windows Tutorial #19

Page 12 of 17

 // If Number Pad 6 And X Gravity Is Less Than 1.5 Increase Pull Right
 if (keys[VK_NUMPAD6] && (particle[loop].xg<1.5f)) particle[loop].xg+=0.01f;

 // If Number Pad 4 And X Gravity Is Greater Than -1.5 Increase Pull Left
 if (keys[VK_NUMPAD4] && (particle[loop].xg>-1.5f)) particle[loop].xg

 if (keys[VK_TAB])
 {
 particle[loop].x=0.0f;
 particle[loop].y=0.0f;
 particle[loop].z=0.0f;
 particle[loop].xi=float((rand()%50)-26.0f)*10.0f;
 particle[loop].yi=float((rand()%50)-25.0f)*10.0f;
 particle[loop].zi=float((rand()%50)-25.0f)*10.0f;
 }
 }
 }
 return TRUE;
}

int WINAPI WinMain(HINSTANCE hInstance, // Instance
 HINSTANCE hPrevInstance, // Previous Instance
 LPSTR lpCmdLine, // Command Line Parameters
 int nCmdShow) // Window Show State
{
 MSG msg; // Windows Message Structure
 BOOL done=FALSE; // Bool Variable To Exit Loop

 // Ask The User Which Screen Mode They Prefer
 if (MessageBox(NULL,"Would You Like To Run In Fullscreen Mode?", "Start FullScreen?",MB_YESNO|MB_ICONQUESTION)==IDNO)
 {
 fullscreen=FALSE; // Windowed Mode
 }

 Now we modify the pull to the right. If the 6 key on the number pad is pressed, we increase the pull
to the right.

Finally, if the 4 key on the number pad is pressed, our particle will pull more to the left. These keys
give us some really cool results. For example, you can make a stream of particles shooting straight
up in the air. By adding some gravity pulling downwards you can turn the stream of particles into a
fountain of water!

I added this bit of code just for fun. My brother thought the explosion was a cool effect :) By
pressing the tab key all the particles will be reset back to the center of the screen. The moving
speed of the particles will once again be multiplied by 10, creating a big explosion of particles. After
the particles fade out, your original effect will again reappear.

 The code in KillGLWindow(), CreateGLWindow() and WndProc() hasn't changed, so we'll skip down
to WinMain(). I'll rewrite the entire section of code to make it easier to follow through the code.

Jeff Molofee's OpenGL Windows Tutorial #19

Page 13 of 17

 // Create Our OpenGL Window
 if (!CreateGLWindow("NeHe's Particle Tutorial",640,480,16,fullscreen))
 {
 return 0; // Quit If Window Was Not Created
 }

 if (fullscreen) // Are We In Fullscreen Mode
 {
 slowdown=1.0f; // Speed Up The Particles (3dfx Issue)
 }

 while(!done) // Loop That Runs Until done=TRUE
 {
 if (PeekMessage(&msg,NULL,0,0,PM_REMOVE)) // Is There A Message Waiting?
 {
 if (msg.message==WM_QUIT) // Have We Received A Quit Message?
 {
 done=TRUE; // If So done=TRUE
 }
 else // If Not, Deal With Window Messages
 {
 TranslateMessage(&msg); // Translate The Message
 DispatchMessage(&msg); // Dispatch The Message
 }
 }
 else // If There Are No Messages
 {
 if ((active && !DrawGLScene()) || keys[VK_ESCAPE]) // Updating View Only If Active
 {
 done=TRUE; // ESC or DrawGLScene Signalled A Quit
 }
 else // Not Time To Quit, Update Screen
 {
 SwapBuffers(hDC); // Swap Buffers (Double Buffering)

 if (keys[VK_ADD] && (slowdown>1.0f)) slowdown-=0.01f;

This is our first change to WinMain(). I've added some code to check if the user decide to run in
fullscreen mode or windowed mode. If they decide to use fullscreen mode, I change the variable
slowdown to 1.0f instead of 2.0f. You can leave this bit code out if you want. I added the code to
speed up fullscreen mode on my 3dfx (runs ALOT slower than windowed mode for some reason).

I was a little sloppy with the next bit of code. Usually I don't include everything on one line, but it
makes the code look a little cleaner :)

The line below checks to see if the + key on the number pad is being pressed. If it is and
slowdown is greater than 1.0f we decrease slowdown by 0.01f. This causes the particles to move
faster. Remember in the code above when I talked about slowdown and how it affects the speed at
which the particles travel.

Jeff Molofee's OpenGL Windows Tutorial #19

Page 14 of 17

 if (keys[VK_SUBTRACT] && (slowdown<4.0f)) slowdown+=0.01f;

 if (keys[VK_PRIOR]) zoom+=0.1f; // Zoom In

 if (keys[VK_NEXT]) zoom-=0.1f; // Zoom Out

 if (keys[VK_RETURN] && !rp) // Return Key Pressed
 {
 rp=true; // Set Flag Telling Us It's Pressed
 rainbow=!rainbow; // Toggle Rainbow Mode On / Off
 }
 if (!keys[VK_RETURN]) rp=false; // If Return Is Released Clear Flag

 if ((keys[' '] && !sp) || (rainbow && (delay>25)))
 {

This line checks to see if the - key on the number pad is being pressed. If it is and slowdown is
less than 4.0f we increase the value of slowdown. This causes our particles to move slower. I put
a limit of 4.0f because I wouldn't want them to move much slower. You can change the minimum
and maximum speeds to whatever you want :)

 The line below check to see if Page Up is being pressed. If it is, the variable zoom is increased.
This causes the particles to move closer to us.

This line has the opposite effect. By pressing Page Down, zoom is decreased and the scene
moves futher into the screen. This allows us to see more of the screen, but it makes the particles
smaller.

The next section of code checks to see if the return key has been pressed. If it has and it's not
being 'held' down, we'll let the computer know it's being pressed by setting rp to true. Then we'll
toggle rainbow mode. If rainbow was true, it will become false. If it was false, it will become true.
The last line checks to see if the return key was released. If it was, rp is set to false, telling the
computer that the key is no longer being held down.

The code below is a little confusing. The first line checks to see if the spacebar is being pressed
and not held down. It also check to see if rainbow mode is on, and if so, it checks to see if the
variable delay is greater than 25. delay is a counter I use to create the rainbow effect. If you were
to change the color ever frame, the particles would all be a different color. By creating a delay, a
group of particles will become one color, before the color is changed to something else.

If the spacebar was pressed or rainbow is on and delay is greater than 25, the color will be
changed!

Jeff Molofee's OpenGL Windows Tutorial #19

Page 15 of 17

 if (keys[' ']) rainbow=false; // If Spacebar Is Pressed Disable Rainbow Mode

 sp=true; // Set Flag Telling Us Space Is Pressed
 delay=0; // Reset The Rainbow Color Cycling Delay
 col++; // Change The Particle Color

 if (col>11) col=0; // If Color Is To High Reset It
 }

 if (!keys[' ']) sp=false; // If Spacebar Is Released Clear Flag

 // If Up Arrow And Y Speed Is Less Than 200 Increase Upward Speed
 if (keys[VK_UP] && (yspeed<200)) yspeed+=1.0f;

The line below was added so that rainbow mode would be turned off if the spacebar was pressed. If
we didn't turn off rainbow mode, the colors would continue cycling until the return key was pressed
again. It makes sense that if the person is hitting space instead of return that they want to go
through the colors themselves.

If the spacebar was pressed or rainbow mode is on, and delay is greater than 25, we'll let the
computer know that space has been pressed by making sp equal true. Then we'll set the delay
back to 0 so that it can start counting back up to 25. Finally we'll increase the variable col so that
the color will change to the next color in the color table.

If the color is greater than 11, we reset it back to zero. If we didn't reset col to zero, our program
would try to find a 13th color. We only have 12 colors! Trying to get information about a color that
doesn't exist would crash our program.

 Lastly if the spacebar is no longer being pressed, we let the computer know by setting the variable
sp to false.

Now for some control over the particles. Remember that we created 2 variables at the beginning of
our program? One was called xspeed and one was called yspeed. Also remember that after the
particle burned out, we gave it a new moving speed and added the new speed to either xspeed or
yspeed. By doing that we can influence what direction the particles will move when they're first
created.

For example. Say our particle had a moving speed of 5 on the x axis and 0 on the y axis. If we
decreased xspeed until it was -10, we would be moving at a speed of -10 (xspeed) + 5 (original
moving speed). So instead of moving at a rate of 10 to the right we'd be moving at a rate of -5 to the
left. Make sense?

Anyways. The line below checks to see if the up arrow is being pressed. If it is, yspeed will be
increased. This will cause our particles to move upwards. The particles will move at a maximum
speed of 200 upwards. Anything faster than that doesn't look to good.

Jeff Molofee's OpenGL Windows Tutorial #19

Page 16 of 17

 // If Down Arrow And Y Speed Is Greater Than -200 Increase Downward Speed
 if (keys[VK_DOWN] && (yspeed>-200)) yspeed-=1.0f;

 // If Right Arrow And X Speed Is Less Than 200 Increase Speed To The Right
 if (keys[VK_RIGHT] && (xspeed<200)) xspeed+=1.0f;

 // If Left Arrow And X Speed Is Greater Than -200 Increase Speed To The Left
 if (keys[VK_LEFT] && (xspeed>-200)) xspeed-=1.0f;

 delay++; // Increase Rainbow Mode Color Cycling Delay Counter

 if (keys[VK_F1]) // Is F1 Being Pressed?
 {
 keys[VK_F1]=FALSE; // If So Make Key FALSE
 KillGLWindow(); // Kill Our Current Window
 fullscreen=!fullscreen; // Toggle Fullscreen / Windowed Mode
 // Recreate Our OpenGL Window
 if (!CreateGLWindow("NeHe's Particle Tutorial",640,480,16,fullscreen))
 {
 return 0; // Quit If Window Was Not Created
 }
 }
 }
 }
 }
 // Shutdown
 KillGLWindow(); // Kill The Window
 return (msg.wParam); // Exit The Program
}

 This line checks to see if the down arrow is being pressed. If it is, yspeed will be decreased. This
will cause the particles to move downward. Again, a maximum downward speed of 200 is enforced.

 Now we check to see if the right arrow is being pressed. If it is, xspeed will be increased. This will
cause the particles to move to the right. A maximum speed of 200 is enforced.

 Finally we check to see if the left arrow is being pressed. If it is... you guessed it... xspeed is
decreased, and the particles start to move left. Maximum speed of 200 enforced.

 The last thing we need to do is increase the variable delay. Like I said above, delay is used to
control how fast the colors change when you're using rainbow mode.

 Like all the previous tutorials, make sure the title at the top of the window is correct.

Jeff Molofee's OpenGL Windows Tutorial #19

Page 17 of 17

In this lesson, I have tried to explain in as much detail, all the steps required to create a simple but
impressive particle system. This particle system can be used in games of your own to create
effects such as Fire, Water, Snow, Explosions, Falling Stars, and more. The code can easily be
modified to handle more parameters, and new effects (fireworks for example).

Thanks to Richard Nutman for suggesting that the particles be positioned with glVertex3f() instead
of resetting the Modelview Matrix and repositioning each particle with glTranslatef(). Both methods
are effective, but his method will reduce the amount of work the computer has to do before it draws
each particle, causing the program to run even faster.

Thanks to Antoine Valentim for suggesting triangle strips to help speed up the program and to
introduce a new command to this tutorial. The feedback on this tutorial has been great, I appreciate
it!

I hope you enjoyed this tutorial. If you had any problems understanding it, or you've found a mistake
in the tutorial please let me know. I want to make the best tutorials available. Your feedback is
important!

Jeff Molofee (NeHe)

* DOWNLOAD Visual C++ Code For This Lesson.
* DOWNLOAD Delphi Code For This Lesson. (Conversion by Marc Aarts)
* DOWNLOAD Mac OS Code For This Lesson. (Conversion by Owen Borstad)
* DOWNLOAD Irix Code For This Lesson. (Conversion by Dimitrios Christopoulos)

Back To NeHe Productions!

Jeff Molofee's OpenGL Windows Tutorial #20

Page 1 of 10

#include <windows.h> // Header File For Windows
#include <math.h> // Header File For Windows Math Library
#include <stdio.h> // Header File For Standard Input/Output
#include <gl\gl.h> // Header File For The OpenGL32 Library
#include <gl\glu.h> // Header File For The GLu32 Library
#include <gl\glaux.h> // Header File For The Glaux Library

HDC hDC=NULL; // Private GDI Device Context
HGLRC hRC=NULL; // Permanent Rendering Context
HWND hWnd=NULL; // Holds Our Window Handle
HINSTANCE hInstance; // Holds The Instance Of The Application

bool keys[256]; // Array Used For The Keyboard Routine
bool active=TRUE; // Window Active Flag Set To TRUE By Default
bool fullscreen=TRUE; // Fullscreen Flag Set To Fullscreen Mode By Default
bool masking=TRUE; // Masking On/Off

 Lesson 20

Welcome to Tutorial 20. The bitmap image format is supported on just about every computer, and
just about every operating system. Not only is it easy to work with, it's very easy to load and use
as a texture. Up until now, we've been using blending to place text and other images onto the
screen without erasing what's underneath the text or image. This is effective, but the results are not
always pretty.

Most the time a blended texture blends in too much or not enough. When making a game using
sprites, you don't want the scene behind your character shining through the characters body. When
writing text to the screen you want the text to be solid and easy to read.

That's where masking comes in handy. Masking is a two step process. First we place a black and
white image of our texture on top of the scene. The white represents the transparent part of our
texture. The black represents the solid part of our texture. Because of the type of blending we use,
only the black will appear on the scene. Almost like a cookie cutter effect. Then we switch blending
modes, and map our texture on top of the black cut out. Again, because of the blending mode we
use, the only parts of our texture that will be copied to the screen are the parts that land on top of
the black mask.

I'll rewrite the entire program in this tutorial aside from the sections that haven't changed. So if
you're ready to learn something new, let's begin!

We'll be using 7 global variables in this program. masking is a boolean variable (TRUE / FALSE)
that will keep track of whether or not masking is turned on of off. mp is used to make sure that the
'M' key isn't being held down. sp is used to make sure that the 'Spacebar' isn't being held down and
the variable scene will keep track of whether or not we're drawing the first or second scene.

We set up storage space for 5 textures using the variable texture[5]. loop is our generic counter
variable, we'll use it a few times in our program to set up textures, etc. Finally we have the variable
roll. We'll use roll to roll the textures across the screen. Creates a neat effect! We'll also use it to
spin the object in scene 2.

Jeff Molofee's OpenGL Windows Tutorial #20

Page 2 of 10

bool mp; // M Pressed?
bool sp; // Space Pressed?
bool scene; // Which Scene To Draw

GLuint texture[5]; // Storage For Our Five Textures
GLuint loop; // Generic Loop Variable

GLfloat roll; // Rolling Texture

LRESULT CALLBACK WndProc(HWND, UINT, WPARAM, LPARAM); // Declaration For WndProc

int LoadGLTextures() // Load Bitmaps And Convert To Textures
{
 int Status=FALSE; // Status Indicator
 AUX_RGBImageRec *TextureImage[5]; // Create Storage Space For The Texture Data
 memset(TextureImage,0,sizeof(void *)*5); // Set The Pointer To NULL

 if ((TextureImage[0]=LoadBMP("Data/logo.bmp")) && // Logo Texture
 (TextureImage[1]=LoadBMP("Data/mask1.bmp")) && // First Mask
 (TextureImage[2]=LoadBMP("Data/image1.bmp")) && // First Image
 (TextureImage[3]=LoadBMP("Data/mask2.bmp")) && // Second Mask
 (TextureImage[4]=LoadBMP("Data/image2.bmp"))) // Second Image
 {
 Status=TRUE; // Set The Status To TRUE
 glGenTextures(5, &texture[0]); // Create Five Textures

 for (loop=0; loop<5; loop++) // Loop Through All 5 Textures
 {
 glBindTexture(GL_TEXTURE_2D, texture[loop]);
 glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_LINEAR);
 glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_LINEAR);
 glTexImage2D(GL_TEXTURE_2D, 0, 3, TextureImage[loop]->sizeX, TextureImage[loop]
 0, GL_RGB, GL_UNSIGNED_BYTE, TextureImage[loop]->data);
 }
 }
 for (loop=0; loop<5; loop++) // Loop Through All 5 Textures
 {
 if (TextureImage[loop]) // If Texture Exists
 {
 if (TextureImage[loop]->data) // If Texture Image Exists
 {
 free(TextureImage[loop]->data); // Free The Texture Image Memory
 }
 free(TextureImage[loop]); // Free The Image Structure
 }
 }
 return Status; // Return The Status
}

The load bitmap code hasn't changed. It's the same as it was in lesson 6, etc.

In the code below we create storage space for 5 images. We clear the space and load in all 5
bitmaps. We loop through each image and convert it into a texture for use in our program. The
textures are stored in texture[0-4].

Jeff Molofee's OpenGL Windows Tutorial #20

Page 3 of 10

int InitGL(GLvoid) // All Setup For OpenGL Goes Here
{
 if (!LoadGLTextures())
 {
 return FALSE;
 }

 glClearColor(0.0f, 0.0f, 0.0f, 0.0f);
 glClearDepth(1.0); // Enables Clearing Of The Depth Buffer
 glEnable(GL_DEPTH_TEST); // Enable Depth Testing
 glShadeModel(GL_SMOOTH); // Enables Smooth Color Shading
 glEnable(GL_TEXTURE_2D); // Enable 2D Texture Mapping
 return TRUE;
}

int DrawGLScene(GLvoid)
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Clear The Screen And The Depth Buffer
 glLoadIdentity(); // Reset The Modelview Matrix
 glTranslatef(0.0f,0.0f,-2.0f);

The ReSizeGLScene() code hasn't changed so we'll skip over it.

The Init code is fairly bare bones. We load in our textures, set the clear color, set and enable depth
testing, turn on smooth shading, and enable texture mapping. Simple program so no need for a
complex init :)

Now for the fun stuff. Our drawing code! We start off the same as usual. We clear the background
color and the depth buffer. Then we reset the modelview matrix, and translate into the screen 2
units so that we can see our scene.

The first line below select the 'logo' texture. We'll map the texture to the screen using a quad. we
specify our 4 texture coordinates along with our 4 vertices.

You'll notice that the texture coordinates may look weird. Instead of using 1.0 and 0.0 I'm using 3.0
and 0.0. I'll explain what this does. By using 3.0 as a texture coordinate instead of 1.0, we are
telling OpenGL to draw our texture 3 times. Normally our one texture is mapped across the entire
face of our quad. This time OpenGL will squish 3 of our textures onto the quad. I'm also using 3.0
for the up and down value, meaning we'll have three textures wide, and 3 textures up and down.
Mapping 9 images of the selected texture to the front of our quad.

You will also notice that I've added the variable -roll to our
verticle texture coordinates. This cause the texture to roll up the
screen as the value of roll increases. roll tells OpenGL what
part of our image to start texturing from. The image to the left is
how our texture would look if roll was equal to 0.0. From 0.0 to
1.0 would be the first texture drawn up and down. From 1.0 to

2.0 would be our second texture, and from 2.0 to 3.0 would be our third texture. The image on the
right shows how our texture would look if roll was equal to 0.5. Our first texure would be drawn from
-0.5 to 0.5 (notice that because we started drawing halfway through the texture that the 'N' and 'e'
have been cut off). The second texture would be from 0.5 to 1.5, and the third texture would be from
1.5 to 2.5. Again notice that only the 'N' and 'e' have been drawn at the bottom. We never quite
made it to 3.0 (the bottom of a complete texture) so the 'H' and 'e' were not drawn. Rolling textures
can be used to create great effects such as moving clouds. Words spinning around an object, etc.

Jeff Molofee's OpenGL Windows Tutorial #20

Page 4 of 10

 glBindTexture(GL_TEXTURE_2D, texture[0]); // Select Our Logo Texture
 glBegin(GL_QUADS); // Start Drawing A Textured Quad
 glTexCoord2f(0.0f, -roll+0.0f); glVertex3f(-1.1f, -1.1f, 0.0f);
 glTexCoord2f(3.0f, -roll+0.0f); glVertex3f(1.1f, -1.1f, 0.0f);
 glTexCoord2f(3.0f, -roll+3.0f); glVertex3f(1.1f, 1.1f, 0.0f);
 glTexCoord2f(0.0f, -roll+3.0f); glVertex3f(-1.1f, 1.1f, 0.0f);
 glEnd(); // Done Drawing The Quad

 glEnable(GL_BLEND);
 glDisable(GL_DEPTH_TEST); // Disable Depth Testing

 if (masking)
 {

 glBlendFunc(GL_DST_COLOR,GL_ZERO); // Blend Screen Color With Zero (Black)
 }

If you don't understand what I mean about rolling textures, let me know. If you have a better way to
explain let me know. It's easy to understand how rolling textures work once you've used them, but
trying to explain it in words isn't very easy.

One last explanation to hopefully clear things up. Imagine you had an endless amount of marbles
up and down, left and right. Every marble was identicle (imagine each marble is a texture). The
marble in the center of your infinate number of marbles is your main marble (texture). It's left side is
0.0, it's right side is 1.0, the values up and down are also 0.0 to 1.0. Now if you move left half a
marble (-0.5), and you can only see 1.0 marbles wide you would only see the right half of the
marble to the left of your original marble and the left half of your original marble. If you moved left
another half (-0.5... a total of -1.0) you would see an entire marble (texture) but it wouldn't be your
original marble, it would be the marble to the left of it. Because all the marbles look exactly the
same you would think you were seeing your entire original marble (texture). {grin}. Hopefully that
doesn't confuse you even more. I know how some of you hate my little stories.

Anyways... back to reality. Now we enable blending. In order for this effect to work we also have to
disable depth testing. It's very important that you do this! If you do not disable depth testing you
probably wont see anything. Your entire image will vanish!

The first thing we do after we enable blending and disable depth testing is check to see if we're
going to mask our image or blend it the old fashioned way. The line of code below checks to see if
masking is TRUE. If it is we'll set up blending so that our mask gets drawn to the screen properly.

If masking is TRUE the line below will set up blending for our mask. A mask is just a copy of the
texture we want to draw to the screen but in black and white. Any section of the mask that is white
will be transparent. Any sections of the mask that is black will be SOLID.

The blend command below does the following: The Destination color (screen color) will be set to
black if the section of our mask that is being copied to the screen is black. This means that
sections of the screen that the black portion of our mask covers will turn black. Anything that was
on the screen under the mask will be cleared to black. The section of the screen covered by the
white mask will not change.

Jeff Molofee's OpenGL Windows Tutorial #20

Page 5 of 10

 if (scene)
 {

 glTranslatef(0.0f,0.0f,-1.0f);
 glRotatef(roll*360,0.0f,0.0f,1.0f); // Rotate On The Z Axis 360 Degrees

 if (masking)
 {

 glBindTexture(GL_TEXTURE_2D, texture[3]); // Select The Second Mask Texture
 glBegin(GL_QUADS); // Start Drawing A Textured Quad
 glTexCoord2f(0.0f, 0.0f); glVertex3f(-1.1f, -1.1f, 0.0f);
 glTexCoord2f(1.0f, 0.0f); glVertex3f(1.1f, -1.1f, 0.0f);
 glTexCoord2f(1.0f, 1.0f); glVertex3f(1.1f, 1.1f, 0.0f);
 glTexCoord2f(0.0f, 1.0f); glVertex3f(-1.1f, 1.1f, 0.0f);
 glEnd(); // Done Drawing The Quad
 }

 Now we check to see what scene to draw. If scene is TRUE we will draw the second scene. If
scene is FALSE we will draw the first scene.

We don't want things to be too big so we translate one more unit into the screen. This reduces the
size of our objects.

After we translate into the screen, we rotate from 0-360 degrees depending on the value of roll. If
roll is 0.0 we will be rotating 0 degrees. If roll is 1.0 we will be rotating 360 degrees. Fairly fast
rotation, but I didn't feel like creating another variable just to rotate the image in the center of the
screen. :)

We already have the rolling logo on the screen and we've rotated the scene on the Z axis causing
any objects we draw to be rotated counter-clockwise, now all we have to do is check to see if
masking is on. If it is we'll draw our mask then our object. If masking is off we'll just draw our object.

If masking is TRUE the code below will draw our mask to the screen. Our blend mode should be
set up properly because we had checked for masking once already while setting up the blending.
Now all we have to do is draw the mask to the screen. We select mask 2 (because this is the
second scene). After we have selected the mask texture we texture map it onto a quad. The quad
is 1.1 units to the left and right so that it fills the screen up a little more. We only want one texture
to show up so our texture coordinates only go from 0.0 to 1.0.

after drawing our mask to the screen a solid black copy of our final texture will appear on the
screen. The final result will look as if someone took a cookie cutter and cut the shape of our final
texture out of the screen, leaving an empty black space.

Jeff Molofee's OpenGL Windows Tutorial #20

Page 6 of 10

 glBlendFunc(GL_ONE, GL_ONE);
 glBindTexture(GL_TEXTURE_2D, texture[4]); // Select The Second Image Texture
 glBegin(GL_QUADS); // Start Drawing A Textured Quad
 glTexCoord2f(0.0f, 0.0f); glVertex3f(-1.1f, -1.1f, 0.0f);
 glTexCoord2f(1.0f, 0.0f); glVertex3f(1.1f, -1.1f, 0.0f);
 glTexCoord2f(1.0f, 1.0f); glVertex3f(1.1f, 1.1f, 0.0f);
 glTexCoord2f(0.0f, 1.0f); glVertex3f(-1.1f, 1.1f, 0.0f);
 glEnd(); // Done Drawing The Quad
 }

 else
 {

 if (masking)
 {

 glBindTexture(GL_TEXTURE_2D, texture[1]); // Select The First Mask Texture
 glBegin(GL_QUADS); // Start Drawing A Textured Quad
 glTexCoord2f(roll+0.0f, 0.0f); glVertex3f(-1.1f, -1.1f, 0.0f);
 glTexCoord2f(roll+4.0f, 0.0f); glVertex3f(1.1f, -1.1f, 0.0f);
 glTexCoord2f(roll+4.0f, 4.0f); glVertex3f(1.1f, 1.1f, 0.0f);
 glTexCoord2f(roll+0.0f, 4.0f); glVertex3f(-1.1f, 1.1f, 0.0f);
 glEnd(); // Done Drawing The Quad
 }

Now that we have drawn our mask to the screen it's time to change blending modes again. This
time we're going to tell OpenGL to copy any part of our colored texture that is NOT black to the
screen. Because the final texture is an exact copy of the mask but with color, the only parts of our
texture that get drawn to the screen are parts that land on top of the black portion of the mask.
Because the mask is black, nothing from the screen will shine through our texture. This leaves us
with a very solid looking texture floating on top of the screen.

Notice that we select the second image after selecting the final blending mode. This selects our
colored image (the image that our second mask is based on). Also notice that we draw this image
right on top of the mask. Same texture coordinates, same vertices.

If we don't lay down a mask, our image will still be copied to the screen, but it will blend with
whatever was on the screen.

 If scene was FALSE, we will draw the first scene (my favorite).

 We start off by checking to see if masking is TRUE of FALSE, just like in the code above.

If masking is TRUE we draw our mask 1 to the screen (the mask for scene 1). Notice that the
texture is rolling from right to left (roll is added to the horizontal texture coordinate). We want this
texture to fill the entire screen that is why we never translated further into the screen.

Jeff Molofee's OpenGL Windows Tutorial #20

Page 7 of 10

 glBlendFunc(GL_ONE, GL_ONE);
 glBindTexture(GL_TEXTURE_2D, texture[2]); // Select The First Image Texture
 glBegin(GL_QUADS); // Start Drawing A Textured Quad
 glTexCoord2f(roll+0.0f, 0.0f); glVertex3f(-1.1f, -1.1f, 0.0f);
 glTexCoord2f(roll+4.0f, 0.0f); glVertex3f(1.1f, -1.1f, 0.0f);
 glTexCoord2f(roll+4.0f, 4.0f); glVertex3f(1.1f, 1.1f, 0.0f);
 glTexCoord2f(roll+0.0f, 4.0f); glVertex3f(-1.1f, 1.1f, 0.0f);
 glEnd(); // Done Drawing The Quad
 }

 glEnable(GL_DEPTH_TEST); // Enable Depth Testing
 glDisable(GL_BLEND);

 roll+=0.002f;
 if (roll>1.0f)
 {
 roll-=1.0f;
 }

 return TRUE;
}

int WINAPI WinMain(HINSTANCE hInstance, // Instance
 HINSTANCE hPrevInstance, // Previous Instance
 LPSTR lpCmdLine,
 int nCmdShow) // Window Show State
{
 MSG msg;
 BOOL done=FALSE;

 // Ask The User Which Screen Mode They Prefer
 if (MessageBox(NULL,"Would You Like To Run In Fullscreen Mode?", "Start FullScreen?",MB_YESNO|MB_ICONQUESTION)==IDNO)
 {
 fullscreen=FALSE; // Windowed Mode
 }

 Again we enable blending and select our texture for scene 1. We map this texture on top of it's
mask. Notice we roll this texture as well, otherwise the mask and final image wouldn't line up.

 Next we enable depth testing, and disable blending. This prevents strange things from happening in
the rest of our program :)

 Finally all we have left to do is increase the value of roll. If roll is greater than 1.0 we subtract 1.0.
This prevents the value of roll from getting to high.

The KillGLWindow(), CreateGLWindow() and WndProc() code hasn't changed so we'll skip over it.

The first thing you will notice different in the WinMain() code is the Window title. It's now titled
"NeHe's Masking Tutorial". Change it to whatever you want :)

Jeff Molofee's OpenGL Windows Tutorial #20

Page 8 of 10

 // Create Our OpenGL Window
 if (!CreateGLWindow("NeHe's Masking Tutorial",640,480,16,fullscreen))
 {
 return 0; // Quit If Window Was Not Created
 }

 while(!done)
 {
 if (PeekMessage(&msg,NULL,0,0,PM_REMOVE)) // Is There A Message Waiting?
 {
 if (msg.message==WM_QUIT) // Have We Received A Quit Message?
 {
 done=TRUE;
 }
 else
 {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }
 }
 else
 {
 // Draw The Scene. Watch For ESC Key And Quit Messages From DrawGLScene()
 if ((active && !DrawGLScene()) || keys[VK_ESCAPE]) // Active? Was There A Quit Received?
 {
 done=TRUE;
 }
 else
 {
 SwapBuffers(hDC); // Swap Buffers (Double Buffering)

 if (keys[' '] && !sp)
 {
 sp=TRUE; // Tell Program Spacebar Is Being Held
 scene=!scene;
 }

 if (!keys[' '])
 {
 sp=FALSE; // Tell Program Spacebar Has Been Released
 }

Now for our simple key handling code. We check to see if the spacebar is being pressed. If it is, we
set the sp variable to TRUE. If sp is TRUE, the code below will not run a second time until the
spacebar has been released. This keeps our program from flipping back and forth from scene to
scene very rapidly. After we set sp to TRUE, we toggle the scene. If it was TRUE, it becomes
FALSE, if it was FALSE it becomes TRUE. In our drawing code above, if scene is FALSE the first
scene is drawn. If scene is TRUE the second scene is drawn.

The code below checks to see if we have released the spacebar (if NOT ' '). If the spacebar has
been released, we set sp to FALSE letting our program know that the spacebar is NOT being held
down. By setting sp to FALSE the code above will check to see if the spacebar has been pressed
again, and if so the cycle will start over.

Jeff Molofee's OpenGL Windows Tutorial #20

Page 9 of 10

 if (keys['M'] && !mp)
 {
 mp=TRUE; // Tell Program M Is Being Held
 masking=!masking; // Toggle Masking Mode OFF/ON
 }

 if (!keys['M'])
 {
 mp=FALSE; // Tell Program That M Has Been Released
 }

 if (keys[VK_F1]) // Is F1 Being Pressed?
 {
 keys[VK_F1]=FALSE; // If So Make Key FALSE
 KillGLWindow(); // Kill Our Current Window
 fullscreen=!fullscreen; // Toggle Fullscreen / Windowed Mode
 // Recreate Our OpenGL Window
 if (!CreateGLWindow("NeHe's Masking Tutorial",640,480,16,fullscreen))
 {
 return 0; // Quit If Window Was Not Created
 }
 }
 }
 }
 }
 // Shutdown
 KillGLWindow(); // Kill The Window
 return (msg.wParam); // Exit The Program
}

The next section of code checks to see if the 'M' key is being pressed. If it is being pressed, we set
mp to TRUE, telling our program not to check again until the key is released, and we toggle
masking from TRUE to FALSE or FALSE to TRUE. If masking is TRUE, the drawing code will turn
on masking. If it is FALSE masking will be off. If masking is off, the object will be blended to the
screen using the old fashioned blending we've been using up until now.

The last bit of code checks to see if we've stopped pressing 'M'. If we have, mp becomes FALSE
letting the program know that we are no longer holding the 'M' key down. Once the 'M' key has been
released, we are able to press it once again to toggle masking on or off.

 Like all the previous tutorials, make sure the title at the top of the window is correct.

Jeff Molofee's OpenGL Windows Tutorial #20

Page 10 of 10

Creating a mask isn't to hard. A little time consuming. The best way to make a mask if you already
have your image made is to load your image into an art program or a handy program like infranview,
and reduce it to a gray scale image. After you've done that, turn the contrast way up so that gray
pixels become black. You can also try turning down the brightness, etc. It's important that the
white is bright white, and the black is pure black. If you have any gray pixels in your mask, that
section of the image will appear transparent. The most reliable way to make sure your mask is a
perfect copy of your image is to trace over the image with black. It's also very important that your
image has a BLACK background and the mask has a WHITE background! If you create a mask and
notice a square shape around your texture, either your white isn't bright enough (255 or FFFFFF) or
your black isn't true black (0 or 000000). Below you can see an example of a mask and the image
that goes over top of the mask. the image can be any color you want as long as the background is
black. The mask must have a white background and a black copy of your image.

This is the mask -> This is the image ->

Eric Desrosiers pointed out that you can also check the value of each pixel in your bitmap while
you load it. If you want the pixel transparent you can give it an alpha value of 0. For all the other
colors you can give them an alpha value of 255. This method will also work but requires some extra
coding. The current tutorial is simple and requires very little extra code. I'm not blind to other
techniques, but when I write a tutorial I try to make the code easy to understand and easy to use. I
just wanted to point out that there are always other ways to get the job done. Thanks for the
feedback Eric.

In this tutorial I have shown you a simple, but effective way to draw sections of a texture to the
screen without using the alpha channel. Normal blending usually looks bad (textures are either
transparent or they're not), and texturing with an alpha channel requires that your images support
the alpha channel. Bitmaps are convenient to work with, but they do not support the alpha channel
this program shows us how to get around the limitations of bitmap images, while demonstrating a
cool way to create overlay type effects.

Thanks to Rob Santa for the idea and for example code. I had never heard of this little trick until he
pointed it out. He wanted me to point out that although this trick does work, it takes two passes,
which causes a performance hit. He recommends that you use textures that support the alpha
channel for complex scenes.

I hope you enjoyed this tutorial. If you had any problems understanding it, or you've found a mistake
in the tutorial please let me know. I want to make the best tutorials available. Your feedback is
important!

Jeff Molofee (NeHe)

* DOWNLOAD Visual C++ Code For This Lesson.
* DOWNLOAD Delphi Code For This Lesson. (Conversion by Marc Aarts)
* DOWNLOAD Mac OS Code For This Lesson. (Conversion by Anthony Parker)

Back To NeHe Productions!

Jeff Molofee's OpenGL Windows Tutorial #21

Page 1 of 30

/*
 * This Code Was Created By Jeff Molofee 2000
 * If You've Found This Code Useful, Please Let Me Know.
 */

#include <windows.h> // Header File For Windows
#include <stdio.h> // Standard Input / Output
#include <stdarg.h> // Header File For Variable Argument Routines
#include <gl\gl.h> // Header File For The OpenGL32 Library
#include <gl\glu.h> // Header File For The GLu32 Library
#include <gl\glaux.h> // Header File For The Glaux Library

HDC hDC=NULL; // Private GDI Device Context
HGLRC hRC=NULL; // Permanent Rendering Context
HWND hWnd=NULL;
HINSTANCE hInstance; // Holds The Instance Of The Application

 Lesson 21

Welcome to my 21st OpenGL Tutorial! Coming up with a topic for this tutorial was extremely
difficult. I know alot of you are tired of learning the basics. Everyone is dying to learn about 3D
objects, Multitexturing and all that other good stuff. For those people, I'm sorry, but I want to keep
the learning curve gradual. Once I've gone a step ahead it's not as easy to take a step back without
people losing interest. So I'd prefer to keep pushing forward at a steady pace.

In case I've lost a few of you :) I'll tell you a bit about this tutorial. Until now all of my tutorials have
used polygons, quads and triangles. So I decided it would be nice to write a tutorial on lines. A few
hours after starting the line tutorial, I decided to call it quits. The tutorial was coming along fine, but
it was BORING! Lines are great, but there's only so much you can do to make lines exciting. I read
through my email, browsed through the message board, and wrote down a few of your tutorial
requests. Out of all the requests there were a few questions that came up more than others. So... I
decided to write a multi-tutorial :)

In this tutorial you will learn about: Lines, Anti-Aliasing, Orthographic Projection, Timing, Basic
Sound Effects, and Simple Game Logic. Hopefully there's enough in this tutorial to keep everyone
happy :) I spent 2 days coding this tutorial, and It's taken almost 2 weeks to write this HTML file. I
hope you enjoy my efforts!

At the end of this tutorial you will have made a simple 'amidar' type game. Your mission is to fill in
the grid without being caught by the bad guys. The game has levels, stages, lives, sound, and a
secret item to help you progress through the levels when things get tough. Although this game will
run fine on a Pentium 166 with a Voodoo 2, a faster processor is recommended if you want
smoother animation.

I used the code from lesson 1 as a starting point while writing this tutorial. We start off by adding
the required header files. stdio.h is used for file operations, and we include stdarg.h so that we can
display variables on the screen, such as the score and current stage.

Jeff Molofee's OpenGL Windows Tutorial #21

Page 2 of 30

bool keys[256];
bool vline[11][10];
bool hline[10][11];
bool ap;
bool filled;
bool gameover; // Is The Game Over?
bool anti=TRUE;
bool active=TRUE;
bool fullscreen=TRUE; // Fullscreen Flag Set To Fullscreen Mode By Default

int loop1;
int loop2;
int delay;
int adjust=3; // Speed Adjustment For Really Slow Video Cards
int lives=5; // Player Lives
int level=1; // Internal Game Level
int level2=level;
int stage=1; // Game Stage

Now we set up our boolean variables. vline keeps track of the 121 vertical lines that make up our
game grid. 11 lines across and 11 up and down. hline keeps track of the 121 horizontal lines that
make up the game grid. We use ap to keep track of whether or not the 'A' key is being pressed.

filled is FALSE while the grid isn't filled and TRUE when it's been filled in. gameover is pretty
obvious. If gameover is TRUE, that's it, the game is over, otherwise you're still playing. anti keeps
track of antialiasing. If anti is TRUE, object antialiasing is ON. Otherwise it's off. active and
fullscreen keep track of whether or not the program has been minimized or not, and whether you're
running in fullscreen mode or windowed mode.

Now we set up our integer variables. loop1 and loop2 will be used to check points on our grid, see
if an enemy has hit us and to give objects random locations on the grid. You'll see loop1 / loop2 in
action later in the program. delay is a counter variable that I use to slow down the bad guys. If
delay is greater than a certain value, the enemies are moved and delay is set back to zero.

The variable adjust is a very special variable! Even though this program has a timer, the timer only
checks to see if your computer is too fast. If it is, a delay is created to slow the computer down. On
my GeForce card, the program runs insanely smooth, and very very fast. After testing this program
on my PIII/450 with a Voodoo 3500TV, I noticed that the program was running extremely slow. The
problem is that my timing code only slows down the gameplay. It wont speed it up. So I made a
new variable called adjust. adjust can be any value from 0 to 5. The objects in the game move at
different speeds depending on the value of adjust. The lower the value the smoother they move, the
higher the value, the faster they move (choppy at values higher than 3). This was the only real easy
way to make the game playable on slow systems. One thing to note, no matter how fast the
objects are moving the game speed will never run faster than I intended it to run. So setting the
adjust value to 3 is safe for fast and slow systems.

The variable lives is set to 5 so that you start the game with 5 lives. level is an internal variable.
The game uses it to keep track of the level of difficulty. This is not the level that you will see on the
screen. The variable level2 starts off with the same value as level but can increase forever
depending on your skill. If you manage to get past level 3 the level variable will stop increasing at
3. The level variable is an internal variable used for game difficulty. The stage variable keeps track
of the current game stage.

Jeff Molofee's OpenGL Windows Tutorial #21

Page 3 of 30

struct object
{
 int fx, fy;
 int x, y;
 float spin;
};

struct object player;
struct object enemy[9]; // Enemy Information
struct object hourglass;

Now we create a structure to keep track of the objects in our game. We have a fine X position (fx)
and a fine Y position (fy). These variables will move the player and enemies around the grid a few
pixels at a time. Creating a smooth moving object.

Then we have x and y. These variables will keep track of what intersection our player is at. There
are 11 points left and right and 11 points up and down. So x and y can be any value from 0 to 10.
That is why we need the fine values. If we could only move one of 11 spots left and right and one of
11 spots up and down our player would jump around the screen in a quick (non smooth) motion.

The last variable spin will be used to spin the objects on their z-axis.

Now that we have created a structure that can be used for our player, enemies and even a special
item we can create new structures that take on the characteristics of the structure we just made.

The first line below creates a structure for our player. Basically we're giving our player structure fx,
fy, x, y and spin values. By adding this line, we can access the player x position by checking
player.x. We can change the player spin by adding a number to player.spin.

The second line is a bit different. Because we can have up to 15 enemies on the screen at a time,
we need to create the above variables for each enemy. We do this by making an array of 15
enemies. the x position of the first enemy will be enemy[0].x. The second enemy will be enemy
[1].x, etc.

The last line creates a structure for our special item. The special item is an hourglass that will
appear on the screen from time to time. We need to keep track of the x and y values for the
hourglass, but because the hourglass doesn't move, we don't need to keep track of the fine
positions. Instead we will use the fine variables (fx and fy) for other things later in the program.

Now we create a timer structure. We create a structure so that it's easier to keep track of timer
variables and so that it's easier to tell that the variable is a timer variable.

The first thing we do is create a 64 bit integer called frequency. This variable will hold the
frequency of the timer. When I first wrote this program, I forgot to include this variable. I didn't
realize that the frequency on one machine may not match the frequency on another. Big mistake
on my part! The code ran fine on the 3 systems in my house, but when I tested it on a friends
machine the game ran WAY to fast. Frequency is basically how fast the clock is updated. Good
thing to keep track of :)

The resolution variable keeps track of the steps it takes before we get 1 millisecond of time.

mm_timer_start and mm_timer_elapsed hold the value that the timer started at, and the amount

Jeff Molofee's OpenGL Windows Tutorial #21

Page 4 of 30

struct
{
 __int64 frequency; // Timer Frequency
 float resolution; // Timer Resolution
 unsigned long mm_timer_start;
 unsigned long mm_timer_elapsed; // Multimedia Timer Elapsed Time
 bool performance_timer; // Using The Performance Timer?
 __int64 performance_timer_start; // Performance Timer Start Value
 __int64 performance_timer_elapsed; // Performance Timer Elapsed Time
} timer; // Structure Is Named timer

int steps[6]={ 1, 2, 4, 5, 10, 20 }; // Stepping Values For Slow Video Adjustment

GLuint texture[2];
GLuint base;

LRESULT CALLBACK WndProc(HWND, UINT, WPARAM, LPARAM); // Declaration For WndProc

 of time that has elapsed since the the timer was started. These two variables are only used if the
computer doesn't have a performance counter. In that case we end up using the less accurate
multimedia timer, which is still not to bad for a non-time critical game like this.

The variable performance_timer can be either TRUE of FALSE. If the program detects a
performance counter, the variable performance_timer variable is set to TRUE, and all timing is
done using the performance counter (alot more accurate than the multimedia timer). If a
performance counter is not found, performance_timer is set to FALSE and the multimedia timer
is used for timing.

The last 2 variables are 64 bit integer variables that hold the start time of the performance counter
and the amount of time that has elapsed since the performance counter was started.

The name of this structure is "timer" as you can see at the bottom of the structure. If we want to
know the timer frequency we can now check timer.frequency. Nice!

The next line of code is our speed table. The objects in the game will move at a different rate
depending on the value of adjust. If adjust is 0 the objects will move one pixel at a time. If the value
of adjust is 5, the objects will move 20 pixels at a time. So by increasing the value of adjust the
speed of the objects will increase, making the game run faster on slow computers. The higher
adjust is however, the choppier the game will play.

Basically steps[] is just a look-up table. If adjust was 3, we would look at the number stored at
location 3 in steps[]. Location 0 holds the value 1, location 1 holds the value 2, location 2 holds the
value 4, and location 3 hold the value 5. If adjust was 3, our objects would move 5 pixels at a time.
Make sense?

Next we make room for two textures. We'll load a background scene, and a bitmap font texture.
Then we set up a base variable so we can keep track of our font display list just like we did in the
other font tutorials. Finally we declare WndProc().

Jeff Molofee's OpenGL Windows Tutorial #21

Page 5 of 30

void TimerInit(void)
{
 memset(&timer, 0, sizeof(timer)); // Clear Our Timer Structure

 // Check To See If A Performance Counter Is Available
 // If One Is Available The Timer Frequency Will Be Updated
 if (!QueryPerformanceFrequency((LARGE_INTEGER *) &timer.frequency))
 {
 // No Performace Counter Available
 timer.performance_timer = FALSE; // Set Performance Timer To FALSE
 timer.mm_timer_start = timeGetTime(); // Use timeGetTime() To Get Current Time
 timer.resolution = 1.0f/1000.0f; // Set Our Timer Resolution To .001f
 timer.frequency = 1000;
 timer.mm_timer_elapsed = timer.mm_timer_start;
 }

 else
 {
 // Performance Counter Is Available, Use It Instead Of The Multimedia Timer
 // Get The Current Time And Store It In performance_timer_start
 QueryPerformanceCounter((LARGE_INTEGER *) &timer.performance_timer_start);
 timer.performance_timer = TRUE;
 // Calculate The Timer Resolution Using The Timer Frequency
 timer.resolution = (float) (((double)1.0f)/((double)timer.frequency));
 // Set The Elapsed Time To The Current Time
 timer.performance_timer_elapsed = timer.performance_timer_start;
 }
}

Now for the fun stuff :) The next section of code initializes our timer. It will check the computer to
see if a performance counter is available (very accurate counter). If we don't have a performance
counter the computer will use the multimedia timer. This code should be portable from what I'm
told.

We start off by clearing all the timer variables to zero. This will set all the variables in our timer
structure to zero. After that, we check to see if there is NOT a performance counter. The ! means
NOT. If there is, the frequency will be stored in timer.frequency.

If there was no performance counter, the code in between the { }'s is run. The first line sets the
variable timer.performance_timer to FALSE. This tells our program that there is no performance
counter. The second line gets our starting multimedia timer value from timeGetTime(). We set the
timer.resolution to 0.001f, and the timer.frequency to 1000. Because no time has elapsed yet,
we make the elapsed time equal the start time.

If there is a performance counter, the following code is run instead. The first line grabs the current
starting value of the performance counter, and stores it in timer.performance_timer_start. Then
we set timer.performance_timer to TRUE so that our program knows there is a performance
counter available. After that we calculate the timer resolution by using the frequency that we got
when we checked for a performance counter in the code above. We divide 1 by the frequency to get
the resolution. The last thing we do is make the elapsed time the same as the starting time.

Notice instead of sharing variables for the performance and multimedia timer start and elapsed
variables, I've decided to make seperate variables. Either way it will work fine.

Jeff Molofee's OpenGL Windows Tutorial #21

Page 6 of 30

float TimerGetTime()
{
 __int64 time;

 if (timer.performance_timer)
 {
 QueryPerformanceCounter((LARGE_INTEGER *) &time); // Grab The Current Performance Time
 // Return The Current Time Minus The Start Time Multiplied By The Resolution And 1000 (To Get MS)
 return ((float) (time - timer.performance_timer_start) * timer.resolution)*1000.0f;
 }
 else
 {
 // Return The Current Time Minus The Start Time Multiplied By The Resolution And 1000 (To Get MS)
 return((float) (timeGetTime() - timer.mm_timer_start) * timer.resolution)*1000.0f;
 }
}

void ResetObjects(void)
{
 player.x=0;
 player.y=0;
 player.fx=0;
 player.fy=0;

The section of code above sets up the timer. The code below reads the timer and returns the
amount of time that has passed in milliseconds.

The first thing we do is set up a 64 bit variable called time. We will use this variable to grab the
current counter value. The next line checks to see if we have a performance counter. If we do,
timer.performance_timer will be TRUE and the code right after will run.

The first line of code inside the { }'s grabs the counter value and stores it in the variable we created
called time. The second line takes the time we just grabbed (time and subtracts the start time that
we got when we initialized the timer. This way our timer should start out pretty close to zero. We
then multiply the results by the resolution to find out how many seconds have passed. The last
thing we do is multiply the result by 1000 to figure out how many milliseconds have passed. After
the calculation is done, our results are sent back to the section of code that called this procedure.
The results will be in floating point format for greater accuracy.

If we are not using the peformance counter, the code after the else statement will be run. It does
pretty much the same thing. We grab the current time with timeGetTime() and subtract our starting
counter value. We multiply it by our resolution and then multiply the result by 1000 to convert from
seconds into milliseconds.

The following section of code resets the player to the top left corner of the screen, and gives the
enemies a random starting point.

The top left of the screen is 0 on the x-axis and 0 on the y-axis. So by setting the player.x value to
0 we move the player to the far left side of the screen. By setting the player.y value to 0 we move
our player to the top of the screen.

The fine positions have to be equal to the current player position, otherwise our player would move
from whatever value it's at on the fine position to the top left of the screen. We don't want to player
to move there, we want it to appear there, so we set the fine positions to 0 as well.

Jeff Molofee's OpenGL Windows Tutorial #21

Page 7 of 30

 for (loop1=0; loop1<(stage*level); loop1++) // Loop Through All The Enemies
 {
 enemy[loop1].x=5+rand()%6; // Select A Random X Position
 enemy[loop1].y=rand()%11; // Select A Random Y Position
 enemy[loop1].fx=enemy[loop1].x*60; // Set Fine X To Match
 enemy[loop1].fy=enemy[loop1].y*40; // Set Fine Y To Match
 }
}

int LoadGLTextures()
{
 int Status=FALSE; // Status Indicator
 AUX_RGBImageRec *TextureImage[2]; // Create Storage Space For The Textures
 memset(TextureImage,0,sizeof(void *)*2); // Set The Pointer To NULL

 if ((TextureImage[0]=LoadBMP("Data/Font.bmp")) &&
 (TextureImage[1]=LoadBMP("Data/Image.bmp"))) // Load Background Image
 {
 Status=TRUE;

 glGenTextures(2, &texture[0]);

 for (loop1=0; loop1<2; loop1++)
 {
 glBindTexture(GL_TEXTURE_2D, texture[loop1]);
 glTexImage2D(GL_TEXTURE_2D, 0, 3, TextureImage[loop1]->sizeX, TextureImage[loop1]
 glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_LINEAR);
 glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_LINEAR);
 }

 for (loop1=0; loop1<2; loop1++)
 {
 if (TextureImage[loop1]) // If Texture Exists
 {
 if (TextureImage[loop1]->data)

Next we give the enemies a random starting location. The number of enemies displayed on the
screen will be equal to the current (internal) level value multiplied by the current stage. Remember,
the maximum value that level can equal is 3 and the maximum number of stages per level is 3. So
we can have a total of 9 enemies.

To make sure we give all the viewable enemies a new position, we loop through all the visible
enemies (stage times level). We set each enemies x position to 5 plus a random value from 0 to
5. (the maximum value rand can be is always the number you specify minus 1). So the enemy can
appear on the grid, anywhere from 5 to 10. We then give the enemy a random value on the y axis
from 0 to 10.

We don't want the enemy to move from it's old position to the new random position so we make
sure the fine x (fx) and y (fy) values are equal to the actual x and y values multiplied by width and
height of each tile on the screen. Each tile has a width of 60 and a height of 40.

The AUX_RGBImageRec code hasn't changed so I'm skipping over it. In LoadGLTextures() we will
load in our two textures. First the font bitmap (Font.bmp) and then the background image
(Image.bmp). We'll convert both the images into textures that we can use in our game. After we
have built the textures we clean up by deleting the bitmap information. Nothing really new. If you've
read the other tutorials you should have no problems understanding the code.

Jeff Molofee's OpenGL Windows Tutorial #21

Page 8 of 30

 {
 free(TextureImage[loop1]->data); // Free The Texture Image Memory
 }
 free(TextureImage[loop1]); // Free The Image Structure
 }
 }
 }
 return Status;
}

GLvoid BuildFont(GLvoid) // Build Our Font Display List
{
 base=glGenLists(256);
 glBindTexture(GL_TEXTURE_2D, texture[0]); // Select Our Font Texture
 for (loop1=0; loop1<256; loop1++) // Loop Through All 256 Lists
 {
 float cx=float(loop1%16)/16.0f;
 float cy=float(loop1/16)/16.0f;

 glNewList(base+loop1,GL_COMPILE); // Start Building A List
 glBegin(GL_QUADS); // Use A Quad For Each Character
 glTexCoord2f(cx,1.0f-cy-0.0625f); // Texture Coord (Bottom Left)
 glVertex2d(0,16); // Vertex Coord (Bottom Left)
 glTexCoord2f(cx+0.0625f,1.0f-cy-0.0625f); // Texture Coord (Bottom Right)
 glVertex2i(16,16); // Vertex Coord (Bottom Right)
 glTexCoord2f(cx+0.0625f,1.0f-cy); // Texture Coord (Top Right)
 glVertex2i(16,0); // Vertex Coord (Top Right)
 glTexCoord2f(cx,1.0f-cy); // Texture Coord (Top Left)
 glVertex2i(0,0); // Vertex Coord (Top Left)
 glEnd(); // Done Building Our Quad (Character)
 glTranslated(15,0,0);
 glEndList();
 }
}

GLvoid KillFont(GLvoid)
{
 glDeleteLists(base,256); // Delete All 256 Display Lists
}

The code below builds our font display list. I've already done a tutorial on bitmap texture fonts. All
the code does is divides the Font.bmp image into 16 x 16 cells (256 characters). Each 16x16 cell
will become a character. Because I've set the y-axis up so that positive goes down instead of up,
it's necessary to subtract our y-axis values from 1.0f. Otherwise the letters will all be upside down :)
If you don't understand what's going on, go back and read the bitmap texture font tutorial.

 It's a good idea to destroy the font display list when you're done with it, so I've added the following
section of code. Again, nothing new.

Jeff Molofee's OpenGL Windows Tutorial #21

Page 9 of 30

GLvoid glPrint(GLint x, GLint y, int set, const char *fmt, ...) // Where The Printing Happens
{
 char text[256];
 va_list ap;

 if (fmt == NULL) // If There's No Text
 return;

 va_start(ap, fmt); // Parses The String For Variables
 vsprintf(text, fmt, ap);
 va_end(ap);

 if (set>1)
 {
 set=1;
 }
 glEnable(GL_TEXTURE_2D); // Enable Texture Mapping
 glLoadIdentity(); // Reset The Modelview Matrix
 glTranslated(x,y,0);
 glListBase(base-32+(128*set));

 if (set==0)
 {
 glScalef(1.5f,2.0f,1.0f); // Enlarge Font Width And Height
 }

 glCallLists(strlen(text),GL_UNSIGNED_BYTE, text); // Write The Text To The Screen
 glDisable(GL_TEXTURE_2D); // Disable Texture Mapping
}

The glPrint() code hasn't changed that much. The only difference from the tutorial on bitmap font
textures is that I have added the ability to print the value of variables. The only reason I've written
this section of code out is so that you can see the changes. The print statement will position the
text at the x and y position that you specify. You can pick one of 2 character sets, and the value of
variables will be written to the screen. This allows us to display the current level and stage on the
screen.

Notice that I enable texture mapping, reset the view and then translate to the proper x / y position.
Also notice that if character set 0 is selected, the font is enlarged one and half times width wise,
and double it's original size up and down. I did this so that I could write the title of the game in big
letters. After the text has been drawn, I disable texture mapping.

The resize code is NEW :) Instead of using a perspective view I'm using an ortho view for this
tutorial. That means that objects don't get smaller as they move away from the viewer. The z-axis is
pretty much useless in this tutorial.

We start off by setting up the view port. We do this the same way we'd do it if we were setting up a
perspective view. We make the viewport equal to the width of our window.

Then we select the projection matrix (thing movie projector, it information on how to display our
image). and reset it.

Immediately after we reset the projection matrix, we set up our ortho view. I'll explain the command
in detail:

The first parameter (0.0f) is the value that we want for the far left side of the screen. You wanted to
know how to use actual pixel values, so instead of using a negative number for far left, I've set the
value to 0. The second parameter is the value for the far right side of the screen. If our window is
640x480, the value stored in width will be 640. So the far right side of the screen effectively

Jeff Molofee's OpenGL Windows Tutorial #21

Page 10 of 30

GLvoid ReSizeGLScene(GLsizei width, GLsizei height) // Resize And Initialize The GL Window
{
 if (height==0)
 {
 height=1; // Making Height Equal One
 }

 glViewport(0,0,width,height);

 glMatrixMode(GL_PROJECTION);
 glLoadIdentity(); // Reset The Projection Matrix

 glOrtho(0.0f,width,height,0.0f,-1.0f,1.0f); // Create Ortho 640x480 View (0,0 At Top Left)

 glMatrixMode(GL_MODELVIEW); // Select The Modelview Matrix
 glLoadIdentity(); // Reset The Modelview Matrix
}

int InitGL(GLvoid) // All Setup For OpenGL Goes Here
{
 if (!LoadGLTextures())
 {

becomes 640. Therefore our screen runs from 0 to 640 on the x-axis.

The third parameter (height) would normally be our negative y-axis value (bottom of the screen). But
because we want exact pixels, we wont have a negative value. Instead we will make the bottom of
the screen equal the height of our window. If our window is 640x480, height will be equal to 480.
So the bottom of our screen will be 480. The fourth parameter would normally be the positive value
for the top of our screen. We want the top of the screen to be 0 (good old fashioned screen
coordinates) so we just set the fourth parameter to 0. This gives us from 0 to 480 on the y-axis.

The last two parameters are for the z-axis. We don't really care about the z-axis so we'll set the
range from -1.0f to 1.0f. Just enough that we can see anything drawn at 0.0f on the z-axis.

After we've set up the ortho view, we select the modelview matrix (object information... location, etc)
and reset it.

The init code has a few new commands. We start off by loading our textures. If they didn't load
properly, the program will quit with an error message. After we have built the textures, we build our
font set. I don't bother error checking but you can if you want.

After the font has been built, we set things up. We enable smooth shading, set our clear color to
black and set depth clearing to 1.0f. After that is a new line of code.

glHint() tells OpenGL how to draw something. In this case we are telling OpenGL that we want line
smoothing to be the best (nicest) that OpenGL can do. This is the command that enables anti-
aliasing.

The last thing we do is enable blending and select the blend mode that makes anti-aliased lines
possible. Blending is required if you want the lines to blend nicely with the background image.
Disable blending if you want to see how crappy things look without it.

It's important to point out that antialiasing may not appear to be working. The objects in this game
are quite small so you may not notice the antialaising right off the start. Look hard. Notice how the
jaggie lines on the enemies smooth out when antialiasing is on. The player and hourglass should
look better as well.

Jeff Molofee's OpenGL Windows Tutorial #21

Page 11 of 30

 return FALSE;
 }

 BuildFont();

 glShadeModel(GL_SMOOTH); // Enable Smooth Shading
 glClearColor(0.0f, 0.0f, 0.0f, 0.5f);
 glClearDepth(1.0f);
 glHint(GL_LINE_SMOOTH_HINT, GL_NICEST);
 glEnable(GL_BLEND);
 glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); // Type Of Blending To Use
 return TRUE;
}

int DrawGLScene(GLvoid)
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Clear Screen And Depth Buffer
 glBindTexture(GL_TEXTURE_2D, texture[0]); // Select Our Font Texture
 glColor3f(1.0f,0.5f,1.0f); // Set Color To Purple
 glPrint(207,24,0,"GRID CRAZY");
 glColor3f(1.0f,1.0f,0.0f); // Set Color To Yellow
 glPrint(20,20,1,"Level:%2i",level2); // Write Actual Level Stats
 glPrint(20,40,1,"Stage:%2i",stage); // Write Stage Stats

 if (gameover)
 {
 glColor3ub(rand()%255,rand()%255,rand()%255); // Pick A Random Color
 glPrint(472,20,1,"GAME OVER");
 glPrint(456,40,1,"PRESS SPACE"); // Write PRESS SPACE To The Screen
 }

Now for the drawing code. This is where the magic happens :)

We clear the screen (to black) along with the depth buffer. Then we select the font texture (texture
[0]). We want the words "GRID CRAZY" to be a purple color so we set red and blue to full intensity,
and we turn the green up half way. After we've selected the color, we call glPrint(). We position the
words "GRID CRAZY" at 207 on the x axis (center on the screen) and 24 on the y-axis (up and
down). We use our large font by selecting font set 0.

After we've drawn "GRID CRAZY" to the screen, we change the color to yellow (full red, full green).
We write "Level:" and the variable level2 to the screen. Remember that level2 can be greater than
3. level2 holds the level value that the player sees on the screen. %2i means that we don't want
any more than 2 digits on the screen to represent the level. The i means the number is an integer
number.

After we have written the level information to the screen, we write the stage information right under it
using the same color.

Now we check to see if the game is over. If the game is over, the variable gameover will be TRUE.
If the game is over, we use glColor3ub(r,g,b) to select a random color. Notice we are using 3ub
instead of 3f. By using 3ub we can use integer values from 0 to 255 to set our colors. Plus it's
easier to get a random value from 0 to 255 than it is to get a random value from 0.0f to 1.0f.

Once a random color has been selected, we write the words "GAME OVER" to the right of the
game title. Right under "GAME OVER" we write "PRESS SPACE". This gives the player a visual
message letting them know that they have died and to press the spacebar to restart the game.

Jeff Molofee's OpenGL Windows Tutorial #21

Page 12 of 30

 for (loop1=0; loop1<lives-1; loop1++)
 {
 glLoadIdentity(); // Reset The View
 glTranslatef(490+(loop1*40.0f),40.0f,0.0f); // Move To The Right Of Our Title Text
 glRotatef(-player.spin,0.0f,0.0f,1.0f);
 glColor3f(0.0f,1.0f,0.0f); // Set Player Color To Light Green
 glBegin(GL_LINES); // Start Drawing Our Player Using Lines
 glVertex2d(-5,-5); // Top Left Of Player
 glVertex2d(5, 5); // Bottom Right Of Player
 glVertex2d(5,-5); // Top Right Of Player
 glVertex2d(-5, 5); // Bottom Left Of Player
 glEnd(); // Done Drawing The Player
 glRotatef(-player.spin*0.5f,0.0f,0.0f,1.0f); // Rotate Counter Clockwise
 glColor3f(0.0f,0.75f,0.0f); // Set Player Color To Dark Green
 glBegin(GL_LINES); // Start Drawing Our Player Using Lines
 glVertex2d(-7, 0); // Left Center Of Player
 glVertex2d(7, 0); // Right Center Of Player
 glVertex2d(0,-7); // Top Center Of Player
 glVertex2d(0, 7); // Bottom Center Of Player
 glEnd(); // Done Drawing The Player
 }

If the player still has lives left, we draw animated images of the players character to the right of the
game title. To do this we create a loop that goes from 0 to the current number of lives the player
has left minus one. I subtract one, because the current life is the image you control.

Inside the loop, we reset the view. After the view has been reset, we translate to the 490 pixels to
the right plus the value of loop1 times 40.0f. This draws each of the animated player lives 40 pixels
apart from eachother. The first animated image will be drawn at 490+(0*40) (= 490), the second
animated image will be drawn at 490+(1*40) (= 530), etc.

After we have moved to the spot we want to draw the animated image, we rotate counterclockwise
depending on the value stored in player.spin. This causes the animated life images to spin the
opposite way that your active player is spinning.

We then select green as our color, and start drawing the image. Drawing lines is alot like drawing a
quad or a polygon. You start off with glBegin(GL_LINES), telling OpenGL we want to draw a line.
Lines have 2 vertices. We use glVertex2d to set our first point. glVertex2d doesn't require a z value,
which is nice considering we don't care about the z value. The first point is drawn 5 pixels to the left
of the current x location and 5 pixels up from the current y location. Giving us a top left point. The
second point of our first line is drawn 5 pixels to the right of our current x location, and 5 pixels
down, giving us a bottom right point. This draws a line from the top left to the bottom right. Our
second line is drawn from the top right to the bottom left. This draws a green X on the screen.

After we have drawn the green X, we rotate counterclockwise (on the z axis) even more, but this
time at half the speed. We then select a darker shade of green (0.75f) and draw another x, but we
use 7 instead of 5 this time. This draws a bigger / darker x on top of the first green X. Because the
darker X spins slower though, it will look as if the bright X has a spinning set of feelers (grin) on top
of it.

Jeff Molofee's OpenGL Windows Tutorial #21

Page 13 of 30

 filled=TRUE;
 glLineWidth(2.0f); // Set Line Width For Cells To 2.0f
 glDisable(GL_LINE_SMOOTH); // Disable Antialiasing
 glLoadIdentity(); // Reset The Current Modelview Matrix
 for (loop1=0; loop1<11; loop1++) // Loop From Left To Right
 {
 for (loop2=0; loop2<11; loop2++) // Loop From Top To Bottom
 {
 glColor3f(0.0f,0.5f,1.0f); // Set Line Color To Blue
 if (hline[loop1][loop2]) // Has The Horizontal Line Been Traced
 {
 glColor3f(1.0f,1.0f,1.0f); // If So, Set Line Color To White
 }
 if (loop1<10)
 {
 if (!hline[loop1][loop2]) // If A Horizontal Line Isn't Filled
 {
 filled=FALSE;
 }
 glBegin(GL_LINES); // Start Drawing Horizontal Cell Borders
 glVertex2d(20+(loop1*60),70+(loop2*40));
 glVertex2d(80+(loop1*60),70+(loop2*40));
 glEnd(); // Done Drawing Horizontal Cell Borders
 }

Now we're going to draw the grid. We set the variable filled to TRUE. This tells our program that
the grid has been completely filled in (you'll see why we do this in a second).

Right after that we set the line width to 2.0f. This makes the lines thicker, making the grid look
more defined.

Then we disable anti-aliasing. The reason we disable anti-aliasing is because although it's a great
feature, it eats CPU's for breakfast. Unless you have a killer graphics card, you'll notice a huge slow
down if you leave anti-aliasing on. Go ahead and try if you want :)

The view is reset, and we start two loops. loop1 will travel from left to right. loop2 will travel from
top to bottom.

We set the line color to blue, then we check to see if the horizontal line that we are about to draw
has been traced over. If it has we set the color to white. The value of hline[loop1][loop2] will be
TRUE if the line has been traced over, and FALSE if it hasn't.

After we have set the color to blue or white, we draw the line. The first thing to do is make sure we
haven't gone to far to the right. We don't want to draw any lines or check to see if the line has been
filled in when loop1 is greater than 9.

Once we are sure loop1 is in the valid range we check to see if the horizontal line hasn't been filled
in. If it hasn't, filled is set to FALSE, letting our OpenGL program know that there is at least one
line that hasn't been filled in.

The line is then drawn. We draw our first horizontal (left to right) line starting at 20+(0*60) (= 20).
This line is drawn all the way to 80+(0*60) (= 80). Notice the line is drawn to the right. That is why
we don't want to draw 11 (0-10) lines. because the last line would start at the far right of the screen
and end 80 pixels off the screen.

 The code below does the same thing, but it checks to make sure the line isn't being drawn too far
down the screen instead of too far right. This code is responsible for drawing vertical lines.

Jeff Molofee's OpenGL Windows Tutorial #21

Page 14 of 30

 glColor3f(0.0f,0.5f,1.0f); // Set Line Color To Blue
 if (vline[loop1][loop2]) // Has The Horizontal Line Been Traced
 {
 glColor3f(1.0f,1.0f,1.0f); // If So, Set Line Color To White
 }
 if (loop2<10)
 {
 if (!vline[loop1][loop2]) // If A Verticle Line Isn't Filled
 {
 filled=FALSE;
 }
 glBegin(GL_LINES); // Start Drawing Verticle Cell Borders
 glVertex2d(20+(loop1*60),70+(loop2*40));
 glVertex2d(20+(loop1*60),110+(loop2*40));
 glEnd(); // Done Drawing Verticle Cell Borders
 }

Now we check to see if 4 sides of a box are traced. Each box on the screen is 1/10th of a full
screen picture. Because each box is piece of a larger texture, the first thing we need to do is
enable texture mapping. We don't want the texture to be tinted red, green or blue so we set the
color to bright white. After the color is set to white we select our grid texture (texture[1]).

The next thing we do is check to see if we are checking a box that exists on the screen.
Remember that our loop draws the 11 lines right and left and 11 lines up and down. But we dont
have 11 boxes. We have 10 boxes. So we have to make sure we don't check the 11th position. We
do this by making sure both loop1 and loop2 is less than 10. That's 10 boxes from 0 - 9.

After we have made sure that we are in bounds we can start checking the borders. hline[loop1]
[loop2] is the top of a box. hline[loop1][loop2+1] is the bottom of a box. vline[loop1][loop2] is
the left side of a box and vline[loop1+1][loop2] is the right side of a box. Hopefully I can clear
things up with a diagram:

All horizontal lines are assumed to run from loop1 to loop1+1. As you can see, the first horizontal
line is runs along loop2. The second horizontal line runs along loop2+1. Vertical lines are
assumed to run from loop2 to loop2+1. The first vertical line runs along loop1 and the second
vertical line runs along loop1+1

When loop1 is increased, the right side of our old box becomes the left side of the new box. When
loop2 is increased, the bottom of the old box becomes the top of the new box.

If all 4 borders are TRUE (meaning we've passed over them all) we can texture map the box. We do
this the same way we broke the font texture into seperate letters. We divide both loop1 and loop2
by 10 because we want to map the texture across 10 boxes from left to right and 10 boxes up and
down. Texture coordinates run from 0.0f to 1.0f and 1/10th of 1.0f is 0.1f.

So to get the top right side of our box we divide the loop values by 10 and add 0.1f to the x texture
coordinate. To get the top left side of the box we divide our loop values by 10. To get the bottom left
side of the box we divide our loop values by 10 and add 0.1f to the y texture coordinate. Finally to
get the bottom right texture coordinate we divide the loop values by 10 and add 0.1f to both the x
and y texture coordinates.

Jeff Molofee's OpenGL Windows Tutorial #21

Page 15 of 30

 glEnable(GL_TEXTURE_2D); // Enable Texture Mapping
 glColor3f(1.0f,1.0f,1.0f); // Bright White Color
 glBindTexture(GL_TEXTURE_2D, texture[1]); // Select The Tile Image
 if ((loop1<10) && (loop2<10))
 {
 // Are All Sides Of The Box Traced?
 if (hline[loop1][loop2] && hline[loop1][loop2+1] && vline[loop1][loop2] && vline[loop1+1][loop2])
 {
 glBegin(GL_QUADS); // Draw A Textured Quad
 glTexCoord2f(float(loop1/10.0f)+0.1f,1.0f
 glVertex2d(20+(loop1*60)+59,(70+loop2*40+1));
 glTexCoord2f(float(loop1/10.0f),1.0f-
 glVertex2d(20+(loop1*60)+1,(70+loop2*40+1));
 glTexCoord2f(float(loop1/10.0f),1.0f-
 glVertex2d(20+(loop1*60)+1,(70+loop2*40)+39);
 glTexCoord2f(float(loop1/10.0f)+0.1f,1.0f
 glVertex2d(20+(loop1*60)+59,(70+loop2*40)+39);
 glEnd(); // Done Texturing The Box
 }
 }
 glDisable(GL_TEXTURE_2D); // Disable Texture Mapping
 }
 }
 glLineWidth(1.0f); // Set The Line Width To 1.0f

 if (anti) // Is Anti TRUE?
 {
 glEnable(GL_LINE_SMOOTH); // If So, Enable Antialiasing
 }

Quick examples:

loop1=0 and loop2=0

l Right X Texture Coordinate = loop1/10+0.1f = 0/10+0.1f = 0+0.1f = 0.1f
l Left X Texture Coordinate = loop1/10 = 0/10 = 0.0f
l Top Y Texture Coordinate = loop2/10 = 0/10 = 0.0f;
l Bottom Y Texture Coordinate = loop2/10+0.1f = 0/10+0.1f = 0+0.1f = 0.1f;

loop1=1 and loop2=1

l Right X Texture Coordinate = loop1/10+0.1f = 1/10+0.1f = 0.1f+0.1f = 0.2f
l Left X Texture Coordinate = loop1/10 = 1/10 = 0.1f
l Top Y Texture Coordinate = loop2/10 = 1/10 = 0.1f;
l Bottom Y Texture Coordinate = loop2/10+0.1f = 1/10+0.1f = 0.1f+0.1f = 0.2f;

Hopefully that all makes sense. If loop1 and loop2 were equal to 9 we would end up with the
values 0.9f and 1.0f. So as you can see our texture coordinates mapped across the 10 boxes run
from 0.0f at the lowest and 1.0f at the highest. Mapping the entire texture to the screen. After we've
mapped a section of the texture to the screen, we disable texture mapping. Once we've drawn all
the lines and filled in all the boxes, we set the line width to 1.0f.

 The code below checks to see if anti is TRUE. If it is, we enable line smoothing (anti-aliasing).

Jeff Molofee's OpenGL Windows Tutorial #21

Page 16 of 30

 if (hourglass.fx==1)
 {
 glLoadIdentity(); // Reset The Modelview Matrix
 glTranslatef(20.0f+(hourglass.x*60),70.0f+(hourglass.y*40),0.0f);
 glRotatef(hourglass.spin,0.0f,0.0f,1.0f); // Rotate Clockwise
 glColor3ub(rand()%255,rand()%255,rand()%255); // Set Hourglass Color To Random Color

 glBegin(GL_LINES); // Start Drawing Our Hourglass Using Lines
 glVertex2d(-5,-5); // Top Left Of Hourglass
 glVertex2d(5, 5); // Bottom Right Of Hourglass
 glVertex2d(5,-5); // Top Right Of Hourglass
 glVertex2d(-5, 5); // Bottom Left Of Hourglass
 glVertex2d(-5, 5); // Bottom Left Of Hourglass
 glVertex2d(5, 5); // Bottom Right Of Hourglass
 glVertex2d(-5,-5); // Top Left Of Hourglass
 glVertex2d(5,-5); // Top Right Of Hourglass
 glEnd(); // Done Drawing The Hourglass
 }

To make the game a little easier I've added a special item. The item is an hourglass. When you
touch the hourglass, the enemies are frozen for a specific amount of time. The following section of
code is resposible for drawing the hourglass.

For the hourglass we use x and y to position the timer, but unlike our player and enemies we don't
use fx and fy for fine positioning. Instead we'll use fx to keep track of whether or not the timer is
being displayed. fx will equal 0 if the timer is not visible. 1 if it is visible, and 2 if the player has
touched the timer. fy will be used as a counter to keep track of how long the timer should be visible
or invisible.

So we start off by checking to see if the timer is visible. If not, we skip over the code without
drawing the timer. If the timer is visible, we reset the modelview matrix, and position the timer.
Because our first grid point from left to right starts at 20, we will add hourglass.x times 60 to 20.
We multiply hourglass.x by 60 because the points on our grid from left to right are spaced 60
pixels apart. We then position the hourglass on the y axis. We add hourglass.y times 40 to 70.0f
because we want to start drawing 70 pixels down from the top of the screen. Each point on our grid
from top to bottom is spaced 40 pixels apart.

After we have positioned the hourglass, we can rotate it on the z-axis. hourglass.spin is used to
keep track of the rotation, the same way player.spin keeps track of the player rotation. Before we
start to draw the hourglass we select a random color.

glBegin(GL_LINES) tells OpenGL we want to draw using lines. We start off by moving left and up 5
pixels from our current location. This gives us the top left point of our hourglass. OpenGL will start
drawing the line from this location. The end of the line will be 5 pixels right and down from our
original location. This gives us a line running from the top left to the bottom right. Immediately after
that we draw a second line running from the top right to the bottom left. This gives us an 'X'. We
finish off by connecting the bottom two points together, and then the top two points to create an
hourglass type object :)

Jeff Molofee's OpenGL Windows Tutorial #21

Page 17 of 30

 glLoadIdentity(); // Reset The Modelview Matrix
 glTranslatef(player.fx+20.0f,player.fy+70.0f,0.0f); // Move To The Fine Player Position
 glRotatef(player.spin,0.0f,0.0f,1.0f);
 glColor3f(0.0f,1.0f,0.0f); // Set Player Color To Light Green
 glBegin(GL_LINES); // Start Drawing Our Player Using Lines
 glVertex2d(-5,-5); // Top Left Of Player
 glVertex2d(5, 5); // Bottom Right Of Player
 glVertex2d(5,-5); // Top Right Of Player
 glVertex2d(-5, 5); // Bottom Left Of Player
 glEnd(); // Done Drawing The Player

 glRotatef(player.spin*0.5f,0.0f,0.0f,1.0f); // Rotate Clockwise
 glColor3f(0.0f,0.75f,0.0f); // Set Player Color To Dark Green
 glBegin(GL_LINES); // Start Drawing Our Player Using Lines
 glVertex2d(-7, 0); // Left Center Of Player
 glVertex2d(7, 0); // Right Center Of Player
 glVertex2d(0,-7); // Top Center Of Player
 glVertex2d(0, 7); // Bottom Center Of Player
 glEnd(); // Done Drawing The Player

Now we draw our player. We reset the modelview matrix, and position the player on the screen.
Notice we position the player using fx and fy. We want the player to move smoothly so we use fine
positioning. After positioning the player, we rotate the player on it's z-axis using player.spin. We
set the color to light green and begin drawing. Just like the code we used to draw the hourglass, we
draw an 'X'. Starting at the top left to the bottom right, then from the top right to the bottom left.

Drawing low detail objects with lines can be a little frustrating. I didn't want the player to look boring
so I added the next section of code to create a larger and quicker spinning blade on top of the
player that we drew above. We rotate on the z-axis by player.spin times 0.5f. Because we are
rotating again, it will appear as if this piece of the player is moving a little quicker than the first
piece of the player.

After doing the new rotation, we set the color to a darker shade of green. So that it actually looks
like the player is made up of different colors / pieces. We then draw a large '+' on top of the first
piece of the player. It's larger because we're using -7 and +7 instead of -5 and +5. Also notice that
instead of drawing from one corner to another, I'm drawing this piece of the player from left to right
and top to bottom.

All we have to do now is draw the enemies, and we're done drawing :) We start off by creating a
loop that will loop through all the enemies visible on the current level. We calculate how many
enemies to draw by multiplying our current game stage by the games internal level. Remember
that each level has 3 stages, and the maximum value of the internal level is 3. So we can have a
maximum of 9 enemies.

Inside the loop we reset the modelview matrix, and position the current enemy (enemy[loop1]).
We position the enemy using it's fine x and y values (fx and fy). After positioning the current enemy
we set the color to pink and start drawing.

The first line will run from 0, -7 (7 pixels up from the starting location) to -7,0 (7 pixels left of the
starting location). The second line runs from -7,0 to 0,7 (7 pixels down from the starting location).
The third line runs from 0,7 to 7,0 (7 pixels to the right of our starting location), and the last line
runs from 7,0 back to the beginning of the first line (7 pixels up from the starting location). This
creates a non spinning pink diamond on the screen.

Jeff Molofee's OpenGL Windows Tutorial #21

Page 18 of 30

 for (loop1=0; loop1<(stage*level); loop1++) // Loop To Draw Enemies
 {
 glLoadIdentity(); // Reset The Modelview Matrix
 glTranslatef(enemy[loop1].fx+20.0f,enemy[loop1].fy+70.0f,0.0f);
 glColor3f(1.0f,0.5f,0.5f); // Make Enemy Body Pink
 glBegin(GL_LINES); // Start Drawing Enemy
 glVertex2d(0,-7); // Top Point Of Body
 glVertex2d(-7, 0); // Left Point Of Body
 glVertex2d(-7, 0); // Left Point Of Body
 glVertex2d(0, 7); // Bottom Point Of Body
 glVertex2d(0, 7); // Bottom Point Of Body
 glVertex2d(7, 0); // Right Point Of Body
 glVertex2d(7, 0); // Right Point Of Body
 glVertex2d(0,-7); // Top Point Of Body
 glEnd(); // Done Drawing Enemy Body

 glRotatef(enemy[loop1].spin,0.0f,0.0f,1.0f); // Rotate The Enemy Blade
 glColor3f(1.0f,0.0f,0.0f); // Make Enemy Blade Red
 glBegin(GL_LINES); // Start Drawing Enemy Blade
 glVertex2d(-7,-7); // Top Left Of Enemy
 glVertex2d(7, 7); // Bottom Right Of Enemy
 glVertex2d(-7, 7); // Bottom Left Of Enemy
 glVertex2d(7,-7); // Top Right Of Enemy
 glEnd(); // Done Drawing Enemy Blade
 }
 return TRUE;
}

GLvoid KillGLWindow(GLvoid) // Properly Kill The Window
{
 if (fullscreen)
 {
 ChangeDisplaySettings(NULL,0);
 ShowCursor(TRUE); // Show Mouse Pointer
 }

 if (hRC) // Do We Have A Rendering Context?
 {
 if (!wglMakeCurrent(NULL,NULL))
 {
 MessageBox(NULL,"Release Of DC And RC Failed.","SHUTDOWN ERROR",MB_OK | MB_ICONINFORMATION);
 }

 if (!wglDeleteContext(hRC)) // Are We Able To Delete The RC?
 {
 MessageBox(NULL,"Release Rendering Context Failed.","SHUTDOWN ERROR",MB_OK | MB_ICONINFORMATION);

creates a non spinning pink diamond on the screen.

We don't want the enemy to look boring either so we'll add a dark red spinning blade ('X') on top of
the diamond that we just drew. We rotate on the z-axis by enemy[loop1].spin, and then draw the
'X'. We start at the top left and draw a line to the bottom right. Then we draw a second line from the
top right to the bottom left. The two lines cross eachother creating an 'X' (or blade ... grin).

 I added the KillFont() command to the end of KillGLWindow(). This makes sure the font display list
is destroyed when the window is destroyed.

Jeff Molofee's OpenGL Windows Tutorial #21

Page 19 of 30

 }
 hRC=NULL; // Set RC To NULL
 }

 if (hDC && !ReleaseDC(hWnd,hDC)) // Are We Able To Release The DC
 {
 MessageBox(NULL,"Release Device Context Failed.","SHUTDOWN ERROR",MB_OK | MB_ICONINFORMATION);
 hDC=NULL; // Set DC To NULL
 }

 if (hWnd && !DestroyWindow(hWnd)) // Are We Able To Destroy The Window?
 {
 MessageBox(NULL,"Could Not Release hWnd.","SHUTDOWN ERROR",MB_OK | MB_ICONINFORMATION);
 hWnd=NULL;
 }

 if (!UnregisterClass("OpenGL",hInstance)) // Are We Able To Unregister Class
 {
 MessageBox(NULL,"Could Not Unregister Class.","SHUTDOWN ERROR",MB_OK | MB_ICONINFORMATION);
 hInstance=NULL;
 }

 KillFont();
}

int WINAPI WinMain(HINSTANCE hInstance, // Instance
 HINSTANCE hPrevInstance, // Previous Instance
 LPSTR lpCmdLine,
 int nCmdShow) // Window Show State
{
 MSG msg;
 BOOL done=FALSE;

 // Ask The User Which Screen Mode They Prefer
 if (MessageBox(NULL,"Would You Like To Run In Fullscreen Mode?", "Start FullScreen?",MB_YESNO|MB_ICONQUESTION)==IDNO)
 {
 fullscreen=FALSE; // Windowed Mode
 }

 if (!CreateGLWindow("NeHe's Line Tutorial",640,480,16,fullscreen)) // Create Our OpenGL Window
 {
 return 0; // Quit If Window Was Not Created
 }

 ResetObjects();

 while(!done)
 {
 if (PeekMessage(&msg,NULL,0,0,PM_REMOVE)) // Is There A Message Waiting?
 {

 The CreateGLWindow() and WndProc() code hasn't changed so search until you find the following
section of code.

This section of code hasn't changed that much. I changed the window title to read "NeHe's Line
Tutorial", and I added the ResetObjects() command. This sets the player to the top left point of the
grid, and gives the enemies random starting locations. The enemies will always start off at least 5
tiles away from you.

Jeff Molofee's OpenGL Windows Tutorial #21

Page 20 of 30

 if (msg.message==WM_QUIT) // Have We Received A Quit Message?
 {
 done=TRUE;
 }
 else
 {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }
 }
 else
 {

 float start=TimerGetTime(); // Grab Timer Value Before We Draw

 // Draw The Scene. Watch For ESC Key And Quit Messages From DrawGLScene()
 if ((active && !DrawGLScene()) || keys[VK_ESCAPE]) // Active? Was There A Quit Received?
 {
 done=TRUE;
 }
 else
 {
 SwapBuffers(hDC); // Swap Buffers (Double Buffering)
 }

 while(TimerGetTime()<start+float(steps[adjust]*2.0f)) {}// Waste Cycles On Fast Systems

 if (keys[VK_F1]) // Is F1 Being Pressed?
 {
 keys[VK_F1]=FALSE; // If So Make Key FALSE
 KillGLWindow();

Now to make the timing code work. Notice before we draw our scene we grab the time, and store it
in a floating point variable called start. We then draw the scene and swap buffers.

Immediately after we swap the buffers we create a delay. We do this by checking to see if the
current value of the timer (TimerGetTime()) is less than our starting value plus the game stepping
speed times 2. If the current timer value is less than the value we want, we endlessly loop until the
current timer value is equal to or greater than the value we want. This slows down REALLY fast
systems.

Because we use the stepping speed (set by the value of adjust) the program will always run the
same speed. For example, if our stepping speed was 1 we would wait until the timer was greater
than or equal to 2 (1*2). But if we increased the stepping speed to 2 (causing the player to move
twice as many pixels at a time), the delay is increased to 4 (2*2). So even though we are moving
twice as fast, the delay is twice as long, so the game still runs the same speed :)

One thing alot of people like to do is take the current time, and subtract the old time to find out how
much time has passed. Then they move objects a certain distance based on the amount of time
that has passed. Unfortunately I can't do that in this program because the fine movement has to be
exact so that the player can line up with the lines on the grid. If the current fine x position was 59
and the computer decided the player needed to move two pixels, the player would never line up with
the vertical line at position 60 on the grid.

 The following code hasn't really changed. I changed the title of the window to read "NeHe's Line
Tutorial".

Jeff Molofee's OpenGL Windows Tutorial #21

Page 21 of 30

 fullscreen=!fullscreen;
 // Recreate Our OpenGL Window
 if (!CreateGLWindow("NeHe's Line Tutorial",640,480,16,fullscreen))
 {
 return 0; // Quit If Window Was Not Created
 }
 }

 if (keys['A'] && !ap)
 {
 ap=TRUE; // ap Becomes TRUE
 anti=!anti;
 }
 if (!keys['A'])
 {
 ap=FALSE; // ap Becomes FALSE
 }

 if (!gameover && active) // If Game Isn't Over And Programs Active Move Objects
 {
 for (loop1=0; loop1<(stage*level); loop1++) // Loop Through The Different Stages
 {

This section of code checks to see if the A key is being pressed and not held. If 'A' is being
pressed, ap becomes TRUE (telling our program that A is being held down), and anti is toggled
from TRUE to FALSE or FALSE to TRUE. Remember that anti is checked in the drawing code to
see if antialiasing is turned on or off.

If the 'A' key has been released (is FALSE) then ap is set to FALSE telling the program that the
key is no longer being held down.

Now to move the enemies. I wanted to keep this section of code really simple. There is very little
logic. Basically, the enemies check to see where you are and they move in that direction. Because
I'm checking the actual x and y position of the players and no the fine values, the players seem to
have a little more intelligence. They may see that you are way at the top of the screen. But by the
time they're fine value actually gets to the top of the screen, you could already be in a different
location. This causes them to sometimes move past you, before they realize you are no longer
where they thought you were. May sound like they're really dumb, but because they sometimes
move past you, you might find yourself being boxed in from all directions.

We start off by checking to make sure the game isn't over, and that the window (if in windowed
mode) is still active. By checking active the enemies wont move if the screen is minimized. This
gives you a convenient pause feature when you need to take a break :)

After we've made sure the enemies should be moving, we create a loop. The loop will loop through
all the visible enemies. Again we calculate how many enemies should be on the screen by
multiplying the current stage by the current internal level.

Jeff Molofee's OpenGL Windows Tutorial #21

Page 22 of 30

 if ((enemy[loop1].x<player.x) && (enemy[loop1].fy==enemy[loop1].y*40))
 {
 enemy[loop1].x++; // Move The Enemy Right
 }

 if ((enemy[loop1].x>player.x) && (enemy[loop1].fy==enemy[loop1].y*40))
 {
 enemy[loop1].x--; // Move The Enemy Left
 }

 if ((enemy[loop1].y<player.y) && (enemy[loop1].fx==enemy[loop1].x*60))
 {
 enemy[loop1].y++; // Move The Enemy Down
 }

 if ((enemy[loop1].y>player.y) && (enemy[loop1].fx==enemy[loop1].x*60))
 {
 enemy[loop1].y--; // Move The Enemy Up
 }

 if (delay>(3-level) && (hourglass.fx!=2))
 {
 delay=0;
 for (loop2=0; loop2<(stage*level); loop2++)
 {

Now we move the current enemy (enemy[loop1]). We start off by checking to see if the enemy's x
position is less than the players x position and we make sure that the enemy's fine y position lines
up with a horizontal line. We can't move the enemy left and right if it's not on a horizontal line. If we
did, the enemy would cut right through the middle of the boxes, making the game even more
difficult :)

If the enemy x position is less than the player x position, and the enemy's fine y position is lined
up with a horizontal line, we move the enemy x position one block closer to the current player
position.

We also do this to move the enemy left, down and up. When moving up and down, we need to
make sure the enemy's fine x position lines up with a vertical line. We don't want the enemy cutting
through the top or bottom of a box.

Note: changing the enemies x and y positions doesn't move the enemy on the screen. Remember
that when we drew the enemies we used the fine positions to place the enemies on the screen.
Changing the x and y positions just tells our program where we WANT the enemies to move.

This code does the actual moving. We check to see if the variable delay is greater than 3 minus
the current internal level. That way if our current level is 1 the program will loop through 2 (3-1) times
before the enemies actually move. On level 3 (the highest value that level can be) the enemies will
move the same speed as the player (no delays). We also make sure that hourglass.fx isn't the
same as 2. Remember, if hourglass.fx is equal to 2, that means the player has touched the
hourglass. Meaning the enemies shouldn't be moving.

If delay is greater than 3-level and the player hasn't touched the hourglass, we move the enemies
by adjusting the enemy fine positions (fx and fy). The first thing we do is set delay back to 0 so
that we can start the delay counter again. Then we set up a loop that loops through all the visible
enemies (stage times level).

Jeff Molofee's OpenGL Windows Tutorial #21

Page 23 of 30

 if (enemy[loop2].fx<enemy[loop2].x*60)
 {
 enemy[loop2].fx+=steps[adjust];
 enemy[loop2].spin+=steps[adjust];
 }
 if (enemy[loop2].fx>enemy[loop2].x*60)
 {
 enemy[loop2].fx-=steps[adjust];
 enemy[loop2].spin-=steps[adjust];
 }
 if (enemy[loop2].fy<enemy[loop2].y*40)
 {
 enemy[loop2].fy+=steps[adjust];
 enemy[loop2].spin+=steps[adjust];
 }
 if (enemy[loop2].fy>enemy[loop2].y*40)
 {
 enemy[loop2].fy-=steps[adjust];
 enemy[loop2].spin-=steps[adjust];
 }
 }
 }

To move the enemies we check to see if the current enemy (enemy[loop2]) needs to move in a
specific direction to move towards the enemy x and y position we want. In the first line below we
check to see if the enemy fine position on the x-axis is less than the desired x position times 60.
(remember each grid crossing is 60 pixels apart from left to right). If the fine x position is less than
the enemy x position times 60 we move the enemy to the right by steps[adjust] (the speed our
game is set to play at based on the value of adjust). We also rotate the enemy clockwise to make
it look like it's rolling to the right. We do this by increasing enemy[loop2].spin by steps[adjust]
(the current game speed based on adjust).

We then check to see if the enemy fx value is greater than the enemy x position times 60 and if
so, we move the enemy left and spin the enemy left.

We do the same when moving the enemy up and down. If the enemy y position is less than the
enemy fy position times 40 (40 pixels between grid points up and down) we increase the enemy fy
position, and rotate the enemy to make it look like it's rolling downwards. Lastly if the enemy y
position is greater than the enemy fy position times 40 we decrease the value of fy to move the
enemy upward. Again, the enemy spins to make it look like it's rolling upward.

After moving the enemies we check to see if any of them have hit the player. We want accuracy so
we compare the enemy fine positions with the player fine positions. If the enemy fx position equals
the player fx position and the enemy fy position equals the player fy position the player is DEAD :)

If the player is dead, we decrease lives. Then we check to make sure the player isn't out of lives by
checking to see if lives equals 0. If lives does equal zero, we set gameover to TRUE.

We then reset our objects by calling ResetObjects(), and play the death sound.

Sound is new in this tutorial. I've decided to use the most basic sound routine available...
PlaySound(). PlaySound() takes three parameters. First we give it the name of the file we want to
play. In this case we want it to play the Die .WAV file in the Data directory. The second parameter
can be ignored. We'll set it to NULL. The third parameter is the flag for playing the sound. The two
most common flags are: SND_SYNC which stops everything else until the sound is done playing,
and SND_ASYNC, which plays the sound, but doesn't stop the program from running. We want a
little delay after the player dies so we use SND_SYNC. Pretty easy!

Jeff Molofee's OpenGL Windows Tutorial #21

Page 24 of 30

 // Are Any Of The Enemies On Top Of The Player?
 if ((enemy[loop1].fx==player.fx) && (enemy[loop1].fy==player.fy))
 {
 lives--; // If So, Player Loses A Life

 if (lives==0)
 {
 gameover=TRUE;
 }

 ResetObjects();
 PlaySound("Data/Die.wav", NULL, SND_SYNC);
 }
 }

 if (keys[VK_RIGHT] && (player.x<10) && (player.fx==player.x*60) && (player.fy==player.y*40))
 {
 hline[player.x][player.y]=TRUE;
 player.x++;
 }
 if (keys[VK_LEFT] && (player.x>0) && (player.fx==player.x*60) && (player.fy==player.y*40))
 {
 player.x--;
 hline[player.x][player.y]=TRUE;
 }
 if (keys[VK_DOWN] && (player.y<10) && (player.fx==player.x*60) && (player.fy==player.y*40))
 {
 vline[player.x][player.y]=TRUE;
 player.y++;
 }

The one thing I forgot to mention at the beginning of the program: In order to use PlaySound(), you
have to include the WINMM.LIB file under PROJECT / SETTINGS / LINK in Visual C++. Winmm.lib
is the Windows Multimedia Library.

Now we can move the player. In the first line of code below we check to see if the right arrow is
being pressed, player.x is less than 10 (don't want to go off the grid), that player.fx equals
player.x times 60 (lined up with a grid crossing on the x-axis, and that player.fy equals player.y
times 40 (player is lined up with a grid crossing on the y-axis).

If we didn't make sure the player was at a crossing, and we allowed the player to move anyways,
the player would cut right through the middle of boxes, just like the enemies would have done if we
didn't make sure they were lined up with a vertical or horizontal line. Checking this also makes sure
the player is done moving before we move to a new location.

If the player is at a grid crossing (where a vertical and horizontal lines meet) and he's not to far
right, we mark the current horizontal line that we are on as being traced over. We then increase the
player.x value by one, causing the new player position to be one box to the right.

We do the same thing while moving left, down and up. When moving left, we make sure the player
wont be going off the left side of the grid. When moving down we make sure the player wont be
leaving the bottom of the grid, and when moving up we make sure the player doesn't go off the top
of the grid.

When moving left and right we make the horizontal line (hline[] []) under us TRUE meaning it's
been traced. When moving up and down we make the vertical line (vline[] []) under us TRUE
meaning it has been traced.

Jeff Molofee's OpenGL Windows Tutorial #21

Page 25 of 30

 if (keys[VK_UP] && (player.y>0) && (player.fx==player.x*60) && (player.fy==player.y*40))
 {
 player.y--;
 vline[player.x][player.y]=TRUE;
 }

 if (player.fx<player.x*60) // Is Fine Position On X Axis Lower Than Intended Position?
 {
 player.fx+=steps[adjust]; // If So, Increase The Fine X Position
 }
 if (player.fx>player.x*60) // Is Fine Position On X Axis Greater Than Intended Position?
 {
 player.fx-=steps[adjust]; // If So, Decrease The Fine X Position
 }
 if (player.fy<player.y*40) // Is Fine Position On Y Axis Lower Than Intended Position?
 {
 player.fy+=steps[adjust]; // If So, Increase The Fine Y Position
 }
 if (player.fy>player.y*40) // Is Fine Position On Y Axis Lower Than Intended Position?
 {
 player.fy-=steps[adjust]; // If So, Decrease The Fine Y Position
 }
 }

 else
 {
 if (keys[' '])
 {
 gameover=FALSE;
 filled=TRUE;
 level=1; // Starting Level Is Set Back To One

We increase / decrease the player fine fx and fy variables the same way we increase / decreased
the enemy fine fx and fy variables.

If the player fx value is less than the player x value times 60 we increase the player fx position by
the step speed our game is running at based on the value of adjust.

If the player fx value is greater than the player x value times 60 we decrease the player fx position
by the step speed our game is running at based on the value of adjust.

If the player fy value is less than the player y value times 40 we increase the player fy position by
the step speed our game is running at based on the value of adjust.

If the player fy value is greater than the player y value times 40 we decrease the player fy position
by the step speed our game is running at based on the value of adjust.

If the game is over the following bit of code will run. We check to see if the spacebar is being
pressed. If it is we set gameover to FALSE (starting the game over). We set filled to TRUE. This
causes the game to think we've finished a stage, causing the player to be reset, along with the
enemies.

We set the starting level to 1, along with the actual displayed level (level2). We set stage to 0. The
reason we do this is because after the computer sees that the grid has been filled in, it will think
you finished a stage, and will increase stage by 1. Because we set stage to 0, when the stage
increases it will become 1 (exactly what we want). Lastly we set lives back to 5.

Jeff Molofee's OpenGL Windows Tutorial #21

Page 26 of 30

 level2=1; // Displayed Level Is Also Set To One
 stage=0; // Game Stage Is Set To Zero
 lives=5; // Lives Is Set To Five
 }
 }

 if (filled)
 {
 PlaySound("Data/Complete.wav", NULL, SND_SYNC);
 stage++; // Increase The Stage
 if (stage>3)
 {
 stage=1; // If So, Set The Stage To One
 level++; // Increase The Level
 level2++; // Increase The Displayed Level
 if (level>3)
 {
 level=3; // If So, Set The Level To 3
 lives++; // Give The Player A Free Life
 if (lives>5)
 {
 lives=5; // If So, Set Lives To Five
 }
 }
 }

 ResetObjects();

The code below checks to see if the filled flag is TRUE (meaning the grid has been filled in). filled
can be set to TRUE one of two ways. Either the grid is filled in completely and filled becomes
TRUE or the game has ended but the spacebar was pressed to restart it (code above).

If filled is TRUE, the first thing we do is play the cool level complete tune. I've already explained
how PlaySound() works. This time we'll be playing the Complete .WAV file in the DATA directory.
Again, we use SND_SYNC so that there is a delay before the game starts on the next stage.

After the sound has played, we increase stage by one, and check to make sure stage isn't greater
than 3. If stage is greater than 3 we set stage to 1, and increase the internal level and visible level
by one.

If the internal level is greater than 3 we set the internal leve (level) to 3, and increase lives by 1. If
you're amazing enough to get past level 3 you deserve a free life :). After increasing lives we check
to make sure the player doesn't have more than 5 lives. If lives is greater than 5 we set lives back
to 5.

We then reset all the objects (such as the player and enemies). This places the player back at the
top left corner of the grid, and gives the enemies random locations on the grid.

We create two loops (loop1 and loop2) to loop through the grid. We set all the vertical and
horizontal lines to FALSE. If we didn't do this, the next stage would start, and the game would think
the grid was still filled in.

Notice the routine we use to clear the grid is similar to the routine we use to draw the grid. We have
to make sure the lines are not being drawn to far right or down. That's why we check to make sure
that loop1 is less than 10 before we reset the horizontal lines, and we check to make sure that
loop2 is less than 10 before we reset the vertical lines.

Jeff Molofee's OpenGL Windows Tutorial #21

Page 27 of 30

 for (loop1=0; loop1<11; loop1++) // Loop Through The Grid X Coordinates
 {
 for (loop2=0; loop2<11; loop2++) // Loop Through The Grid Y Coordinates
 {
 if (loop1<10)
 {
 hline[loop1][loop2]=FALSE;
 }
 if (loop2<10)
 {
 vline[loop1][loop2]=FALSE;
 }
 }
 }
 }

 // If The Player Hits The Hourglass While It's Being Displayed On The Screen
 if ((player.fx==hourglass.x*60) && (player.fy==hourglass.y*40) && (hourglass.fx==1))
 {
 // Play Freeze Enemy Sound
 PlaySound("Data/freeze.wav", NULL, SND_ASYNC | SND_LOOP);
 hourglass.fx=2;
 hourglass.fy=0;
 }

 player.spin+=0.5f*steps[adjust]; // Spin The Player Clockwise
 if (player.spin>360.0f)
 {
 player.spin-=360; // If So, Subtract 360
 }

Now we check to see if the player has hit the hourglass. If the fine player fx value is equal to the
hourglass x value times 60 and the fine player fy value is equal to the hourglass y value times 40
AND hourglass.fx is equal to 1 (meaning the hourglass is displayed on the screen), the code
below runs.

The first line of code is PlaySound("Data/freeze.wav",NULL, SND_ASYNC | SND_LOOP). This line
plays the freeze .WAV file in the DATA directory. Notice we are using SND_ASYNC this time. We
want the freeze sound to play without the game stopping. SND_LOOP keeps the sound playing
endlessly until we tell it to stop playing, or until another sound is played.

After we have started the sound playing, we set hourglass.fx to 2. When hourglass.fx equals 2
the hourglass will no longer be drawn, the enemies will stop moving, and the sound will loop
endlessly.

We also set hourglass.fy to 0. hourglass.fy is a counter. When it hits a certain value, the value of
hourglass.fx will change.

This bit of code increases the player spin value by half the speed that the game runs at. If
player.spin is greater than 360.0f we subtract 360.0f from player.spin. Keeps the value of
player.spin from getting to high.

Jeff Molofee's OpenGL Windows Tutorial #21

Page 28 of 30

 hourglass.spin-=0.25f*steps[adjust]; // Spin The Hourglass Counter Clockwise
 if (hourglass.spin<0.0f) // Is The spin Value Less Than 0?
 {
 hourglass.spin+=360.0f;
 }

 hourglass.fy+=steps[adjust];
 if ((hourglass.fx==0) && (hourglass.fy>6000/level)) // Is The hourglass fx Variable Equal To 0 And The fy
 {
 PlaySound("Data/hourglass.wav", NULL, SND_ASYNC);
 hourglass.x=rand()%10+1; // Give The Hourglass A Random X Value
 hourglass.y=rand()%11;
 hourglass.fx=1;
 hourglass.fy=0;
 }

 if ((hourglass.fx==1) && (hourglass.fy>6000/level)) // Is The hourglass fx Variable Equal To 1 And The fy
 {
 hourglass.fx=0;
 hourglass.fy=0;
 }

The code below decreases the hourglass spin value by 1/4 the speed that the game is running at. If
hourglass.spin is less than 0.0f we add 360.0f. We don't want hourglass.spin to become a
negative number.

The first line below increased the hourglass counter that I was talking about. hourglass.fy is
increased by the game speed (game speed is the steps value based on the value of adjust).

The second line checks to see if hourglass.fx is equal to 0 (non visible) and the hourglass counter
(hourglass.fy) is greater than 6000 divided by the current internal level (level).

If the fx value is 0 and the counter is greater than 6000 divided by the internal level we play the
hourglass .WAV file in the DATA directory. We don't want the action to stop so we use
SND_ASYNC. We won't loop the sound this time though, so once the sound has played, it wont
play again.

After we've played the sound we give the hourglass a random value on the x-axis. We add one to
the random value so that the hourglass doesn't appear at the players starting position at the top left
of the grid. We also give the hourglass a random value on the y-axis. We set hourglass.fx to 1 this
makes the hourglass appear on the screen at it's new location. We also set hourglass.fy back to
zero so it can start counting again.

This causes the hourglass to appear on the screen after a fixed amount of time.

If hourglass.fx is equal to zero and hourglass.fy is greater than 6000 divided by the current
internal level (level) we set hourglass.fx back to 0, causing the hourglass to disappear. We also
set hourglass.fy to 0 so it can start counting once again.

This causes the hourglass to disappear if you don't get it after a certain amount of time.

Jeff Molofee's OpenGL Windows Tutorial #21

Page 29 of 30

 if ((hourglass.fx==2) && (hourglass.fy>500+(500*level)))// Is The hourglass fx Variable Equal To 2 And The fy
 {
 PlaySound(NULL, NULL, 0); // If So, Kill The Freeze Sound
 hourglass.fx=0;
 hourglass.fy=0;
 }

 delay++; // Increase The Enemy Delay Counter
 }
 }

 // Shutdown
 KillGLWindow();
 return (msg.wParam);
}

Now we check to see if the 'freeze enemy' timer has run out after the player has touched the
hourglass.

if hourglass.fx equal 2 and hourglass.fy is greater than 500 plus 500 times the current internal
level we kill the timer sound that we started playing endlessly. We kill the sound with the command
PlaySound(NULL, NULL, 0). We set hourglass.fx back to 0, and set hourglass.fy to 0. Setting fx
and fy to 0 starts the hourglass cycle from the beginning. fy will have to hit 6000 divided by the
current internal level before the hourglass appears again.

The last thing to do is increase the variable delay. If you remember, delay is used to update the
player movement and animation. If our program has finished, we kill the window and return to the
desktop.

I spent a long time writing this tutorial. It started out as a simple line tutorial, and flourished into an
entertaining mini game. Hopefully you can use what you have learned in this tutorial in GL projects
of your own. I know alot of you have been asking about TILE based games. Well you can't get more
tiled than this :) I've also gotten alot of emails asking how to do exact pixel plotting. I think I've got it
covered :) Most importantly, this tutorial not only teaches you new things about OpenGL, it also
teaches you how to use simple sounds to add excitement to your visual works of art! I hope you've
enjoyed this tutorial. If you feel I have incorrectly commented something or that the code could be
done better in some sections, please let me know. I want to make the best OpenGL tutorials I can
and I'm interested in hearing your feedback.

Please note, this was an extremely large projects. I tried to comment everything as clearly as
possible, but putting what things into words isn't as easy as it may seem. I know how everything
works off by heart, but trying to explain is a different story :) If you've read through the tutorial and
have a better way to word things, or if you feel diagrams might help out, please send me
suggestions. I want this tutorial to be easy to follow through. Also note that this is not a beginner
tutorial. If you haven't read through the previous tutorials please don't email me with questions until
you have. Thanks.

Jeff Molofee (NeHe)

* DOWNLOAD Visual C++ Code For This Lesson.

Jeff Molofee's OpenGL Windows Tutorial #21

Page 30 of 30

 Back To NeHe Productions!

Jeff Molofee's OpenGL Windows Tutorial #22 (By Jens Schneider)

Page 1 of 27

#include <windows.h>
#include <stdio.h> // Header File For Standard Input/Output
#include <gl\gl.h> // Header File For The OpenGL32 Library
#include <gl\glu.h>
#include <gl\glaux.h>
#include "glext.h" // Header File For Multitexturing
#include <string.h>
#include <math.h> // Header File For The Math Library

#define MAX_EMBOSS (GLfloat)0.01f // Maximum Emboss

 Lesson 22

This lesson was written by Jens Schneider. It is loosely based on Lesson 06, though lots of
changes were made. In this lesson you will learn:

l How to control your graphic-accelerator’s multitexture-features.
l How to do a "fake" Emboss Bump Mapping.
l How to do professional looking logos that "float" above your rendered scene using blending.
l Basics about multi-pass rendering techniques.
l How to do matrix-transformations efficiently.

Since at least three of the above four points can be considered "advanced rendering
techniques", you should already have a general understanding of OpenGL’s rendering pipeline.
You should know most commands already used in these tutorials, and you should be familiar with
vector-maths. Every now and then you’ll encounter a block that reads begin theory(...) as header
and end theory(...) as an ending. These sections try to teach you theory about the issue(s)
mentioned in parenthesis. This is to ensure that, if you already know about the issue, you can
easily skip them. If you encounter problems while trying to understand the code, consider going
back to the theory sections. Last but not least: This lesson consists out of more than 1,200 lines of
code, of which large parts are not only boring but also known among those that read earlier
tutorials. Thus I will not comment each line, only the crux. If you encounter something like this >…
<, it means that lines of code have been omitted.

Here we go:

The GLfloat MAX_EMBOSS specifies the "strength" of the Bump Mapping-Effect. Larger values
strongly enhance the effect, but reduce visual quality to the same extent by leaving so-called
"artefacts" at the edges of the surfaces.

Jeff Molofee's OpenGL Windows Tutorial #22 (By Jens Schneider)

Page 2 of 27

#define __ARB_ENABLE true // Used To Disable ARB Extensions Entirely
// #define EXT_INFO
#define MAX_EXTENSION_SPACE 10240 // Characters For Extension
#define MAX_EXTENSION_LENGTH 256 // Maximum Characters In One Extension
bool multitextureSupported=false; // Flag Indicating Whether Multitexturing Is Supported
bool useMultitexture=true; // Use It If It Is Supported?
GLint maxTexelUnits=1;

PFNGLMULTITEXCOORD1FARBPROC glMultiTexCoord1fARB = NULL;
PFNGLMULTITEXCOORD2FARBPROC glMultiTexCoord2fARB = NULL;
PFNGLMULTITEXCOORD3FARBPROC glMultiTexCoord3fARB = NULL;
PFNGLMULTITEXCOORD4FARBPROC glMultiTexCoord4fARB = NULL;
PFNGLACTIVETEXTUREARBPROC glActiveTextureARB = NULL;
PFNGLCLIENTACTIVETEXTUREARBPROC glClientActiveTextureARB= NULL;

Ok, now let’s prepare the use of the GL_ARB_multitexture extension. It’s quite simple:

Most accelerators have more than just one texture-unit nowadays. To benefit of this feature, you’ll
have to check for GL_ARB_multitexture-support, which enables you to map two or more different
textures to one OpenGL-primitive in just one pass. Sounds not too powerful, but it is! Nearly all the
time if you’re programming something, putting another texture on that object results in higher visual
quality. Since you usually need multiple "passes" consisting out of interleaved texture-selection
and drawing geometry, this can quickly become expensive. But don’t worry, this will become
clearer later on.

Now back to code: __ARB_ENABLE is used to override multitexturing for a special compile-run
entirely. If you want to see your OpenGL-extensions, just un-comment the #define EXT_INFO.
Next, we want to check for our extensions during run-time to ensure our code stays portable. So
we need space for some strings. These are the following two lines. Now we want to distinguish
between being able to do multitexture and using it, so we need another two flags. Last, we need to
know how many texture-units are present(we’re going to use only two of them, though). At least
one texture-unit is present on any OpenGL-capable accelerator, so we initialize maxTexelUnits
with 1.

The following lines are needed to “link” the extensions to C++ function calls. Just treat the PFN-
who-ever-reads-this as pre-defined datatype able to describe function calls. Since we are unsure if
we’ll get the functions to these prototypes, we set them to NULL. The commands
glMultiTexCoordifARB map to the well-known glTexCoordif, specifying i-dimensional texture-
coordinates. Note that these can totally substitute the glTexCoordif-commands. Since we only
use the GLfloat-version, we only need prototypes for the commands ending with an "f". Other are
also available ("fv", "i", etc.). The last two prototypes are to set the active texture-unit that is
currently receiving texture-bindings (glActiveTextureARB()) and to determine which texture-unit
is associated with the ArrayPointer-command (a.k.a. Client-Subset, thus
glClientActiveTextureARB). By the way: ARB is an abbreviation for "Architectural Review
Board". Extensions with ARB in their name are not required by an OpenGL-conformant
implementation, but they are expected to be widely supported. Currently, only the multitexture-
extension has made it to ARB-status. This may be treated as sign for the tremendous impact
regarding speed multitexturing has on several advanced rendering techniques.

The lines ommitted are GDI-context handles etc.

Jeff Molofee's OpenGL Windows Tutorial #22 (By Jens Schneider)

Page 3 of 27

GLuint filter=1; // Which Filter To Use
GLuint texture[3];
GLuint bump[3]; // Our Bumpmappings
GLuint invbump[3];
GLuint glLogo;
GLuint multiLogo; // Handle For Multitexture
GLfloat LightAmbient[] = { 0.2f, 0.2f, 0.2f};
GLfloat LightDiffuse[] = { 1.0f, 1.0f, 1.0f};
GLfloat LightPosition[] = { 0.0f, 0.0f, 2.0f};
GLfloat Gray[] = { 0.5f, 0.5f, 0.5f, 1.0f};

// Data Contains The Faces Of The Cube In Format 2xTexCoord, 3xVertex.
// Note That The Tesselation Of The Cube Is Only Absolute Minimum.

GLfloat data[]= {
 // FRONT FACE
 0.0f, 0.0f, -1.0f, -1.0f, +1.0f,
 1.0f, 0.0f, +1.0f, -1.0f, +1.0f,
 1.0f, 1.0f, +1.0f, +1.0f, +1.0f,
 0.0f, 1.0f, -1.0f, +1.0f, +1.0f,
 // BACK FACE
 1.0f, 0.0f, -1.0f, -1.0f, -1.0f,
 1.0f, 1.0f, -1.0f, +1.0f, -1.0f,
 0.0f, 1.0f, +1.0f, +1.0f, -1.0f,
 0.0f, 0.0f, +1.0f, -1.0f, -1.0f,
 // Top Face
 0.0f, 1.0f, -1.0f, +1.0f, -1.0f,
 0.0f, 0.0f, -1.0f, +1.0f, +1.0f,
 1.0f, 0.0f, +1.0f, +1.0f, +1.0f,
 1.0f, 1.0f, +1.0f, +1.0f, -1.0f,
 // Bottom Face
 1.0f, 1.0f, -1.0f, -1.0f, -1.0f,
 0.0f, 1.0f, +1.0f, -1.0f, -1.0f,
 0.0f, 0.0f, +1.0f, -1.0f, +1.0f,
 1.0f, 0.0f, -1.0f, -1.0f, +1.0f,
 // Right Face
 1.0f, 0.0f, +1.0f, -1.0f, -1.0f,
 1.0f, 1.0f, +1.0f, +1.0f, -1.0f,

We need global variables:

l filter specifies what filter to use. Refer to Lesson 06. We’ll usually just take GL_LINEAR, so
we initialise with 1.

l texture holds our base-texture, three times, one per filter.
l bump holds our bump maps
l invbump holds our inverted bump maps. This is explained later on in a theory-section.
l The Logo-things hold textures for several billboards that will be added to rendering output as

a final pass.
l The Light...-stuff contains data on our OpenGL light-source.

The next block of code contains the numerical representation of a textured cube built out of
GL_QUADS. Each five numbers specified represent one set of 2D-texture-coordinates one set of
3D-vertex-coordinates. This is to build the cube using for-loops, since we need that cube several
times. The data-block is followed by the well-known WndProc()-prototype from former lessons.

Jeff Molofee's OpenGL Windows Tutorial #22 (By Jens Schneider)

Page 4 of 27

 0.0f, 1.0f, +1.0f, +1.0f, +1.0f,
 0.0f, 0.0f, +1.0f, -1.0f, +1.0f,
 // Left Face
 0.0f, 0.0f, -1.0f, -1.0f, -1.0f,
 1.0f, 0.0f, -1.0f, -1.0f, +1.0f,
 1.0f, 1.0f, -1.0f, +1.0f, +1.0f,
 0.0f, 1.0f, -1.0f, +1.0f, -1.0f
};

LRESULT CALLBACK WndProc(HWND, UINT, WPARAM, LPARAM); // Declaration For WndProc

bool isInString(char *string, const char *search) {
 int pos=0;
 int maxpos=strlen(search)-1;
 int len=strlen(string);
 char *other;
 for (int i=0; i<len; i++) {
 if ((i==0) || ((i>1) && string[i-1]=='\n')) { // New Extension Begins Here!
 other=&string[i];
 pos=0;
 while (string[i]!='\n') { // Search Whole Extension
 if (string[i]==search[pos]) pos++; // Next Position
 if ((pos>maxpos) && string[i+1]=='\n') return true;
 i++;
 }
 }
 }
 return false;
}

bool initMultitexture(void) {
 char *extensions;
 extensions=(char *) glGetString(GL_EXTENSIONS);

The next block of code is to determine extension-support during run-time.

First, we can assume that we have a long string containing all supported extensions as ‘\n’-
seperated sub-strings. So all we need to do is to search for a ‘\n’ and start comparing string with
search until we encounter another ‘\n’ or until string doesn’t match search anymore. In the first
case, return a true for "found", in the other case, take the next sub-string until you encounter the
end of string. You’ll have to watch a little bit at the beginning of string, since it does not begin with
a newline-character.

By the way: A common rule is to ALWAYS check during runtime for availability of a given
extension!

Now we have to fetch the extension-string and convert it to be ‘\n’-separated in order to search it for
our desired extension. If we find a sub-string ”GL_ARB_multitexture” in it, this feature is
supported. But we only can use it, if __ARB_ENABLE is also true. Last but not least we need
GL_EXT_texture_env_combine to be supported. This extension introduces new ways how the
texture-units interact. We need this, since GL_ARB_multitexture only feeds the output from one
texture unit to the one with the next higher number. So we rather check for this extension than
using another complex blending equation (that would not exactly do the same effect!) If all
extensions are supported and we are not overridden, we’ll first determine how much texture-units
are available, saving them in maxTexelUnits. Then we have to link the functions to our names.
This is done by the wglGetProcAdress()-calls with a string naming the function call as parameter
and a prototype-cast to ensure we’ll get the correct function type.

Jeff Molofee's OpenGL Windows Tutorial #22 (By Jens Schneider)

Page 5 of 27

 int len=strlen(extensions);
 for (int i=0; i<len; i++) // Separate It By Newline Instead Of Blank
 if (extensions[i]==' ') extensions[i]='\n';

#ifdef EXT_INFO
 MessageBox(hWnd,extensions,"supported GL extensions",MB_OK | MB_ICONINFORMATION);
#endif

 if (isInString(extensions,"GL_ARB_multitexture") // Is Multitexturing Supported?
 && __ARB_ENABLE
 && isInString(extensions,"GL_EXT_texture_env_combine"))
 {
 glGetIntegerv(GL_MAX_TEXTURE_UNITS_ARB,&maxTexelUnits);
 glMultiTexCoord1fARB = (PFNGLMULTITEXCOORD1FARBPROC) wglGetProcAddress("glMultiTexCoord1fARB");
 glMultiTexCoord2fARB = (PFNGLMULTITEXCOORD2FARBPROC) wglGetProcAddress("glMultiTexCoord2fARB");
 glMultiTexCoord3fARB = (PFNGLMULTITEXCOORD3FARBPROC) wglGetProcAddress("glMultiTexCoord3fARB");
 glMultiTexCoord4fARB = (PFNGLMULTITEXCOORD4FARBPROC) wglGetProcAddress("glMultiTexCoord4fARB");
 glActiveTextureARB = (PFNGLACTIVETEXTUREARBPROC) wglGetProcAddress("glActiveTextureARB");
 glClientActiveTextureARB= (PFNGLCLIENTACTIVETEXTUREARBPROC) wglGetProcAddress("glClientActiveTextureARB");

#ifdef EXT_INFO
 MessageBox(hWnd,"The GL_ARB_multitexture extension will be used.","feature supported!",MB_OK | MB_ICONINFORMATION);
#endif

 return true;
 }
 useMultitexture=false;
 return false;
}

void initLights(void) {
 glLightfv(GL_LIGHT1, GL_AMBIENT, LightAmbient);
 glLightfv(GL_LIGHT1, GL_DIFFUSE, LightDiffuse);
 glLightfv(GL_LIGHT1, GL_POSITION, LightPosition);
 glEnable(GL_LIGHT1);
}

int LoadGLTextures() {
 bool status=true; // Status Indicator
 AUX_RGBImageRec *Image=NULL;
 char *alpha=NULL;

 InitLights() just initialises OpenGL-Lighting and is called by InitGL() later on.

Here we load LOTS of textures. Since auxDIBImageLoad() has an error-handler of it’s own and
since LoadBMP() wasn’t much predictable without a try-catch-block, I just kicked it. But now to
our loading-routine. First, we load the base-bitmap and build three filtered textures out of it
(GL_NEAREST, GL_LINEAR and GL_LINEAR_MIPMAP_NEAREST). Note that I only use one
data-structure to hold bitmaps, since we only need one at a time to be open. Over that I introduced
a new data-structure called alpha here. It is to hold the alpha-layer of textures, so that I can save
RGBA Images as two bitmaps: one 24bpp RGB and one 8bpp greyscale Alpha. For the status-
indicator to work properly, we have to delete the Image-block after every load to reset it to NULL.

Note also, that I use GL_RGB8 instead of just "3" when specifying texture-type. This is to be more
conformant to upcoming OpenGL-ICD releases and should always be used instead of just another
number. I marked it in orange for you.

Jeff Molofee's OpenGL Windows Tutorial #22 (By Jens Schneider)

Page 6 of 27

 // Load The Tile-Bitmap for Base-Texture
 if (Image=auxDIBImageLoad("Data/Base.bmp")) {
 glGenTextures(3, texture); // Create Three Textures

 // Create Nearest Filtered Texture
 glBindTexture(GL_TEXTURE_2D, texture[0]);
 glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_NEAREST);
 glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_NEAREST);
 glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB8, Image->sizeX, Image->sizeY, 0, GL_RGB, GL_UNSIGNED_BYTE, Image

 // Create Linear Filtered Texture
 glBindTexture(GL_TEXTURE_2D, texture[1]);
 glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_LINEAR);
 glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_LINEAR);
 glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB8, Image->sizeX, Image->sizeY, 0, GL_RGB, GL_UNSIGNED_BYTE, Image

 // Create MipMapped Texture
 glBindTexture(GL_TEXTURE_2D, texture[2]);
 glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_LINEAR);
 glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_LINEAR_MIPMAP_NEAREST);
 gluBuild2DMipmaps(GL_TEXTURE_2D, GL_RGB8, Image->sizeX, Image->sizeY, GL_RGB, GL_UNSIGNED_BYTE, Image
 }
 else status=false;

 if (Image) {
 if (Image->data) delete Image->data; // If Texture Image Exists
 delete Image;
 Image=NULL;
 }

 // Load The Bumpmaps
 if (Image=auxDIBImageLoad("Data/Bump.bmp")) {
 glPixelTransferf(GL_RED_SCALE,0.5f); // Scale RGB By 50%, So That We Have Only
 glPixelTransferf(GL_GREEN_SCALE,0.5f);
 glPixelTransferf(GL_BLUE_SCALE,0.5f);
 glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_S,GL_CLAMP); // No Wrapping, Please!
 glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_T,GL_CLAMP);
 glGenTextures(3, bump);

 // Create Nearest Filtered Texture
 >…<

 // Create Linear Filtered Texture
 >…<

 // Create MipMapped Texture
 >…<

Now we’ll load the Bump Map. For reasons discussed later, it has to have only 50% luminance, so
we have to scale it in the one or other way. I chose to scale it using the glPixelTransferf()-
commands, that specifies how data from bitmaps is converted to textures on pixel-basis. I use it to
scale the RGB components of bitmaps to 50%. You should really have a look at the
glPixelTransfer()-command family if you’re not already using them in your programs. They’re all
quite useful.

Another issue is, that we don’t want to have our bitmap repeated over and over in the texture. We
just want it once, mapping to texture-coordinates (s,t)=(0.0f, 0.0f) thru (s,t)=(1.0f, 1.0f). All other
texture-coordinates should be mapped to plain black. This is accomplished by the two
glTexParameteri()-calls that are fairly self-explanatory and "clamp" the bitmap in s and t-direction.

Jeff Molofee's OpenGL Windows Tutorial #22 (By Jens Schneider)

Page 7 of 27

 for (int i=0; i<3*Image->sizeX*Image->sizeY; i++) // Invert The Bumpmap
 Image->data[i]=255-Image->data[i];

 glGenTextures(3, invbump); // Create Three Textures

 // Create Nearest Filtered Texture
 >…<

 // Create Linear Filtered Texture
 >…<

 // Create MipMapped Texture
 >…<
 }
 else status=false;
 if (Image) {
 if (Image->data) delete Image->data; // If Texture Image Exists
 delete Image;
 Image=NULL;
 }

 // Load The Logo-Bitmaps
 if (Image=auxDIBImageLoad("Data/OpenGL_ALPHA.bmp")) {
 alpha=new char[4*Image->sizeX*Image->sizeY];
 // Create Memory For RGBA8-Texture
 for (int a=0; a<Image->sizeX*Image->sizeY; a++)
 alpha[4*a+3]=Image->data[a*3];
 if (!(Image=auxDIBImageLoad("Data/OpenGL.bmp"))) status=false;
 for (a=0; a<Image->sizeX*Image->sizeY; a++) {
 alpha[4*a]=Image->data[a*3];
 alpha[4*a+1]=Image->data[a*3+1]; // G
 alpha[4*a+2]=Image->data[a*3+2]; // B
 }

 glGenTextures(1, &glLogo); // Create One Textures

 // Create Linear Filtered RGBA8-Texture
 glBindTexture(GL_TEXTURE_2D, glLogo);
 glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_LINEAR);
 glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_LINEAR);
 glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, Image->sizeX, Image->sizeY, 0, GL_RGBA, GL_UNSIGNED_BYTE,
 delete alpha;
 }
 else status=false;

 if (Image) {

You’ll already know this sentence by now: For reasons discussed later, we have to build an inverted
Bump Map, luminance at most 50% once again. So we subtract the bumpmap from pure white,
which is {255, 255, 255} in integer representation. Since we do NOT set the RGB-Scaling back to
100% (took me about three hours to figure out that this was a major error in my first version!), the
inverted bumpmap will be scaled once again to 50% luminance.

Loading the Logo-Bitmaps is pretty much straightforward except for the RGB-A recombining, which
should be self-explanatory enough for you to understand. Note that the texture is built from the
alpha-memoryblock, not from the Image-memoryblock! Only one filter is used here.

Jeff Molofee's OpenGL Windows Tutorial #22 (By Jens Schneider)

Page 8 of 27

 if (Image->data) delete Image->data; // If Texture Image Exists
 delete Image;
 Image=NULL;
 }

 // Load The "Extension Enabled"-Logo
 if (Image=auxDIBImageLoad("Data/multi_on_alpha.bmp")) {
 alpha=new char[4*Image->sizeX*Image->sizeY]; // Create Memory For RGBA8
 >…<
 glGenTextures(1, &multiLogo);
 // Create Linear Filtered RGBA8-Texture
 >…<
 delete alpha;
 }
 else status=false;

 if (Image) {
 if (Image->data) delete Image->data; // If Texture Image Exists
 delete Image;
 Image=NULL;
 }
 return status;
}

GLvoid ReSizeGLScene(GLsizei width, GLsizei height)
// Resize And Initialize The GL Window
>…<

void doCube (void) {
 int i;
 glBegin(GL_QUADS);
 // Front Face
 glNormal3f(0.0f, 0.0f, +1.0f);
 for (i=0; i<4; i++) {
 glTexCoord2f(data[5*i],data[5*i+1]);
 glVertex3f(data[5*i+2],data[5*i+3],data[5*i+4]);
 }
 // Back Face
 glNormal3f(0.0f, 0.0f,-1.0f);
 for (i=4; i<8; i++) {
 glTexCoord2f(data[5*i],data[5*i+1]);
 glVertex3f(data[5*i+2],data[5*i+3],data[5*i+4]);
 }
 // Top Face
 glNormal3f(0.0f, 1.0f, 0.0f);
 for (i=8; i<12; i++) {
 glTexCoord2f(data[5*i],data[5*i+1]);
 glVertex3f(data[5*i+2],data[5*i+3],data[5*i+4]);
 }
 // Bottom Face

Next comes nearly the only unmodified function ReSizeGLScene(). I’ve omitted it here. It is
followed by a function doCube() that draws a cube, complete with normalized normals. Note that
this version only feeds texture-unit #0, since glTexCoord2f(s,t) is the same thing as
glMultiTexCoord2f(GL_TEXTURE0_ARB,s,t). Note also that the cube could be done using
interleaved arrays, but this is definitely another issue. Note also that this cube CAN NOT be done
using a display list, since display-lists seem to use an internal floating point accuracy different from
GLfloat. Since this leads to several nasty effects, generally referred to as "decaling"-problems, I
kicked display lists. I assume that a general rule for multipass algorithms is to do the entire
geometry with or without display lists. So never dare mixing even if it seems to run on your
hardware, since it won’t run on any hardware!

Jeff Molofee's OpenGL Windows Tutorial #22 (By Jens Schneider)

Page 9 of 27

 glNormal3f(0.0f,-1.0f, 0.0f);
 for (i=12; i<16; i++) {
 glTexCoord2f(data[5*i],data[5*i+1]);
 glVertex3f(data[5*i+2],data[5*i+3],data[5*i+4]);
 }
 // Right Face
 glNormal3f(1.0f, 0.0f, 0.0f);
 for (i=16; i<20; i++) {
 glTexCoord2f(data[5*i],data[5*i+1]);
 glVertex3f(data[5*i+2],data[5*i+3],data[5*i+4]);
 }
 // Left Face
 glNormal3f(-1.0f, 0.0f, 0.0f);
 for (i=20; i<24; i++) {
 glTexCoord2f(data[5*i],data[5*i+1]);
 glVertex3f(data[5*i+2],data[5*i+3],data[5*i+4]);
 }
 glEnd();
}

int InitGL(GLvoid) // All Setup For OpenGL Goes Here
{
 multitextureSupported=initMultitexture();
 if (!LoadGLTextures()) return false; // Jump To Texture Loading Routine
 glEnable(GL_TEXTURE_2D); // Enable Texture Mapping
 glShadeModel(GL_SMOOTH); // Enable Smooth Shading
 glClearColor(0.0f, 0.0f, 0.0f, 0.5f);
 glClearDepth(1.0f);
 glEnable(GL_DEPTH_TEST); // Enables Depth Testing
 glDepthFunc(GL_LEQUAL);
 glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST); // Really Nice Perspective Calculations

 initLights();
 return true
}

 Time to initialize OpenGL. All as in Lesson 06, except that I call initLights() instead of setting
them here. Oh, and of course I’m calling Multitexture-setup, here!

Here comes about 95% of the work. All references like "for reasons discussed later" will be solved
in the following block of theory.

Begin Theory (Emboss Bump Mapping)

If you have a Powerpoint-viewer installed, it is highly recommended that you download the following
presentation:

"Emboss Bump Mapping" by Michael I. Gold, nVidia Corp. [.ppt, 309K]

For those without Powerpoint-viewer, I’ve tried to convert the information contained in the document
to .html-format. Here it comes:

Emboss Bump Mapping

Michael I. Gold

Jeff Molofee's OpenGL Windows Tutorial #22 (By Jens Schneider)

Page 10 of 27

NVidia Corporation

Bump Mapping

Real Bump Mapping Uses Per-Pixel Lighting.

l Lighting calculation at each pixel based on perturbed normal vectors.
l Computationally expensive.
l For more information see: Blinn, J. : Simulation of Wrinkled Surfaces, Computer Graphics. 12,3

(August 1978) 286-292.
l For information on the web go to: http://www.objectecture.com/ to see Cass Everitt’s Orthogonal

Illumination Thesis. (rem.: Jens)

Emboss Bump Mapping

Emboss Bump Mapping Is A Hack

l Diffuse lighting only, no specular component
l Under-sampling artefacts (may result in blurry motion, rem.: Jens)
l Possible on today’s consumer hardware (as shown, rem.: Jens)
l If it looks good, do it!

Diffuse Lighting Calculation

C=(L*N) x Dl x Dm

l L is light vector
l N is normal vector
l Dl is light diffuse color
l Dm is material diffuse color
l Bump Mapping changes N per pixel
l Emboss Bump Mapping approximates (L*N)

Approximate Diffuse Factor L*N

Texture Map Represents Heightfield

l [0,1] represents range of bump function
l First derivate represents slope m (Note that m is only 1D. Imagine m to be the inf.-norm of grad(s,t)

to a given set of coordinates (s,t)!, rem.: Jens)
l m increases / decreases base diffuse factor Fd
l (Fd+m) approximates (L*N) per pixel

Approximate Derivative

Embossing Approximates Derivative

l Lookup height H0 at point (s,t)
l Lookup height H1 at point slightly perturbed toward light source (s+ds,t+dt)
l Subtract original height H0 from perturbed height H1
l Difference represents instantaneous slope m=H1-H0

Compute The Bump

1) Original bump (H0).

Jeff Molofee's OpenGL Windows Tutorial #22 (By Jens Schneider)

Page 11 of 27

2) Original bump (H0) overlaid with second bump (H1) slightly perturbed toward light source.

3) Substract original bump from second (H0-H1). This leads to brightened (B) and darkened (D) areas.

Compute The Lighting

Evaluate Fragment Color Cf

l Cf = (L*N) x Dl x Dm
l (L*N) ~ (Fd + (H1-H0))
l Dm x Dl is encoded in surface texture Ct. Could control Dl seperately, if you’re clever. (we control it

using OpenGL-Lighting!, rem.: Jens)
l Cf = (Fd + (H0-H1) x Ct

Is That All? It’s So Easy!

We’re Not Quite Done Yet. We Still Must:

l Build a texture (using a painting program, rem.: Jens)
l Calculate texture coordinate offsets (ds,dt)
l Calculate diffuse Factor Fd (is controlled using OpenGL-Lighting!, rem.: Jens)
l Both are derived from normal N and light vector L (in our case, only (ds,dt) are calculated explicitly!,

rem.: Jens)
l Now we have to do some math

Building A Texture

Conserve Textures!

l Current multitexture-hardware only supports two textures! (By now, not true anymore, but
nevertheless you should read this!, rem.: Jens)

l Bump Map in ALPHA channel (not the way we do it, could implement it yourself as an exercise if
you have TNT-chipset rem.: Jens)

l Maximum bump = 1.0
l Level ground = 0.5
l Maximum depression = 0.0
l Surface color in RGB channels
l Set internal format to GL_RGBA8 !!

Calculate Texture Offsets

Rotate Light Vector Into Normal Space

l Need Normal coordinate system
l Derive coordinate system from normal and “up” vector (we pass the texCoord directions to our

offset generator explicitly, rem.: Jens)
l Normal is z-axis
l Cross-product is x-axis
l Throw away "up" vector, derive y-axis as cross-product of x- and z-axis
l Build 3x3 matrix Mn from axes
l Transform light vector into normal space.(Mn is also called an orthonormal basis. Think of Mn*v as

Jeff Molofee's OpenGL Windows Tutorial #22 (By Jens Schneider)

Page 12 of 27

to "express" v in means of a basis describing tangent space rather than in means of the standard
basis. Note also that orthonormal bases are invariant against-scaling resulting in no loss of
normalization when multiplying vectors! rem.: Jens)

Calculate Texture Offsets (Cont’d)

Use Normal-Space Light Vector For Offsets

l L’ = Mn x L
l Use L’x, L’y for (ds,dt)
l Use L’z for diffuse factor! (Rather not! If you’re no TNT-owner, use OpenGL-Lighting instead, since

you have to do one additional pass anyhow!, rem.: Jens)
l If light vector is near normal, L’x, L’y are small.
l If light vector is near tangent plane, L’x, L’y are large.
l What if L’z is less than zero?
l Light is on opposite side from normal
l Fade contribution toward zero.

Implementation On TNT

Calculate Vectors, Texcoords On The Host

l Pass diffuse factor as vertex alpha
l Could use vertex color for light diffuse color
l H0 and surface color from texture unit 0
l H1 from texture unit 1 (same texture, different coordinates)
l ARB_multitexture extension
l Combines extension (more precisely: the NVIDIA_multitexture_combiners extension, featured by

all TNT-family cards, rem.: Jens)

Implementation on TNT (Cont'd)

Combiner 0 Alpha-Setup:

l (1-T0a) + T1a - 0.5 (T0a stands for "texture-unit 0, alpha channel", rem.: Jens)
l (T1a-T0a) maps to (-1,1), but hardware clamps to (0,1)
l 0.5 bias balances the loss from clamping (consider using 0.5 scale, since you can use a wider variety

of bump maps, rem.: Jens)
l Could modulate light diffuse color with T0c
l Combiner 0 rgb-setup:
l (T0c * C0a + T0c * Fda - 0.5)*2
l 0.5 bias balances the loss from clamping
l scale by 2 brightens the image

End Theory (Emboss Bump Mapping)

Though we’re doing it a little bit different than the TNT-Implementation to enable our program to run
on ALL accelerators, we can learn two or three things here. One thing is, that bump mapping is a
multi-pass algorithm on most cards (not on TNT-family, where it can be implemented in one 2-
texture pass.) You should now be able to imagine how nice multitexturing really is. We’ll now
implement a 3-pass non-multitexture algorithm, that can be (and will be) developed into a 2-pass
multitexture algorithm.

By now you should be aware, that we’ll have to do some matrix-matrix-multiplication (and matrix-
vector-multiplication, too). But that’s nothing to worry about: OpenGL will do the matrix-matrix-
multiplication for us (if tweaked right) and the matrix-vector-multiplication is really easy-going:
VMatMult(M,v) multiplies matrix M with vector v and stores the result back in v: v:=M*v. All
Matrices and vectors passed have to be in homogenous-coordinates resulting in 4x4 matrices and
4-dim vectors. This is to ensure conformity to OpenGL in order to multiply own vectors with
OpenGL-matrices right away.

Jeff Molofee's OpenGL Windows Tutorial #22 (By Jens Schneider)

Page 13 of 27

// Calculates v=vM, M Is 4x4 In Column-Major, v Is 4dim. Row (i.e. "Transposed")
void VMatMult(GLfloat *M, GLfloat *v) {
 GLfloat res[3];
 res[0]=M[0]*v[0]+M[1]*v[1]+M[2]*v[2]+M[3]*v[3];
 res[1]=M[4]*v[0]+M[5]*v[1]+M[6]*v[2]+M[7]*v[3];
 res[2]=M[8]*v[0]+M[9]*v[1]+M[10]*v[2]+M[11]*v[3];
 v[0]=res[0];
 v[1]=res[1];
 v[2]=res[2];
 v[3]=M[15];
}

OpenGL-matrices right away.

Begin Theory (Emboss Bump Mapping Algorithms)

Here we’ll discuss two different algorithms. I found the first one several days ago under:
http://www.nvidia.com/marketing/Developer/DevRel.nsf/TechnicalDemosFrame?OpenPage

The program is called GL_BUMP and was written by Diego Tártara in 1999.
It implements really nice looking bump mapping, though it has some drawbacks.
But first, lets have a look at Tártara’s Algorithm:

1. All vectors have to be EITHER in object OR world space
2. Calculate vector v from current vertex to light position
3. Normalize v
4. Project v into tangent space. (This is the plane touching the surface in the current vertex.

Typically, if working with flat surfaces, this is the surface itself).
5. Offset (s,t)-coordinates by the projected v’s x and y component

This looks not bad! It is basically the Algorithm introduced by Michael I. Gold above. But it has a
major drawback: Tártara only does the projection for a xy-plane! This is not sufficient for our
purposes since it simplifies the projection step to just taking the xy-components of v and discarding
the z-component.

But his implementation does the diffuse lighting the same way we’ll do it: by using OpenGL’s built-
in lighting. Since we can’t use the combiners-method Gold suggests (we want our programs to run
anywhere, not just on TNT-cards!), we can’t store the diffuse factor in the alpha channel. Since we
already have a 3-pass non-multitexture / 2-pass multitexture problem, why not apply OpenGL-
Lighting to the last pass to do all the ambient light and color stuff for us? This is possible (and
looks quite well) only because we have no complex geometry, so keep this in mind. If you’d render
several thousands of bump mapped triangles, try to invent something new!

Furthermore, he uses multitexturing, which is, as we shall see, not as easy as you might have
thought regarding this special case.

But now to our Implementation. It looks quite the same to the above Algorithm, except for the
projection step, where we use an own approach:

l We use OBJECT COORDINATES, this means we don’t apply the modelview matrix to our
calculations. This has a nasty side-effect: since we want to rotate the cube, object-
coordinates of the cube don’t change, world-coordinates (also referred to as eye-coordinates)
do. But our light-position should not be rotated with the cube, it should be just static,
meaning that it’s world-coordinates don’t change. To compensate, we’ll apply a trick
commonly used in computer graphics: Instead of transforming each vertex to worldspace in
advance to computing the bumps, we’ll just transform the light into object-space by applying
the inverse of the modelview-matrix. This is very cheap in this case since we know exactly
how the modelview-matrix was built step-by-step, so an inversion can also be done step-by-

Jeff Molofee's OpenGL Windows Tutorial #22 (By Jens Schneider)

Page 14 of 27

// Sets Up The Texture-Offsets
// n : Normal On Surface. Must Be Of Length 1
// c : Current Vertex On Surface
// l : Lightposition
// s : Direction Of s-Texture-Coordinate In Object Space (Must Be Normalized!)
// t : Direction Of t-Texture-Coordinate In Object Space (Must Be Normalized!)
void SetUpBumps(GLfloat *n, GLfloat *c, GLfloat *l, GLfloat *s, GLfloat *t) {

step. We’ll come back later to that issue.
l We calculate the current vertex c on our surface (simply by looking it up in data).
l Then we’ll calculate a normal n with length 1 (We usually know n for each face of a cube!).

This is important, since we can save computing time by requesting normalized vectors.
Calculate the light vector v from c to the light position l

l If there’s work to do, build a matrix Mn representing the orthonormal projection. This is done
as f

l Calculate out texture coordinate offset by multiplying the supplied texture-coordinate
directions s and t each with v and MAX_EMBOSS: ds = s*v*MAX_EMBOSS,
dt=t*v*MAX_EMBOSS. Note that s, t and v are vectors while MAX_EMBOSS isn’t.

l Add the offset to the texture-coordinates in pass 2.

Why this is good:

l Fast (only needs one squareroot and a couple of MULs per vertex)!
l Looks very nice!
l This works with all surfaces, not just planes.
l This runs on all accelerators.
l Is glBegin/glEnd friendly: Does not need any "forbidden" GL-commands.

Drawback:

l Not fully physical correct.
l Leaves minor artefacts.

This figure shows where our vectors are located. You can get t and s by simply subtracting
adjacent vertices, but be sure to have them point in the right direction and to normalize them. The
blue spot marks the vertex where texCoord2f(0.0f,0.0f) is mapped to.

End Theory (Emboss Bump Mapping Algorithms)

Let’s have a look to texture-coordinate offset generation, first. The function is called SetUpBumps
(), since this actually is what it does:

Jeff Molofee's OpenGL Windows Tutorial #22 (By Jens Schneider)

Page 15 of 27

 GLfloat v[3];
 GLfloat lenQ;
 // Calculate v From Current Vertex c To Lightposition And Normalize v
 v[0]=l[0]-c[0];
 v[1]=l[1]-c[1];
 v[2]=l[2]-c[2];
 lenQ=(GLfloat) sqrt(v[0]*v[0]+v[1]*v[1]+v[2]*v[2]);
 v[0]/=lenQ;
 v[1]/=lenQ;
 v[2]/=lenQ;
 // Project v Such That We Get Two Values Along Each Texture-Coordinate Axis
 c[0]=(s[0]*v[0]+s[1]*v[1]+s[2]*v[2])*MAX_EMBOSS;
 c[1]=(t[0]*v[0]+t[1]*v[1]+t[2]*v[2])*MAX_EMBOSS;

void doLogo(void) {
 // MUST CALL THIS LAST!!!, Billboards The Two Logos
 glDepthFunc(GL_ALWAYS);
 glBlendFunc(GL_SRC_ALPHA,GL_ONE_MINUS_SRC_ALPHA);
 glEnable(GL_BLEND);
 glDisable(GL_LIGHTING);
 glLoadIdentity();
 glBindTexture(GL_TEXTURE_2D,glLogo);
 glBegin(GL_QUADS);
 glTexCoord2f(0.0f,0.0f); glVertex3f(0.23f, -0.4f,-1.0f);
 glTexCoord2f(1.0f,0.0f); glVertex3f(0.53f, -0.4f,-1.0f);
 glTexCoord2f(1.0f,1.0f); glVertex3f(0.53f, -0.25f,-1.0f);
 glTexCoord2f(0.0f,1.0f); glVertex3f(0.23f, -0.25f,-1.0f);
 glEnd();
 if (useMultitexture) {
 glBindTexture(GL_TEXTURE_2D,multiLogo);
 glBegin(GL_QUADS);
 glTexCoord2f(0.0f,0.0f); glVertex3f(-0.53f, -0.25f,-1.0f);
 glTexCoord2f(1.0f,0.0f); glVertex3f(-0.33f, -0.25f,-1.0f);
 glTexCoord2f(1.0f,1.0f); glVertex3f(-0.33f, -0.15f,-1.0f);
 glTexCoord2f(0.0f,1.0f); glVertex3f(-0.53f, -0.15f,-1.0f);
 glEnd();
 }
}

Doesn’t look that complicated anymore, eh? But theory is necessary to understand and control this
effect. (I learned THAT myself during writing this tutorial).

I always like logos to be displayed while presentational programs are running. We’ll have two of
them right now. Since a call to doLogo() resets the GL_MODELVIEW-matrix, this has to be called
as final rendering pass.

This function displays two logos: An OpenGL-Logo and a multitexture-Logo, if this feature is
enabled. The logos are alpha-blended and are sort of semi-transparent. Since they have an alpha-
channel, I blend them using GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, as suggested by
all OpenGL-documentation. Since they are all co-planar, we do not have to z-sort them before. The
numbers that are used for the vertices are "empirical" (a.k.a. try-and-error) to place them neatly into
the screen edges. We’ll have to enable blending and disable lighting to avoid nasty effects. To
ensure they’re in front of all, just reset the GL_MODELVIEW-matrix and set depth-function to
GL_ALWAYS.

Jeff Molofee's OpenGL Windows Tutorial #22 (By Jens Schneider)

Page 16 of 27

bool doMesh1TexelUnits(void) {
 GLfloat c[4]={0.0f,0.0f,0.0f,1.0f}; // Holds Current Vertex
 GLfloat n[4]={0.0f,0.0f,0.0f,1.0f}; // Normalized Normal Of Current Surface
 GLfloat s[4]={0.0f,0.0f,0.0f,1.0f}; // s-Texture Coordinate Direction, Normalized
 GLfloat t[4]={0.0f,0.0f,0.0f,1.0f}; // t-Texture Coordinate Direction, Normalized
 GLfloat l[4];
 GLfloat Minv[16]; // Holds The Inverted Modelview Matrix To Do So
 int i;

 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Clear The Screen And The Depth Buffer

 // Build Inverse Modelview Matrix First. This Substitutes One Push/Pop With One glLoadIdentity();
 // Simply Build It By Doing All Transformations Negated And In Reverse Order
 glLoadIdentity();
 glRotatef(-yrot,0.0f,1.0f,0.0f);
 glRotatef(-xrot,1.0f,0.0f,0.0f);
 glTranslatef(0.0f,0.0f,-z);
 glGetFloatv(GL_MODELVIEW_MATRIX,Minv);
 glLoadIdentity();
 glTranslatef(0.0f,0.0f,z);
 glRotatef(xrot,1.0f,0.0f,0.0f);
 glRotatef(yrot,0.0f,1.0f,0.0f);

 // Transform The Lightposition Into Object Coordinates:
 l[0]=LightPosition[0];
 l[1]=LightPosition[1];
 l[2]=LightPosition[2];
 l[3]=1.0f;
 VMatMult(Minv,l);

 glBindTexture(GL_TEXTURE_2D, bump[filter]);
 glDisable(GL_BLEND);
 glDisable(GL_LIGHTING);
 doCube();

Here comes the function for doing the bump mapping without multitexturing. It’s a three-pass
implementation. As a first step, the GL_MODELVIEW matrix is inverted by applying to the identity-
matrix all steps later applied to the GL_MODELVIEW in reverse order and inverted. The result is a
matrix that "undoes" the GL_MODELVIEW if applied to an object. We fetch it from OpenGL by
simply using glGetFloatv(). Remember that the matrix has to be an array of 16 and that the matrix
is "transposed"!

By the way: If you don’t exactly know how the modelview was built, consider using world-space,
since matrix-inversion is complicated and costly. But if you’re doing large amounts of vertices
inverting the modelview with a more generalized approach could be faster.

First Pass:

l Use bump-texture
l Disable Blending
l Disable Lighting
l Use non-offset texture-coordinates
l Do the geometry

This will render a cube only consisting out of bump map.

Jeff Molofee's OpenGL Windows Tutorial #22 (By Jens Schneider)

Page 17 of 27

 glBindTexture(GL_TEXTURE_2D,invbump[filter]);
 glBlendFunc(GL_ONE,GL_ONE);
 glDepthFunc(GL_LEQUAL);
 glEnable(GL_BLEND);

 glBegin(GL_QUADS);
 // Front Face
 n[0]=0.0f;
 n[1]=0.0f;
 n[2]=1.0f;
 s[0]=1.0f;
 s[1]=0.0f;
 s[2]=0.0f;
 t[0]=0.0f;
 t[1]=1.0f;
 t[2]=0.0f;
 for (i=0; i<4; i++) {
 c[0]=data[5*i+2];
 c[1]=data[5*i+3];
 c[2]=data[5*i+4];
 SetUpBumps(n,c,l,s,t);
 glTexCoord2f(data[5*i]+c[0], data[5*i+1]+c[1]);
 glVertex3f(data[5*i+2], data[5*i+3], data[5*i+4]);
 }
 // Back Face
 n[0]=0.0f;
 n[1]=0.0f;
 n[2]=-1.0f;
 s[0]=-1.0f;
 s[1]=0.0f;
 s[2]=0.0f;
 t[0]=0.0f;
 t[1]=1.0f;
 t[2]=0.0f;
 for (i=4; i<8; i++) {
 c[0]=data[5*i+2];
 c[1]=data[5*i+3];
 c[2]=data[5*i+4];
 SetUpBumps(n,c,l,s,t);
 glTexCoord2f(data[5*i]+c[0], data[5*i+1]+c[1]);
 glVertex3f(data[5*i+2], data[5*i+3], data[5*i+4]);
 }
 // Top Face
 n[0]=0.0f;

Second Pass:

l Use inverted bump-texture
l Enable Blending GL_ONE, GL_ONE
l Keep Lighting disabled
l Use offset texture-coordinates (This means that you call SetUpBumps() before each face of

the cube
l Do the geometry

This will render a cube with the correct emboss bump mapping, but without colors.

You could save computing time by just rotating the lightvector into inverted direction. However, this
didn’t work out correctly, so we do it the plain way: rotate each normal and center-point the same
way we rotate our geometry!

Jeff Molofee's OpenGL Windows Tutorial #22 (By Jens Schneider)

Page 18 of 27

 n[1]=1.0f;
 n[2]=0.0f;
 s[0]=1.0f;
 s[1]=0.0f;
 s[2]=0.0f;
 t[0]=0.0f;
 t[1]=0.0f;
 t[2]=-1.0f;
 for (i=8; i<12; i++) {
 c[0]=data[5*i+2];
 c[1]=data[5*i+3];
 c[2]=data[5*i+4];
 SetUpBumps(n,c,l,s,t);
 glTexCoord2f(data[5*i]+c[0], data[5*i+1]+c[1]);
 glVertex3f(data[5*i+2], data[5*i+3], data[5*i+4]);
 }
 // Bottom Face
 n[0]=0.0f;
 n[1]=-1.0f;
 n[2]=0.0f;
 s[0]=-1.0f;
 s[1]=0.0f;
 s[2]=0.0f;
 t[0]=0.0f;
 t[1]=0.0f;
 t[2]=-1.0f;
 for (i=12; i<16; i++) {
 c[0]=data[5*i+2];
 c[1]=data[5*i+3];
 c[2]=data[5*i+4];
 SetUpBumps(n,c,l,s,t);
 glTexCoord2f(data[5*i]+c[0], data[5*i+1]+c[1]);
 glVertex3f(data[5*i+2], data[5*i+3], data[5*i+4]);
 }
 // Right Face
 n[0]=1.0f;
 n[1]=0.0f;
 n[2]=0.0f;
 s[0]=0.0f;
 s[1]=0.0f;
 s[2]=-1.0f;
 t[0]=0.0f;
 t[1]=1.0f;
 t[2]=0.0f;
 for (i=16; i<20; i++) {
 c[0]=data[5*i+2];
 c[1]=data[5*i+3];
 c[2]=data[5*i+4];
 SetUpBumps(n,c,l,s,t);
 glTexCoord2f(data[5*i]+c[0], data[5*i+1]+c[1]);
 glVertex3f(data[5*i+2], data[5*i+3], data[5*i+4]);
 }
 // Left Face
 n[0]=-1.0f;
 n[1]=0.0f;
 n[2]=0.0f;
 s[0]=0.0f;
 s[1]=0.0f;
 s[2]=1.0f;
 t[0]=0.0f;
 t[1]=1.0f;
 t[2]=0.0f;
 for (i=20; i<24; i++) {
 c[0]=data[5*i+2];
 c[1]=data[5*i+3];

Jeff Molofee's OpenGL Windows Tutorial #22 (By Jens Schneider)

Page 19 of 27

 c[2]=data[5*i+4];
 SetUpBumps(n,c,l,s,t);
 glTexCoord2f(data[5*i]+c[0], data[5*i+1]+c[1]);
 glVertex3f(data[5*i+2], data[5*i+3], data[5*i+4]);
 }
 glEnd();

 if (!emboss) {
 glTexEnvf (GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
 glBindTexture(GL_TEXTURE_2D,texture[filter]);
 glBlendFunc(GL_DST_COLOR,GL_SRC_COLOR);
 glEnable(GL_LIGHTING);
 doCube();
 }

 xrot+=xspeed;
 yrot+=yspeed;
 if (xrot>360.0f) xrot-=360.0f;
 if (xrot<0.0f) xrot+=360.0f;
 if (yrot>360.0f) yrot-=360.0f;
 if (yrot<0.0f) yrot+=360.0f;

 /* LAST PASS: Do The Logos! */
 doLogo();
 return true;
}

bool doMesh2TexelUnits(void) {

Third Pass:

l Use (colored) base-texture
l Enable Blending GL_DST_COLOR, GL_SRC_COLOR
l This blending equation multiplies by 2: (Cdst*Csrc)+(Csrc*Cdst)=2(Csrc*Cdst)!
l Enable Lighting to do the ambient and diffuse stuff
l Reset GL_TEXTURE-matrix to go back to "normal" texture coordinates
l Do the geometry

This will finish cube-rendering, complete with lighting. Since we can switch back and forth between
multitexturing and non-multitexturing, we have to reset the texture-environment to "normal"
GL_MODULATE first. We only do the third pass, if the user doesn’t want to see just the emboss.

Last Pass:

l update geometry (esp. rotations)
l do the Logos

This function will do the whole mess in 2 passes with multitexturing support. We support two texel-
units. More would be extreme complicated due to the blending equations. Better trim to TNT
instead. Note that almost the only difference to doMesh1TexelUnits() is, that we send two sets of
texture-coordinates for each vertex!

Jeff Molofee's OpenGL Windows Tutorial #22 (By Jens Schneider)

Page 20 of 27

 GLfloat c[4]={0.0f,0.0f,0.0f,1.0f}; // Holds Current Vertex
 GLfloat n[4]={0.0f,0.0f,0.0f,1.0f}; // Normalized Normal Of Current Surface
 GLfloat s[4]={0.0f,0.0f,0.0f,1.0f}; // s-Texture Coordinate Direction, Normalized
 GLfloat t[4]={0.0f,0.0f,0.0f,1.0f}; // t-Texture Coordinate Direction, Normalized
 GLfloat l[4];
 GLfloat Minv[16]; // Holds The Inverted Modelview Matrix To Do So
 int i;

 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Clear The Screen And The Depth Buffer

 // Build Inverse Modelview Matrix First. This Substitutes One Push/Pop With One glLoadIdentity();
 // Simply Build It By Doing All Transformations Negated And In Reverse Order
 glLoadIdentity();
 glRotatef(-yrot,0.0f,1.0f,0.0f);
 glRotatef(-xrot,1.0f,0.0f,0.0f);
 glTranslatef(0.0f,0.0f,-z);
 glGetFloatv(GL_MODELVIEW_MATRIX,Minv);
 glLoadIdentity();
 glTranslatef(0.0f,0.0f,z);

 glRotatef(xrot,1.0f,0.0f,0.0f);
 glRotatef(yrot,0.0f,1.0f,0.0f);

 // Transform The Lightposition Into Object Coordinates:
 l[0]=LightPosition[0];
 l[1]=LightPosition[1];
 l[2]=LightPosition[2];
 l[3]=1.0f;
 VMatMult(Minv,l);

 // TEXTURE-UNIT #0
 glActiveTextureARB(GL_TEXTURE0_ARB);
 glEnable(GL_TEXTURE_2D);
 glBindTexture(GL_TEXTURE_2D, bump[filter]);
 glTexEnvf (GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE_EXT);
 glTexEnvf (GL_TEXTURE_ENV, GL_COMBINE_RGB_EXT, GL_REPLACE);

 // TEXTURE-UNIT #1
 glActiveTextureARB(GL_TEXTURE1_ARB);
 glEnable(GL_TEXTURE_2D);
 glBindTexture(GL_TEXTURE_2D, invbump[filter]);

First Pass:

l No Blending
l No Lighting

Set up the texture-combiner 0 to

l Use bump-texture
l Use not-offset texture-coordinates
l Texture-Operation GL_REPLACE, resulting in texture just being drawn

Set up the texture-combiner 1 to

l Offset texture-coordinates
l Texture-Operation GL_ADD, which is the multitexture-equivalent to ONE, ONE- blending.

This will render a cube consisting out of the grey-scale erode map.

Jeff Molofee's OpenGL Windows Tutorial #22 (By Jens Schneider)

Page 21 of 27

 glTexEnvf (GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE_EXT);
 glTexEnvf (GL_TEXTURE_ENV, GL_COMBINE_RGB_EXT, GL_ADD);

 // General Switches
 glDisable(GL_BLEND);
 glDisable(GL_LIGHTING);

 glBegin(GL_QUADS);
 // Front Face
 n[0]=0.0f;
 n[1]=0.0f;
 n[2]=1.0f;
 s[0]=1.0f;
 s[1]=0.0f;
 s[2]=0.0f;
 t[0]=0.0f;
 t[1]=1.0f;
 t[2]=0.0f;
 for (i=0; i<4; i++) {
 c[0]=data[5*i+2];
 c[1]=data[5*i+3];
 c[2]=data[5*i+4];
 SetUpBumps(n,c,l,s,t);
 glMultiTexCoord2fARB(GL_TEXTURE0_ARB,data[5*i], data[5*i+1]);
 glMultiTexCoord2fARB(GL_TEXTURE1_ARB,data[5*i]+c[0], data[5*i+1]+c[1]);
 glVertex3f(data[5*i+2], data[5*i+3], data[5*i+4]);
 }
 // Back Face
 n[0]=0.0f;
 n[1]=0.0f;
 n[2]=-1.0f;
 s[0]=-1.0f;
 s[1]=0.0f;
 s[2]=0.0f;
 t[0]=0.0f;
 t[1]=1.0f;
 t[2]=0.0f;
 for (i=4; i<8; i++) {
 c[0]=data[5*i+2];
 c[1]=data[5*i+3];
 c[2]=data[5*i+4];
 SetUpBumps(n,c,l,s,t);
 glMultiTexCoord2fARB(GL_TEXTURE0_ARB,data[5*i], data[5*i+1]);
 glMultiTexCoord2fARB(GL_TEXTURE1_ARB,data[5*i]+c[0], data[5*i+1]+c[1]);
 glVertex3f(data[5*i+2], data[5*i+3], data[5*i+4]);
 }
 // Top Face
 n[0]=0.0f;
 n[1]=1.0f;
 n[2]=0.0f;
 s[0]=1.0f;
 s[1]=0.0f;
 s[2]=0.0f;
 t[0]=0.0f;
 t[1]=0.0f;
 t[2]=-1.0f;

Now just render the faces one by one, as already seen in doMesh1TexelUnits(). Only new thing:
Uses glMultiTexCoor2fARB() instead of just glTexCoord2f(). Note that you must specify which
texture-unit you mean by the first parameter, which must be GL_TEXTUREi_ARB with i in [0..31].
(What hardware has 32 texture-units? And what for?)

Jeff Molofee's OpenGL Windows Tutorial #22 (By Jens Schneider)

Page 22 of 27

 for (i=8; i<12; i++) {
 c[0]=data[5*i+2];
 c[1]=data[5*i+3];
 c[2]=data[5*i+4];
 SetUpBumps(n,c,l,s,t);
 glMultiTexCoord2fARB(GL_TEXTURE0_ARB,data[5*i], data[5*i+1]);
 glMultiTexCoord2fARB(GL_TEXTURE1_ARB,data[5*i]+c[0], data[5*i+1]+c[1]);
 glVertex3f(data[5*i+2], data[5*i+3], data[5*i+4]);
 }
 // Bottom Face
 n[0]=0.0f;
 n[1]=-1.0f;
 n[2]=0.0f;
 s[0]=-1.0f;
 s[1]=0.0f;
 s[2]=0.0f;
 t[0]=0.0f;
 t[1]=0.0f;
 t[2]=-1.0f;
 for (i=12; i<16; i++) {
 c[0]=data[5*i+2];
 c[1]=data[5*i+3];
 c[2]=data[5*i+4];
 SetUpBumps(n,c,l,s,t);
 glMultiTexCoord2fARB(GL_TEXTURE0_ARB,data[5*i], data[5*i+1]);
 glMultiTexCoord2fARB(GL_TEXTURE1_ARB,data[5*i]+c[0], data[5*i+1]+c[1]);
 glVertex3f(data[5*i+2], data[5*i+3], data[5*i+4]);
 }
 // Right Face
 n[0]=1.0f;
 n[1]=0.0f;
 n[2]=0.0f;
 s[0]=0.0f;
 s[1]=0.0f;
 s[2]=-1.0f;
 t[0]=0.0f;
 t[1]=1.0f;
 t[2]=0.0f;
 for (i=16; i<20; i++) {
 c[0]=data[5*i+2];
 c[1]=data[5*i+3];
 c[2]=data[5*i+4];
 SetUpBumps(n,c,l,s,t);
 glMultiTexCoord2fARB(GL_TEXTURE0_ARB,data[5*i], data[5*i+1]);
 glMultiTexCoord2fARB(GL_TEXTURE1_ARB,data[5*i]+c[0], data[5*i+1]+c[1]);
 glVertex3f(data[5*i+2], data[5*i+3], data[5*i+4]);
 }
 // Left Face
 n[0]=-1.0f;
 n[1]=0.0f;
 n[2]=0.0f;
 s[0]=0.0f;
 s[1]=0.0f;
 s[2]=1.0f;
 t[0]=0.0f;
 t[1]=1.0f;
 t[2]=0.0f;
 for (i=20; i<24; i++) {
 c[0]=data[5*i+2];
 c[1]=data[5*i+3];
 c[2]=data[5*i+4];
 SetUpBumps(n,c,l,s,t);
 glMultiTexCoord2fARB(GL_TEXTURE0_ARB,data[5*i], data[5*i+1]);
 glMultiTexCoord2fARB(GL_TEXTURE1_ARB,data[5*i]+c[0], data[5*i+1]+c[1]);
 glVertex3f(data[5*i+2], data[5*i+3], data[5*i+4]);

Jeff Molofee's OpenGL Windows Tutorial #22 (By Jens Schneider)

Page 23 of 27

 }
 glEnd();

 glActiveTextureARB(GL_TEXTURE1_ARB);
 glDisable(GL_TEXTURE_2D);
 glActiveTextureARB(GL_TEXTURE0_ARB);
 if (!emboss) {
 glTexEnvf (GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
 glBindTexture(GL_TEXTURE_2D,texture[filter]);
 glBlendFunc(GL_DST_COLOR,GL_SRC_COLOR);
 glEnable(GL_BLEND);
 glEnable(GL_LIGHTING);
 doCube();
 }

 xrot+=xspeed;
 yrot+=yspeed;
 if (xrot>360.0f) xrot-=360.0f;
 if (xrot<0.0f) xrot+=360.0f;
 if (yrot>360.0f) yrot-=360.0f;
 if (yrot<0.0f) yrot+=360.0f;

 /* LAST PASS: Do The Logos! */
 doLogo();
 return true;
}

bool doMeshNoBumps(void) {
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Clear The Screen And The Depth Buffer
 glLoadIdentity(); // Reset The View
 glTranslatef(0.0f,0.0f,z);

 glRotatef(xrot,1.0f,0.0f,0.0f);
 glRotatef(yrot,0.0f,1.0f,0.0f);

Second Pass

l Use the base-texture
l Enable Lighting
l No offset texturre-coordinates => reset GL_TEXTURE-matrix
l Reset texture environment to GL_MODULATE in order to do OpenGLLighting (doesn’t work

otherwise!)

This will render our complete bump-mapped cube.

Last Pass

l Update Geometry (esp. rotations)
l Do The Logos

 Finally, a function to render the cube without bump mapping, so that you can see what difference
this makes!

Jeff Molofee's OpenGL Windows Tutorial #22 (By Jens Schneider)

Page 24 of 27

 if (useMultitexture) {
 glActiveTextureARB(GL_TEXTURE1_ARB);
 glDisable(GL_TEXTURE_2D);
 glActiveTextureARB(GL_TEXTURE0_ARB);
 }

 glDisable(GL_BLEND);
 glBindTexture(GL_TEXTURE_2D,texture[filter]);
 glBlendFunc(GL_DST_COLOR,GL_SRC_COLOR);
 glEnable(GL_LIGHTING);
 doCube();

 xrot+=xspeed;
 yrot+=yspeed;
 if (xrot>360.0f) xrot-=360.0f;
 if (xrot<0.0f) xrot+=360.0f;
 if (yrot>360.0f) yrot-=360.0f;
 if (yrot<0.0f) yrot+=360.0f;

 /* LAST PASS: Do The Logos! */
 doLogo();
 return true;
}

bool DrawGLScene(GLvoid) // Here's Where We Do All The Drawing
{
 if (bumps) {
 if (useMultitexture && maxTexelUnits>1)
 return doMesh2TexelUnits();
 else return doMesh1TexelUnits();
 }
 else return doMeshNoBumps();
}

GLvoid KillGLWindow(GLvoid) // Properly Kill The Window
>…<

BOOL CreateGLWindow(char* title, int width, int height, int bits, bool fullscreenflag)
>…<

 All the drawGLScene() function has to do is to determine which doMesh-function to call:

 Kills the GLWindow, not modified (thus omitted):

 Creates the GLWindow, not modified (thus omitted):

 Windows main-loop, not modified (thus omitted):

Jeff Molofee's OpenGL Windows Tutorial #22 (By Jens Schneider)

Page 25 of 27

LRESULT CALLBACK WndProc(HWND hWnd, // Handle For This Window
 UINT uMsg,
 WPARAM wParam,
 LPARAM lParam)
>…<

int WINAPI WinMain(HINSTANCE hInstance,
 HINSTANCE hPrevInstance, // Previous Instance
 LPSTR lpCmdLine, // Command Line Parameters
 int nCmdShow)
{

 >…<

 if (keys['E'])
 {
 keys['E']=false;
 emboss=!emboss;
 }

 if (keys['M'])
 {
 keys['M']=false;
 useMultitexture=((!useMultitexture) && multitextureSupported);
 }

 if (keys['B'])
 {
 keys['B']=false;
 bumps=!bumps;
 }

 if (keys['F'])
 {
 keys['F']=false;
 filter++;
 filter%=3;
 }

 if (keys[VK_PRIOR])
 {
 z-=0.02f;
 }

 if (keys[VK_NEXT])
 {
 z+=0.02f;
 }

 if (keys[VK_UP])

Windows main-function, added some keys:

l E: Toggle Emboss / Bumpmapped Mode
l M: Toggle Multitexturing
l B: Toggle Bumpmapping. This Is Mutually Exclusive With Emboss Mode
l F: Toggle Filters. You’ll See Directly That GL_NEAREST Isn’t For Bumpmapping
l CURSOR-KEYS: Rotate The Cube

Jeff Molofee's OpenGL Windows Tutorial #22 (By Jens Schneider)

Page 26 of 27

 {
 xspeed-=0.01f;
 }

 if (keys[VK_DOWN])
 {
 xspeed+=0.01f;
 }

 if (keys[VK_RIGHT])
 {
 yspeed+=0.01f;
 }

 if (keys[VK_LEFT])
 {
 yspeed-=0.01f;
 }
 }
 }
 }
 // Shutdown
 KillGLWindow();
 return (msg.wParam);
}

Now that you managed this tutorial some words about generating textures and bumpmapped
objects before you start to program mighty games and wonder why bumpomapping isn’t that fast or
doesn’t look that good:

l You shouldn’t use textures of 256x256 as done in this lesson. This slows things down a lot.
Only do so if demonstrating visual capabilities (like in tutorials).

l A bumpmapped cube is not usual. A rotated cube far less. The reason for this is the viewing
angle: The steeper it gets, the more visual distortion due to filtering you get. Nearly all
multipass algorithms are very affected by this. To avoid the need for high-resolution textures,
reduce the minimum viewing angle to a sensible value or reduce the bandwidth of viewing
angles and pre-filter you texture to perfectly fit that bandwidth.

l You should first have the colored-texture. The bumpmap can be often derived from it using an
average paint-program and converting it to grey-scale.

l The bumpmap should be "sharper" and higher in contrast than the color-texture. This is
usually done by applying a "sharpening filter" to the texture and might look strange at first,
but believe me: you can sharpen it A LOT in order to get first class visual appearance.

l The bumpmap should be centered around 50%-grey (RGB=127,127,127), since this means
"no bump at all", brighter values represent ing bumps and lower "scratches". This can be
achieved using "histogram" functions in some paint-programs.

l The bumpmap can be one fourth in size of the color-texture without "killing" visual
appearance, though you’ll definitely see the difference.

Now you should at least have a basic understanding of the issued covered in this tutorial. I hope
you have enjoyed reading it.

If you have questions and / or suggestions regarding this lesson, you can just mail me, since I
have not yet a web page.

This is my current project and will follow soon.

Thanks must go to:

l Michael I. Gold for his Bump Mapping Documentation
l Diego Tártara for his example code
l NVidia for putting great examples on the WWW

Jeff Molofee's OpenGL Windows Tutorial #22 (By Jens Schneider)

Page 27 of 27

l And last but not least to NeHe who helped me learn a lot about OpenGL.

Jens Schneider
Jeff Molofee (NeHe)

* DOWNLOAD Visual C++ Code For This Lesson.

 Back To NeHe Productions!

Jeff Molofee's OpenGL Windows Tutorial #23 (By Justin Eslinger)

Page 1 of 10

typedef struct tagSECTOR
{
 int numtriangles;
 TRIANGLE* triangle;
} SECTOR;

SECTOR sector1; // Our Model Goes Here:

POINT mpos; // Mouse Position

LRESULT CALLBACK WndProc(HWND, UINT, WPARAM, LPARAM); // Declaration For WndProc

ShowCursor(FALSE); // Hide Mouse Pointer
if (fullscreen) // Are We Still In Fullscreen Mode?
{
 dwExStyle=WS_EX_APPWINDOW; // Window Extended Style
 dwStyle=WS_POPUP; // Windows Style
}

SwapBuffers(hDC); // Swap Buffers (Double Buffering)
GetCursorPos(&mpos); // Get The Current Mouse Position
SetCursorPos(320,240); // Set Mouse Position To Center Of The Window
heading += (float)(320 - mpos.x)/100 * 5; // Update The Direction For Movement
yrot = heading; // Update The Y Rotation
lookupdown -= (float)(240 - mpos.y)/100 * 5; // Update The X Rotation

 Lesson 23

Advanced Input with Direct Input and Windows

With the way things are nowadays, you must use the latest technology to compete with games
such as Quake and Unreal. In this tutorial, I will teach you how to set up your compiler for Direct
Input, how to use it, and how to use the mouse in Opengl w/ Windows. This tutorial is based on
code from Lesson 10. So open the Lesson 10 source code and lets get started!

The Mouse

First we need to add in a variable to hold the mouse's X and Y position.

Ok, as you can see, we have added in a new variable called mpos. (Mouse Position). mpos has
two variables, x and y. We will use these variables to figure out how to rotate the scene. We will
modify parts of CreateGLWindow() with the following code.

Above, we moved the ShowCursor() out of the if statement below it. Therefore, if we go fullscreen or
windowed the cursor will never be shown. Now we need to get and set the mouse every time we
render. So modify the following in WinMain():

Jeff Molofee's OpenGL Windows Tutorial #23 (By Justin Eslinger)

Page 2 of 10

Lots to talk about here. First we get the mouse position with GetCursorPos(POINT p). This tells us
how much to rotate on the X and Y axis. After we've got the position, we set it up for the next
rendering pass using SetCursorPos(int X, int Y).

Note: Do not set the mouse position to 0,0! If you do, you will not be able to move the mouse to the
upper left because 0,0 is the upper left of the window. 320 is the middle of the window from left to
right and 240 is the middle of the window from the top to the bottom in 640x480 mode. Just a
reminder!

After we have taken care of the mouse we need to update some stuff for rendering and movement.

float = (P - CX) / U * S;

P - The point we set the mouse to every time
CX - The current mouse position
U - Units
S - Mouse speed (being a hardcore quaker I like it at 12)

We also do this for the heading variable and the lookupdown variable.

There you have it! Mouse code worthy of the greats!

The KeyBoard (DirectX 7)

Now we can look around in our world. The next step is to read multiple keys. By adding this section
of code, you will be able to walk forward, strafe, and crouch all at the same time! Enough chit-chat,
let's code!

I will now explain the steps required to use DirectX 7. The first step will depend on your compiler. I
will show you how to do it with Visual C++, although it shouldn't be much different with other
compilers.

1. First you must download, or order, the DirectX 7 Sdk (128 MB).
You can download or order by clicking here
Or click here to download the necessary library and include files locally (1.32 MB).
Make sure you have DX7 installed on your computer.

2. Next you must install the sdk or necessary on your computer. If you are using the dx7.zip
file from this site, all you have to do is unzip the file, and move all of the include files into
your Visual C++ include directory, and all of the library files into your Visual C++ library
directory. The Visual C++ directories can usually be found at C:\Program Files\Microsoft
Visual Studio\VC98. If you are not using Visual Studio, look for a directory called Visual C.
Hopefully by now you know where the library files are, and where the include files are.

3. After you have installed the required files, open your project and go to Project->Settings.

4. Click on the Link tab, and move down to Object / Library Modules.

5. Type in the following at the beginning of the line, dinput.lib dxguid.lib winmm.lib. This
links the Direct Input library, the DirectX GUI library, and the Windows Multimedia library
(required for timing code) into our program.

Now we have Direct Input setup for compiling in our project. Time for some coding!

Jeff Molofee's OpenGL Windows Tutorial #23 (By Justin Eslinger)

Page 3 of 10

#include <stdio.h> // Header File For Standard Input/Output
#include <gl\gl.h> // Header File For The OpenGL32 Library
#include <gl\glu.h> // Header File For The GLu32 Library
#include <gl\glaux.h> // Header File For The Glaux Library
#include <dinput.h> // Direct Input Functions

LPDIRECTINPUT7 g_DI; // Direct Input
LPDIRECTINPUTDEVICE7 g_KDIDev; // Keyboard Device

// Initializes Direct Input (Add)
int DI_Init()
{
 // Create Direct Input
 if (DirectInputCreateEx(hInstance, // Window Instance
 DIRECTINPUT_VERSION, // Direct Input Version
 IID_IDirectInput7, // Version 7
 (void**)&g_DI, // Direct Input
 NULL)) // NULL Parameter
 {
 return(false); // Couldn't Initialize Direct Input
 }

 // Create The Keyboard Device
 if (g_DI->CreateDeviceEx(GUID_SysKeyboard, // Define Which Device Tto Create (KeyBoard,Mouse,or Joystick)
 IID_IDirectInputDevice7, // Version 7
 (void**)&g_KDIDev, // KeyBoard Device
 NULL)) // NULL Parameter
 {
 return(false); // Couldn't Create The Keyboard Device
 }

 // Set The Keyboard Data Format
 if (g_KDIDev->SetDataFormat(&c_dfDIKeyboard))
 {
 return(false); // Could Not Set The Data Format
 }

 // Set The Cooperative Level
 if (g_KDIDev->SetCooperativeLevel(hWnd, DISCL_FOREGROUND | DISCL_EXCLUSIVE))
 {

We need to include the Direct Input header file so that we can use some of its functions.
Also, we need to add in Direct Input and the Direct Input Keyboard Device.

The last two lines above set up Direct Input (g_DI) and the the keyboard device (g_KDIDev). The
keyboard device receives the input and we translate and use it. Direct Input is not too far off from
regular windows input as seen in the previous tutorials.

Windows Direct Input
VK_LEFT DIK_LEFT
VK_RIGHT DIK_RIGHT
...etc

Basically all we do is change VK to DIK. Although I think that some keys have changed.

Now we need to add a new function to setup Direct Input and the keyboard device. Underneath
CreateGLWindow(), add the following:

Jeff Molofee's OpenGL Windows Tutorial #23 (By Justin Eslinger)

Page 4 of 10

 return(false); // Could Not Set The Cooperative Level
 }

 if (g_KDIDev) // Did We Create The Keyboard Device?
 g_KDIDev->Acquire(); // If So, Acquire It
 else // If Not
 return(false); // Return False

 return(true); // Everything Ok, Return True
}

// Destroys DX (Add)
void DX_End()
{
 if (g_DI)
 {
 if (g_KDIDev)
 {
 g_KDIDev->Unacquire();
 g_KDIDev->Release();
 g_KDIDev = NULL;
 }

 g_DI->Release();
 g_DI = NULL;
 }
}

In WndProc() The Following Code Was Removed

 case WM_KEYDOWN: // Is A Key Being Held Down?
 {
 keys[wParam] = TRUE; // If So, Mark It As TRUE
 return 0; // Jump Back
 }

 case WM_KEYUP: // Has A Key Been Released?
 {
 keys[wParam] = FALSE; // If So, Mark It As FALSE
 return 0; // Jump Back
 }

At The Top Of The Program, Make The Following Changes

BYTE buffer[256]; // New Key Buffer, Replaces Keys[]
bool active=TRUE; // Window Active Flag Set To TRUE By Default
bool fullscreen=TRUE; // Fullscreen Flag Set To Fullscreen Mode By Default
bool blend; // Blending ON/OFF
bool bp; // Blend Button Pressed?
bool fp; // F1 Key Pressed?

...

GLfloat lookupdown = 0.0f;

I think the code above is pretty self explanatory. First we init Direct Input, then we create the
Keyboard device, and finally we acquire it. Later on, I might talk about how you can also use the
Mouse and Joystick with Direct Input (although I don't suggest using Direct Input for the mouse).

Now we need to change the code from Window's Input to Direct Input. Which means a whole lot of
modifying! So, here we go!

Jeff Molofee's OpenGL Windows Tutorial #23 (By Justin Eslinger)

Page 5 of 10

GLfloat z=0.0f; // Depth Into The Screen
GLuint filter; // Which Filter To Use

GLuint texture[5]; // Storage For 5 Textures

In The WinMain() Function

 // Create Our OpenGL Window
 if (!CreateGLWindow("Justin Eslinger's & NeHe's Advanced DirectInput Tutorial",640,480,16,fullscreen))
 {
 return 0; // Quit If Window Was Not Created
 }

 if (!DI_Init()) // Initialize DirectInput
 {
 return 0;
 }

 ...

 // Draw The Scene. Watch For ESC Key And Quit Messages From DrawGLScene()
 if ((active && !DrawGLScene())) // Active? Was There A Quit Received?

 ...

 HRESULT hr = g_KDIDev->GetDeviceState(sizeof(buffer), &buffer);

 if (buffer[DIK_ESCAPE] & 0x80) // Check For Escape Key
 {
 done=TRUE;
 }

 if (buffer[DIK_B] & 0x80) // B Key Being Pressed?
 {
 if (!bp)
 {
 bp = true; // Is The Blend Button Down?
 blend=!blend;
 if (!blend)
 {
 glDisable(GL_BLEND);
 glEnable(GL_DEPTH_TEST);
 }
 else
 {
 glEnable(GL_BLEND);
 glDisable(GL_DEPTH_TEST);
 }
 }
 }
 else
 {
 bp = false;
 }

 if (buffer[DIK_PRIOR] & 0x80) // Page Up?
 {
 z-=0.02f;
 }

 if (buffer[DIK_NEXT] & 0x80) // Page Down?
 {
 z+=0.02f;
 }

Jeff Molofee's OpenGL Windows Tutorial #23 (By Justin Eslinger)

Page 6 of 10

 if (buffer[DIK_UP] & 0x80) // Up Arrow?
 {
 xpos -= (float)sin(heading*piover180) * 0.05f;
 zpos -= (float)cos(heading*piover180) * 0.05f;
 if (walkbiasangle >= 359.0f)
 {
 walkbiasangle = 0.0f;
 }
 else
 {
 walkbiasangle+= 10;
 }

 walkbias = (float)sin(walkbiasangle * piover180)/20.0f;
 }

 if (buffer[DIK_DOWN] & 0x80) // Down Arrow?
 {
 xpos += (float)sin(heading*piover180) * 0.05f;
 zpos += (float)cos(heading*piover180) * 0.05f;
 if (walkbiasangle <= 1.0f)
 {
 walkbiasangle = 359.0f;
 }
 else
 {
 walkbiasangle-= 10;
 }

 walkbias = (float)sin(walkbiasangle * piover180)/20.0f;
 }

 if (buffer[DIK_LEFT] & 0x80) // Left Arrow?
 {
 xpos += (float)sin((heading - 90)*piover180) * 0.05f;
 zpos += (float)cos((heading - 90)*piover180) * 0.05f;
 if (walkbiasangle <= 1.0f)
 {
 walkbiasangle = 359.0f;
 }
 else
 {
 walkbiasangle-= 10;
 }

 walkbias = (float)sin(walkbiasangle * piover180)/20.0f;
 }

 if (buffer[DIK_RIGHT] & 0x80) // Right Arrow?
 {
 xpos += (float)sin((heading + 90)*piover180) * 0.05f;
 zpos += (float)cos((heading + 90)*piover180) * 0.05f;
 if (walkbiasangle <= 1.0f)
 {
 walkbiasangle = 359.0f;
 }
 else
 {
 walkbiasangle-= 10;
 }

 walkbias = (float)sin(walkbiasangle * piover180)/20.0f;
 }

 if (buffer[DIK_F1] & 0x80) // Is F1 Being Pressed?

Jeff Molofee's OpenGL Windows Tutorial #23 (By Justin Eslinger)

Page 7 of 10

 {
 if (!fp) // If F1 Isn't Being "Held"
 {
 fp = true; // Is The F1 Button Down?
 KillGLWindow(); // Kill Our Current Window
 fullscreen=!fullscreen; // Toggle Fullscreen/Windowed Mode

 // Recreate Our OpenGL Window
 if (!CreateGLWindow("Justin Eslinger's & NeHe's Advanced Direct Input Tutorial",640,480,16,fullscreen))
 {
 return 0; // Quit If Window Was Not Created
 }

 if (!DI_Init()) // ReInitialize DirectInput
 {
 return 0; // Couldn't Initialize, Quit
 }
 }
 }
 else
 {
 fp = false; // Set 'fp' To False
 }
 }
 }
 }

 // Shutdown
 DX_End(); // Destroys DirectX
 KillGLWindow(); // Kill The Window
 return (msg.wParam); // Exit The Program
}

In DrawGLScene() Modify From The First Line Below

 glTranslatef(xtrans, ytrans, ztrans);
 numtriangles = sector1.numtriangles;

 // Process Each Triangle
 for (int loop_m = 0; loop_m < numtriangles; loop_m++)
 {
 glBindTexture(GL_TEXTURE_2D, texture[sector1.triangle[loop_m].texture]);

 glBegin(GL_TRIANGLES);

POINT mpos; // Mouse Position
int adjust = 5; // Speed Adjustment

// Create A Structure For The Timer Information (Add)

Ok, I need to discuss some things here. First, I took out some stuff that we didn't need. Then I
replaced the old Windows keyboard stuff. I also changed the left and right keys. Now, when you go
left or right, it strafes instead of turns! All I did was add or minus 90 degrees from the heading
direction! That's pretty much it! Everything else is commented. Now we can compile and run our
game! Whoohooo! hehehe

Now we have Direct Input and Mouse support in our game, what next? Well, we need to add in a
timing system to regulate the speed in our game. Without timing, we check the input every frame
and that could make us zip through the level before we can even look at it! So let's get started!

First we need adjustment variables to slow down our game and a timer structure.

Jeff Molofee's OpenGL Windows Tutorial #23 (By Justin Eslinger)

Page 8 of 10

struct
{
 __int64 frequency; // Timer Frequency
 float resolution; // Timer Resolution
 unsigned long mm_timer_start; // Multimedia Timer Start Value
 unsigned long mm_timer_elapsed; // Multimedia Timer Elapsed Time
 bool performance_timer; // Using The Performance Timer?
 __int64 performance_timer_start; // Performance Timer Start Value
 __int64 performance_timer_elapsed; // Performance Timer Elapsed Time
} timer; // Structure Is Named Timer

LRESULT CALLBACK WndProc(HWND, UINT, WPARAM, LPARAM); // Declaration For WndProc

// Initialize Our Timer (Get It Ready) (Add)
void TimerInit(void)
{
 memset(&timer, 0, sizeof(timer)); // Clear Our Timer Structure
 // Check To See If A Performance Counter Is Available
 // If One Is Available The Timer Frequency Will Be Updated
 if (!QueryPerformanceFrequency((LARGE_INTEGER *) &timer.frequency))
 {
 // No Performace Counter Available
 timer.performance_timer = FALSE; // Set Performance Timer To FALSE
 timer.mm_timer_start = timeGetTime(); // Use timeGetTime() To Get Current Time
 timer.resolution = 1.0f/1000.0f; // Set Our Timer Resolution To .001f
 timer.frequency = 1000; // Set Our Timer Frequency To 1000
 timer.mm_timer_elapsed = timer.mm_timer_start; // Set The Elapsed Time To The Current Time
 }
 else
 {
 // Performance Counter Is Available, Use It Instead Of The Multimedia Timer
 // Get The Current Time And Store It In performance_timer_start
 QueryPerformanceCounter((LARGE_INTEGER *) &timer.performance_timer_start);
 timer.performance_timer = TRUE; // Set Performance Timer To TRUE

 // Calculate The Timer Resolution Using The Timer Frequency
 timer.resolution = (float) (((double)1.0f)/((double)timer.frequency));
 // Set The Elapsed Time To The Current Time
 timer.performance_timer_elapsed = timer.performance_timer_start;
 }
}

// Get Time In Milliseconds (Add)
float TimerGetTime()
{
 __int64 time; // time Will Hold A 64 Bit Integer
 if (timer.performance_timer) // Are We Using The Performance Timer?
 {
 QueryPerformanceCounter((LARGE_INTEGER *) &time); // Grab The Current Performance Time

 // Return The Current Time Minus The Start Time Multiplied By The Resolution And 1000 (To Get MS)
 return ((float) (time - timer.performance_timer_start) * timer.resolution)*1000.0f;
 }
 else
 {
 // Return The Current Time Minus The Start Time Multiplied By The Resolution And 1000 (To Get MS)
 return((float) (timeGetTime() - timer.mm_timer_start) * timer.resolution)*1000.0f;

The above code was discussed in lesson 21 so I shouldn't have to explain it.

Just below the declaration for the wndproc(), we need to add in the timer functions.

Jeff Molofee's OpenGL Windows Tutorial #23 (By Justin Eslinger)

Page 9 of 10

 }
}

 if (!DI_Init()) // Initialize DirectInput
 {
 return 0;
 }

 TimerInit(); // Init Our Timer

 ...

 float start=TimerGetTime();
 // Grab Timer Value Before We Draw (Add)

 // Draw The Scene. Watch For ESC Key And Quit Messages From DrawGLScene()
 if ((active && !DrawGLScene())) // Active? Was There A Quit Received?
 {
 done=TRUE; // ESC or DrawGLScene Signalled A Quit
 }
 else // Not Time To Quit, Update Screen
 {
 while(TimerGetTime()<start+float(adjust*2.0f)) {}

Modify the tagTriangle structure

typedef struct tagTRIANGLE
{
 int texture; (Add)
 VERTEX vertex[3];
} TRIANGLE;

Modify the SetupWorld code

for (int loop = 0; loop < numtriangles; loop++)
{
 readstr(filein,oneline); (Add)
 sscanf(oneline, "%i\n", §or1.triangle[loop].texture); (Add)
 for (int vert = 0; vert < 3; vert++)
 {

Modify the DrawGLScene code

// Process Each Triangle
 for (int loop_m = 0; loop_m < numtriangles; loop_m++)

The above was also in Lesson 21 so nothing to explain here. Just make sure you add the
winmm.lib library file. Otherwise you will get errors when you compile.

Now we must add some stuff in the WinMain() function.

Now the game will run at the adjusted speed. The following segment will be dedicated to some
graphical adjustments I made to the Lesson 10 Level.

If you've already downloaded the code for this lesson, then you've already seen that I've added
multiple textures to the scene. The new textures are in the DATA directory. Here's how I added the
textures:

Jeff Molofee's OpenGL Windows Tutorial #23 (By Justin Eslinger)

Page 10 of 10

 {
 glBindTexture(GL_TEXTURE_2D, texture[sector1.triangle[loop_m].texture]);

 glBegin(GL_TRIANGLES);

In the LoadGLTextures Code We Add More Textures

int LoadGLTextures() // Load Bitmaps And Convert To Textures
{
 int Status=FALSE; // Status Indicator
 AUX_RGBImageRec *TextureImage[5]; // Create Storage Space For The Textures
 memset(TextureImage,0,sizeof(void *)*2); // Set The Pointer To NULL
 if ((TextureImage[0]=LoadBMP("Data/floor1.bmp")) && // Load The Floor Texture
 (TextureImage[1]=LoadBMP("Data/light1.bmp")) && // Load The Light Texture
 (TextureImage[2]=LoadBMP("Data/rustyblue.bmp")) && // Load the Wall Texture
 (TextureImage[3]=LoadBMP("Data/crate.bmp")) && // Load The Crate Texture
 (TextureImage[4]=LoadBMP("Data/weirdbrick.bmp"))) // Load the Ceiling Texture
 {
 Status=TRUE; // Set The Status To TRUE
 glGenTextures(5, &texture[0]); // Create The Texture
 for (int loop1=0; loop1<5; loop1++) // Loop Through 5 Textures
 {
 glBindTexture(GL_TEXTURE_2D, texture[loop1]);
 glTexImage2D(GL_TEXTURE_2D, 0, 3, TextureImage[loop1]->sizeX, TextureImage[loop1]
 GL_RGB, GL_UNSIGNED_BYTE, TextureImage[loop1]->data);
 glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_LINEAR);
 glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_LINEAR);
 }
 for (loop1=0; loop1<5; loop1++) // Loop Through 5 Textures
 {
 if (TextureImage[loop1]) // If Texture Exists
 {
 if (TextureImage[loop1]->data) // If Texture Image Exists
 {
 free(TextureImage[loop1]->data);// Free The Texture Image Memory
 }
 free(TextureImage[loop1]); // Free The Image Structure
 }
 }
 }
 return Status; // Return The Status
}

So now you're able to harness the awesome power of Direct Input. I spent a lot of time writing and
revising this tutorial to make it very easy to understand and also error free. I hope this tutorial is
helpful to those that wanted to learn this. I felt that since this site gave me enough knowledge to
create the engine I have now, that I should give back to the community. Thanks for taking the time
to read this!

Justin Eslinger (BlackScar)

blackscar@ticz.com
http://members.xoom.com/Blackscar/

* DOWNLOAD Visual C++ Code For This Lesson.

Back To NeHe Productions!

GLuint texture[6]; // Storage For 6 Textures

int LoadGLTextures() // Load Bitmaps And Convert To Textures
{
 int Status=FALSE; // Status Indicator

 AUX_RGBImageRec *TextureImage[2]; // Create Storage Space For The Texture

 memset(TextureImage,0,sizeof(void *)*2); // Set The Pointer To NULL

 Lesson 24

Sphere Environment Mapping is a quick way to add a reflection to a metallic or reflective object in
your scene. Although it is not as accurate as real life or as a Cube Environment Map, it is a whole lot
faster! We'll be using the code from lesson eighteen (Quadratics) for the base of this tutorial. Also
we're not using any of the same texture maps, we're going to use one sphere map, and one
background image.

Before we start... The "red book" defines a Sphere map as a picture of the scene on a metal ball
from infinite distance away and infinite focal point. Well that is impossible to do in real life. The best
way I have found to create a good sphere map image without using a Fish eye lens is to use
Adobe's Photoshop program.

Creating a Sphere Map In Photoshop:

First you will need a picture of the environment you want to map onto the sphere. Open the picture in
Adobe Photoshop and select the entire image. Copy the image and create a new PSD (Photoshop
Format) the new image should be the same size as the image we just copied. Paste a copy of the
image into the new window we've created. The reason we make a copy is so Photoshop can apply
its filters. Instead of copying the image you can select mode from the drop down menu and choose
RGB mode. All of the filters should then be available.

Next we need to resize the image so that the image dimensions are a power of 2. Remember that in
order to use an image as a texture the image needs to be 128x128, 256x256, etc. Under the image
menu, select image size, uncheck the constraint proportions checkbox, and resize the image to a
valid texture size. If your image is 100X90, it's better to make the image 128x128 than 64x64.
Making the image smaller will lose alot of detail.

The last thing we do is select the filter menu, select distort and apply a spherize modifier. You should
see that the center of the picture is blown up like a balloon, now in normal sphere maps the outer
area will be blackened out, but it doesn't really matter. Save a copy of the image as a .BMP and
you're ready to code!

We don't add any new global variables this time but we do modify the texture array to hold 6
textures.

The next thing I did was modify the LoadGLTextures() function so we can load in 2 bitmaps and
create 3 filters. (Like we did in the original texturing tutorials). Basically we loop through twice and
create 3 textures each time using a different filtering mode. Almost all of this code is new or
modified.

Jeff Molofee's OpenGL Windows Tutorial #24 (By GB Schmick (TipTup))

Page 1 of 5

 // Load The Bitmap, Check For Errors, If Bitmap's Not Found Quit
 if ((TextureImage[0]=LoadBMP("Data/BG.bmp")) && // Background Texture
 (TextureImage[1]=LoadBMP("Data/Reflect.bmp"))) // Reflection Texture (Spheremap)
 {
 Status=TRUE; // Set The Status To TRUE

 glGenTextures(6, &texture[0]); // Create Three Textures

 for (int loop=0; loop<=1; loop++)
 {
 // Create Nearest Filtered Texture
 glBindTexture(GL_TEXTURE_2D, texture[loop]); // Gen Tex 0 And 1
 glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_NEAREST);
 glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_NEAREST);
 glTexImage2D(GL_TEXTURE_2D, 0, 3, TextureImage[loop]->sizeX, TextureImage[loop]

 // Create Linear Filtered Texture
 glBindTexture(GL_TEXTURE_2D, texture[loop+2]); // Gen Tex 2, 3 And 4
 glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_LINEAR);
 glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_LINEAR);
 glTexImage2D(GL_TEXTURE_2D, 0, 3, TextureImage[loop]->sizeX, TextureImage[loop]

 // Create MipMapped Texture
 glBindTexture(GL_TEXTURE_2D, texture[loop+4]); // Gen Tex 4 and 5
 glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_LINEAR);
 glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_LINEAR_MIPMAP_NEAREST);
 gluBuild2DMipmaps(GL_TEXTURE_2D, 3, TextureImage[loop]->sizeX, TextureImage[loop]
 }
 for (loop=0; loop<=1; loop++)
 {
 if (TextureImage[loop]) // If Texture Exists
 {
 if (TextureImage[loop]->data) // If Texture Image Exists
 {
 free(TextureImage[loop]->data); // Free The Texture Image Memory
 }
 free(TextureImage[loop]); // Free The Image Structure
 }
 }
 }

 return Status; // Return The Status
}

GLvoid glDrawCube()
{
 glBegin(GL_QUADS);
 // Front Face
 glNormal3f(0.0f, 0.0f, 0.5f); (Modified)
 glTexCoord2f(0.0f, 0.0f); glVertex3f(-1.0f, -1.0f, 1.0f);
 glTexCoord2f(1.0f, 0.0f); glVertex3f(1.0f, -1.0f, 1.0f);
 glTexCoord2f(1.0f, 1.0f); glVertex3f(1.0f, 1.0f, 1.0f);
 glTexCoord2f(0.0f, 1.0f); glVertex3f(-1.0f, 1.0f, 1.0f);
 // Back Face
 glNormal3f(0.0f, 0.0f,-0.5f); (Modified)
 glTexCoord2f(1.0f, 0.0f); glVertex3f(-1.0f, -1.0f, -1.0f);
 glTexCoord2f(1.0f, 1.0f); glVertex3f(-1.0f, 1.0f, -1.0f);
 glTexCoord2f(0.0f, 1.0f); glVertex3f(1.0f, 1.0f, -1.0f);
 glTexCoord2f(0.0f, 0.0f); glVertex3f(1.0f, -1.0f, -1.0f);
 // Top Face

We'll modify the cube drawing code a little. Instead of using 1.0 and -1.0 for the normal values, we'll
use 0.5 and -0.5. By changing the value of the normal, you can zoom the reflection map in and out. If
the normal value is high, the image being reflected will be bigger, and may appear blocky. By
reducing the normal value to 0.5 and -0.5 the reflected image is zoomed out a bit so that the image
reflecting off the cube isn't all blocky looking. Setting the normal value too low will create undesirable
results.

Jeff Molofee's OpenGL Windows Tutorial #24 (By GB Schmick (TipTup))

Page 2 of 5

 glNormal3f(0.0f, 0.5f, 0.0f); (Modified)
 glTexCoord2f(0.0f, 1.0f); glVertex3f(-1.0f, 1.0f, -1.0f);
 glTexCoord2f(0.0f, 0.0f); glVertex3f(-1.0f, 1.0f, 1.0f);
 glTexCoord2f(1.0f, 0.0f); glVertex3f(1.0f, 1.0f, 1.0f);
 glTexCoord2f(1.0f, 1.0f); glVertex3f(1.0f, 1.0f, -1.0f);
 // Bottom Face
 glNormal3f(0.0f,-0.5f, 0.0f); (Modified)
 glTexCoord2f(1.0f, 1.0f); glVertex3f(-1.0f, -1.0f, -1.0f);
 glTexCoord2f(0.0f, 1.0f); glVertex3f(1.0f, -1.0f, -1.0f);
 glTexCoord2f(0.0f, 0.0f); glVertex3f(1.0f, -1.0f, 1.0f);
 glTexCoord2f(1.0f, 0.0f); glVertex3f(-1.0f, -1.0f, 1.0f);
 // Right Face
 glNormal3f(0.5f, 0.0f, 0.0f); (Modified)
 glTexCoord2f(1.0f, 0.0f); glVertex3f(1.0f, -1.0f, -1.0f);
 glTexCoord2f(1.0f, 1.0f); glVertex3f(1.0f, 1.0f, -1.0f);
 glTexCoord2f(0.0f, 1.0f); glVertex3f(1.0f, 1.0f, 1.0f);
 glTexCoord2f(0.0f, 0.0f); glVertex3f(1.0f, -1.0f, 1.0f);
 // Left Face
 glNormal3f(-0.5f, 0.0f, 0.0f); (Modified)
 glTexCoord2f(0.0f, 0.0f); glVertex3f(-1.0f, -1.0f, -1.0f);
 glTexCoord2f(1.0f, 0.0f); glVertex3f(-1.0f, -1.0f, 1.0f);
 glTexCoord2f(1.0f, 1.0f); glVertex3f(-1.0f, 1.0f, 1.0f);
 glTexCoord2f(0.0f, 1.0f); glVertex3f(-1.0f, 1.0f, -1.0f);
 glEnd();
}

 glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, GL_SPHERE_MAP); // Set The Texture Generation Mode For S To Sphere Mapping
 glTexGeni(GL_T, GL_TEXTURE_GEN_MODE, GL_SPHERE_MAP); // Set The Texture Generation Mode For T To Sphere Mapping

int DrawGLScene(GLvoid) // Here's Where We Do All The Drawing
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Clear The Screen And The Depth Buffer
 glLoadIdentity(); // Reset The View

 glTranslatef(0.0f,0.0f,z);

 glEnable(GL_TEXTURE_GEN_S); // Enable Texture Coord Generation For S
 glEnable(GL_TEXTURE_GEN_T); // Enable Texture Coord Generation For T

 glBindTexture(GL_TEXTURE_2D, texture[filter+(filter+1)]); // This Will Select A Sphere Map

Now in InitGL we add two new function calls, these two calls set the texture generation mode for S
and T to Sphere Mapping. The texture coordinates S, T, R & Q relate in a way to object coordinates
x, y, z and w. If you are using a one-dimensional texture (1D) you will use the S coordinate. If your
texture is two dimensional, you will use the S & T coordinates.

So what the following code does is tells OpenGL how to automatically generate the S and T
coordinates for us based on the sphere-mapping formula. The R and Q coordinates are usually
ignored. The Q coordinate can be used for advanced texture mapping extensions, and the R
coordinate may become useful once 3D texture mapping has been added to OpenGL, but for now
we will ignore the R & Q Coords. The S coordinate runs horizontally across the face of our polygon,
the T coordinate runs vertically across the face of our polygon.

We're almost done! All we have to do is set up the rendering, I took out a few of the quadratic
objects because they didn't work well with environment mapping. The first thing we need to do is
enable texture generation. Then we select the reflective texture (sphere map) and draw our object.
After all of the objects you want sphere-mapped have been drawn, you will want to disable texture
generation, otherwise everything will be sphere mapped. We disable sphere-mapping before we
draw the background scene (we don't want the background sphere mapped). You will notice that the
bind texture commands may look fairly complex. All we're doing is selecting the filter to use when
drawing our sphere map or the background image.

Jeff Molofee's OpenGL Windows Tutorial #24 (By GB Schmick (TipTup))

Page 3 of 5

 glPushMatrix();
 glRotatef(xrot,1.0f,0.0f,0.0f);
 glRotatef(yrot,0.0f,1.0f,0.0f);
 switch(object)
 {
 case 0:
 glDrawCube();
 break;
 case 1:
 glTranslatef(0.0f,0.0f,-1.5f); // Center The Cylinder
 gluCylinder(quadratic,1.0f,1.0f,3.0f,32,32); // A Cylinder With A Radius Of 0.5 And A Height Of 2
 break;
 case 2:
 gluSphere(quadratic,1.3f,32,32); // Sphere With A Radius Of 1 And 16 Longitude/Latitude Segments
 break;
 case 3:
 glTranslatef(0.0f,0.0f,-1.5f); // Center The Cone
 gluCylinder(quadratic,1.0f,0.0f,3.0f,32,32); // Cone With A Bottom Radius Of .5 And Height Of 2
 break;
 };

 glPopMatrix();
 glDisable(GL_TEXTURE_GEN_S); // Disable Texture Coord Generation
 glDisable(GL_TEXTURE_GEN_T); // Disable Texture Coord Generation

 glBindTexture(GL_TEXTURE_2D, texture[filter*2]); // This Will Select The BG Texture
 glPushMatrix();
 glTranslatef(0.0f, 0.0f, -24.0f);
 glBegin(GL_QUADS);
 glNormal3f(0.0f, 0.0f, 1.0f);
 glTexCoord2f(0.0f, 0.0f); glVertex3f(-13.3f, -10.0f, 10.0f);
 glTexCoord2f(1.0f, 0.0f); glVertex3f(13.3f, -10.0f, 10.0f);
 glTexCoord2f(1.0f, 1.0f); glVertex3f(13.3f, 10.0f, 10.0f);
 glTexCoord2f(0.0f, 1.0f); glVertex3f(-13.3f, 10.0f, 10.0f);
 glEnd();

 glPopMatrix();

 xrot+=xspeed;
 yrot+=yspeed;
 return TRUE; // Keep Going
}

 if (keys[' '] && !sp)
 {
 sp=TRUE;
 object++;
 if(object>3)
 object=0;
 }

 The last thing we have to do is update the spacebar section of code to reflect (No Pun Intended) the
changes we made to the Quadratic objects being rendered. (We removed the discs)

We're done! Now you can do some really impressive things with Environment mapping like making
an almost accurate reflection of a room! I was planning on showing how to do Cube Environment
Mapping in this tutorial too but my current video card does not support cube mapping. Maybe in a
month or so after I buy a GeForce 2 :) Also I taught myself environment mapping (mostly because I
couldnt find too much information on it) so if anything in this tutorial is inaccurate, Email Me or let
NeHe know.

Thanks, and Good Luck!

GB Schmick (TipTup)

Jeff Molofee's OpenGL Windows Tutorial #24 (By GB Schmick (TipTup))

Page 4 of 5

tiptup@net4tv.com
http://www.tiptup.com/

* DOWNLOAD Visual C++ Code For This Lesson.
* DOWNLOAD Delphi Code For This Lesson. (Conversion by Marc Aarts)

Back To NeHe Productions!

Jeff Molofee's OpenGL Windows Tutorial #24 (By GB Schmick (TipTup))

Page 5 of 5

#include <windows.h> // Header File For Windows
#include <stdio.h> // Header File For Standard Input / Output
#include <stdarg.h> // Header File For Variable Argument Routines
#include <string.h> // Header File For String Management
#include <gl\gl.h> // Header File For The OpenGL32 Library
#include <gl\glu.h> // Header File For The GLu32 Library

HDC hDC=NULL; // Private GDI Device Context
HGLRC hRC=NULL; // Permanent Rendering Context
HWND hWnd=NULL; // Holds Our Window Handle
HINSTANCE hInstance; // Holds The Instance Of The Application

bool keys[256]; // Array Used For The Keyboard Routine
bool active=TRUE; // Window Active Flag Set To TRUE By Default
bool fullscreen=TRUE; // Fullscreen Flag Set To Fullscreen Mode By Default

int scroll; // Used For Scrolling The Screen
int maxtokens; // Keeps Track Of The Number Of Extensions Supported

GLuint base; // Base Display List For The Font

 Lesson 25

This tutorial is far from visually stunning, but you will definitely learn a few new things by reading
through it. I have had quite a few people ask me about extensions, and how to find out what
extensions are supported on a particular brand of video card. This tutorial will teach you how to find
out what OpenGL extensions are supported on any type of 3D video card.

I will also teach you how to scroll a portion of the screen without affecting any of the graphics around
it using scissor testing. You will also learn how to draw line strips, and most importantly, in this
tutorial we will drop the AUX library completely, along with Bitmap images. I will show you how to
use Targa (TGA) images as textures. Not only are Targa files easy to work with and create, they
support the ALPHA channel, which will allow you to create some pretty cool effects in future projects!

The first thing you should notice in the code below is that we no longer include the glaux header file
(glaux.h). It is also important to note that the glaux.lib file can also be left out! We're not working with
bitmaps anymore, so there's no need to include either of these files in our project.

Also, using glaux, I always received one warning message. Without glaux there should be zero
errors, zero warnings.

The first thing we need to do is add some variables. The first variable scroll will be used to scroll a
portion of the screen up and down. The second variable maxtokens will be used to keep track of
how many tokens (extensions) are supported by the video card.

base is used to hold the font display list.

Now we create a structure to hold the TGA information once we load it in. The first variable
imageData will hold a pointer to the data that makes up the image. bpp will hold the bits per pixel

Jeff Molofee's OpenGL Windows Tutorial #25

Page 1 of 14

typedef struct // Create A Structure
{
 GLubyte *imageData; // Image Data (Up To 32 Bits)
 GLuint bpp; // Image Color Depth In Bits Per Pixel
 GLuint width; // Image Width
 GLuint height; // Image Height
 GLuint texID; // Texture ID Used To Select A Texture
} TextureImage; // Structure Name

TextureImage textures[1]; // Storage For One Texture

LRESULT CALLBACK WndProc(HWND, UINT, WPARAM, LPARAM); // Declaration For WndProc

bool LoadTGA(TextureImage *texture, char *filename) // Loads A TGA File Into Memory
{
 GLubyte TGAheader[12]={0,0,2,0,0,0,0,0,0,0,0,0}; // Uncompressed TGA Header
 GLubyte TGAcompare[12]; // Used To Compare TGA Header

used in the TGA file (this value should be 24 or 32 bits depending on whether or not there is an
alpha channel). The third variable width will hold the width of the TGA image. height will hold the
height of the image, and texID will be used to keep track of the textures once they are built. The
structure will be called TextureImage .

The line just after the structure (TextureImage textures[1]) sets aside storage for the one texture
that we will be using in this program.

Now for the fun stuff! This section of code will load in a TGA file and convert it into a texture for use
in the program. One thing to note is that this code will only load 24 or 32 bit uncompressed TGA
files. I had a hard enough time making the code work with both 24 and 32 bit TGA's :) I never said I
was a genious. I'd like to point out that I did not write all of this code on my own. Alot of the really
good ideas I got from reading through random sites on the net. I just took all the good ideas and
combined them into code that works well with OpenGL. Not easy, not extremely difficult!

We pass two parameters to this section of code. The first parameter points to memory that we can
store the texture in (*texture). The second parameter is the name of the file that we want to load
(*filename).

The first variable TGAheader[] holds 12 bytes. We'll compare these bytes with the first 12 bytes we
read from the TGA file to make sure that the file is indeed a Targa file, and not some other type of
image.

TGAcompare will be used to hold the first 12 bytes we read in from the TGA file. The bytes in
TGAcompare will then be compared with the bytes in TGAheader to make sure everything
matches.

header[] will hold the first 6 IMPORTANT bytes from the header file (width, height, and bits per
pixel).

The variable bytesPerPixel will store the result after we divide bits per pixel by 8, leaving us with the
number of bytes used per pixel.

imageSize will store the number of bytes required to make up the image (width * height * bytes per
pixel).

temp is a temporary variable that we will use to swap bytes later in the program.

The last variable type is a variable that I use to select the proper texture building params depending
on whether or not the TGA is 24 or 32 bit. If the texture is 24 bit we need to use GL_RGB mode
when we build the texture. If the TGA is 32 bit we need to add the Alpha component, meaning we
have to use GL_RGBA (By default I assume the image is 32 bit by default that is why type is
GL_RGBA).

Jeff Molofee's OpenGL Windows Tutorial #25

Page 2 of 14

 GLubyte header[6]; // First 6 Useful Bytes From The Header
 GLuint bytesPerPixel; // Holds Number Of Bytes Per Pixel Used In The TGA File
 GLuint imageSize; // Used To Store The Image Size When Setting Aside Ram
 GLuint temp; // Temporary Variable
 GLuint type=GL_RGBA; // Set The Default GL Mode To RBGA (32 BPP)

 FILE *file = fopen(filename, "rb"); // Open The TGA File

 if(file==NULL || // Does File Even Exist?
 fread(TGAcompare,1,sizeof(TGAcompare),file)!=sizeof(TGAcompare) || // Are There 12 Bytes To Read?
 memcmp(TGAheader,TGAcompare,sizeof(TGAheader))!=0 || // Does The Header Match What We Want?
 fread(header,1,sizeof(header),file)!=sizeof(header)) // If So Read Next 6 Header Bytes
 {
 fclose(file); // If Anything Failed, Close The File
 return false; // Return False
 }

 texture->width = header[1] * 256 + header[0]; // Determine The TGA Width (highbyte*256+lowbyte)
 texture->height = header[3] * 256 + header[2]; // Determine The TGA Height (highbyte*256+lowbyte)

 if(texture->width <=0 || // Is The Width Less Than Or Equal To Zero
 texture->height <=0 || // Is The Height Less Than Or Equal To Zero

The first line below opens the TGA file for reading. file is the handle we will use to point to the data
within the file. the command fopen(filename, "rb") will open the file filename , and "rb" tells our
program to open it for [r]eading in [b]inary mode!

The if statement has a few jobs. First off it checks to see if the file contains any data. If there is no
data, NULL will be returned, the file will be closed with fclose(file), and we return false.

If the file contains information, we attempt to read the first 12 bytes of the file into TGAcompare. We
break the line down like this: fread will read sizeof(TGAcompare) (12 bytes) from file into
TGAcompare . Then we check to see if the number of bytes read is equal to sizeof(TGAcompare)
which should be 12 bytes. If we were unable to read the 12 bytes into TGAcompare the file will
close and false will be returned.

If everything has gone good so far, we then compare the 12 bytes we read into TGAcompare with
the 12 bytes we have stored in TGAheader. If the bytes do not match, the file will close, and false
will be returned.

Lastly, if everything has gone great, we attempt to read 6 more bytes into header (the important
bytes). If 6 bytes are not available, again, the file will close and the program will return false.

If everything went ok, we now have enough information to define some important variables. The first
variable we want to define is width. We want width to equal the width of the TGA file. We can find
out the TGA width by multiplying the value stored in header[1] by 256. We then add the lowbyte
which is stored in header[0].

The height is calculated the same way but instead of using the values stored in header[0] and
header[1] we use the values stored in header[2] and header[3].

After we have calculated the width and height we check to see if either the width or height is less
than or equal to 0. If either of the two variables is less than or equal to zero, the file will be closed,
and false will be returned.

We also check to see if the TGA is a 24 or 32 bit image. We do this by checking the value stored at
header[4]. If the value is not 24 or 32 (bit), the file will be closed, and false will be returned.

In case you have not realized. A return of false will cause the program to fail with the message
"Initialization Failed". Make sure your TGA is an uncompressed 24 or 32 bit image!

Jeff Molofee's OpenGL Windows Tutorial #25

Page 3 of 14

 (header[4]!=24 && header[4]!=32)) // Is The TGA 24 or 32 Bit?
 {
 fclose(file); // If Anything Failed, Close The File
 return false; // Return False
 }

 texture->bpp = header[4]; // Grab The TGA's Bits Per Pixel (24 or 32)
 bytesPerPixel = texture->bpp/8; // Divide By 8 To Get The Bytes Per Pixel
 imageSize = texture->width*texture->height*bytesPerPixel; // Calculate The Memory Required For The TGA Data

 texture->imageData=(GLubyte *)malloc(imageSize); // Reserve Memory To Hold The TGA Data

 if(texture->imageData==NULL || // Does The Storage Memory Exist?
 fread(texture->imageData, 1, imageSize, file)!=imageSize) // Does The Image Size Match The Memory Reserved?
 {
 if(texture->imageData!=NULL) // Was Image Data Loaded
 free(texture->imageData); // If So, Release The Image Data

 fclose(file); // Close The File
 return false; // Return False
 }

Now that we have calculated the image width and height we need to calculate the bits per pixel,
bytes per pixel and image size.

The value in header[4] is the bits per pixel. So we set bpp to equal header[4].

If you know anything about bits and bytes, you know that 8 bits makes a byte. To figure out how
many bytes per pixel the TGA uses, all we have to do is divide bits per pixel by 8. If the image is 32
bit, bytesPerPixel will equal 4. If the image is 24 bit, bytesPerPixel will equal 3.

To calculate the image size, we multiply width * height * bytesPerPixel. The result is stored in
imageSize. If the image was 100x100x32 bit our image size would be 100 * 100 * 32/8 which equals
10000 * 4 or 40000 bytes!

Now that we know how many bytes our image is going to take, we need to allocate some memory.
The first line below does the trick. imageData will point to a section of ram big enough to hold our
image. malloc(imagesize) allocates the memory (sets memory aside for us to use) based on the
amount of ram we request (imageSize).

The "if" statement has a few tasks. First it checks to see if the memory was allocated properly. If not,
imageData will equal NULL, the file will be closed, and false will be returned.

If the memory was allocated, we attempt to read the image data from the file into the allocated
memory. The line fread(texture->imageData , 1, imageSize, file) does the trick. fread means file
read. imageData points to the memory we want to store the data in. 1 is the size of data we want to
read in bytes (we want to read 1 byte at a time). imageSize is the total number of bytes we want to
read. Because imageSize is equal to the total amount of ram required to hold the image, we end up
reading in the entire image. file is the handle for our open file.

After reading in the data, we check to see if the amount of data we read in is the same as the value
stored in imageSize. If the amount of data read and the value of imageSize is not the same,
something went wrong. If any data was loaded, we will free it. (release the memory we allocated).
The file will be closed, and false will be returned.

If the data was loaded properly, things are going good :) All we have to do now is swap the Red and
Blue bytes. In OpenGL we use RGB (red, green, blue). The data in a TGA file is stored BGR (blue,
green, red). If we didn't swap the red and blue bytes, anything in the picture that should be red would
be blue and anything that should be blue would be red.

Jeff Molofee's OpenGL Windows Tutorial #25

Page 4 of 14

 for(GLuint i=0; i<int(imageSize); i+=bytesPerPixel) // Loop Through The Image Data
 { // Swaps The 1st And 3rd Bytes ('R'ed and 'B'lue)
 temp=texture->imageData[i]; // Temporarily Store The Value At Image Data 'i'
 texture->imageData[i] = texture->imageData[i + 2]; // Set The 1st Byte To The Value Of The 3rd Byte
 texture->imageData[i + 2] = temp; // Set The 3rd Byte To The Value In 'temp' (1st Byte Value)
 }

 fclose (file); // Close The File

 // Build A Texture From The Data
 glGenTextures(1, &texture[0].texID); // Generate OpenGL texture IDs

 glBindTexture(GL_TEXTURE_2D, texture[0].texID); // Bind Our Texture
 glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); // Linear Filtered
 glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); // Linear Filtered

The first thing we do is create a loop (i) that goes from 0 to imageSize. By doing this, we can loop
through all of the image data. Our loop will increase by steps of 3 (0, 3, 6, 9, etc) if the TGA file is 24
bit, and 4 (0, 4, 8, 12, etc) if the image is 32 bit. The reason we increase by steps is so that the value
at i is always going to be the first byte ([b]lue byte) in our group of 3 or 4 bytes.

Inside the loop, we store the [b]lue byte in our temp variable. We then grab the red byte which is
stored at texture->imageData[i+2] (Remember that TGAs store the colors as BGR[A]. B is i+0, G is
i+1 and R is i+2) and store it where the [b]lue byte used to be.

Lastly we move the [b]lue byte that we stored in the temp variable to the location where the [r]ed
byte used to be (i+2), and we close the file with fclose(file).

If everything went ok, the TGA should now be stored in memory as usable OpenGL texture data!

Now that we have usable data, it's time to make a texture from it. We start off by telling OpenGL we
want to create a texture in the memory pointed to by &texture[0].texID.

It's important that you understand a few things before we go on. In the InitGL() code, when we call
LoadTGA() we pass it two parameters. The first parameter is &textures[0]. In LoadTGA() we don't
make reference to &textures[0]. We make reference to &texture[0] (no 's' at the end). When we
modify &texture[0] we are actually modifying textures[0]. texture[0] assumes the identity of
textures[0]. I hope that makes sense.

So if we wanted to create a second texture, we would pass the parameter &textures[1]. In
LoadTGA() any time we modified texture[0] we would be modifying textures[1]. If we passed
&textures[2], texture[0] would assume the identity of &textures[2], etc.

Hard to explain, easy to understand. Of course I wont be happy until I make it really clear :) Last
example in english using an example. Say I had a box. I called it box #10. I gave it to my friend and
asked him to fill it up. My friend could care less what number it is. To him it's just a box. So he fills
what he calls "just a box". He gives it back to me. To me he just filled Box #10 for me. To him he just
filled a box. If I give him another box called box #11 and say hey, can you fill this. He'll again think of
it as just "box". He'll fill it and give it back to me full. To me he's just filled box #11 for me.

When I give LoadTGA &textures[1] it thinks of it as &texture[0] . It fills it with texture information,
and once it's done I am left with a working textures[1]. If I give LoadTGA &textures[2] it again
thinks of it as &texture[0]. It fills it with data, and I'm left with a working textures[2]. Make sense :)

Anyways... On to the code! We tell LoadTGA() to build our texture. We bind the texture, and tell
OpenGL we want it to be linear filtered.

Now we check to see if the TGA file was 24 or 32 bit. If the TGA was 24 bit, we set the type to
GL_RGB. (no alpha channel). If we didn't do this, OpenGL would try to build a texture with an alpha

Jeff Molofee's OpenGL Windows Tutorial #25

Page 5 of 14

 if (texture[0].bpp==24) // Was The TGA 24 Bits
 {
 type=GL_RGB; // If So Set The 'type' To GL_RGB
 }

 glTexImage2D(GL_TEXTURE_2D, 0, type, texture[0].width, texture[0].height, 0, type, GL_UNSIGNED_BYTE, texture[0].imageData);

 return true; // Texture Building Went Ok, Return True
}

GLvoid BuildFont(GLvoid) // Build Our Font Display List
{
 base=glGenLists(256); // Creating 256 Display Lists
 glBindTexture(GL_TEXTURE_2D, textures[0].texID); // Select Our Font Texture
 for (int loop1=0; loop1<256; loop1++) // Loop Through All 256 Lists
 {
 float cx=float(loop1%16)/16.0f; // X Position Of Current Character
 float cy=float(loop1/16)/16.0f; // Y Position Of Current Character

 glNewList(base+loop1,GL_COMPILE); // Start Building A List
 glBegin(GL_QUADS); // Use A Quad For Each Character
 glTexCoord2f(cx,1.0f-cy-0.0625f); // Texture Coord (Bottom Left)
 glVertex2d(0,16); // Vertex Coord (Bottom Left)
 glTexCoord2f(cx+0.0625f,1.0f-cy-0.0625f); // Texture Coord (Bottom Right)
 glVertex2i(16,16); // Vertex Coord (Bottom Right)
 glTexCoord2f(cx+0.0625f,1.0f-cy-0.001f); // Texture Coord (Top Right)
 glVertex2i(16,0); // Vertex Coord (Top Right)
 glTexCoord2f(cx,1.0f-cy-0.001f); // Texture Coord (Top Left)
 glVertex2i(0,0); // Vertex Coord (Top Left)
 glEnd(); // Done Building Our Quad (Character)
 glTranslated(14,0,0); // Move To The Right Of The Character
 glEndList(); // Done Building The Display List
 } // Loop Until All 256 Are Built
}

 channel. The alpha information wouldn't be there, and the program would probably crash or give an
error message.

Now we build our texture, the same way we've always done it. But instead of putting the type in
ourselves (GL_RGB or GL_RGBA), we substitute the variable type. That way if the program
detected that the TGA was 24 bit, the type will be GL_RGB. If our program detected that the TGA
was 32 bit, the type would be GL_RGBA.

After the texture has been built, we return true. This lets the InitGL() code know that everything went
ok.

The code below is our standard build a font from a texture code. You've all seen this code before if
you've gone through all the tutorials up until now. Nothing really new here, but I figured I'd include
the code to make following through the program a little easier.

Only real difference is that I bind to textures[0].texID. Which points to the font texture. Only real
difference is that .texID has been added.

 KillFont is still the same. We created 256 display lists, so we need to destroy 256 display lists when
the program closes.

Jeff Molofee's OpenGL Windows Tutorial #25

Page 6 of 14

GLvoid KillFont(GLvoid) // Delete The Font From Memory
{
 glDeleteLists(base,256); // Delete All 256 Display Lists
}

GLvoid glPrint(GLint x, GLint y, int set, const char *fmt, ...) // Where The Printing Happens
{
 char text[1024]; // Holds Our String
 va_list ap; // Pointer To List Of Arguments

 if (fmt == NULL) // If There's No Text
 return; // Do Nothing

 va_start(ap, fmt); // Parses The String For Variables
 vsprintf(text, fmt, ap); // And Converts Symbols To Actual Numbers
 va_end(ap); // Results Are Stored In Text

 if (set>1) // Did User Choose An Invalid Character Set?
 {
 set=1; // If So, Select Set 1 (Italic)
 }

 glEnable(GL_TEXTURE_2D); // Enable Texture Mapping
 glLoadIdentity(); // Reset The Modelview Matrix
 glTranslated(x,y,0); // Position The Text (0,0 - Top Left)
 glListBase(base-32+(128*set)); // Choose The Font Set (0 or 1)

 glScalef(1.0f,2.0f,1.0f); // Make The Text 2X Taller

 glCallLists(strlen(text),GL_UNSIGNED_BYTE, text); // Write The Text To The Screen
 glDisable(GL_TEXTURE_2D); // Disable Texture Mapping
}

GLvoid ReSizeGLScene(GLsizei width, GLsizei height) // Resize And Initialize The GL Window
{
 if (height==0) // Prevent A Divide By Zero By
 {
 height=1; // Making Height Equal One
 }
 glViewport(0,0,width,height); // Reset The Current Viewport
 glMatrixMode(GL_PROJECTION); // Select The Projection Matrix
 glLoadIdentity(); // Reset The Projection Matrix
 glOrtho(0.0f,640,480,0.0f,-1.0f,1.0f); // Create Ortho 640x480 View (0,0 At Top Left)
 glMatrixMode(GL_MODELVIEW); // Select The Modelview Matrix
 glLoadIdentity(); // Reset The Modelview Matrix
}

The glPrint() code has only changed a bit. The letters are all stretched on the y axis. Making the
letters very tall. I've explained the rest of the code in other tutorials. The stretching is accomplished
with the glScalef(x,y,z) command. We leave the ratio at 1.0 on the x axis, we double the size on the
y axis (2.0), and we leave it at 1.0 on the z axis.

ReSizeGLScene() sets up an ortho view. Nothing really new. 0,1 is the top left of the screen.
639,480 is the bottom right. This gives us exact screen coordinates in 640 x 480 resolution. I'm not
sure why the screen starts at zero on the x axis, but it does :)

The init code is very minimal. We load our TGA file. Notice that the first parameter passed is
&textures[0]. The second parameter is the name of the file we want to load. In this case, we want to
load the Font.TGA file. If LoadTGA() returns false for any reason, the if statement will also return
false, causing the program to quit with an "initialization failed" message.

Jeff Molofee's OpenGL Windows Tutorial #25

Page 7 of 14

int InitGL(GLvoid) // All Setup For OpenGL Goes Here
{
 if (!LoadTGA(&textures[0],"Data/Font.TGA")) // Load The Font Texture
 {
 return false; // If Loading Failed, Return False
 }

 BuildFont(); // Build The Font

 glShadeModel(GL_SMOOTH); // Enable Smooth Shading
 glClearColor(0.0f, 0.0f, 0.0f, 0.5f); // Black Background
 glClearDepth(1.0f); // Depth Buffer Setup
 glBindTexture(GL_TEXTURE_2D, textures[0].texID); // Select Our Font Texture

 glScissor(1,64,637,288); // Define Scissor Region

 return TRUE; // Initialization Went OK
}

If you wanted to load a second texture you could use the following code: if ((!LoadTGA(&textures
[0],"image1.tga")) && (!LoadTGA(&textures[1],"image2.tga"))) { }

After we load the TGA (creating our texture), we build our font, set shading to smooth, set the
background color to black, enable clearing of the depth buffer, and select our font texture (bind to it).

Now for something new. A wonderful GL command called glScissor(x,y,w,h). What this command
does is creates almost what you would call a window. When GL_SCISSOR_TEST is enabled, the
only portion of the screen that you can alter is the portion inside the scissor window. The command
below creates a window starting at 1 on the x axis, and 64 pixels up from the bottom of the screen
on the y axis. The scissor window will be 638 pixels wide, and 288 pixels tall.

It's important to note that OpenGL assumes the first two numbers represent the lower left corner of
the scissor box. With that in mind, 64 represents 64 pixels from the bottom of the screen, not the top.

This means the bottom left of the scissor window will be at 1,416 (480-64), and the top right of the
scissor window will be at 638,128 (416-288).

We start off with scissor testing disabled, meaning we can draw anywhere we want on the screen.
Once scissor testing has been enabled. Anything we draw OUTSIDE the scissor window will not
show up. You could draw a HUGE quad on the screen from 0,0 to 639,480, and you would only see
the quad inside the scissor windows, the rest of the screen would be unaffected. Very nice command
indeed.

Last thing we do is return true so that our program knows that initialization went ok.

The draw code is completely new :) we start off by creating a variable of type char called token.
Token will hold parsed text later on in the code.

We have another variable called cnt. I use this variable both for counting the number of extensions
supported, and for positioning the text on the screen. cnt is reset to zero every time we call
DrawGLScene.

We clear the screen and depth buffer and then set the color to bright red (full red intensity, 50%
green, 50% blue). at 50 on the x axis and 16 on the y axis we write teh word "Renderer". We also
write "Vendor" and "Version" at the top of the screen. The reason each word does not start at 50 on
the x axis is because I right justify the words (they all line up on the right side).

Jeff Molofee's OpenGL Windows Tutorial #25

Page 8 of 14

int DrawGLScene(GLvoid) // Here's Where We Do All The Drawing
{
 char *token; // Storage For Our Token
 int cnt=0; // Local Counter Variable

 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Clear Screen And Depth Buffer

 glColor3f(1.0f,0.5f,0.5f); // Set Color To Bright Red
 glPrint(50,16,1,"Renderer"); // Display Renderer
 glPrint(80,48,1,"Vendor"); // Display Vendor Name
 glPrint(66,80,1,"Version"); // Display Version

 glColor3f(1.0f,0.7f,0.4f); // Set Color To Orange
 glPrint(200,16,1,(char *)glGetString(GL_RENDERER)); // Display Renderer
 glPrint(200,48,1,(char *)glGetString(GL_VENDOR)); // Display Vendor Name
 glPrint(200,80,1,(char *)glGetString(GL_VERSION)); // Display Version

 glColor3f(0.5f,0.5f,1.0f); // Set Color To Bright Blue
 glPrint(192,432,1,"NeHe Productions"); // Write NeHe Productions At The Bottom Of The Screen

 glLoadIdentity(); // Reset The ModelView Matrix

Now that we have text on the screen, we change the color orange, and grab the renderer, vendor
name and version number from the video card. We do this by passing GL_RENDERER,
GL_VENDOR & GL_VERSION to glGetString(). glGetString will return the requested renderer name,
vendor name and version number. The information returned will be text so we need to cast the
return information from glGetString as char. All this means is that we tell the program we want the
information returned to be characters (text). If you don't include the (char *) you will get an error
message. We're printing text, so we need text returned. We grab all three pieces of information and
write the information we've grabbed to the right of the previous text.

The information we get from glGetString(GL_RENDERER) will be written beside the red text
"Renderer", the information we get from glGetString(GL_VENDOR) will be written to the right of
"Vendor", etc.

I'd like to explain casting in more detail, but I'm not really sure of a good way to explain it. If anyone
has a good explanation, send it in, and I'll modify my explanation.

After we have the renderer information, vendor information and version number written to the
screen, we change the color to a bright blue, and write "NeHe Productions" at the bottom of the
screen :) Of course you can change this to anything you want.

Now we draw a nice white border around the screen, and around the text. We start off by resetting
the modelview matrix. Because we've been printing text to the screen, and we might not be at 0,0 on
the screen, it's a safe thing to do.

We then set the color to white, and start drawing our borders. A line strip is actually pretty easy to
use. You tell OpenGL you want to draw a line strip with glBegin(GL_LINE_STRIP). Then we set the
first vertex. Our first vertex will be on the far right side of the screen, and about 63 pixels up from the
bottom of the screen (639 on the x axis, 417 on the y axis). Then we set the second vertex. We stay
at the same location on the y axis (417), but we move to the far left side of the screen on the x axis
(0). A line will be drawn from the right side of the screen (639,417) to the left side of the screen
(0,417).

You need to have at least two vertices in order to draw a line (common sense). From the left side of
the screen, we move down, right, and then straight up (128 on the y axis).

We then start another line strip, and draw a second box at the top of the screen. If you need to draw
ALOT of connected lines, line strips can definitely cut down on the amount of code required as
opposed to using regular lines (GL_LINES).

Jeff Molofee's OpenGL Windows Tutorial #25

Page 9 of 14

 glColor3f(1.0f,1.0f,1.0f); // Set The Color To White
 glBegin(GL_LINE_STRIP); // Start Drawing Line Strips (Something New)
 glVertex2d(639,417); // Top Right Of Bottom Box
 glVertex2d(0,417); // Top Left Of Bottom Box
 glVertex2d(0,480); // Lower Left Of Bottom Box
 glVertex2d(639,480); // Lower Right Of Bottom Box
 glVertex2d(639,128); // Up To Bottom Right Of Top Box
 glEnd(); // Done First Line Strip
 glBegin(GL_LINE_STRIP); // Start Drawing Another Line Strip
 glVertex2d(0,128); // Bottom Left Of Top Box
 glVertex2d(639,128); // Bottom Right Of Top Box
 glVertex2d(639, 1); // Top Right Of Top Box
 glVertex2d(0, 1); // Top Left Of Top Box
 glVertex2d(0,417); // Down To Top Left Of Bottom Box
 glEnd(); // Done Second Line Strip

 glEnable(GL_SCISSOR_TEST); // Enable Scissor Testing

 char* text=(char*)malloc(strlen((char *)glGetString(GL_EXTENSIONS))+1); // Allocate Memory For Our Extension String
 strcpy (text,(char *)glGetString(GL_EXTENSIONS)); // Grab The Extension List, Store In Text

 token=strtok(text," "); // Parse 'text' For Words, Seperated By " " (spaces)
 while(token!=NULL) // While The Token Isn't NULL
 {
 cnt++; // Increase The Counter
 if (cnt>maxtokens) // Is 'maxtokens' Less Than 'cnt'
 {
 maxtokens=cnt; // If So, Set 'maxtokens' Equal To 'cnt'
 }

Now for the fun stuff! We enable scissor testing with glEnable(GL_SCISSOR_TEST). Once scissor
testing is enabled we can't draw outside the scissor region that we defined in InitGL().

The second line of code below creates a variable called text that will hold the characters returned by
glGetString(GL_EXTENSIONS). malloc(strlen((char *)glGetString(GL_EXTENSIONS))+1) allocates
enough memory to hold the entire string returned +1 (so if the string was 50 characters, text would
be able to hold all 50 characters).

The next line copies the GL_EXTENSIONS information to text. If we modify the GL_EXTENSIONS
information directly, big problems will occur, so instead we copy the information into text, and then
manipulate the information stored in text. Basically we're just taking a copy, and storing it in the
variable text.

Now for something new. Lets pretend that after grabbing the extension information from the video
card, the variable text had the following string of text stored in it... "GL_ARB_multitexture
GL_EXT_abgr GL_EXT_bgra". strtok(TextToAnalyze,TextToFind) will scan through the variable text
until it finds a " " (space). Once it finds a space, it will copy the text UP TO the space into the
variable token. So in our little example, token would be equal to "GL_ARB_multitexture". The space
is then replaced with a marker. More about this in a minute.

Next we create a loop that stops once there is no more information left in text. If there is no
information in text, token will be equal to nothing (NULL) and the loop will stop.

We increase the counter variable (cnt) by one, and then check to see if the value in cnt is higher
than the value of maxtokens . If cnt is higher than maxtokens we make maxtokens equal to cnt.
That way if the counter hits 20, maxtokens will also equal 20. It's an easy way to keep track of the
maximum value of cnt.

So we have stored the first extension from our list of extensions in the variable token. Next thing to

Jeff Molofee's OpenGL Windows Tutorial #25

Page 10 of 14

 glColor3f(0.5f,1.0f,0.5f); // Set Color To Bright Green
 glPrint(0,96+(cnt*32)-scroll,0,"%i",cnt); // Print Current Extension Number

 glColor3f(1.0f,1.0f,0.5f); // Set Color To Yellow
 glPrint(50,96+(cnt*32)-scroll,0,token); // Print The Current Token (Parsed Extension Name)

do is set the color to bright green. We then print the variable cnt on the left side of the screen. Notice
that we print at 0 on the x axis. This should erase the left (white) border that we drew, but because
scissor testing is on, pixels drawn at 0 on the x axis wont be modified. The border can't be drawn
over.

The variable is drawn on the far left side of the screen (0 on the x axis). We start drawing at 96 on
the y axis. To keep all the text from drawing to the same spot on the screen, we add (cnt*32) to 96.
So if we are displaying the first extension, cnt will equal 1, and the text will be drawn at 96+(32*1)
(128) on the y axis. If we display the second extension, cnt will equal 2, and the text will be drawn at
96+(32*2) (160) on the y axis.

Notice I also subtract scroll . When the program first runs, scroll will be equal to 0. So our first line of
text is drawn at 96+(32*1)-0. If you press the DOWN ARROW, scroll is increased by 2. If scroll was
4, the text would be drawn at 96+(32*1)-4. That means the text would be drawn at 124 instead of
128 on the y axis because of scroll being equal to 4. The top of our scissor window ends at 128 on
the y axis. Any part of the text drawn from lines 124-127 on the y axis will not appear on the screen.

Same thing with the bottom of the screen. If cnt was equal to 11 and scroll was equal to 0, the text
would be drawn at 96+(32*11)-0 which is 448 on the y axis. Because the scissor window only allows
us to draw as far as line 416 on the y axis, the text wouldn't show up at all.

The final result is that we end up with a scrollable window that only allows us to look at 288/32 (9)
lines of text. 288 is the height of our scissor window. 32 is the height of the text. By changing the
value of scroll we can move the text up or down (offset the text).

The effect is similar to a movie projector. The film rolls by the lens, and all you see is the current
frame. You don't see the frame above or below. The lens acts as a window similar to the window
created by the scissor test.

After we have drawn the current count (cnt) to the screen, we change the color to yellow, move 50
pixels to the right on the x axis, and we write the text stored in the variable token to the screen.

Using our example above, the first line of text displayed on the screen should look like this:

1 GL_ARB_multitexture

After we have drawn the current count to the screen, we change the color to yellow, move 50 pixels
to the right on the x axis, and we write the text stored in the variable token to the screen.

Using our example above, the first line of text displayed on the screen should look like this:

1 GL_ARB_multitexture

After we have displayed the value of token on the screen, we need to check through the variable
text to see if any more extensions are supported. Instead of using token=strtok(text," ") like we did
above, we replace text with NULL. This tells the command strtok to search from the last marker to
the NEXT space in the string of text (text).

In our example above ("GL_ARB_multitexturemarkerGL_EXT_abgr GL_EXT_bgra") there will now
be a marker after the text "GL_ARB_multitexture". The line below will start search FROM the marker
to the next space. Everything from the marker to the next space will be stored in token. token
should end up being "GL_EXT_abgr", and text will end up being
"GL_ARB_multitexturemarkerGL_EXT_abgrmarkerGL_EXT_bgra".

Jeff Molofee's OpenGL Windows Tutorial #25

Page 11 of 14

 token=strtok(NULL," "); // Search For The Next Token
 }

 glDisable(GL_SCISSOR_TEST); // Disable Scissor Testing

 free (text); // Free Allocated Memory

 glFlush(); // Flush The Rendering Pipeline
 return TRUE; // Everything Went OK
}

GLvoid KillGLWindow(GLvoid) // Properly Kill The Window
{
 if (fullscreen) // Are We In Fullscreen Mode?
 {
 ChangeDisplaySettings(NULL,0); // If So Switch Back To The Desktop
 ShowCursor(TRUE); // Show Mouse Pointer
 }

 if (hRC) // Do We Have A Rendering Context?
 {
 if (!wglMakeCurrent(NULL,NULL)) // Are We Able To Release The DC And RC Contexts?
 {
 MessageBox(NULL,"Release Of DC And RC Failed.","SHUTDOWN ERROR",MB_OK | MB_ICONINFORMATION);
 }

 if (!wglDeleteContext(hRC)) // Are We Able To Delete The RC?
 {
 MessageBox(NULL,"Release Rendering Context Failed.","SHUTDOWN ERROR",MB_OK | MB_ICONINFORMATION);
 }
 hRC=NULL; // Set RC To NULL
 }

Once strtok() has run out of text to store in token, token will become NULL and the loop will stop.

After all of the extensions have been parsed from the variable text we can disable scissor testing,
and free the variable text. This releases the ram we were using to hold the information we got from
glGetString(GL_EXTENSIONS).

The next time DrawGLScene() is called, new memory will be allocated. A fresh copy of the
information returned by glGetStrings(GL_EXTENSIONS) will be copied into the variable text and the
entire process will start over.

The first line below isn't necessary, but I thought it might be a good idea to talk about it, just so
everyone knows that it exists. The command glFlush() basically tells OpenGL to finish up what it's
doing. If you ever notice flickering in your program (quads disappearing, etc). Try adding the flush
command to the end of DrawGLScene. It flushes out the rendering pipeline. You may notice
flickering if you're program doesn't have enough time to finish rendering the scene.

Last thing we do is return true to show that everything went ok.

 The only thing to note in KillGLWindow() is that I have added KillFont() at the end. That way
whenever the window is killed, the font is also killed.

Jeff Molofee's OpenGL Windows Tutorial #25

Page 12 of 14

 if (hDC && !ReleaseDC(hWnd,hDC)) // Are We Able To Release The DC
 {
 MessageBox(NULL,"Release Device Context Failed.","SHUTDOWN ERROR",MB_OK | MB_ICONINFORMATION);
 hDC=NULL; // Set DC To NULL
 }

 if (hWnd && !DestroyWindow(hWnd)) // Are We Able To Destroy The Window?
 {
 MessageBox(NULL,"Could Not Release hWnd.","SHUTDOWN ERROR",MB_OK | MB_ICONINFORMATION);
 hWnd=NULL; // Set hWnd To NULL
 }

 if (!UnregisterClass("OpenGL",hInstance)) // Are We Able To Unregister Class
 {
 MessageBox(NULL,"Could Not Unregister Class.","SHUTDOWN ERROR",MB_OK | MB_ICONINFORMATION);
 hInstance=NULL; // Set hInstance To NULL
 }

 KillFont(); // Kill The Font
}

int WINAPI WinMain(HINSTANCE hInstance, // Instance
 HINSTANCE hPrevInstance, // Previous Instance
 LPSTR lpCmdLine, // Command Line Parameters
 int nCmdShow) // Window Show State
{
 MSG msg; // Windows Message Structure
 BOOL done=FALSE; // Bool Variable To Exit Loop

 // Ask The User Which Screen Mode They Prefer
 if (MessageBox(NULL,"Would You Like To Run In Fullscreen Mode?", "Start FullScreen?",MB_YESNO|MB_ICONQUESTION)==IDNO)
 {
 fullscreen=FALSE; // Windowed Mode
 }

 // Create Our OpenGL Window
 if (!CreateGLWindow("NeHe's Token, Extensions, Scissoring & TGA Loading Tutorial",640,480,16,fullscreen))
 {
 return 0; // Quit If Window Was Not Created
 }

 while(!done) // Loop That Runs While done=FALSE
 {
 if (PeekMessage(&msg,NULL,0,0,PM_REMOVE)) // Is There A Message Waiting?
 {
 if (msg.message==WM_QUIT) // Have We Received A Quit Message?
 {
 done=TRUE; // If So done=TRUE
 }
 else // If Not, Deal With Window Messages
 {
 DispatchMessage(&msg); // Dispatch The Message
 }
 }
 else // If There Are No Messages
 {
 // Draw The Scene. Watch For ESC Key And Quit Messages From DrawGLScene()
 if ((active && !DrawGLScene()) || keys[VK_ESCAPE]) // Active? Was There A Quit Received?
 {
 done=TRUE; // ESC or DrawGLScene Signalled A Quit
 }
 else // Not Time To Quit, Update Screen

CreateGLWindow(), and WndProc() are the same.

The first change in WinMain() is the title that appears at the top of the window. It should now read
"NeHe's Extensions, Scissoring, Token & TGA Loading Tutorial"

Jeff Molofee's OpenGL Windows Tutorial #25

Page 13 of 14

 {
 SwapBuffers(hDC); // Swap Buffers (Double Buffering)

 if (keys[VK_F1]) // Is F1 Being Pressed?
 {
 keys[VK_F1]=FALSE; // If So Make Key FALSE
 KillGLWindow(); // Kill Our Current Window
 fullscreen=!fullscreen; // Toggle Fullscreen / Windowed Mode
 // Recreate Our OpenGL Window
 if (!CreateGLWindow("NeHe's Token, Extensions, Scissoring & TGA Loading Tutorial",640,480,16,fullscreen))
 {
 return 0; // Quit If Window Was Not Created
 }
 }

 if (keys[VK_UP] && (scroll>0)) // Is Up Arrow Being Pressed?
 {
 scroll-=2; // If So, Decrease 'scroll' Moving Screen Down
 }

 if (keys[VK_DOWN] && (scroll<32*(maxtokens-9))) // Is Down Arrow Being Pressed?
 {
 scroll+=2; // If So, Increase 'scroll' Moving Screen Up
 }
 }
 }
 }

 // Shutdown
 KillGLWindow(); // Kill The Window
 return (msg.wParam); // Exit The Program
}

 The code below checks to see if the up arrow is being pressed if it is, and scroll is greater than 0,
we decrease scroll by 2. This causes the text to move down the screen.

If the down arrow is being pressed and scroll is less than (32*(maxtokens-9)) scroll will be
increased by 2, andd the text on the screen will scroll upwards.

32 is the number of lines that each letter takes up. Maxtokens is the total amount of extensions that
your video card supports. We subtract 9, because 9 lines can be shown on the screen at once. If we
did not subtract 9, we could scroll past the end of the list, causing the list to scroll completely off the
screen. Try leaving the -9 out if you're not sure what I mean.

I hope that you found this tutorial interesting. By the end of this tutorial you should know how to read
the vendor name, renderer and version number from your video card. You should also know how to
find out what extensions are supported on any video card that supports OpenGL. You should know
what scissor testing is, and how it can be used in OpenGL projects of your own, and lastly, you
should know how to load TGA Images instead of Bitmap Images for use as textures.

If you find any problems with the tutorial, or you find the information to hard to understand, let me
know. I want the tutorials to be the best they can be. Your feedback is important!

Jeff Molofee (NeHe)

* DOWNLOAD Visual C++ Code For This Lesson.

Jeff Molofee's OpenGL Windows Tutorial #25

Page 14 of 14

#include <windows.h> // Header File For Windows
#include <math.h> // Math Library Header File
#include <stdio.h> // Header File For Standard Input/Output
#include <gl\gl.h> // Header File For The OpenGL32 Library
#include <gl\glu.h> // Header File For The GLu32 Library

HDC hDC=NULL; // Device Context Handle
HGLRC hRC=NULL; // Rendering Context Handle
HWND hWnd=NULL; // Window Handle
HINSTANCE hInstance; // Instance Handle

bool keys[256]; // Key Array
bool active=TRUE; // Program's Active
bool fullscreen=TRUE; // Default Fullscreen To True

 Lesson 26

Welcome to yet another exciting tutorial! This time we will focus on the effect rather than the
graphics, although the final result is pretty cool looking! In this tutorial you will learn how to morph
seamlessly from one object to another. Similar to the effect I use in the dolphin demo. Although there
are a few catches. First thing to note is that each object must have the same amount of points. Very
rare to luck out and get 3 object made up of exactly the same amount of vertices, but it just so
happens, in this tutorial we have 3 objects with exactly the same amount of points :) Don't get me
wrong, you can use objects with different values, but the transition from one object to another is odd
looking and not as smooth.

You will also learn how to read object data from a file. Similar to the format used in lesson 10,
although it shouldn't be hard to modify the code to read .ASC files or some other text type data files.
In general, it's a really cool effect, a really cool tutorial, so lets begin!

We start off as usual. Including all the required header files, along with the math and standard input /
output headers. Notice we don't include glaux. That's because we'll be drawing points rather than
textures in this tutorial. After you've got the tutorial figured out, you can try playing with Polygons,
Lines, and Textures!

After setting up all the standard variables, we will add some new variables. xrot, yrot and zrot will
hold the current rotation values for the x, y and z axes of the onscreen object. xspeed, yspeed and
zspeed will control how fast the object is rotating on each axis. cx, cy and cz control the position of
the object on the screen (where it's drawn left to right cx, up and down cy and into and out of the
screen cz)

The variable key is a variable that I have included to make sure the user doesn't try to morph from
the first shape back into the first shape. This would be pretty pointless and would cause a delay
while the points were trying to morph to the position they're already in.

step is a counter variable that counts through all the steps specified by steps. If you increase the
value of steps it will take longer for the object to morph, but the movement of the points as they
morph will be smoother. Once step is equal to steps we know the morphing has been completed.

The last variable morph lets our program know if it should be morphing the points or leaving them
where they are. If it's TRUE, the object is in the process of morphing from one shape to another.

Jeff Molofee's OpenGL Windows Tutorial #26

Page 1 of 12

GLfloat xrot,yrot,zrot, // X, Y & Z Rotation
 xspeed,yspeed,zspeed, // X, Y & Z Spin Speed
 cx,cy,cz=-15; // X, Y & Z Position

int key=1; // Used To Make Sure Same Morph Key Is Not Pressed
int step=0,steps=200; // Step Counter And Maximum Number Of Steps
bool morph=FALSE; // Default morph To False (Not Morphing)

typedef struct // Structure For 3D Points
{
 float x, y, z; // X, Y & Z Points
} VERTEX; // Called VERTEX

typedef struct // Structure For An Object
{
 int verts; // Number Of Vertices For The Object
 VERTEX *points; // One Vertice (Vertex x,y & z)
} OBJECT; // Called OBJECT

int maxver; // Will Eventually Hold The Maximum Number Of Vertices
OBJECT morph1,morph2,morph3,morph4, // Our 4 Morphable Objects (morph1,2,3 & 4)
 helper,*sour,*dest; // Helper Object, Source Object, Destination Object

Now we create a structure to keep track of a vertex. The structure will hold the x, y and z values of
any point on the screen. The variables x, y & z are all floating point so we can position the point
anywhere on the screen with great accuracy. The structure name is VERTEX.

We already have a structure to keep track of vertices, and we know that an object is made up of
many vertices so lets create an OBJECT structure. The first variable verts is an integer value that
will hold the number of vertices required to make up an object. So if our object has 5 points, the
value of verts will be equal to 5. We will set the value later in the code. For now, all you need to
know is that verts keeps track of how many points we use to create the object.

The variable points will reference a single VERTEX (x, y and z values). This allows us to grab the x,
y or z value of any point using points[{point we want to access}].{x, y or z}.

The name of this structure is... you guessed it... OBJECT!

Now that we have created a VERTEX structure and an OBJECT structure we can define some
objects.

The variable maxver will be used to keep track of the maximum number of variables used in any of
the objects. If one object only had 5 points, another had 20, and the last object had 15, the value of
maxver would be equal to the greatest number of points used. So maxver would be equal to 20.

After we define maxver we can define the objects. morph1, morph2, morph3, morph4 & helper
are all defined as an OBJECT. *sour & *dest are defined as OBJECT* (pointer to an object). The
object is made up of verticies (VERTEX). The first 4 morph{num} objects will hold the 4 objects we
want to morph to and from. helper will be used to keep track of changes as the object is morphed.
*sour will point to the source object and *dest will point to the object we want to morph to
(destination object).

 Same as always, we declare WndProc().

Jeff Molofee's OpenGL Windows Tutorial #26

Page 2 of 12

LRESULT CALLBACK WndProc(HWND, UINT, WPARAM, LPARAM); // Declaration

void objallocate(OBJECT *k,int n) // Allocate Memory For Each Object
{ // And Defines points
 k->points=(VERTEX*)malloc(sizeof(VERTEX)*n); // Sets points Equal To VERTEX * Number Of Vertices
} // (3 Points For Each Vertice)

void objfree(OBJECT *k) // Frees The Object (Releasing The Memory)
{
 free(k->points); // Frees Points
}

void readstr(FILE *f,char *string) // Reads A String From File (f)
{
 do // Do This
 {
 fgets(string, 255, f); // Gets A String Of 255 Chars Max From f (File)
 } while ((string[0] == '/') || (string[0] == '\n')); // Until End Of Line Is Reached
 return; // Return
}

The code below allocates memory for each object, based on the number of vertices we pass to n. *k
will point to the object we want to allocate memory for.

The line inside the { }'s allocates the memory for object k 's points. A point is an entire VERTEX (3
floats). The memory allocated is the size of VERTEX (3 floats) multiplied by the number of points (n).
So if there were 10 points (n=10) we would be allocating room for 30 floating point values (3 floats *
10 points).

The following code frees the object, releasing the memory used to create the object. The object is
passed as k. The free command tells our program to release all the points used to make up our
object (k).

The code below reads a string of text from a file. The pointer to our file structure is passed to *f. The
variable string will hold the text that we have read in.

We start off be creating a do / while loop. fgets() will read up to 255 characters from our file f and
store the characters at *string. If the line read is blank (carriage return \n), the loop will start over,
attempting to find a line with text. The while() statement checks for blank lines and if found starts
over again.

After the string has been read in we return.

Now we load in an object. *name points to the filename. *k points to the object we wish to load data
into.

We start off with an integer variable called ver. ver will hold the number of vertices used to build the
object.

The variables rx, ry & rz will hold the x, y & z values of each vertex.

The variable filein is the pointer to our file structure, and oneline[] will be used to hold 255
characters of text.

We open the file name for read in text translated mode (meaning CTRL-Z represents the end of a

Jeff Molofee's OpenGL Windows Tutorial #26

Page 3 of 12

void objload(char *name,OBJECT *k) // Loads Object From File (name)
{
 int ver; // Will Hold Vertice Count
 float rx,ry,rz; // Hold Vertex X, Y & Z Position
 FILE *filein; // Filename To Open
 char oneline[255]; // Holds One Line Of Text (255 Chars Max)

 filein = fopen(name, "rt"); // Opens The File For Reading Text In Translated Mode
 // CTRL Z Symbolizes End Of File In Translated Mode
 readstr(filein,oneline); // Jumps To Code That Reads One Line Of Text From The File
 sscanf(oneline, "Vertices: %d\n", &ver); // Scans Text For "Vertices: ". Number After Is Stored In ver
 k->verts=ver; // Sets Objects verts Variable To Equal The Value Of ver
 objallocate(k,ver); // Jumps To Code That Allocates Ram To Hold The Object

 for (int i=0;i<ver;i++) // Loops Through The Vertices
 {
 readstr(filein,oneline); // Reads In The Next Line Of Text
 sscanf(oneline, "%f %f %f", &rx, &ry, &rz); // Searches For 3 Floating Point Numbers, Store In rx,ry & rz

line). Then we read in a line of text using readstr(filein,oneline). The line of text will be stored in
oneline.

After we have read in the text, we scan the line of text (oneline) for the phrase "Vertices: {some
number}{carriage return}. If the text is found, the number is stored in the variable ver. This number is
the number of vertices used to create the object. If you look at the object text files, you'll see that the
first line of text is: Vertices: {some number}.

After we know how many vertices are used we store the results in the objects verts variable. Each
object could have a different value if each object had a different number of vertices.

The last thing we do in this section of code is allocate memory for the object. We do this by calling
objallocate({object name},{number of verts}).

We know how many vertices the object has. We have allocated memory, now all that is left to do is
read in the vertices. We create a loop using the variable i. The loop will go through all the vertices.

Next we read in a line of text. This will be the first line of valid text underneath the "Vertices: {some
number}" line. What we should end up reading is a line with floating point values for x, y & z.

The line is analyzed with sscanf() and the three floating point values are extracted and stored in rx,
ry and rz.

The following three lines are hard to explain in plain english if you don't understand structures, etc,
but I'll try my best :)

The line k->points[i].x=rx can be broken down like this:

rx is the value on the x axis for one of the points.
points[i].x is the x axis position of point[i].
If i is 0 then were are setting the x axis value of point 1, if i is 1, we are setting the x axis value of
point 2, and so on.
points[i] is part of our object (which is represented as k).

So if i is equal to 0, what we are saying is: The x axis of point 1 (point[0].x) in our object (k) equals
the x axis value we just read from the file (rx).

The other two lines set the y & z axis values for each point in our object.

We loop through all the vertices. If there are not enough vertices, an error might occur, so make sure
the text at the beginning of the file "Vertices: {some number}" is actually the number of vertices in the

Jeff Molofee's OpenGL Windows Tutorial #26

Page 4 of 12

 k->points[i].x = rx; // Sets Objects (k) points.x Value To rx
 k->points[i].y = ry; // Sets Objects (k) points.y Value To ry
 k->points[i].z = rz; // Sets Objects (k) points.z Value To rz
 }
 fclose(filein); // Close The File

 if(ver>maxver) maxver=ver; // If ver Is Greater Than maxver Set maxver Equal To ver
} // Keeps Track Of Highest Number Of Vertices Used

VERTEX calculate(int i) // Calculates Movement Of Points During Morphing
{
 VERTEX a; // Temporary Vertex Called a
 a.x=(sour->points[i].x-dest->points[i].x)/steps; // a.x Value Equals Source x
 a.y=(sour->points[i].y-dest->points[i].y)/steps; // a.y Value Equals Source y
 a.z=(sour->points[i].z-dest->points[i].z)/steps; // a.z Value Equals Source z
 return a; // Return The Results
} // This Makes Points Move At A Speed So They All Get To Their

GLvoid ReSizeGLScene(GLsizei width, GLsizei height) // Resize And Initialize The GL Window

file. Meaning if the top line of the file says "Vertices: 10", there had better be 10 Verticies (x, y and z
values)!

After reading in all of the verticies we close the file, and check to see if the variable ver is greater
than the variable maxver. If ver is greater than maxver, we set maxver to equal ver. That way if we
read in one object and it has 20 verticies, maxver will become 20. If we read in another object, and it
has 40 verticies, maxver will become 40. That way we know how many vertices our largest object
has.

The next bit of code may look a little intimidating... it's NOT :) I'll explain it so clearly you'll laugh
when you next look at it.

What the code below does is calculates a new position for each point when morphing is enabled.
The number of the point to calculate is stored in i. The results will be returned in the VERTEX
calculate.

The first variable we create is a VERTEX called a. This will give a an x, y and z value.

Lets look at the first line. The x value of the VERTEX a equals the x value of point[i] (point[i].x) in
our SOURCE object minus the x value of point[i] (point[i].x) in our DESTINATION object divided by
steps.

So lets plug in some numbers. Lets say our source objects first x value is 40 and our destination
objects first x value is 20. We already know that steps is equal to 200! So that means that a.x=(40-
20)/200... a.x=(20)/200... a.x=0.1.

What this means is that in order to move from 40 to 20 in 200 steps, we need to move by 0.1 units
each calculation. To prove this calculation, multiply 0.1 by 200, and you get 20. 40-20=20 :)

We do the same thing to calculate how many units to move on both the y axis and the z axis for
each point. If you increase the value of steps the movements will be even more fine (smooth), but it
will take longer to morph from one position to another.

 The ReSizeGLScene() code hasn't changed so we'll skip over it.

Jeff Molofee's OpenGL Windows Tutorial #26

Page 5 of 12

int InitGL(GLvoid) // All Setup For OpenGL Goes Here
{
 glBlendFunc(GL_SRC_ALPHA,GL_ONE); // Set The Blending Function For Translucency
 glClearColor(0.0f, 0.0f, 0.0f, 0.0f); // This Will Clear The Background Color To Black
 glClearDepth(1.0); // Enables Clearing Of The Depth Buffer
 glDepthFunc(GL_LESS); // The Type Of Depth Test To Do
 glEnable(GL_DEPTH_TEST); // Enables Depth Testing
 glShadeModel(GL_SMOOTH); // Enables Smooth Color Shading
 glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST); // Really Nice Perspective Calculations

 maxver=0; // Sets Max Vertices To 0 By Default
 objload("data/sphere.txt",&morph1); // Load The First Object Into morph1 From File sphere.txt
 objload("data/torus.txt",&morph2); // Load The Second Object Into morph2 From File torus.txt
 objload("data/tube.txt",&morph3); // Load The Third Object Into morph3 From File tube.txt

 objallocate(&morph4,486); // Manually Reserver Ram For A 4th 468 Vertice Object (morph4)
 for(int i=0;i<486;i++) // Loop Through All 468 Vertices
 {
 morph4.points[i].x=((float)(rand()%14000)/1000)-7; // morph4 x Point Becomes A Random Float Value From
 morph4.points[i].y=((float)(rand()%14000)/1000)-7; // morph4 y Point Becomes A Random Float Value From
 morph4.points[i].z=((float)(rand()%14000)/1000)-7; // morph4 z Point Becomes A Random Float Value From
 }

 objload("data/sphere.txt",&helper); // Load sphere.txt Object Into Helper (Used As Starting Point)
 sour=dest=&morph1; // Source & Destination Are Set To Equal First Object (morph1)

 return TRUE; // Initialization Went OK
}

 In the code below we set blending for translucency. This allows us to create neat looking trails when
the points are moving.

We set the maxver variable to 0 to start off. We haven't read in any objects so we don't know what
the maximum amount of vertices will be.

Next well load in 3 objects. The first object is a sphere. The data for the sphere is stored in the file
sphere.txt. The data will be loaded into the object named morph1. We also load a torus, and a tube
into objects morph2 and morph3.

The 4th object isn't read from a file. It's a bunch of dots randomly scattered around the screen.
Because we're not reading the data from a file, we have to manually allocate the memory by calling
objallocate(&morph4,468). 468 means we want to allocate enough space to hold 468 vertices (the
same amount of vertices the other 3 objects have).

After allocating the space, we create a loop that assigns a random x, y and z value to each point.
The random value will be a floating point value from +7 to -7. (14000/1000=14... minus 7 gives us a
max value of +7... if the random number is 0, we have a minimum value of 0-7 or -7).

We then load the sphere.txt as a helper object. We never want to modify the object data in morph
{1/2/3/4} directly. We modify the helper data to make it become one of the 4 shapes. Because
we start out displaying morph1 (a sphere) we start the helper out as a sphere as well.

After all of the objects are loaded, we set the source and destination objects (sour and dest)
to equal morph1, which is the sphere. This way everything starts out as a sphere.

Jeff Molofee's OpenGL Windows Tutorial #26

Page 6 of 12

void DrawGLScene(GLvoid) // Here's Where We Do All The Drawing
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Clear The Screen And The Depth Buffer
 glLoadIdentity(); // Reset The View
 glTranslatef(cx,cy,cz); // Translate The The Current Position To Start Drawing
 glRotatef(xrot,1,0,0); // Rotate On The X Axis By xrot
 glRotatef(yrot,0,1,0); // Rotate On The Y Axis By yrot
 glRotatef(zrot,0,0,1); // Rotate On The Z Axis By zrot

 xrot+=xspeed; yrot+=yspeed; zrot+=zspeed; // Increase xrot,yrot & zrot by xspeed, yspeed & zspeed

 GLfloat tx,ty,tz; // Temp X, Y & Z Variables
 VERTEX q; // Holds Returned Calculated Values For One Vertex

 glBegin(GL_POINTS); // Begin Drawing Points
 for(int i=0;i<morph1.verts;i++) // Loop Through All The Verts Of morph1 (All Objects Have
 { // The Same Amount Of Verts For Simplicity, Could Use maxver Also)
 if(morph) q=calculate(i); else q.x=q.y=q.z=0; // If morph Is True Calculate Movement Otherwise Movement=0
 helper.points[i].x-=q.x; // Subtract q.x Units From helper.points[i].x (Move On X Axis)
 helper.points[i].y-=q.y; // Subtract q.y Units From helper.points[i].y (Move On Y Axis)
 helper.points[i].z-=q.z; // Subtract q.z Units From helper.points[i].z (Move On Z Axis)
 tx=helper.points[i].x; // Make Temp X Variable Equal To Helper's X Variable
 ty=helper.points[i].y; // Make Temp Y Variable Equal To Helper's Y Variable
 tz=helper.points[i].z; // Make Temp Z Variable Equal To Helper's Z Variable

Now for the fun stuff. The actual rendering code :)

We start off normal. Clear the screen, depth buffer and reset the modelview matrix. Then we position
the object on the screen using the values stored in cx, cy and cz.

Rotations are done using xrot, yrot and zrot.

The rotation angle is increased based on xpseed, yspeed and zspeed.

Finally 3 temporary variables are created tx, ty and tz, along with a new VERTEX called q.

Now we draw the points and do our calculations if morphing is enabled. glBegin(GL_POINTS) tells
OpenGL that each vertex that we specify will be drawn as a point on the screen.

We create a loop to loop through all the vertices. You could use maxver, but because every object
has the same number of vertices we'll use morph1.verts.

Inside the loop we check to see if morph is TRUE. If it is we calculate the movement for the current
point (i). q.x, q.y and q.z will hold the results. If morph is false, q.x, q.y and q.z will be set to 0
(preventing movement).

the points in the helper object are moved based on the results of we got from calculate(i).
(remember earlier that we calculated a point would have to move 0.1 unit to make it from 40 to 20 in
200 steps).

We adjust the each points value on the x, y and z axis by subtracting the number of units to move
from helper.

The new helper point is stored in tx, ty and tz. (t{x/y/z}=helper.points[i].{x/y/z}).

Now that we have the new position calculated it's time to draw our points. We set the color to a
bright bluish color, and the draw the first point with glVertex3f(tx,ty,tz). This draws a point at the
newly calculated position.

Jeff Molofee's OpenGL Windows Tutorial #26

Page 7 of 12

 glColor3f(0,1,1); // Set Color To A Bright Shade Of Off Blue
 glVertex3f(tx,ty,tz); // Draw A Point At The Current Temp Values (Vertex)
 glColor3f(0,0.5f,1); // Darken Color A Bit
 tx-=2*q.x; ty-=2*q.y; ty-=2*q.y; // Calculate Two Positions Ahead
 glVertex3f(tx,ty,tz); // Draw A Second Point At The Newly Calculate Position
 glColor3f(0,0,1); // Set Color To A Very Dark Blue
 tx-=2*q.x; ty-=2*q.y; ty-=2*q.y; // Calculate Two More Positions Ahead
 glVertex3f(tx,ty,tz); // Draw A Third Point At The Second New Position
 } // This Creates A Ghostly Tail As Points Move
 glEnd(); // Done Drawing Points

 // If We're Morphing And We Haven't Gone Through All 200 Steps Increase Our Step Counter
 // Otherwise Set Morphing To False, Make Source=Destination And Set The Step Counter Back To Zero.
 if(morph && step<=steps)step++; else { morph=FALSE; sour=dest; step=0;}
}

GLvoid KillGLWindow(GLvoid) // Properly Kill The Window
{
 objfree(&morph1); // Jump To Code To Release morph1 Allocated Ram
 objfree(&morph2); // Jump To Code To Release morph2 Allocated Ram
 objfree(&morph3); // Jump To Code To Release morph3 Allocated Ram
 objfree(&morph4); // Jump To Code To Release morph4 Allocated Ram
 objfree(&helper); // Jump To Code To Release helper Allocated Ram

 if (fullscreen) // Are We In Fullscreen Mode?
 {
 ChangeDisplaySettings(NULL,0); // If So Switch Back To The Desktop
 ShowCursor(TRUE); // Show Mouse Pointer
 }

 if (hRC) // Do We Have A Rendering Context?
 {
 if (!wglMakeCurrent(NULL,NULL)) // Are We Able To Release The DC And RC Contexts?
 {
 MessageBox(NULL,"Release Of DC And RC Failed.","SHUTDOWN ERROR",MB_OK | MB_ICONINFORMATION);
 }

We then darken the color a little, and move 2 steps in the direction we just calculated instead of one.
This moves the point to the newly calculated position, and then moves it again in the same direction.
So if it was travelling left at 0.1 units, the next dot would be at 0.2 units. After calculating 2 positions
ahead we draw the second point.

Finally we set the color to dark blue, and calculate even further ahead. This time using our example
we would move 0.4 units to the left instead of 0.1 or 0.2. The end result is a little tail of particles
following as the dots move. With blending, this creates a pretty cool effect!

glEnd() tells OpenGL we are done drawing points.

The last thing we do is check to see if morph is TRUE and step is less than steps (200). If step is
less than 200, we increase step by 1.

If morph is false or step is greater than or equal to steps (200), morph is set to FALSE, the sour
(source) object is set to equal the dest (destination) object, and step is set back to 0. This tells the
program that morphing is not happening or it has just finished.

The KillGLWindow() code hasn't changed much. The only real difference is that we free all of the
objects from memory before we kill the windows. This prevents memory leaks, and is good
practice ;)

Jeff Molofee's OpenGL Windows Tutorial #26

Page 8 of 12

 if (!wglDeleteContext(hRC)) // Are We Able To Delete The RC?
 {
 MessageBox(NULL,"Release Rendering Context Failed.","SHUTDOWN ERROR",MB_OK | MB_ICONINFORMATION);
 }
 hRC=NULL; // Set RC To NULL
 }

 if (hDC && !ReleaseDC(hWnd,hDC)) // Are We Able To Release The DC
 {
 MessageBox(NULL,"Release Device Context Failed.","SHUTDOWN ERROR",MB_OK | MB_ICONINFORMATION);
 hDC=NULL; // Set DC To NULL
 }

 if (hWnd && !DestroyWindow(hWnd)) // Are We Able To Destroy The Window?
 {
 MessageBox(NULL,"Could Not Release hWnd.","SHUTDOWN ERROR",MB_OK | MB_ICONINFORMATION);
 hWnd=NULL; // Set hWnd To NULL
 }

 if (!UnregisterClass("OpenGL",hInstance)) // Are We Able To Unregister Class
 {
 MessageBox(NULL,"Could Not Unregister Class.","SHUTDOWN ERROR",MB_OK | MB_ICONINFORMATION);
 hInstance=NULL; // Set hInstance To NULL
 }
}

BOOL CreateGLWindow() // Creates The GL Window

LRESULT CALLBACK WndProc() // Handle For This Window

int WINAPI WinMain(HINSTANCE hInstance, // Instance
 HINSTANCE hPrevInstance, // Previous Instance
 LPSTR lpCmdLine, // Command Line Parameters
 int nCmdShow) // Window Show State
{
 MSG msg; // Windows Message Structure
 BOOL done=FALSE; // Bool Variable To Exit Loop

 // Ask The User Which Screen Mode They Prefer
 if (MessageBox(NULL,"Would You Like To Run In Fullscreen Mode?", "Start FullScreen?",MB_YESNO|MB_ICONQUESTION)==IDNO)
 {
 fullscreen=FALSE; // Windowed Mode
 }

 // Create Our OpenGL Window
 if (!CreateGLWindow("Piotr Cieslak & NeHe's Morphing Points Tutorial",640,480,16,fullscreen))
 {
 return 0; // Quit If Window Was Not Created
 }

 while(!done) // Loop That Runs While done=FALSE
 {
 if (PeekMessage(&msg,NULL,0,0,PM_REMOVE)) // Is There A Message Waiting?
 {
 if (msg.message==WM_QUIT) // Have We Received A Quit Message?
 {
 done=TRUE; // If So done=TRUE

 The CreateGLWindow() and WndProc() code hasn't changed. So I'll skip over it.

 In WinMain() there are a few changes. First thing to note is the new caption on the title bar :)

Jeff Molofee's OpenGL Windows Tutorial #26

Page 9 of 12

 }
 else // If Not, Deal With Window Messages
 {
 TranslateMessage(&msg); // Translate The Message
 DispatchMessage(&msg); // Dispatch The Message
 }
 }
 else // If There Are No Messages
 {
 // Draw The Scene. Watch For ESC Key And Quit Messages From DrawGLScene()
 if (active && keys[VK_ESCAPE]) // Active? Was There A Quit Received?
 {
 done=TRUE; // ESC or DrawGLScene Signaled A Quit
 }
 else // Not Time To Quit, Update Screen
 {
 DrawGLScene(); // Draw The Scene (Don't Draw When Inactive 1% CPU Use)
 SwapBuffers(hDC); // Swap Buffers (Double Buffering)

 if(keys[VK_PRIOR]) // Is Page Up Being Pressed?
 zspeed+=0.01f; // Increase zspeed

 if(keys[VK_NEXT]) // Is Page Down Being Pressed?
 zspeed-=0.01f; // Decrease zspeed

 if(keys[VK_DOWN]) // Is Page Up Being Pressed?
 xspeed+=0.01f; // Increase xspeed

 if(keys[VK_UP]) // Is Page Up Being Pressed?
 xspeed-=0.01f; // Decrease xspeed

 if(keys[VK_RIGHT]) // Is Page Up Being Pressed?
 yspeed+=0.01f; // Increase yspeed

 if(keys[VK_LEFT]) // Is Page Up Being Pressed?
 yspeed-=0.01f; // Decrease yspeed

 if (keys['Q']) // Is Q Key Being Pressed?
 cz-=0.01f; // Move Object Away From Viewer

The code below watches for key presses. By now you should understand the code fairly easily. If
page up is pressed we increase zspeed. This causes the object to spin faster on the z axis in a
positive direction.

If page down is pressed we decrease zspeed. This causes the object to spin faster on the z axis in a
negative direction.

If the down arrow is pressed we increase xspeed. This causes the object to spin faster on the x axis
in a positive direction.

If the up arrow is pressed we decrease xspeed. This causes the object to spin faster on the x axis in
a negative direction.

If the right arrow is pressed we increase yspeed. This causes the object to spin faster on the y axis
in a positive direction.

If the left arrow is pressed we decrease yspeed. This causes the object to spin faster on the y axis
in a negative direction.

 The following keys physically move the object. 'Q' moves it into the screen, 'Z' moves it towards the
viewer, 'W' moves the object up, 'S' moves it down, 'D' moves it right, and 'A' moves it left.

Jeff Molofee's OpenGL Windows Tutorial #26

Page 10 of 12

 if (keys['Z']) // Is Z Key Being Pressed?
 cz+=0.01f; // Move Object Towards Viewer

 if (keys['W']) // Is W Key Being Pressed?
 cy+=0.01f; // Move Object Up

 if (keys['S']) // Is S Key Being Pressed?
 cy-=0.01f; // Move Object Down

 if (keys['D']) // Is D Key Being Pressed?
 cx+=0.01f; // Move Object Right

 if (keys['A']) // Is A Key Being Pressed?
 cx-=0.01f; // Move Object Left

 if (keys['1'] && (key!=1) && !morph) // Is 1 Pressed, key Not Equal To 1 And Morph False?
 {
 key=1; // Sets key To 1 (To Prevent Pressing 1 2x In A Row)
 morph=TRUE; // Set morph To True (Starts Morphing Process)
 dest=&morph1; // Destination Object To Morph To Becomes morph1
 }
 if (keys['2'] && (key!=2) && !morph) // Is 2 Pressed, key Not Equal To 2 And Morph False?
 {
 key=2; // Sets key To 2 (To Prevent Pressing 2 2x In A Row)
 morph=TRUE; // Set morph To True (Starts Morphing Process)
 dest=&morph2; // Destination Object To Morph To Becomes morph2
 }
 if (keys['3'] && (key!=3) && !morph) // Is 3 Pressed, key Not Equal To 3 And Morph False?
 {
 key=3; // Sets key To 3 (To Prevent Pressing 3 2x In A Row)
 morph=TRUE; // Set morph To True (Starts Morphing Process)
 dest=&morph3; // Destination Object To Morph To Becomes morph3
 }
 if (keys['4'] && (key!=4) && !morph) // Is 4 Pressed, key Not Equal To 4 And Morph False?
 {
 key=4; // Sets key To 4 (To Prevent Pressing 4 2x In A Row)
 morph=TRUE; // Set morph To True (Starts Morphing Process)
 dest=&morph4; // Destination Object To Morph To Becomes morph4
 }

 if (keys[VK_F1]) // Is F1 Being Pressed?
 {
 keys[VK_F1]=FALSE; // If So Make Key FALSE
 KillGLWindow(); // Kill Our Current Window
 fullscreen=!fullscreen; // Toggle Fullscreen / Windowed Mode
 // Recreate Our OpenGL Window
 if (!CreateGLWindow("Piotr Cieslak & NeHe's Morphing Points Tutorial",640,480,16,fullscreen))

Now we watch to see if keys 1 through 4 are pressed. If 1 is pressed and key is not equal to 1 (not
the current object already) and morph is false (not already in the process of morphing), we set key
to 1, so that our program knows we just selected object 1. We then set morph to TRUE, letting our
program know it's time to start morphing, and last we set the destination object (dest) to equal object
1 (morph1).

Pressing keys 2, 3, and 4 does the same thing. If 2 is pressed we set dest to morph2, and we set
key to equal 2. Pressing 3, sets dest to morph3 and key to 3.

By setting key to the value of the key we just pressed on the keyboard, we prevent the user from
trying to morph from a sphere to a sphere or a cone to a cone!

 Finally we watch to see if F1 is pressed if it is we toggle from Fullscreen to Windowed mode or
Windowed mode to Fullscreen mode!

Jeff Molofee's OpenGL Windows Tutorial #26

Page 11 of 12

 {
 return 0; // Quit If Window Was Not Created
 }
 }
 }
 }
 }

 // Shutdown
 KillGLWindow(); // Kill The Window
 return (msg.wParam); // Exit The Program
}

I hope you have enjoyed this tutorial. Although it's not an incredibly complex tutorial, you can learn
alot from the code! The animation in my dolphin demo is done in a similar way to the morphing in
this demo. By playing around with the code you can come up with some really cool effects. Dots
turning into words. Faked animation, and more! You may even want to try using solid polygons or
lines instead of dots. The effect can be quite impressive!

Piotr's code is new and refreshing. I hope that after reading through this tutorial you have a better
understanding on how to store and load object data from a file, and how to manipulate the data to
create cool GL effects in your own programs! The .html for this tutorial took 3 days to write. If you
notice any mistakes please let me know. Alot of it was written late at night, meaning a few mistakes
may have crept in. I want these tutorials to be the best they can be. Feedback is appreciated!

Piotr Cieslak - Code
Jeff Molofee (NeHe) - HTML / Modifications

* DOWNLOAD Visual C++ Code For This Lesson.
* DOWNLOAD Mac OS Code For This Lesson. (Conversion by Morgan Aldridge)

Jeff Molofee's OpenGL Windows Tutorial #26

Page 12 of 12

#include <windows.h> // Header File For Windows
#include <gl\gl.h> // Header File For The OpenGL32 Library
#include <gl\glu.h> // Header File For The GLu32 Library
#include <gl\glaux.h> // Header File For The Glaux Library
#include <stdio.h> // Header File For Standard Input / Output

HDC hDC=NULL; // Private GDI Device Context
HGLRC hRC=NULL; // Permanent Rendering Context
HWND hWnd=NULL; // Holds Our Window Handle
HINSTANCE hInstance = NULL; // Holds The Instance Of The Application

bool keys[256]; // Array Used For The Keyboard Routine
bool active=TRUE; // Window Active Flag Set To TRUE By Default
bool fullscreen=TRUE; // Fullscreen Flag Set To Fullscreen Mode By Default

// Light Parameters
static GLfloat LightAmb[] = {0.7f, 0.7f, 0.7f, 1.0f}; // Ambient Light
static GLfloat LightDif[] = {1.0f, 1.0f, 1.0f, 1.0f}; // Diffuse Light

 Lesson 27

Welcome to another exciting tutorial. The code for this tutorial was written by Banu Cosmin. The
tutorial was of course written by myself (NeHe). In this tutorial you will learn how to create
EXTREMELY realistic reflections. Nothing fake here! The objects being reflected will not show up
underneath the floor or on the other side of a wall. True reflections!

A very important thing to note about this tutorial: Because the Voodoo 1, 2 and some other cards do
not support the stencil buffer, this demo will NOT run on those cards. It will ONLY run on cards that
support the stencil buffer. If you're not sure if your card supports the stencil buffer, download the
code, and try running the demo. Also, this demo requires a fairly decent processor and graphics
card. Even on my GeForce I notice there is a little slow down at times. This demo runs best in 32 bit
color mode!

As video cards get better, and processors get faster, I can see the stencil buffer becoming more
popular. If you have the hardware and you're ready to reflect, read on!

The first part of the code is fairly standard. We include all necessary header files, and set up our
Device Context, Rendering Context, etc.

 Next we have the standard variables to keep track of key presses (keys[]), whether or not the
program is active (active), and if we should use fullscreen mode or windowed mode (fullscreen).

Next we set up our lighting variables. LightAmb[] will set our ambient light. We will use 70% red,
70% green and 70% blue, creating a light that is 70% bright white. LightDif[] will set the diffuse
lighting (the amount of light evenly reflected off the surface of our object). In this case we want to
reflect full intensity light. Lastly we have LightPos[] which will be used to position our light. In this
case we want the light 4 units to the right, 4 units up, and 6 units towards the viewer. If we could
actually see the light, it would be floating in front of the top right corner of our screen.

Jeff Molofee's OpenGL Windows Tutorial #27 (by Banu Cosmin)

Page 1 of 14

static GLfloat LightPos[] = {4.0f, 4.0f, 6.0f, 1.0f}; // Light Position

GLUquadricObj *q; // Quadratic For Drawing A Sphere

GLfloat xrot = 0.0f; // X Rotation
GLfloat yrot = 0.0f; // Y Rotation
GLfloat xrotspeed = 0.0f; // X Rotation Speed
GLfloat yrotspeed = 0.0f; // Y Rotation Speed
GLfloat zoom = -7.0f; // Depth Into The Screen
GLfloat height = 2.0f; // Height Of Ball From Floor

GLuint texture[3]; // 3 Textures

LRESULT CALLBACK WndProc(HWND, UINT, WPARAM, LPARAM); // Declaration For WndProc

GLvoid ReSizeGLScene(GLsizei width, GLsizei height) // Resize And Initialize The GL Window

AUX_RGBImageRec *LoadBMP(char *Filename) // Loads A Bitmap Image

int LoadGLTextures() // Load Bitmaps And Convert To Textures
{
 int Status=FALSE; // Status Indicator
 AUX_RGBImageRec *TextureImage[3]; // Create Storage Space For The Textures
 memset(TextureImage,0,sizeof(void *)*3); // Set The Pointer To NULL
 if ((TextureImage[0]=LoadBMP("Data/EnvWall.bmp")) && // Load The Floor Texture
 (TextureImage[1]=LoadBMP("Data/Ball.bmp")) && // Load the Light Texture
 (TextureImage[2]=LoadBMP("Data/EnvRoll.bmp"))) // Load the Wall Texture
 {
 Status=TRUE; // Set The Status To TRUE
 glGenTextures(3, &texture[0]); // Create The Texture
 for (int loop=0; loop<3; loop++) // Loop Through 5 Textures
 {
 glBindTexture(GL_TEXTURE_2D, texture[loop]);
 glTexImage2D(GL_TEXTURE_2D, 0, 3, TextureImage[loop]->sizeX, TextureImage[loop]->sizeY, 0, GL_RGB, GL_UNSIGNED_BYTE, TextureImage[loop]
 glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_LINEAR);
 glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_LINEAR);
 }
 for (loop=0; loop<3; loop++) // Loop Through 5 Textures
 {
 if (TextureImage[loop]) // If Texture Exists
 {
 if (TextureImage[loop]->data) // If Texture Image Exists
 {
 free(TextureImage[loop]->data); // Free The Texture Image Memory
 }

We set up a variable called q for our quadratic object, xrot and yrot to keep track of rotation.
xrotspeed and yrotspeed control the speed our object rotates at. zoom is used to zoom in and out
of the scene (we start at -7 which shows us the entire scene) and height is the height of the ball
above the floor.

We then make room for our 3 textures with texture[3], and define WndProc().

 The ReSizeGLScene() and LoadBMP() code has not changed so I will skip over both sections of
code.

The load texture code is pretty standard. You've used it many times before in the previous tutorials.
We make room for 3 textures, then we load the three images, and create linear filtered textures from
the image data. The bitmap files we use are located in the DATA directory.

Jeff Molofee's OpenGL Windows Tutorial #27 (by Banu Cosmin)

Page 2 of 14

 free(TextureImage[loop]); // Free The Image Structure
 }
 }
 }
 return Status; // Return The Status
}

int InitGL(GLvoid) // All Setup For OpenGL Goes Here
{
 if (!LoadGLTextures()) // If Loading The Textures Failed
 {
 return FALSE; // Return False
 }
 glShadeModel(GL_SMOOTH); // Enable Smooth Shading
 glClearColor(0.2f, 0.5f, 1.0f, 1.0f); // Background
 glClearDepth(1.0f); // Depth Buffer Setup
 glClearStencil(0); // Clear The Stencil Buffer To 0
 glEnable(GL_DEPTH_TEST); // Enables Depth Testing
 glDepthFunc(GL_LEQUAL); // The Type Of Depth Testing To Do
 glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST); // Really Nice Perspective Calculations
 glEnable(GL_TEXTURE_2D); // Enable 2D Texture Mapping

 glLightfv(GL_LIGHT0, GL_AMBIENT, LightAmb); // Set The Ambient Lighting For Light0
 glLightfv(GL_LIGHT0, GL_DIFFUSE, LightDif); // Set The Diffuse Lighting For Light0
 glLightfv(GL_LIGHT0, GL_POSITION, LightPos); // Set The Position For Light0

 glEnable(GL_LIGHT0); // Enable Light 0
 glEnable(GL_LIGHTING); // Enable Lighting

A new command called glClearStencil is introduced in the init code. Passing 0 as a parameter tells
OpenGL to disable clearing of the stencil buffer. You should be familiar with the rest of the code by
now. We load our textures and enable smooth shading. The clear color is set to an off blue and the
clear depth is set to 1.0f. The stencil clear value is set to 0. We enable depth testing, and set the
depth test value to less than or equal to. Our perspective correction is set to nicest (very good
quality) and 2d texture mapping is enabled.

Now it's time to set up light 0. The first line below tells OpenGL to use the values stored in
LightAmb for the Ambient light. If you remember at the beginning of the code, the rgb values of
LightAmb were all 0.7f, giving us a white light at 70% full intensity. We then set the Diffuse light
using the values stored in LightDif and position the light using the x,y,z values stored in LightPos.

After we have set the light up we can enable it with glEnable(GL_LIGHT0). Even though the light is
enabled, you will not see it until we enable lighting with the last line of code.

Note: If we wanted to turn off all lights in a scene we would use glDisable(GL_LIGHTING). If we
wanted to disable just one of our lights we would use glDisable(GL_LIGHT{0-7}). This gives us alot
of control over the lighting and what lights are on and off. Just remember if GL_LIGHTING is
disabled, you will not see lights!

In the first line below, we create a new quadratic object. The second line tells OpenGL to generate
smooth normals for our quadratic object, and the third line tells OpenGL to generate texture
coordinates for our quadratic. Without the second and third lines of code, our object would use flat
shading and we wouldn't be able to texture it.

The fourth and fifth lines tell OpenGL to use the Sphere Mapping algorithm to generate the texture
coordinates. This allows us to sphere map the quadratic object.

Jeff Molofee's OpenGL Windows Tutorial #27 (by Banu Cosmin)

Page 3 of 14

 q = gluNewQuadric(); // Create A New Quadratic
 gluQuadricNormals(q, GL_SMOOTH); // Generate Smooth Normals For The Quad
 gluQuadricTexture(q, GL_TRUE); // Enable Texture Coords For The Quad

 glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, GL_SPHERE_MAP); // Set Up Sphere Mapping
 glTexGeni(GL_T, GL_TEXTURE_GEN_MODE, GL_SPHERE_MAP); // Set Up Sphere Mapping

 return TRUE; // Initialization Went OK
}

void DrawObject() // Draw Our Ball
{
 glColor3f(1.0f, 1.0f, 1.0f); // Set Color To White
 glBindTexture(GL_TEXTURE_2D, texture[1]); // Select Texture 2 (1)
 gluSphere(q, 0.35f, 32, 16); // Draw First Sphere

 glBindTexture(GL_TEXTURE_2D, texture[2]); // Select Texture 3 (2)
 glColor4f(1.0f, 1.0f, 1.0f, 0.4f); // Set Color To White With 40% Alpha
 glEnable(GL_BLEND); // Enable Blending
 glBlendFunc(GL_SRC_ALPHA, GL_ONE); // Set Blending Mode To Mix Based On SRC Alpha
 glEnable(GL_TEXTURE_GEN_S); // Enable Sphere Mapping
 glEnable(GL_TEXTURE_GEN_T); // Enable Sphere Mapping

 gluSphere(q, 0.35f, 32, 16); // Draw Another Sphere Using New Texture
 // Textures Will Mix Creating A MultiTexture Effect (Reflection)
 glDisable(GL_TEXTURE_GEN_S); // Disable Sphere Mapping
 glDisable(GL_TEXTURE_GEN_T); // Disable Sphere Mapping
 glDisable(GL_BLEND); // Disable Blending
}

void DrawFloor() // Draws The Floor
{
 glBindTexture(GL_TEXTURE_2D, texture[0]); // Select Texture 1 (0)
 glBegin(GL_QUADS); // Begin Drawing A Quad
 glNormal3f(0.0, 1.0, 0.0); // Normal Pointing Up
 glTexCoord2f(0.0f, 1.0f); // Bottom Left Of Texture
 glVertex3f(-2.0, 0.0, 2.0); // Bottom Left Corner Of Floor

The code below will draw our object (which is a cool looking environment mapped beach ball).

We set the color to full intensity white and bind to our BALL texture (the ball texture is a series of red,
white and blue stripes).

After selecting our texture, we draw a Quadratic Sphere with a radius of 0.35f, 32 slices and 16
stacks (up and down).

After drawing the first sphere, we select a new texture (EnvRoll), set the alpha value to 40% and
enable blending based on the source alpha value. glEnable(GL_TEXTURE_GEN_S) and glEnable
(GL_TEXTURE_GEN_T) enables sphere mapping.

After doing all that, we redraw the sphere, disable sphere mapping and disable blending.

The final result is a reflection that almost looks like bright points of light mapped to the beach ball.
Because we enable sphere mapping, the texture is always facing the viewer, even as the ball spins.
We blend so that the new texture doesn't cancel out the old texture (a form of multitexturing).

 The code below draws the floor that our ball hovers over. We select the floor texture (EnvWall), and
draw a single texture mapped quad on the z-axis. Pretty simple!

Jeff Molofee's OpenGL Windows Tutorial #27 (by Banu Cosmin)

Page 4 of 14

 glTexCoord2f(0.0f, 0.0f); // Top Left Of Texture
 glVertex3f(-2.0, 0.0,-2.0); // Top Left Corner Of Floor

 glTexCoord2f(1.0f, 0.0f); // Top Right Of Texture
 glVertex3f(2.0, 0.0,-2.0); // Top Right Corner Of Floor

 glTexCoord2f(1.0f, 1.0f); // Bottom Right Of Texture
 glVertex3f(2.0, 0.0, 2.0); // Bottom Right Corner Of Floor
 glEnd(); // Done Drawing The Quad
}

int DrawGLScene(GLvoid) // Draw Everything
{
 // Clear Screen, Depth Buffer & Stencil Buffer
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT);

 // Clip Plane Equations
 double eqr[] = {0.0f,-1.0f, 0.0f, 0.0f}; // Plane Equation To Use For The Reflected Objects

 glLoadIdentity(); // Reset The Modelview Matrix
 glTranslatef(0.0f, -0.6f, zoom); // Zoom And Raise Camera Above The Floor (Up 0.6 Units)

Now for the fun stuff. Here's where we combine all the objects and images to create our reflective
scene.

We start off by clearing the screen (GL_COLOR_BUFFER_BIT) to our default clear color (off blue).
The depth (GL_DEPTH_BUFFER_BIT) and stencil (GL_STENCIL_BUFFER_BIT) buffers are also
cleared. Make sure you include the stencil buffer code, it's new and easy to overlook! It's important
to note when we clear the stencil buffer, we are filling it with 0's.

After clearing the screen and buffers, we define our clipping plane equation. The plane equation is
used for clipping the reflected image.

The equation eqr[]={0.0f,-1.0f, 0.0f, 0.0f} will be used when we draw the reflected image. As you can
see, the value for the y-plane is a negative value. Meaning we will only see pixels if they are drawn
below the floor or at a negative value on the y-axis. Anything drawn above the floor will not show up
when using this equation.

More on clipping later... read on.

So we have cleared the screen, and defined our clipping planes. Now for the fun stuff!

We start off by resetting the modelview matrix. Which of course starts all drawing in the center of the
screen. We then translate down 0.6f units (to add a small perspective tilt to the floor) and into the
screen based on the value of zoom. To better explain why we translate down 0.6f units, I'll explain
using a simple example. If you were looking at the side of a piece of paper at exactly eye level, you
would barely be able to see it. It would more than likely look like a thin line. If you moved the paper
down a little, it would no longer look like a line. You would see more of the paper, because your eyes
would be looking down at the page instead of directly at the edge of the paper.

Next we set the color mask. Something new to this tutorial! The 4 values for color mask represent
red, green, blue and alpha. By default all the values are set to GL_TRUE.

If the red value of glColorMask({red},{green},{blue},{alpha}) was set to GL_TRUE, and all of the
other values were 0 (GL_FALSE), the only color that would show up on the screen is red. If the
value for red was 0 (GL_FALSE), but the other values were all GL_TRUE, every color except red
would be drawn to the screen.

Jeff Molofee's OpenGL Windows Tutorial #27 (by Banu Cosmin)

Page 5 of 14

 glColorMask(0,0,0,0); // Set Color Mask

 glEnable(GL_STENCIL_TEST); // Enable Stencil Buffer For "marking" The Floor
 glStencilFunc(GL_ALWAYS, 1, 1); // Always Passes, 1 Bit Plane, 1 As Mask
 glStencilOp(GL_KEEP, GL_KEEP, GL_REPLACE); // We Set The Stencil Buffer To 1 Where We Draw Any Polygon
 // Keep If Test Fails, Keep If Test Passes But Buffer Test Fails
 // Replace If Test Passes
 glDisable(GL_DEPTH_TEST); // Disable Depth Testing

We don't want anything drawn to the screen at the moment, with all of the values set to 0
(GL_FALSE), colors will not be drawn to the screen.

Now even more fun stuff... Setting up the stencil buffer and stencil testing!

We start off by enabling stencil testing. Once stencil testing has been enabled, we are able to modify
the stencil buffer.

It's very hard to explain the commands below so please bear with me, and if you have a better
explanation, please let me know. In the code below we set up a test. The line glStencilFunc
(GL_ALWAYS, 1, 1) tells OpenGL what type of test we want to do on each pixel when an object is
drawn to the screen.

GL_ALWAYS just tells OpenGL the test will always pass. The second parameter (1) is a reference
value that we will test in the third line of code, and the third parameter is a mask. The mask is a
value that is ANDed with the reference value and stored in the stencil buffer when the test is done. A
reference value of 1 ANDed with a mask value of 1 is 1. So if the test goes well and we tell OpenGL
to, it will place a one in the stencil buffer (reference&mask=1).

Quick note: Stencil testing is a per pixel test done each time an object is drawn to the screen. The
reference value ANDed with the mask value is tested against the current stencil value ANDed with
the mask value.

The third line of code tests for three different conditions based on the stencil function we decided to
use. The first two parameters are GL_KEEP, and the third is GL_REPLACE.

The first parameter tells OpenGL what to do if the test fails. Because the first parameter is
GL_KEEP, if the test fails (which it can't because we have the funtion set to GL_ALWAYS), we
would leave the stencil value set at whatever it currently is.

The second parameter tells OpenGL what do do if the stencil test passes, but the depth test fails. In
the code below, we eventually disable depth testing so this parameter can be ignored.

The third parameter is the important one. It tells OpenGL what to do if the test passes! In our code
we tell OpenGL to replace (GL_REPLACE) the value in the stencil buffer. The value we put into the
stencil buffer is our reference value ANDed with our mask value which is 1.

After setting up the type of testing we want to do, we disable depth testing and jump to the code that
draws our floor.

In simple english I will try to sum up everything that the code does up until now...

We tell OpenGL not to draw any colors to the screen. This means that when we draw the floor, it
wont show up on the screen. BUT... each spot on the screen where the object (our floor) should be if
we could see it will be tested based on the type of stencil testing we decide to do. The stencil buffer
starts out full of 0's (empty). We want to set the stencil value to 1 wherever our object would have
been drawn if we could see it. So we tell OpenGL we don't care about testing. If a pixel should have
been drawn to the screen, we want that spot marked with a 1. GL_ALWAYS does exactly that. Our
reference and mask values of 1 make sure that the value placed into the stencil buffer is indeed
going to be 1! As we invisibly draw, our stencil operation checks each pixel location, and replaces
the 0 with a 1.

Jeff Molofee's OpenGL Windows Tutorial #27 (by Banu Cosmin)

Page 6 of 14

 DrawFloor(); // Draw The Floor (Draws To The Stencil Buffer)
 // We Only Want To Mark It In The Stencil Buffer

 glEnable(GL_DEPTH_TEST); // Enable Depth Testing
 glColorMask(1,1,1,1); // Set Color Mask to TRUE, TRUE, TRUE, TRUE
 glStencilFunc(GL_EQUAL, 1, 1); // We Draw Only Where The Stencil Is 1
 // (I.E. Where The Floor Was Drawn)
 glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP); // Don't Change The Stencil Buffer

 glEnable(GL_CLIP_PLANE0); // Enable Clip Plane For Removing Artifacts
 // (When The Object Crosses The Floor)
 glClipPlane(GL_CLIP_PLANE0, eqr); // Equation For Reflected Objects
 glPushMatrix(); // Push The Matrix Onto The Stack
 glScalef(1.0f, -1.0f, 1.0f); // Mirror Y Axis

So now we have an invisible stencil mask of the floor. As long as stencil testing is enabled, the only
places pixels will show up are places where the stencil buffer has a value of 1. All of the pixels on
the screen where the invisible floor was drawn will have a stencil value of 1. Meaning as long as
stencil testing is enabled, the only pixels that we will see are the pixels that we draw in the same
spot our invisible floor was defined in the stencil buffer. The trick behind creating a real looking
reflection that reflects in the floor and nowhere else!

So now that we know the ball reflection will only be drawn where the floor should be, it's time to draw
the reflection! We enable depth testing, and set the color mask back to all ones (meaning all the
colors will be drawn to the screen).

Instead of using GL_ALWAYS for our stencil function we are going to use GL_EQUAL. We'll leave
the reference and mask values at 1. For the stencil operation we will set all the parameters to
GL_KEEP. In english, any object we draw this time around will actually appear on the screen
(because the color mask is set to true for each color). As long as stencil testing is enabled pixels will
ONLY be drawn if the stencil buffer has a value of 1 (reference value ANDed with the mask, which is
1 EQUALS (GL_EQUAL) the stencil buffer value ANDed with the mask, which is also 1). If the
stencil value is not 1 where the current pixel is being drawn it will not show up! GL_KEEP just tells
OpenGL not to modify any values in the stencil buffer if the test passes OR fails!

Now we enable the mirrored clipping plane. This plane is defined by eqr, and only allows object to
be drawn from the center of the screen (where the floor is) down to the bottom of the screen (any
negative value on the y-axis). That way the reflected ball that we draw can't come up through the
center of the floor. That would look pretty bad if it did. If you don't understand what I mean, remove
the first line below from the source code, and move the real ball (non reflected) through the floor. If
clipping is not enabled, you will see the reflected ball pop out of the floor as the real ball goes into
the floor.

After we enable clipping plane0 (usually you can have from 0-5 clipping planes), we define the plane
by telling it to use the parameters stored in eqr.

We push the matrix (which basically saves the position of everything on the screen) and use glScalef
(1.0f,-1.0f,1.0f) to flip the object upside down (creating a real looking reflection). Setting the y value
of glScalef({x},{y},{z}) to a negative value forces OpenGL to render opposite on the y-axis. It's almost
like flipping the entire screen upside down. When position an object at a positive value on the y-axis,
it will appear at the bottom of the screen instead of at the top. When you rotate an object towards
yourself, it will rotate away from you. Everything will be mirrored on the y-axis until you pop the
matrix or set the y value back to 1.0f instead of -1.0f using glScalef({x},{y},{z}).

The first line below positions our light to the location specified by LightPos. The light should shine
on the bottom right of the reflected ball creating a very real looking light source. The position of the
light is also mirrored. On the real ball (ball above the floor) the light is positioned at the top right of
your screen, and shines on the top right of the real ball. When drawing the reflected ball, the light is

Jeff Molofee's OpenGL Windows Tutorial #27 (by Banu Cosmin)

Page 7 of 14

 glLightfv(GL_LIGHT0, GL_POSITION, LightPos); // Set Up Light0
 glTranslatef(0.0f, height, 0.0f); // Position The Object
 glRotatef(xrot, 1.0f, 0.0f, 0.0f); // Rotate Local Coordinate System On X Axis
 glRotatef(yrot, 0.0f, 1.0f, 0.0f); // Rotate Local Coordinate System On Y Axis
 DrawObject(); // Draw The Sphere (Reflection)
 glPopMatrix(); // Pop The Matrix Off The Stack
 glDisable(GL_CLIP_PLANE0); // Disable Clip Plane For Drawing The Floor
 glDisable(GL_STENCIL_TEST); // We Don't Need The Stencil Buffer Any More (Disable)

 glLightfv(GL_LIGHT0, GL_POSITION, LightPos); // Set Up Light0 Position
 glEnable(GL_BLEND); // Enable Blending (Otherwise The Reflected Object Wont Show)
 glDisable(GL_LIGHTING); // Since We Use Blending, We Disable Lighting
 glColor4f(1.0f, 1.0f, 1.0f, 0.8f); // Set Color To White With 80% Alpha
 glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); // Blending Based On Source Alpha And 1 Minus Dest Alpha
 DrawFloor(); // Draw The Floor To The Screen

positioned at the bottom right of your screen.

We then move up or down on the y-axis to the value specified by height. Translations are mirrored,
so if the value of height is 5.0f, the position we translate to will be mirrored (-5.0f). Positioning the
reflected image under the floor, instead of above the floor!

After position our reflected ball, we rotate the ball on both the x axis and y axis, based on the values
of xrot and yrot. Keep in mind that any rotations on the x axis will also be mirrored. So if the real ball
(ball above the floor) is rolling towards you on the x-axis, it will be rolling away from you in the
reflection.

After positioning the reflected ball and doing our rotations we draw the ball by calling DrawObject(),
and pop the matrix (restoring things to how they were before we drew the ball). Popping the matrix
all cancels mirroring on the y-axis.

We then disable our clipping plane (plane0) so that we are not stuck drawing only to the bottom half
of the screen, and last, we disable stencil testing so that we can draw to other spots on the screen
other than where the floor should be.

Note that we draw the reflected ball before we draw the floor. I'll explain why later on.

We start off this section of code by positioning our light. The y-axis is no longer being mirrored so
drawing the light this time around will position it at the top of the screen instead of the bottom right of
the screen.

We enable blending, disable lighting, and set the alpha value to 80% using the command glColor4f
(1.0f,1.0f,1.0f,0.8f). The blending mode is set up using glBlendFunc(), and the semi transparent floor
is drawn over top of the reflected ball.

If we drew the floor first and then the reflected ball, the effect wouldn't look very good. By drawing
the ball and then the floor, you can see a small amount of coloring from the floor mixed into the
coloring of the ball. If I was looking into a BLUE mirror, I would expect the reflection to look a little
blue. By rendering the ball first, the reflected image looks like it's tinted the color of the floor.

Now we draw the 'real' ball (the one that floats above the floor). We disabled lighting when we drew
the floor, but now it's time to draw another ball so we will turn lighting back on.

We don't need blending anymore so we disable blending. If we didn't disable blending, the colors
from the floor would mix with the colors of our 'real' ball when it was floating over top of the floor. We
don't want the 'real' ball to look like the reflection so we disable blending.

We are not going to clip the actual ball. If the real ball goes through the floor, we should see it come
out the bottom. If we were using clipping the ball wouldn't show up after it went through the floor. If
you didn't want to see the ball come through the floor, you would set up a clipping equation that set

Jeff Molofee's OpenGL Windows Tutorial #27 (by Banu Cosmin)

Page 8 of 14

 glEnable(GL_LIGHTING); // Enable Lighting
 glDisable(GL_BLEND); // Disable Blending
 glTranslatef(0.0f, height, 0.0f); // Position The Ball At Proper Height
 glRotatef(xrot, 1.0f, 0.0f, 0.0f); // Rotate On The X Axis
 glRotatef(yrot, 0.0f, 1.0f, 0.0f); // Rotate On The Y Axis
 DrawObject(); // Draw The Ball

 xrot += xrotspeed; // Update X Rotation Angle By xrotspeed
 yrot += yrotspeed; // Update Y Rotation Angle By yrotspeed
 glFlush(); // Flush The GL Pipeline
 return TRUE; // Everything Went OK
}

void ProcessKeyboard() // Process Keyboard Results
{
 if (keys[VK_RIGHT]) yrotspeed += 0.08f; // Right Arrow Pressed (Increase yrotspeed)
 if (keys[VK_LEFT]) yrotspeed -= 0.08f; // Left Arrow Pressed (Decrease yrotspeed)
 if (keys[VK_DOWN]) xrotspeed += 0.08f; // Down Arrow Pressed (Increase xrotspeed)
 if (keys[VK_UP]) xrotspeed -= 0.08f; // Up Arrow Pressed (Decrease xrotspeed)

 if (keys['A']) zoom +=0.05f; // 'A' Key Pressed ... Zoom In
 if (keys['Z']) zoom -=0.05f; // 'Z' Key Pressed ... Zoom Out

 if (keys[VK_PRIOR]) height +=0.03f; // Page Up Key Pressed Move Ball Up
 if (keys[VK_NEXT]) height -=0.03f; // Page Down Key Pressed Move Ball Down

the Y value to +1.0f, then when the ball went through the floor, you wouldn't see it (you would only
see the ball when it was drawn on at a positive value on the y-axis. For this demo, there's no reason
we shouldn't see it come through the floor.

We then translate up or down on the y-axis to the position specified by height. Only this time the y-
axis is not mirrored, so the ball travels the opposite direction that the reflected image travels. If we
move the 'real' ball down the reflected ball will move up. If we move the 'real' ball up, the reflected
ball will move down.

We rotate the 'real' ball, and again, because the y-axis is not mirrored, the ball will spin the opposite
direction of the reflected ball. If the reflected ball is rolling towards you the 'real' ball will be rolling
away from you. This creates the illusion of a real reflection.

After positioning and rotating the ball, we draw the 'real' ball by calling DrawObject().

The following code rotates the ball on the x and y axis. By increasing xrot by xrotspeed we rotate
the ball on the x-axis. By increasing yrot by yrotspeed we spin the ball on the y-axis. If xrotspeed
is a very high value in the positive or negative direction the ball will spin quicker than if xrotspeed
was a low value, closer to 0.0f. Same goes for yrotspeed. The higher the value, the faster the ball
spins on the y-axis.

Before we return TRUE, we do a glFlush(). This tells OpenGL to render everything left in the GL
pipeline before continuing, and can help prevent flickering on slower video cards.

The following code will watch for key presses. The first 4 lines check to see if you are pressing one
of the 4 arrow keys. If you are, the ball is spun right, left, down or up.

The next 2 lines check to see if you are pressing the 'A' or 'Z' keys. Pressing 'A' will zoom you in
closer to the ball and pressing 'Z' will zoom you away from the ball.

Pressing 'PAGE UP' will increase the value of height moving the ball up, and pressing 'PAGE
DOWN' will decrease the value of height moving the ball down (closer to the floor).

Jeff Molofee's OpenGL Windows Tutorial #27 (by Banu Cosmin)

Page 9 of 14

}

GLvoid KillGLWindow(GLvoid) // Properly Kill The Window

BOOL CreateGLWindow(char* title, int width, int height, int bits, bool fullscreenflag)
{
 GLuint PixelFormat; // Holds The Results After Searching For A Match
 WNDCLASS wc; // Windows Class Structure
 DWORD dwExStyle; // Window Extended Style
 DWORD dwStyle; // Window Style

 fullscreen=fullscreenflag; // Set The Global Fullscreen Flag

 hInstance = GetModuleHandle(NULL); // Grab An Instance For Our Window
 wc.style = CS_HREDRAW | CS_VREDRAW | CS_OWNDC; // Redraw On Size, And Own DC For Window
 wc.lpfnWndProc = (WNDPROC) WndProc; // WndProc Handles Messages
 wc.cbClsExtra = 0; // No Extra Window Data
 wc.cbWndExtra = 0; // No Extra Window Data
 wc.hInstance = hInstance; // Set The Instance
 wc.hIcon = LoadIcon(NULL, IDI_WINLOGO); // Load The Default Icon
 wc.hCursor = LoadCursor(NULL, IDC_ARROW); // Load The Arrow Pointer
 wc.hbrBackground = NULL; // No Background Required For GL
 wc.lpszMenuName = NULL; // We Don't Want A Menu
 wc.lpszClassName = "OpenGL"; // Set The Class Name

 if (!RegisterClass(&wc)) // Attempt To Register The Window Class
 {
 MessageBox(NULL,"Failed To Register The Window Class.","ERROR",MB_OK|MB_ICONEXCLAMATION);
 return FALSE; // Return FALSE
 }

 if (fullscreen) // Attempt Fullscreen Mode?
 {
 DEVMODE dmScreenSettings; // Device Mode
 memset(&dmScreenSettings,0,sizeof(dmScreenSettings)); // Makes Sure Memory's Cleared
 dmScreenSettings.dmSize=sizeof(dmScreenSettings); // Size Of The Devmode Structure
 dmScreenSettings.dmPelsWidth = width; // Selected Screen Width
 dmScreenSettings.dmPelsHeight = height; // Selected Screen Height
 dmScreenSettings.dmBitsPerPel = bits; // Selected Bits Per Pixel
 dmScreenSettings.dmFields=DM_BITSPERPEL|DM_PELSWIDTH|DM_PELSHEIGHT;

 // Try To Set Selected Mode And Get Results. NOTE: CDS_FULLSCREEN Gets Rid Of Start Bar
 if (ChangeDisplaySettings(&dmScreenSettings,CDS_FULLSCREEN)!=DISP_CHANGE_SUCCESSFUL)
 {
 // If The Mode Fails, Offer Two Options. Quit Or Use Windowed Mode
 if (MessageBox(NULL,"The Requested Fullscreen Mode Is Not Supported By\nYour Video Card. Use Windowed Mode Instead?","NeHe GL",MB_YESNO|MB_ICONEXCLAMATION)==IDYES)
 {
 fullscreen=FALSE; // Windowed Mode Selected. Fullscreen = FALSE
 }
 else
 {
 // Pop Up A Message Box Letting User Know The Program Is Closing
 MessageBox(NULL,"Program Will Now Close.","ERROR",MB_OK|MB_ICONSTOP);
 return FALSE; // Return FALSE
 }
 }
 }

 The KillGLWindow() code hasn't changed, so I'll skip over it.

 You can skim through the following code. Even though only one line of code has changed in
CreateGLWindow(), I have included all of the code so it's easier to follow through the tutorial.

Jeff Molofee's OpenGL Windows Tutorial #27 (by Banu Cosmin)

Page 10 of 14

 if (fullscreen) // Are We Still In Fullscreen Mode?
 {
 dwExStyle=WS_EX_APPWINDOW; // Window Extended Style
 dwStyle=WS_POPUP | WS_CLIPSIBLINGS | WS_CLIPCHILDREN; // Windows Style
 ShowCursor(FALSE); // Hide Mouse Pointer
 }
 else
 {
 dwExStyle=WS_EX_APPWINDOW | WS_EX_WINDOWEDGE; // Window Extended Style
 dwStyle=WS_OVERLAPPEDWINDOW | WS_CLIPSIBLINGS | WS_CLIPCHILDREN;// Windows Style
 }

 // Create The Window
 if (!(hWnd=CreateWindowEx(dwExStyle, // Extended Style For The Window
 "OpenGL", // Class Name
 title, // Window Title
 dwStyle, // Window Style
 0, 0, // Window Position
 width, height, // Selected Width And Height
 NULL, // No Parent Window
 NULL, // No Menu
 hInstance, // Instance
 NULL))) // Dont Pass Anything To WM_CREATE
 {
 KillGLWindow(); // Reset The Display
 MessageBox(NULL,"Window Creation Error.","ERROR",MB_OK|MB_ICONEXCLAMATION);
 return FALSE; // Return FALSE
 }

 static PIXELFORMATDESCRIPTOR pfd= // pfd Tells Windows How We Want Things To Be
 {
 sizeof(PIXELFORMATDESCRIPTOR), // Size Of This Pixel Format Descriptor
 1, // Version Number
 PFD_DRAW_TO_WINDOW | // Format Must Support Window
 PFD_SUPPORT_OPENGL | // Format Must Support OpenGL
 PFD_DOUBLEBUFFER, // Must Support Double Buffering
 PFD_TYPE_RGBA, // Request An RGBA Format
 bits, // Select Our Color Depth
 0, 0, 0, 0, 0, 0, // Color Bits Ignored
 0, // No Alpha Buffer
 0, // Shift Bit Ignored
 0, // No Accumulation Buffer
 0, 0, 0, 0, // Accumulation Bits Ignored
 16, // 16Bit Z-Buffer (Depth Buffer)

 1, // Use Stencil Buffer (* Important *)
 0, // No Auxiliary Buffer
 PFD_MAIN_PLANE, // Main Drawing Layer
 0, // Reserved
 0, 0, 0 // Layer Masks Ignored
 };

 if (!(hDC=GetDC(hWnd))) // Did We Get A Device Context?
 {
 KillGLWindow(); // Reset The Display
 MessageBox(NULL,"Can't Create A GL Device Context.","ERROR",MB_OK|MB_ICONEXCLAMATION);
 return FALSE; // Return FALSE
 }

 if (!(PixelFormat=ChoosePixelFormat(hDC,&pfd))) // Did Windows Find A Matching Pixel Format?
 {

The only change in this section of code is the line below. It is *VERY IMPORTANT* you change the
value from 0 to 1 or some other non zero value. In all of the previous tutorials the value of the line
below was 0. In order to use Stencil Buffering this value HAS to be greater than or equal to 1. This
value is the number of bits you want to use for the stencil buffer.

Jeff Molofee's OpenGL Windows Tutorial #27 (by Banu Cosmin)

Page 11 of 14

 KillGLWindow(); // Reset The Display
 MessageBox(NULL,"Can't Find A Suitable PixelFormat.","ERROR",MB_OK|MB_ICONEXCLAMATION);
 return FALSE; // Return FALSE
 }

 if(!SetPixelFormat(hDC,PixelFormat,&pfd)) // Are We Able To Set The Pixel Format?
 {
 KillGLWindow(); // Reset The Display
 MessageBox(NULL,"Can't Set The PixelFormat.","ERROR",MB_OK|MB_ICONEXCLAMATION);
 return FALSE; // Return FALSE
 }

 if (!(hRC=wglCreateContext(hDC))) // Are We Able To Get A Rendering Context?
 {
 KillGLWindow(); // Reset The Display
 MessageBox(NULL,"Can't Create A GL Rendering Context.","ERROR",MB_OK|MB_ICONEXCLAMATION);
 return FALSE; // Return FALSE
 }

 if(!wglMakeCurrent(hDC,hRC)) // Try To Activate The Rendering Context
 {
 KillGLWindow(); // Reset The Display
 MessageBox(NULL,"Can't Activate The GL Rendering Context.","ERROR",MB_OK|MB_ICONEXCLAMATION);
 return FALSE; // Return FALSE
 }

 ShowWindow(hWnd,SW_SHOW); // Show The Window
 SetForegroundWindow(hWnd); // Slightly Higher Priority
 SetFocus(hWnd); // Sets Keyboard Focus To The Window
 ReSizeGLScene(width, height); // Set Up Our Perspective GL Screen

 if (!InitGL()) // Initialize Our Newly Created GL Window
 {
 KillGLWindow(); // Reset The Display
 MessageBox(NULL,"Initialization Failed.","ERROR",MB_OK|MB_ICONEXCLAMATION);
 return FALSE; // Return FALSE
 }

 return TRUE; // Success
}

LRESULT CALLBACK WndProc(HWND hWnd, // Handle For This Window
 UINT uMsg, // Message For This Window
 WPARAM wParam, // Additional Message Information
 LPARAM lParam) // Additional Message Information

int WINAPI WinMain(HINSTANCE hInstance, // Instance
 HINSTANCE hPrevInstance, // Previous Instance
 LPSTR lpCmdLine, // Command Line Parameters
 int nCmdShow) // Window Show State
{
 MSG msg; // Windows Message Structure
 BOOL done=FALSE; // Bool Variable To Exit Loop

 // Ask The User Which Screen Mode They Prefer
 if (MessageBox(NULL,"Would You Like To Run In Fullscreen Mode?", "Start FullScreen?",MB_YESNO|MB_ICONQUESTION)==IDNO)
 {

 WndProc() has not changed, so we will skip over it.

 Nothing new here. Typical start to WinMain().

Jeff Molofee's OpenGL Windows Tutorial #27 (by Banu Cosmin)

Page 12 of 14

 fullscreen=FALSE; // Windowed Mode
 }

 // Create Our OpenGL Window
 if (!CreateGLWindow("Banu Octavian & NeHe's Stencil & Reflection Tutorial", resx, resy, resbpp, fullscreen))
 {
 return 0; // Quit If Window Was Not Created
 }

 while(!done) // Loop That Runs While done=FALSE
 {
 if (PeekMessage(&msg,NULL,0,0,PM_REMOVE)) // Is There A Message Waiting?
 {
 if (msg.message==WM_QUIT) // Have We Received A Quit Message?
 {
 done=TRUE; // If So done=TRUE
 }
 else // If Not, Deal With Window Messages
 {
 TranslateMessage(&msg); // Translate The Message
 DispatchMessage(&msg); // Dispatch The Message
 }
 }
 else // If There Are No Messages
 {
 // Draw The Scene. Watch For ESC Key And Quit Messages From DrawGLScene()
 if (active) // Program Active?
 {
 if (keys[VK_ESCAPE]) // Was Escape Pressed?
 {
 done=TRUE; // ESC Signalled A Quit
 }
 else // Not Time To Quit, Update Screen
 {
 DrawGLScene(); // Draw The Scene
 SwapBuffers(hDC); // Swap Buffers (Double Buffering)

 ProcessKeyboard(); // Processed Keyboard Presses
 }
 }
 }
 }

 // Shutdown
 KillGLWindow(); // Kill The Window
 return (msg.wParam); // Exit The Program
}

The only real big change in this section of the code is the new window title to let everyone know the
tutorial is about reflections using the stencil buffer. Also notice that we pass the resx, resy and
resbpp variables to our window creation procedure instead of the usual 640, 480 and 16.

 Instead of checking for key presses in WinMain(), we jump to our keyboard handling routine called
ProcessKeyboard(). Notice the ProcessKeyboard() routine is only called if the program is active!

I really hope you've enjoyed this tutorial. I know it could use a little more work. It was one of the
more difficult tutorials that I have written. It's easy for me to understand what everything is doing,
and what commands I need to use to create cool effects, but when you sit down and actually try to
explain things keeping in mind that most people have never even heard of the stencil buffer, it's
tough! If you notice anything that could be made clearer or if you find any mistakes in the tutorial

Jeff Molofee's OpenGL Windows Tutorial #27 (by Banu Cosmin)

Page 13 of 14

please let me know. As always, I want this tutorial to be the best it can possibly be, your feedback is
greatly appreciated.

Banu Cosmin (Choko) - Code
Jeff Molofee (NeHe) - HTML / Modifications

* DOWNLOAD Visual C++ Code For This Lesson.
* DOWNLOAD Visual C++ / OpenIL Code For This Lesson. (Conversion by Denton Woods)
* DOWNLOAD Delphi Code For This Lesson. (Conversion by Marc Aarts)
* DOWNLOAD Irix / GLUT Code For This Lesson. (Conversion by Rob Fletcher)
* DOWNLOAD Mac OS Code For This Lesson. (Conversion by Morgan Aldridge)

Jeff Molofee's OpenGL Windows Tutorial #27 (by Banu Cosmin)

Page 14 of 14

// Definition Of "INFINITY" For Calculating The Extension Vector For The Shadow Volume
#define INFINITY 100

// Structure Describing A Vertex In An Object
struct Point3f
{
 GLfloat x, y, z;
};

// Structure Describing A Plane, In The Format: ax + by + cz + d = 0
struct Plane
{
 GLfloat a, b, c, d;
};

 Lesson 28

Welcome to a fairly complex tutorial on shadow casting. The effect this demo creates is literally
incredible. Shadows that stretch, bend and wrap around other objects and across walls. Everything
in the scene can be moved around in 3D space using keys on the keyboard.

This tutorial takes a fairly different approach - It assumes you have a lot of OpenGL knowledge. You
should already understand the stencil buffer, and basic OpenGL setup. If you need to brush up, go
back and read the earlier tutorials. Functions such as CreateGLWindow and WinMain will NOT be
explained in this tutorial. Additionally, some fundamental 3D math is assumed, so keep a good
textbook handy! (I used my 1st year maths lecture notes from University - I knew they'd come in
handy later on! :)

First we have the definition of INFINITY , which represents how far to extend the shadow volume
polygons (this will be explained more later on). If you are using a larger or smaller coordinate
system, adjust this value accordingly.

Next is the definition of the object structures.

The Point3f structure holds a coordinate in 3D space. This can be used for vertices or vectors.

 The Plane structure holds the 4 values that form the equation of a plane. These planes will
represent the faces of the object.

The Face structure contains all the information necessary about a triangle to cast a shadow.

l The indices specified are from the object's array of vertices.
l The vertex normals are used to calculate the orientation of the face in 3D space, so you can

determine which are facing the light source when casting the shadows.
l The plane equation describes the plane that this triangle lies in, in 3D space.
l The neighbour indices are indices into the array of faces in the object. This allows you to

Jeff Molofee's OpenGL Windows Tutorial #28

Page 1 of 11

// Structure Describing An Object's Face
struct Face
{
 int vertexIndices[3]; // Index Of Each Vertex Within An Object That Makes Up The Triangle Of This Face
 Point3f normals[3]; // Normals To Each Vertex
 Plane planeEquation; // Equation Of A Plane That Contains This Triangle
 int neighbourIndices[3]; // Index Of Each Face That Neighbours This One Within The Object
 bool visible; // Is The Face Visible By The Light?
};

struct ShadowedObject
{
 int nVertices;
 Point3f *pVertices; // Will Be Dynamically Allocated

 int nFaces;
 Face *pFaces; // Will Be Dynamically Allocated
};

bool readObject(const char *filename, ShadowedObject& object)
{
 FILE *pInputFile;
 int i;

 pInputFile = fopen(filename, "r");
 if (pInputFile == NULL)
 {
 cerr << "Unable to open the object file: " << filename << endl;
 return false;
 }

 // Read Vertices
 fscanf(pInputFile, "%d", &object.nVertices);
 object.pVertices = new Point3f[object.nVertices];
 for (i = 0; i < object.nVertices; i++)
 {
 fscanf(pInputFile, "%f", &object.pVertices[i].x);
 fscanf(pInputFile, "%f", &object.pVertices[i].y);
 fscanf(pInputFile, "%f", &object.pVertices[i].z);
 }

 // Read Faces
 fscanf(pInputFile, "%d", &object.nFaces);
 object.pFaces = new Face[object.nFaces];
 for (i = 0; i < object.nFaces; i++)
 {
 int j;
 Face *pFace = &object.pFaces[i];

specify which face joins this face at each edge of the triangle.
l The visible parameter is used to specify whether the face is "visible" to the light source which

is casting the shadows.

 Finally, the ShadowedObject structure contains all the vertices and faces in the object. The memory
for each of the arrays is dynamically created when it is loaded.

The readObject function is fairly self explanatory. It will fill in the given object structure with the
values read from the file, allocating memory for the vertices and faces. It also initializes the
neighbours to -1, which means there isn't one (yet). They will be calculated later.

Jeff Molofee's OpenGL Windows Tutorial #28

Page 2 of 11

 for (j = 0; j < 3; j++)
 pFace->neighbourIndices[j] = -1; // No Neigbours Set Up Yet

 for (j = 0; j < 3; j++)
 {
 fscanf(pInputFile, "%d", &pFace->vertexIndices[j]);
 pFace->vertexIndices[j]--; // Files Specify Them With A 1 Array Base, But We Use A 0 Array Base
 }

 for (j = 0; j < 3; j++)
 {
 fscanf(pInputFile, "%f", &pFace->normals[j].x);
 fscanf(pInputFile, "%f", &pFace->normals[j].y);
 fscanf(pInputFile, "%f", &pFace->normals[j].z);
 }
 }
 return true;
}

void killObject(ShadowedObject& object)
{
 delete[] object.pFaces;
 object.pFaces = NULL;
 object.nFaces = 0;

 delete[] object.pVertices;
 object.pVertices = NULL;
 object.nVertices = 0;
}

for each face (A) in the object
 for each edge in A
 if we don't know this edges neighbour yet
 for each face (B) in the object (except A)
 for each edge in B
 if A's edge is the same as B's edge, then they are neighbouring each other on that edge
 set the neighbour property for each face A and B, then move onto next edge in A

 int vertA1 = pFaceA->vertexIndices[edgeA];
 int vertA2 = pFaceA->vertexIndices[(edgeA+1)%3];

 int vertB1 = pFaceB->vertexIndices[edgeB];
 int vertB2 = pFaceB->vertexIndices[(edgeB+1)%3];

 // Check If They Are Neighbours - IE, The Edges Are The Same
 if ((vertA1 == vertB1 && vertA2 == vertB2) || (vertA1 == vertB2 && vertA2 == vertB1))
 {

Likewise, killObject is self-explanatory - just delete all those dynamically allocated arrays inside the
object when you are done with them. Note that a line was added to KillGLWindow to call this function
for the object in question.

 Now, with setConnectivity it starts to get interesting. This function is used to find out what
neighbours there are to each face of the object given. Here's some pseudo code:

The last two lines are accomplished with the following code. By finding the two vertices that mark the
ends of an edge and comparing them, you can discover if it is the same edge. The part (edgeA+1)%
3 gets a vertex next to the one you are considering. Then you check if the vertices match (the order
may be different, hence the second case of the if statement).

Jeff Molofee's OpenGL Windows Tutorial #28

Page 3 of 11

 pFaceA->neighbourIndices[edgeA] = faceB;
 pFaceB->neighbourIndices[edgeB] = faceA;
 edgeFound = true;
 break;
 }

// Draw An Object - Simply Draw Each Triangular Face.
void drawObject(const ShadowedObject& object)
{
 glBegin(GL_TRIANGLES);
 for (int i = 0; i < object.nFaces; i++)
 {
 const Face& face = object.pFaces[i];

 for (int j = 0; j < 3; j++)
 {
 const Point3f& vertex = object.pVertices[face.vertexIndices[j]];

 glNormal3f(face.normals[j].x, face.normals[j].y, face.normals[j].z);
 glVertex3f(vertex.x, vertex.y, vertex.z);
 }
 }
 glEnd();
}

void calculatePlane(const ShadowedObject& object, Face& face)
{
 // Get Shortened Names For The Vertices Of The Face
 const Point3f& v1 = object.pVertices[face.vertexIndices[0]];
 const Point3f& v2 = object.pVertices[face.vertexIndices[1]];
 const Point3f& v3 = object.pVertices[face.vertexIndices[2]];

 face.planeEquation.a = v1.y*(v2.z-v3.z) + v2.y*(v3.z-v1.z) + v3.y*(v1.z-v2.z);
 face.planeEquation.b = v1.z*(v2.x-v3.x) + v2.z*(v3.x-v1.x) + v3.z*(v1.x-v2.x);
 face.planeEquation.c = v1.x*(v2.y-v3.y) + v2.x*(v3.y-v1.y) + v3.x*(v1.y-v2.y);
 face.planeEquation.d = -(v1.x*(v2.y*v3.z - v3.y*v2.z) +
 v2.x*(v3.y*v1.z - v1.y*v3.z) +
 v3.x*(v1.y*v2.z - v2.y*v1.z));
}

void castShadow(ShadowedObject& object, GLfloat *lightPosition)
{
 // Determine Which Faces Are Visible By The Light.

 Luckily, another easy function while you take a breath. drawObject renders each face one by one.

 Calculating the equation of a plane looks ugly, but it is just a simple mathematical formula that you
grab from a textbook when you need it.

Have you caught your breath yet? Good, because you are about to learn how to cast a shadow! The
castShadow function does all of the GL specifics, and passes it on to doShadowPass to render the
shadow in two passes.

First up, we determine which surfaces are facing the light. We do this by seeing which side of the
plane the light is on. This is done by substituting the light's position into the equation for the plane. If
this is larger than 0, then it is in the same direction as the normal to the plane and visible by the light.
If not, then it is not visible by the light. (Again, refer to a good Math textbook for a better explanation
of geometry in 3D).

Jeff Molofee's OpenGL Windows Tutorial #28

Page 4 of 11

 for (int i = 0; i < object.nFaces; i++)
 {
 const Plane& plane = object.pFaces[i].planeEquation;

 GLfloat side = plane.a*lightPosition[0]+
 plane.b*lightPosition[1]+
 plane.c*lightPosition[2]+
 plane.d;

 if (side > 0)
 object.pFaces[i].visible = true;
 else
 object.pFaces[i].visible = false;
 }

 glPushAttrib(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_ENABLE_BIT | GL_POLYGON_BIT | GL_STENCIL_BUFFER_BIT);
 glDisable(GL_LIGHTING); // Turn Off Lighting
 glDepthMask(GL_FALSE); // Turn Off Writing To The Depth-Buffer
 glDepthFunc(GL_LEQUAL);
 glEnable(GL_STENCIL_TEST); // Turn On Stencil Buffer Testing
 glColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE); // Don't Draw Into The Colour Buffer
 glStencilFunc(GL_ALWAYS, 1, 0xFFFFFFFFL);

 // First Pass. Increase Stencil Value In The Shadow
 glFrontFace(GL_CCW);
 glStencilOp(GL_KEEP, GL_KEEP, GL_INCR);
 doShadowPass(object, lightPosition);
 // Second Pass. Decrease Stencil Value In The Shadow
 glFrontFace(GL_CW);
 glStencilOp(GL_KEEP, GL_KEEP, GL_DECR);
 doShadowPass(object, lightPosition);

The next section sets up the necessary OpenGL states for rendering the shadows.

First, we push all the attributes onto the stack that will be modified. This makes changing them back
a lot easier.

Lighting is disabled because we will not be rendering to the color (output) buffer, just the stencil
buffer. For the same reason, the color mask turns off all color components (so drawing a polygon
won't get through to the output buffer).

Although depth testing is still used, we don't want the shadows to appear as solid objects in the
depth buffer, so the depth mask prevents this from happening.

The stencil buffer is turned on as that is what is going to be used to draw the shadows into.

Ok, now the shadows are actually rendered. We'll come back to that in a moment when we look at
the doShadowPass function. They are rendered in two passes as you can see, one incrementing
the stencil buffer with the front faces (casting the shadow), the second decrementing the stencil
buffer with the backfaces ("turning off" the shadow between the object and any other surfaces).

To understand how the second pass works, my best advise is to comment it out and run the tutorial
again. To save you the trouble, I have done it here:

Jeff Molofee's OpenGL Windows Tutorial #28

Page 5 of 11

 glFrontFace(GL_CCW);
 glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE); // Enable Rendering To Colour Buffer For All Components

 // Draw A Shadowing Rectangle Covering The Entire Screen
 glColor4f(0.0f, 0.0f, 0.0f, 0.4f);
 glEnable(GL_BLEND);
 glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
 glStencilFunc(GL_NOTEQUAL, 0, 0xFFFFFFFFL);
 glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);
 glPushMatrix();
 glLoadIdentity();
 glBegin(GL_TRIANGLE_STRIP);
 glVertex3f(-0.1f, 0.1f,-0.10f);
 glVertex3f(-0.1f,-0.1f,-0.10f);
 glVertex3f(0.1f, 0.1f,-0.10f);
 glVertex3f(0.1f,-0.1f,-0.10f);
 glEnd();
 glPopMatrix();
 glPopAttrib();
}

void doShadowPass(ShadowedObject& object, GLfloat *lightPosition)
{
 for (int i = 0; i < object.nFaces; i++)
 {
 const Face& face = object.pFaces[i];

The final section of this function draws one blended rectangle over the whole screen, to cast a
shadow. The darker you make this rectangle, the darker the shadows will be. So to change the
properties of the shadow, change the glColor4f statement. Higher alpha will make it more black. Or
you can make it red, green, purple, ...!

Figure 1: First Pass Figure 2: Second Pass

Ok, the next part draws the shadowed quads. How does that work? What happens is that you go
through every face, and if it is visible, then you check all of its edges. If at the edge, there is no
neighbouring face, or the neighbouring face is not visible, the edge casts a shadow. If you think
about the two cases clearly, then you'll see this is true. By drawing a quadrilateral (as two triangles)
comprising of the points of the edge, and the edge projected backwards through the scene you get
the shadow cast by it.

The brute force approach used here just draws to "infinity", and the shadow polygon is clipped
against all the polygons it encounters. This causes piercing, which will stress the video hardware.
For a high-performance modification to this algorithm, you should clip the polygon to the objects
behind it. This is much trickier and has problems of its own, but if that's what you want to do, you
should refer to this Gamasutra article.

The code to do all of that is not as tricky as it sounds. To start with, here is a snippet that loops
through the objects. By the end of it, we have an edge, j, and its neighbouring face, specified by
neighbourIndex.

Jeff Molofee's OpenGL Windows Tutorial #28

Page 6 of 11

 if (face.visible)
 {
 // Go Through Each Edge
 for (int j = 0; j < 3; j++)
 {
 int neighbourIndex = face.neighbourIndices[j];

 // If There Is No Neighbour, Or Its Neighbouring Face Is Not Visible, Then This Edge Casts A Shadow
 if (neighbourIndex == -1 || object.pFaces[neighbourIndex].visible == false)
 {

 // Get The Points On The Edge
 const Point3f& v1 = object.pVertices[face.vertexIndices[j]];
 const Point3f& v2 = object.pVertices[face.vertexIndices[(j+1)%3]];

 // Calculate The Two Vertices In Distance
 Point3f v3, v4;

 v3.x = (v1.x-lightPosition[0])*INFINITY;
 v3.y = (v1.y-lightPosition[1])*INFINITY;
 v3.z = (v1.z-lightPosition[2])*INFINITY;

 v4.x = (v2.x-lightPosition[0])*INFINITY;
 v4.y = (v2.y-lightPosition[1])*INFINITY;
 v4.z = (v2.z-lightPosition[2])*INFINITY;

 // Draw The Quadrilateral (As A Triangle Strip)
 glBegin(GL_TRIANGLE_STRIP);
 glVertex3f(v1.x, v1.y, v1.z);
 glVertex3f(v1.x+v3.x, v1.y+v3.y, v1.z+v3.z);
 glVertex3f(v2.x, v2.y, v2.z);
 glVertex3f(v2.x+v4.x, v2.y+v4.y, v2.z+v4.z);
 glEnd();
 }
 }
 }
 }
}

bool drawGLScene()

 Next, check if there is a visible neighbouring face to this object. If not, then this edge casts a
shadow.

The next segment of code will retrieve the two vertices from the current edge, v1 and v2. Then, it
calculates v3 and v4, which are projected along the vector between the light source and the first
edge. They are scaled to INFINITY , which was set to a very large value.

 I think you'll understand the next section, it justs draws the quadrilateral defined by those four points:

With that, the shadow casting section is completed. But we are not finished yet! What about
drawGLScene? Lets start with the simple bits: clearing the buffers, positioning the light source, and
drawing a sphere:

Jeff Molofee's OpenGL Windows Tutorial #28

Page 7 of 11

{
 GLmatrix16f Minv;
 GLvector4f wlp, lp;

 // Clear Color Buffer, Depth Buffer, Stencil Buffer
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT);

 glLoadIdentity(); // Reset Modelview Matrix
 glLightfv(GL_LIGHT1, GL_POSITION, LightPos); // Position Light1
 glTranslatef(0.0f, 0.0f, -20.0f); // Zoom Into Screen 20 Units
 glTranslatef(SpherePos[0], SpherePos[1], SpherePos[2]); // Position The Sphere
 gluSphere(q, 1.5f, 32, 16); // Draw A Sphere

 glLoadIdentity(); // Reset Matrix
 glRotatef(-yrot, 0.0f, 1.0f, 0.0f); // Rotate By -yrot On Y Axis
 glRotatef(-xrot, 1.0f, 0.0f, 0.0f); // Rotate By -xrot On X Axis
 glTranslatef(-ObjPos[0], -ObjPos[1], -ObjPos[2]); // Move Negative On All Axis Based On ObjPos[] Values (X, Y, Z)
 glGetFloatv(GL_MODELVIEW_MATRIX,Minv); // Retrieve ModelView Matrix (Stores In Minv)
 lp[0] = LightPos[0]; // Store Light Position X In lp[0]
 lp[1] = LightPos[1]; // Store Light Position Y In lp[1]
 lp[2] = LightPos[2]; // Store Light Position Z In lp[2]
 lp[3] = LightPos[3]; // Store Light Direction In lp[3]
 VMatMult(Minv, lp); // We Store Rotated Light Vector In 'lp' Array

 glLoadIdentity(); // Reset Modelview Matrix
 glTranslatef(0.0f, 0.0f, -20.0f); // Zoom Into The Screen 20 Units
 DrawGLRoom(); // Draw The Room
 glTranslatef(ObjPos[0], ObjPos[1], ObjPos[2]); // Position The Object
 glRotatef(xrot, 1.0f, 0.0f, 0.0f); // Spin It On The X Axis By xrot
 glRotatef(yrot, 0.0f, 1.0f, 0.0f); // Spin It On The Y Axis By yrot
 drawObject(obj); // Procedure For Drawing The Loaded Object
 castShadow(obj, lp); // Procedure For Casting The Shadow Based On The Silhouette

 glColor4f(0.7f, 0.4f, 0.0f, 1.0f); // Set Color To An Orange
 glDisable(GL_LIGHTING); // Disable Lighting
 glDepthMask(GL_FALSE); // Disable Depth Mask
 glTranslatef(lp[0], lp[1], lp[2]); // Translate To Light's Position
 // Notice We're Still In Local Coordinate System
 gluSphere(q, 0.2f, 16, 8); // Draw A Little Yellow Sphere (Represents Light)
 glEnable(GL_LIGHTING); // Enable Lighting
 glDepthMask(GL_TRUE); // Enable Depth Mask

Next, we have to calculate the light's position relative to the local coordinate system of the object.
The comments explain each step in detail. Minv stores the object's transformation matrix, however it
is done in reverse, and with negative arguments, so it is actually the inverse of the transformation
matrix. Then lp is created as a copy of the light's position, and multiplied by the matrix. Thus, lp is
the light's position in the object's coordinate system.

 Now, palm off some of the work to draw the room, and the object. Calling castShadow draws the
shadow of the object.

 The following few lines draw a little orange circle where the light is:

 The last part updates the object's position and returns.

Jeff Molofee's OpenGL Windows Tutorial #28

Page 8 of 11

 xrot += xspeed; // Increase xrot By xspeed
 yrot += yspeed; // Increase yrot By yspeed

 glFlush(); // Flush The OpenGL Pipeline
 return TRUE; // Everything Went OK
}

void DrawGLRoom() // Draw The Room (Box)
{
 glBegin(GL_QUADS); // Begin Drawing Quads
 // Floor
 glNormal3f(0.0f, 1.0f, 0.0f); // Normal Pointing Up
 glVertex3f(-10.0f,-10.0f,-20.0f); // Back Left
 glVertex3f(-10.0f,-10.0f, 20.0f); // Front Left
 glVertex3f(10.0f,-10.0f, 20.0f); // Front Right
 glVertex3f(10.0f,-10.0f,-20.0f); // Back Right
 // Ceiling
 glNormal3f(0.0f,-1.0f, 0.0f); // Normal Point Down
 glVertex3f(-10.0f, 10.0f, 20.0f); // Front Left
 glVertex3f(-10.0f, 10.0f,-20.0f); // Back Left
 glVertex3f(10.0f, 10.0f,-20.0f); // Back Right
 glVertex3f(10.0f, 10.0f, 20.0f); // Front Right
 // Front Wall
 glNormal3f(0.0f, 0.0f, 1.0f); // Normal Pointing Away From Viewer
 glVertex3f(-10.0f, 10.0f,-20.0f); // Top Left
 glVertex3f(-10.0f,-10.0f,-20.0f); // Bottom Left
 glVertex3f(10.0f,-10.0f,-20.0f); // Bottom Right
 glVertex3f(10.0f, 10.0f,-20.0f); // Top Right
 // Back Wall
 glNormal3f(0.0f, 0.0f,-1.0f); // Normal Pointing Towards Viewer
 glVertex3f(10.0f, 10.0f, 20.0f); // Top Right
 glVertex3f(10.0f,-10.0f, 20.0f); // Bottom Right
 glVertex3f(-10.0f,-10.0f, 20.0f); // Bottom Left
 glVertex3f(-10.0f, 10.0f, 20.0f); // Top Left
 // Left Wall
 glNormal3f(1.0f, 0.0f, 0.0f); // Normal Pointing Right
 glVertex3f(-10.0f, 10.0f, 20.0f); // Top Front
 glVertex3f(-10.0f,-10.0f, 20.0f); // Bottom Front
 glVertex3f(-10.0f,-10.0f,-20.0f); // Bottom Back
 glVertex3f(-10.0f, 10.0f,-20.0f); // Top Back
 // Right Wall
 glNormal3f(-1.0f, 0.0f, 0.0f); // Normal Pointing Left
 glVertex3f(10.0f, 10.0f,-20.0f); // Top Back
 glVertex3f(10.0f,-10.0f,-20.0f); // Bottom Back
 glVertex3f(10.0f,-10.0f, 20.0f); // Bottom Front
 glVertex3f(10.0f, 10.0f, 20.0f); // Top Front
 glEnd(); // Done Drawing Quads
}

void VMatMult(GLmatrix16f M, GLvector4f v)
{
 GLfloat res[4]; // Hold Calculated Results
 res[0]=M[0]*v[0]+M[4]*v[1]+M[8]*v[2]+M[12]*v[3];
 res[1]=M[1]*v[0]+M[5]*v[1]+M[9]*v[2]+M[13]*v[3];
 res[2]=M[2]*v[0]+M[6]*v[1]+M[10]*v[2]+M[14]*v[3];
 res[3]=M[3]*v[0]+M[7]*v[1]+M[11]*v[2]+M[15]*v[3];

 We did specify a DrawGLRoom function, and here it is - a bunch of rectangles to cast shadows
against:

 And before I forget, here is the VMatMult function which multiplies a vector by a matrix (get that
Math textbook out again!):

Jeff Molofee's OpenGL Windows Tutorial #28

Page 9 of 11

 v[0]=res[0]; // Results Are Stored Back In v[]
 v[1]=res[1];
 v[2]=res[2];
 v[3]=res[3]; // Homogenous Coordinate
}

int InitGLObjects() // Initialize Objects
{
 if (!readObject("Data/Object2.txt", obj)) // Read Object2 Into obj
 {
 return FALSE; // If Failed Return False
 }

 setConnectivity(obj); // Set Face To Face Connectivity

 for (int i=0;i < obj.nFaces;i++) // Loop Through All Object Faces
 calculatePlane(obj, obj.pFaces[i]); // Compute Plane Equations For All Faces

 return TRUE; // Return True
}

void KillGLObjects()
{
 killObject(obj);
}

 The function to load the object is simple, just calling readObject, and then setting up the connectivity
and the plane equations for each face.

 Finally, KillGLObjects is a convenience function so that if you add more objects, you can add them
in a central place.

All of the other functions don't require any further explanantion. I have left out the standard NeHe
tutorial code, as well as all of the variable definitions and the keyboard processing function. The
commenting alone explains these sufficiently.

Some things to note about the tutorial:

l The sphere doesn't stop shadows being projected on the wall. In reality, the sphere should
also be casting a shadow, so seeing the one on the wall won't matter, it's hidden. It's just
there to see what happens on curved surfaces :)

l If you are noticing extremely slow frame rates, try switching to fullscreen mode, or setting your
desktop colour depth to 32bpp.

l Arseny L. writes: If you are having problems with a TNT2 in Windowed mode, make sure
your desktop color depth is not set to 16bit. In 16bit color mode, the stencil buffer is emulated,
resulting in sluggish performance. There are no problems in 32bit mode (I have a TNT2 Ultra
and I checked it).

I've got to admit this was a lengthy task to write out this tutorial. It gives you full appreciation for the
work that Jeff puts in! I hope you enjoy it, and give a huge thanks to Banu who wrote the original
code! IF there is anything that needs further explaining in here, you are welcome to contact me
(Brett), at brettporter@yahoo.com.

Banu Cosmin (Choko) - Original Code
Brett Porter - HTML / Code Modifications
Jeff Molofee (NeHe) - HTML Clean Up / Base Code

* DOWNLOAD Visual C++ Code For This Lesson.

Jeff Molofee's OpenGL Windows Tutorial #28

Page 10 of 11

* DOWNLOAD Mac OS Code For This Lesson. (Conversion by Morgan Aldridge)

Jeff Molofee's OpenGL Windows Tutorial #28

Page 11 of 11

 Lesson 29

Bezier Patches

Written by: David Nikdel (ogapo@ithink.net)

This tutorial is intended to introduce you to Bezier Surfaces in the hopes that someone more artistic
than myself will do something really cool with them and show all of us. This is not intended as a
complete Bezier patch library, but more as proof of concept code to get you familiar with how these
curved surfaces actually work. Also, as this is a very informal piece, I may have occasional lapses in
correct terminology in favor of comprehensability; I hope this sits well with everyone. Finally, to those
of you already familiar with Beziers who are just reading this to see if I screw up, shame on you ;-),
but if you find anything wrong by all means let me or NeHe know, after all no one's perfect, eh? Oh,
and one more thing, none of this code is optimised beyond my normal programming technique, this
is by design. I want everyone to be able to see exactly what is going on. Well, I guess that's enough
of an intro. On with the show!

The Math - ::evil music:: (warning, kinda long section)

Ok, it will be very hard to understand Beziers without at least a basic understanding of the math
behind it, however, if you just don't feel like reading this section or already know the math, you can
skip it. First I will start out by describing the Bezier curve itself then move on to how to create a
Bezier Patch.

Odds are, if you've ever used a graphics program you are already familiar with Bezier curves,
perhaps not by that name though. They are the primary method of drawing curved lines and are
commonly represented as a series of points each with 2 points representing the tangent at that point
from the left and right. Here's what one looks like:

This is the most basic Bezier curve possible (longer ones are made by attaching many of these
together (many times without the user realizing it)). This curve is actually defined by only 4 points,
those would be the 2 ending control points and the 2 middle control points. To the computer, all the
points are the same, but to aid in design we often connect the first and the last two, respectively,
because those lines will always be tangent to the endpoint. The curve is a parametric curve and is
drawn by finding any number of points evenly spaced along the curve and connecting them with
straight lines. In this way you can control the resolution of the patch (and the amount of
computation). The most common way to use this is to tesselate it less at a farther distance and more
at a closer distance so that, to the viewer, it always appears to be a perfectly curved surface with the
lowest possible speed hit.

Bezier curves are based on a basis function from which more complicated versions are derived.
Here's the function:

t + (1 - t) = 1

Jeff Molofee's OpenGL Windows Tutorial #29

Page 1 of 10

#include <windows.h> // Header File For Windows
#include <math.h> // Header File For Math Library Routines
#include <stdio.h> // Header File For Standard I/O Routines
#include <stdlib.h> // Header File For Standard Library
#include <gl\gl.h> // Header File For The OpenGL32 Library
#include <gl\glu.h> // Header File For The GLu32 Library
#include <gl\glaux.h> // Header File For The Glaux Library

typedef struct point_3d { // Structure For A 3-Dimensional Point (NEW)
 double x, y, z;
} POINT_3D;

typedef struct bpatch { // Structure For A 3rd Degree Bezier Patch (NEW)
 POINT_3D anchors[4][4]; // 4x4 Grid Of Anchor Points
 GLuint dlBPatch; // Display List For Bezier Patch

Sounds simple enough huh? Well it really is, this is the Bezier most basic Bezier curve, a 1st degree
curve. As you may have guessed from the terminology, the Bezier curves are polynomials, and as
we remember from algebra, a 1st degree polynomial is just a straight line; not very interesting. Well,
since the basis function is true for all numbers t, we can square, cube, whatever, each side and it will
still be true right? Well, lets try cubing it.

(t + (1-t))^3 = 1^3

t^3 + 3*t^2*(1-t) + 3*t*(1 -t)^2 + (1-t)^3 = 1

This is the equation we use to calculate the most common Bezier, the 3rd degree Bezier curve (yes,
it's a strange phenomenon, but sometimes when you're doing math the functions just come out all
rainbow colored ; -)). This is most common for two reasons, a) it's the lowest degree polynomial that
need not necesarily lie in a plane (there are 4 control points) and b) the tangent lines on the sides
are not dependant on one another (with a 2nd degree there would be only 3 control points). So do
you see the Bezier curve yet? Hehe, me neither, that's because I still need to add one thing.

Ok, since the entire left side is equal to 1, it's safe to assume that if you add all the components they
should still equal one. Does this sound like it could be used to descide how much of each control
point to use in calculating a point on the curve? (hint: just say yes ;-)) Well you're right! When we
want to calculate the value of a point some percent along the curve we simply multiply each part by
a control point (as a vector) and find the sum. Generally, we'll work with 0 <= t <= 1, but it's not
technically necesary. Confused yet? Here's the function:

P1*t^3 + P2*3*t^2*(1-t) + P3*3*t*(1-t)^2 + P4*(1-t)^3 = 1

Because polynomials are always continuous, this makes for a good way to morp between the 4
points. The only points it actually reaches though are P1 and P4, when t = 1 and 0 respectively.

Now, that's all well and good, but how can I use these in 3D you ask? Well it's actually quite simple,
in order to form a Bezier patch, you need 16 control points (4*4), and 2 variables t and v. What you
do from there is calculate a point at v along 4 of the parallel curves then use those 4 points to make
a new curve and calculate t along that curve. By calculating enough of these points, we can draw
triangle strips to connect them, thus drawing the Bezier patch.

Well, I suppose that's enough math for now, on to the code!

Jeff Molofee's OpenGL Windows Tutorial #29

Page 2 of 10

 GLuint texture; // Texture For The Patch
} BEZIER_PATCH;

HDC hDC=NULL; // Private GDI Device Context
HGLRC hRC=NULL; // Permanent Rendering Context
HWND hWnd=NULL; // Holds Our Window Handle
HINSTANCE hInstance; // Holds The Instance Of The Application

DEVMODE DMsaved; // Saves The Previous Screen Settings (NEW)

bool keys[256]; // Array Used For The Keyboard Routine
bool active=TRUE; // Window Active Flag Set To TRUE By Default
bool fullscreen=TRUE; // Fullscreen Flag Set To Fullscreen Mode By Default

GLfloat rotz = 0.0f; // Rotation About The Z Axis
BEZIER_PATCH mybezier; // The Bezier Patch We're Going To Use (NEW)
BOOL showCPoints=TRUE; // Toggles Displaying The Control Point Grid (NEW)
int divs = 7; // Number Of Intrapolations (Controls Poly Resolution)

LRESULT CALLBACK WndProc(HWND, UINT, WPARAM, LPARAM); // Declaration For WndProc

// Adds 2 Points. Don't Just Use '+' ;)
POINT_3D pointAdd(POINT_3D p, POINT_3D q) {
 p.x += q.x; p.y += q.y; p.z += q.z;
 return p;
}

// Multiplies A Point And A Constant. Don't Just Use '*'
POINT_3D pointTimes(double c, POINT_3D p) {
 p.x *= c; p.y *= c; p.z *= c;
 return p;
}

// Function For Quick Point Creation
POINT_3D makePoint(double a, double b, double c) {
 POINT_3D p;
 p.x = a; p.y = b; p.z = c;
 return p;
}

// Calculates 3rd Degree Polynomial Based On Array Of 4 Points
// And A Single Variable (u) Which Is Generally Between 0 And 1
POINT_3D Bernstein(float u, POINT_3D *p) {
 POINT_3D a, b, c, d, r;

 a = pointTimes(pow(u,3), p[0]);
 b = pointTimes(3*pow(u,2)*(1-u), p[1]);
 c = pointTimes(3*u*pow((1-u),2), p[2]);
 d = pointTimes(pow((1-u),3), p[3]);

 r = pointAdd(pointAdd(a, b), pointAdd(c, d));

 return r;
}

 The following are just a few quick functions for some simple vector math. If you're a fan of C++ you
might consider using a point class (just make sure it's 3d).

This is basically just the 3rd degree basis function written in C, it takes a variable u and an array of 4
points and computes a point on the curve. By stepping u in equal increments between 0 and 1, we'll
get a nice approximation of the curve.

Jeff Molofee's OpenGL Windows Tutorial #29

Page 3 of 10

// Generates A Display List Based On The Data In The Patch
// And The Number Of Divisions
GLuint genBezier(BEZIER_PATCH patch, int divs) {
 int u = 0, v;
 float py, px, pyold;
 GLuint drawlist = glGenLists(1); // Make The Display List
 POINT_3D temp[4];
 POINT_3D *last = (POINT_3D*)malloc(sizeof(POINT_3D)*(divs+1));
 // Array Of Points To Mark The First Line Of Polys

 if (patch.dlBPatch != NULL) // Get Rid Of Any Old Display Lists
 glDeleteLists(patch.dlBPatch, 1);

 temp[0] = patch.anchors[0][3]; // The First Derived Curve (Along X-Axis)
 temp[1] = patch.anchors[1][3];
 temp[2] = patch.anchors[2][3];
 temp[3] = patch.anchors[3][3];

 for (v=0;v<=divs;v++) { // Create The First Line Of Points
 px = ((float)v)/((float)divs); // Percent Along Y-Axis
 // Use The 4 Points From The Derived Curve To Calculate The Points Along That Curve
 last[v] = Bernstein(px, temp);
 }

 glNewList(drawlist, GL_COMPILE); // Start A New Display List
 glBindTexture(GL_TEXTURE_2D, patch.texture); // Bind The Texture

 for (u=1;u<=divs;u++) {
 py = ((float)u)/((float)divs); // Percent Along Y-Axis
 pyold = ((float)u-1.0f)/((float)divs); // Percent Along Old Y Axis

 temp[0] = Bernstein(py, patch.anchors[0]); // Calculate New Bezier Points
 temp[1] = Bernstein(py, patch.anchors[1]);
 temp[2] = Bernstein(py, patch.anchors[2]);
 temp[3] = Bernstein(py, patch.anchors[3]);

 glBegin(GL_TRIANGLE_STRIP); // Begin A New Triangle Strip

 for (v=0;v<=divs;v++) {
 px = ((float)v)/((float)divs); // Percent Along The X-Axis

 glTexCoord2f(pyold, px); // Apply The Old Texture Coords
 glVertex3d(last[v].x, last[v].y, last[v].z); // Old Point

 last[v] = Bernstein(px, temp); // Generate New Point
 glTexCoord2f(py, px); // Apply The New Texture Coords
 glVertex3d(last[v].x, last[v].y, last[v].z); // New Point
 }

 glEnd(); // END The Triangle Strip
 }

This function does the lion's share of the work by generating all the triangle strips and storing them
in a display list. We do this so that we don't have to recalculate the patch each frame, only when it
changes. By the way, a cool effect you might want to try might be to use the morphing tutorial to
morph the patch's control points. This would yeild a very cool smooth, organic, morphing effect for
relatively little overhead (you only morph 16 points, but you have to recalculate). The "last" array is
used to keep the previous line of points (since a triangle strip needs both rows). Also, texture
coordinates are calculated by using the u and v values as the percentages (planar mapping).

One thing we don't do is calculate the normals for lighting. When it comes to this, you basically have
two options. The first is to find the center of each triangle, then use a bit of calculus and calculate the
tangent on both the x and y axes, then do the cross product to get a vector perpendicular to both,
THEN normalize the vector and use that as the normal. OR (yes, there is a faster way) you can
cheat and just use the normal of the triangle (calculated your favorite way) to get a pretty good
approximation. I prefer the latter; the speed hit, in my opinion, isn't worth the extra little bit of realism.

Jeff Molofee's OpenGL Windows Tutorial #29

Page 4 of 10

 glEndList(); // END The List

 free(last); // Free The Old Vertices Array
 return drawlist; // Return The Display List
}

void initBezier(void) {
 mybezier.anchors[0][0] = makePoint(-0.75, -0.75, -0.50); // Set The Bezier Vertices
 mybezier.anchors[0][1] = makePoint(-0.25, -0.75, 0.00);
 mybezier.anchors[0][2] = makePoint(0.25, -0.75, 0.00);
 mybezier.anchors[0][3] = makePoint(0.75, -0.75, -0.50);
 mybezier.anchors[1][0] = makePoint(-0.75, -0.25, -0.75);
 mybezier.anchors[1][1] = makePoint(-0.25, -0.25, 0.50);
 mybezier.anchors[1][2] = makePoint(0.25, -0.25, 0.50);
 mybezier.anchors[1][3] = makePoint(0.75, -0.25, -0.75);
 mybezier.anchors[2][0] = makePoint(-0.75, 0.25, 0.00);
 mybezier.anchors[2][1] = makePoint(-0.25, 0.25, -0.50);
 mybezier.anchors[2][2] = makePoint(0.25, 0.25, -0.50);
 mybezier.anchors[2][3] = makePoint(0.75, 0.25, 0.00);
 mybezier.anchors[3][0] = makePoint(-0.75, 0.75, -0.50);
 mybezier.anchors[3][1] = makePoint(-0.25, 0.75, -1.00);
 mybezier.anchors[3][2] = makePoint(0.25, 0.75, -1.00);
 mybezier.anchors[3][3] = makePoint(0.75, 0.75, -0.50);
 mybezier.dlBPatch = NULL; // Go Ahead And Initialize This To NULL
}

// Load Bitmaps And Convert To Textures

BOOL LoadGLTexture(GLuint *texPntr, char* name)
{
 BOOL success = FALSE;
 AUX_RGBImageRec *TextureImage = NULL;

 glGenTextures(1, texPntr); // Generate 1 Texture

 FILE* test=NULL;
 TextureImage = NULL;

 test = fopen(name, "r"); // Test To See If The File Exists
 if (test != NULL) { // If It Does
 fclose(test); // Close The File
 TextureImage = auxDIBImageLoad(name); // And Load The Texture
 }

 if (TextureImage != NULL) { // If It Loaded
 success = TRUE;

 // Typical Texture Generation Using Data From The Bitmap
 glBindTexture(GL_TEXTURE_2D, *texPntr);
 glTexImage2D(GL_TEXTURE_2D, 0, 3, TextureImage->sizeX, TextureImage->sizeY, 0, GL_RGB, GL_UNSIGNED_BYTE, TextureImage
 glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_LINEAR);
 glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_LINEAR);
 }

 if (TextureImage->data)
 free(TextureImage->data);

 Here we're just loading the matrix with some values I've picked that I think look cool. Feel free to
screw around with these and see what it looks like. :-)

 This is basically just an optimised routine to load a single bitmap. It can easily be used to load an
array of em just by putting it in a simple loop.

Jeff Molofee's OpenGL Windows Tutorial #29

Page 5 of 10

 return success;
}

int InitGL(GLvoid) // All Setup For OpenGL Goes Here
{
 glEnable(GL_TEXTURE_2D); // Enable Texture Mapping
 glShadeModel(GL_SMOOTH); // Enable Smooth Shading
 glClearColor(0.05f, 0.05f, 0.05f, 0.5f); // Black Background
 glClearDepth(1.0f); // Depth Buffer Setup
 glEnable(GL_DEPTH_TEST); // Enables Depth Testing
 glDepthFunc(GL_LEQUAL); // The Type Of Depth Testing To Do
 glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST); // Really Nice Perspective Calculations

 initBezier(); // Initialize the Bezier's Control Grid (NEW)
 LoadGLTexture(&(mybezier.texture), "./Data/NeHe.bmp"); // Load The Texture (NEW)
 mybezier.dlBPatch = genBezier(mybezier, divs); // Generate The Patch (NEW)

 return TRUE; // Initialization Went OK
}

int DrawGLScene(GLvoid) { // Here's Where We Do All The Drawing
 int i, j;
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Clear Screen And Depth Buffer
 glLoadIdentity(); // Reset The Current Modelview Matrix
 glTranslatef(0.0f,0.0f,-4.0f); // Move Left 1.5 Units And Into The Screen 6.0
 glRotatef(-75.0f,1.0f,0.0f,0.0f);
 glRotatef(rotz,0.0f,0.0f,1.0f); // Rotate The Triangle On The Z-Axis

 glCallList(mybezier.dlBPatch); // Call The Bezier's Display List
 // This Need Only Be Updated When The Patch Changes

 if (showCPoints) { // If Drawing The Grid Is Toggled On
 glDisable(GL_TEXTURE_2D);
 glColor3f(1.0f,0.0f,0.0f);
 for(i=0;i<4;i++) { // Draw The Horizontal Lines
 glBegin(GL_LINE_STRIP);
 for(j=0;j<4;j++)
 glVertex3d(mybezier.anchors[i][j].x, mybezier.anchors[i][j].y, mybezier.anchors[i][j].z);
 glEnd();
 }
 for(i=0;i<4;i++) { // Draw The Vertical Lines
 glBegin(GL_LINE_STRIP);
 for(j=0;j<4;j++)
 glVertex3d(mybezier.anchors[j][i].x, mybezier.anchors[j][i].y, mybezier.anchors[j][i].z);
 glEnd();
 }
 glColor3f(1.0f,1.0f,1.0f);
 glEnable(GL_TEXTURE_2D);
 }

 return TRUE; // Keep Going
}

 Just adding the patch initialization here. You would do this whenever you create a patch. Again, this
might be a cool place to use C++ (bezier class?).

 First call the bezier's display list. Then (if the outlines are on) draw the lines connecting the control
points. You can toggle these by pressing SPACE.

This function contains some modified code to make your projects more compatable. It doesn't have
anything to do with Bezier curves, but it does fix a problem with switching back the resolution after

Jeff Molofee's OpenGL Windows Tutorial #29

Page 6 of 10

GLvoid KillGLWindow(GLvoid) // Properly Kill The Window
{
 if (fullscreen) // Are We In Fullscreen Mode?
 {
 if (!ChangeDisplaySettings(NULL,CDS_TEST)) { // If The Shortcut Doesn't Work (NEW)
 ChangeDisplaySettings(NULL,CDS_RESET); // Do It Anyway (To Get The Values Out Of The Registry)
 ChangeDisplaySettings(&DMsaved,CDS_RESET); // Change It To The Saved Settings (NEW)
 } else {
 ChangeDisplaySettings(NULL,CDS_RESET); // If It Works, Go Right Ahead (NEW)
 }

 ShowCursor(TRUE); // Show Mouse Pointer
 }

 if (hRC) // Do We Have A Rendering Context?
 {
 if (!wglMakeCurrent(NULL,NULL)) // Are We Able To Release The DC And RC Contexts?
 {
 MessageBox(NULL,"Release Of DC And RC Failed.","SHUTDOWN ERROR",MB_OK | MB_ICONINFORMATION);
 }

 if (!wglDeleteContext(hRC)) // Are We Able To Delete The RC?
 {
 MessageBox(NULL,"Release Rendering Context Failed.","SHUTDOWN ERROR",MB_OK | MB_ICONINFORMATION);
 }
 hRC=NULL; // Set RC To NULL
 }

 if (hDC && !ReleaseDC(hWnd,hDC)) // Are We Able To Release The DC
 {
 MessageBox(NULL,"Release Device Context Failed.","SHUTDOWN ERROR",MB_OK | MB_ICONINFORMATION);
 hDC=NULL; // Set DC To NULL
 }

 if (hWnd && !DestroyWindow(hWnd)) // Are We Able To Destroy The Window?
 {
 MessageBox(NULL,"Could Not Release hWnd.","SHUTDOWN ERROR",MB_OK | MB_ICONINFORMATION);
 hWnd=NULL; // Set hWnd To NULL
 }

 if (!UnregisterClass("OpenGL",hInstance)) // Are We Able To Unregister Class
 {
 MessageBox(NULL,"Could Not Unregister Class.","SHUTDOWN ERROR",MB_OK | MB_ICONINFORMATION);
 hInstance=NULL; // Set hInstance To NULL
 }
}

/* This Code Creates Our OpenGL Window. Parameters Are: *
 * title - Title To Appear At The Top Of The Window *
 * width - Width Of The GL Window Or Fullscreen Mode *
 * height - Height Of The GL Window Or Fullscreen Mode *
 * bits - Number Of Bits To Use For Color (8/16/24/32) *
 * fullscreenflag - Use Fullscreen Mode (TRUE) Or Windowed Mode (FALSE) */

BOOL CreateGLWindow(char* title, int width, int height, int bits, bool fullscreenflag)
{

fullscreen mode with some video cards (including mine, a crappy old ATI Rage PRO, and a few
others). I hope, you'll use this from now on so me and others with similar cards can view your cool
examples GL code properly. To make these modifications make the changes in KillGLWindow(),
make sure and define DMsaved, and make the one line change in CreateGLWindow() (it's marked).

 Just added the EnumDisplaySettings() command here to save the old display settings. (part of the
old graphics card fix).

Jeff Molofee's OpenGL Windows Tutorial #29

Page 7 of 10

 GLuint PixelFormat; // Holds The Results After Searching For A Match
 WNDCLASS wc; // Windows Class Structure
 DWORD dwExStyle; // Window Extended Style
 DWORD dwStyle; // Window Style
 RECT WindowRect; // Grabs Rectangle Upper Left / Lower Right Values
 WindowRect.left=(long)0; // Set Left Value To 0
 WindowRect.right=(long)width; // Set Right Value To Requested Width
 WindowRect.top=(long)0; // Set Top Value To 0
 WindowRect.bottom=(long)height; // Set Bottom Value To Requested Height

 fullscreen=fullscreenflag; // Set The Global Fullscreen Flag

 hInstance = GetModuleHandle(NULL); // Grab An Instance For Our Window
 wc.style = CS_HREDRAW | CS_VREDRAW | CS_OWNDC; // Redraw On Size, And Own DC For Window
 wc.lpfnWndProc = (WNDPROC) WndProc; // WndProc Handles Messages
 wc.cbClsExtra = 0; // No Extra Window Data
 wc.cbWndExtra = 0; // No Extra Window Data
 wc.hInstance = hInstance; // Set The Instance
 wc.hIcon = LoadIcon(NULL, IDI_WINLOGO); // Load The Default Icon
 wc.hCursor = LoadCursor(NULL, IDC_ARROW); // Load The Arrow Pointer
 wc.hbrBackground = NULL; // No Background Required For GL
 wc.lpszMenuName = NULL; // We Don't Want A Menu
 wc.lpszClassName = "OpenGL"; // Set The Class Name

 EnumDisplaySettings(NULL, ENUM_CURRENT_SETTINGS, &DMsaved); // Save The Current Display State

 if (fullscreen) // Attempt Fullscreen Mode?
 {
 DEVMODE dmScreenSettings; // Device Mode
 memset(&dmScreenSettings,0,sizeof(dmScreenSettings)); // Makes Sure Memory's Cleared
 dmScreenSettings.dmSize=sizeof(dmScreenSettings); // Size Of The Devmode Structure
 dmScreenSettings.dmPelsWidth = width; // Selected Screen Width
 dmScreenSettings.dmPelsHeight = height; // Selected Screen Height
 dmScreenSettings.dmBitsPerPel = bits; // Selected Bits Per Pixel
 dmScreenSettings.dmFields=DM_BITSPERPEL|DM_PELSWIDTH|DM_PELSHEIGHT;

 ... Code Cut To Save Space (No Further Changes To This Function) ...

 return TRUE; // Success
}

int WINAPI WinMain(HINSTANCE hInstance, // Instance
 HINSTANCE hPrevInstance, // Previous Instance
 LPSTR lpCmdLine, // Command Line Parameters
 int nCmdShow) // Window Show State
{
 MSG msg; // Windows Message Structure
 BOOL done=FALSE; // Bool Variable To Exit Loop

 // Ask The User Which Screen Mode They Prefer
 if (MessageBox(NULL,"Would You Like To Run In Fullscreen Mode?", "Start FullScreen?",MB_YESNO|MB_ICONQUESTION)==IDNO)
 {
 fullscreen=FALSE; // Windowed Mode
 }

 // Create Our OpenGL Window
 if (!CreateGLWindow("NeHe's Solid Object Tutorial",640,480,16,fullscreen))
 {
 return 0; // Quit If Window Was Not Created
 }

 while(!done) // Loop That Runs While done=FALSE
 {
 if (PeekMessage(&msg,NULL,0,0,PM_REMOVE)) // Is There A Message Waiting?

 All I did here was add commands to rotate the patch, raise/lower the resolution, and toggle the
control lines.

Jeff Molofee's OpenGL Windows Tutorial #29

Page 8 of 10

 {
 if (msg.message==WM_QUIT) // Have We Received A Quit Message?
 {
 done=TRUE; // If So done=TRUE
 }
 else // If Not, Deal With Window Messages
 {
 TranslateMessage(&msg); // Translate The Message
 DispatchMessage(&msg); // Dispatch The Message
 }
 }
 else // If There Are No Messages
 {
 // Draw The Scene. Watch For ESC Key And Quit Messages From DrawGLScene()
 if ((active && !DrawGLScene()) || keys[VK_ESCAPE]) // Active? Was There A Quit Received?
 {
 done=TRUE; // ESC or DrawGLScene Signalled A Quit
 }
 else // Not Time To Quit, Update Screen
 {
 SwapBuffers(hDC); // Swap Buffers (Double Buffering)
 }

 if (keys[VK_LEFT]) rotz -= 0.8f; // Rotate Left (NEW)
 if (keys[VK_RIGHT]) rotz += 0.8f; // Rotate Right (NEW)
 if (keys[VK_UP]) { // Resolution Up (NEW)
 divs++;
 mybezier.dlBPatch = genBezier(mybezier, divs); // Update The Patch
 keys[VK_UP] = FALSE;
 }
 if (keys[VK_DOWN] && divs > 1) { // Resolution Down (NEW)
 divs--;
 mybezier.dlBPatch = genBezier(mybezier, divs); // Update The Patch
 keys[VK_DOWN] = FALSE;
 }
 if (keys[VK_SPACE]) { // SPACE Toggles showCPoints (NEW)
 showCPoints = !showCPoints;
 keys[VK_SPACE] = FALSE;
 }

 if (keys[VK_F1]) // Is F1 Being Pressed?
 {
 keys[VK_F1]=FALSE; // If So Make Key FALSE
 KillGLWindow(); // Kill Our Current Window
 fullscreen=!fullscreen; // Toggle Fullscreen / Windowed Mode
 // Recreate Our OpenGL Window
 if (!CreateGLWindow("NeHe's Solid Object Tutorial",640,480,16,fullscreen))
 {
 return 0; // Quit If Window Was Not Created
 }
 }
 }
 }

 // Shutdown
 KillGLWindow(); // Kill The Window
 return (msg.wParam); // Exit The Program
}

Well, I hope this tutorial has been enlightening and you all now love Bezier curves as much as I do ;-
). If you like this tutorial I may write another one on NURBS curves if anyone's interested. Please e-
mail me and let me know what you thought of this tutorial.

About The Author: David Nikdel is currently 18 and a senior at Bartow Senior High School. His
current projects include a research paper on curved surfaces in 3D graphics, an OpenGL based
game called Blazing Sands and being lazy. His hobbies include programming, football, and
paintballing. He will (hopefully) be a freshman at Georgia Tech next year.

Jeff Molofee's OpenGL Windows Tutorial #29

Page 9 of 10

David Nikdel - Code
Jeff Molofee (NeHe) - HTML

* DOWNLOAD Visual C++ Code For This Lesson.
* DOWNLOAD Visual C++ / OpenIL Code For This Lesson. (Conversion by Denton Woods)
* DOWNLOAD Mac OS Code For This Lesson. (Conversion by Morgan Aldridge)
* DOWNLOAD Irix / GLUT Code For This Lesson. (Conversion by Rob Fletcher)
* DOWNLOAD Delphi Code For This Lesson. (Conversion by Steven Brom)
* DOWNLOAD MacOS X / GLUT Code For This Lesson. (Conversion by Ben Reichardt)

Jeff Molofee's OpenGL Windows Tutorial #29

Page 10 of 10

#include <windows.h> // Header File For Windows
#include <gl\gl.h> // Header File For The OpenGL32 Library
#include <gl\glu.h> // Header File For The GLu32 Library
#include <stdio.h> // Header File For File Operation Needed

HDC hDC=NULL; // Private GDI Device Context
HGLRC hRC=NULL; // Permanent Rendering Context
HWND hWnd=NULL; // Holds Our Window Handle
HINSTANCE hInstance = NULL; // Holds The Instance Of The Application

bool keys[256]; // Array Used For The Keyboard Routine
bool active=TRUE; // Window Active Flag Set To TRUE By Default
bool fullscreen=TRUE; // Fullscreen Flag Set To Fullscreen Mode By Default

DEVMODE DMsaved; // Saves The Previous Screen Settings (NEW)

GLfloat xrot; // X Rotation
GLfloat yrot; // Y Rotation
GLfloat zrot; // Z Rotation

GLuint texture[1]; // Storage For 1 Texture

typedef struct Texture_Image
{
 int width; // Width Of Image In Pixels
 int height; // Height Of Image In Pixels
 int format; // Number Of Bytes Per Pixel
 unsigned char *data; // Texture Data
} TEXTURE_IMAGE;

 Lesson 30

This tutorial was originally written by Andreas Löffler. He also wrote all of the original HTML for the
tutorial. A few days later Rob Fletcher emailed me an Irix version of lesson 30. In his version he
rewrote most of the code. So I ported Rob's Irix / GLUT code to Visual C++ / Win32. I then modified
the message loop code, and the fullscreen code. When the program is minimized it should use 0%
of the CPU (or close to). When switching to and from fullscreen mode, most of the problems should
be gone (screen not restoring properly, messed up display, etc).

Andreas tutorial is now better than ever. Unfortunately, the code has been modifed quite a bit, so all
of the HTML has been rewritten by myself. Huge Thanks to Andreas for getting the ball rolling, and
working his butt off to make a killer tutorial. Thanks to Rob for the modifications!

Lets begin... We create a device mode structure called DMsaved. We will use this structure to store
information about the users default desktop resolution, color depth, etc., before we switch to
fullscreen mode. More on this later! Notice we only allocate enough storage space for one texture
(texture[1]).

Now for the fun stuff. We create a structure called TEXTURE_IMAGE . The structure contains
information about our images width, height, and format (bytes per pixel). data is a pointer to
unsigned char. Later on data will point to our image data.

Jeff Molofee's OpenGL Windows Tutorial #30

Page 1 of 12

typedef TEXTURE_IMAGE *P_TEXTURE_IMAGE; // A Pointer To The Texture Image Data Type

P_TEXTURE_IMAGE t1; // Pointer To The Texture Image Data Type
P_TEXTURE_IMAGE t2; // Pointer To The Texture Image Data Type

LRESULT CALLBACK WndProc(HWND, UINT, WPARAM, LPARAM); // Declaration For WndProc

// Allocate An Image Structure And Inside Allocate Its Memory Requirements
P_TEXTURE_IMAGE AllocateTextureBuffer(GLint w, GLint h, GLint f)
{
 P_TEXTURE_IMAGE ti=NULL; // Pointer To Image Struct
 unsigned char *c=NULL; // Pointer To Block Memory For Image

 ti = (P_TEXTURE_IMAGE)malloc(sizeof(TEXTURE_IMAGE)); // One Image Struct Please

 if(ti != NULL) {
 ti->width = w; // Set Width
 ti->height = h; // Set Height
 ti->format = f; // Set Format

 c = (unsigned char *)malloc(w * h * f);

 if (c != NULL) {
 ti->data = c;
 }

We then create a pointer called P_TEXTURE_IMAGE to the TEXTURE_IMAGE data type. The
variables t1 and t2 are of type P_TEXTURE_IMAGE where P_TEXTURE_IMAGE is a redefined
type of pointer to TEXTURE_IMAGE.

Below is the code to allocate memory for a texture. When we call this code, we pass it the width,
height and bytes per pixel information of the image we plan to load. ti is a pointer to our
TEXTURE_IMAGE data type. It's given a NULL value. c is a pointer to unsigned char, it is also set
to NULL.

Here is where we allocate the memory for our image structure. If everything goes well, ti will point to
the allocated memory.

After allocating the memory, and checking to make sure ti is not equal to NULL, we can fill the
structure with the image attributes. First we set the width (w), then the height (h) and lastly the
format (f). Keep in mind format is bytes per pixel.

 Now we need to allocate memory for the actual image data. The calculation is easy! We multiply the
width of the image (w) by the height of the image (h) then multiply by the format (f - bytes per pixel).

We check to see if everything went ok. If the value in c is not equal to NULL we set the data variable
in our structure to point to the newly allocated memory.

If there was a problem, we pop up an error message on the screen letting the user know that the
program was unable to allocate memory for the texture buffer. NULL is returned.

Jeff Molofee's OpenGL Windows Tutorial #30

Page 2 of 12

 else {
 MessageBox(NULL,"Could Not Allocate Memory For A Texture Buffer","BUFFER ERROR",MB_OK | MB_ICONINFORMATION);
 return NULL;
 }
 }

 else
 {
 MessageBox(NULL,"Could Not Allocate An Image Structure","IMAGE STRUCTURE ERROR",MB_OK | MB_ICONINFORMATION);
 return NULL;
 }
 return ti; // Return Pointer To Image Struct
}

// Free Up The Image Data
void DeallocateTexture(P_TEXTURE_IMAGE t)
{
 if (t->data)
 {
 free(t->data); // Free Its Image Buffer
 }

 if (t)
 {
 free(t); // Free Itself
 }
}

// Read A .RAW File In To The Allocated Image Buffer Using data In The Image Structure Header.
// Flip The Image Top To Bottom. Returns 0 For Failure Of Read, Or Number Of Bytes Read.
int ReadTextureData (char *filename, P_TEXTURE_IMAGE buffer)
{
 FILE *f;
 int i,j,k,done=0;
 int stride = buffer->width * buffer->format; // Size Of A Row (Width * Bytes Per Pixel)
 unsigned char *p = NULL;

 f = fopen(filename, "rb"); // Open "filename" For Reading Bytes
 if(f != NULL) // If File Exists
 {

If anything went wrong when we were trying to allocate memory for our image structure, the code
below would pop up an error message and return NULL.

If there were no problems, we return ti which is a pointer to our newly allocated image structure.
Whew... Hope that all made sense.

When it comes time to release the memory, the code below will deallocate the texture buffer and
then free the image structure. t is a pointer to the TEXTURE_IMAGE data structure we want to
deallocate.

Now we read in our .RAW image. We pass the filename and a pointer to the image structure we
want to load the image into. We set up our misc variables, and then calculate the size of a row. We
figure out the size of a row by multiplying the width of our image by the format (bytes per pixel). So
if the image was 256 pixels wide and there were 4 bytes per pixel, the width of a row would be 1024
bytes. We store the width of a row in stride.

We set up a pointer (p), and then attempt to open the file.

Jeff Molofee's OpenGL Windows Tutorial #30

Page 3 of 12

 for(i = buffer->height-1; i >= 0 ; i--) // Loop Through Height (Bottoms Up
 {
 p = buffer->data + (i * stride);
 for (j = 0; j < buffer->width ; j++) // Loop Through Width
 {

 for (k = 0 ; k < buffer->format-1 ; k++, p++, done++)
 {
 *p = fgetc(f); // Read Value From File And Store In Memory
 }
 *p = 255; p++; // Store 255 In Alpha Channel And Increase Pointer
 }
 }
 fclose(f); // Close The File
 }

 else // Otherwise
 {
 MessageBox(NULL,"Unable To Open Image File","IMAGE ERROR",MB_OK | MB_ICONINFORMATION);
 }
 return done; // Returns Number Of Bytes Read In
}

If the file exists, we set up the loops to read in our texture. i starts at the bottom of the image and
moves up a line at a time. We start at the bottom so that the image is flipped the right way. .RAW
images are stored upside down. We have to set our pointer now so that the data is loaded into the
proper spot in the image buffer. Each time we move up a line (i is decreased) we set the pointer to
the start of the new line. data is where our image buffer starts, and to move an entire line at a time in
the buffer, multiply i by stride. Remember that stride is the length of a line in bytes, and i is the
current line. So by multiplying the two, we move an entire line at a time.

The j loop moves from left (0) to right (width of line in pixels, not bytes).

The k loop reads in our bytes per pixel. So if format (bytes per pixel) is 4, k loops from 0 to 2 which
is bytes per pixel minus one (format-1). The reason we subtract one is because most raw images
don't have an alpha value. We want to make the 4th byte our alpha value, and we want to set the
alpha value manually.

Notice in the loop we also increase the pointer (p) and a variable called done. More about done
later.

the line inside the loop reads a character from our file and stores it in the texture buffer at our current
pointer location. If our image has 4 bytes per pixel, the first 3 bytes will be read from the .RAW file
(format-1), and the 4th byte will be manually set to 255. After we set the 4th byte to 255 we increase
the pointer location by one so that our 4th byte is not overwritten with the next byte in the file.

After a all of the bytes have been read in per pixel, and all of the pixels have been read in per row,
and all of the rows have been read in, we are done! We can close the file.

If there was a problem opening the file (does not exist, etc), the code below will pop up a message
box letting the user know that the file could not be opened.

The last thing we do is return done. If the file couldn't be opened, done will equal 0. If everything
went ok, done should equal the number of bytes read from the file. Remember, we were increasing
done every time we read a byte in the loop above (k loop).

Jeff Molofee's OpenGL Windows Tutorial #30

Page 4 of 12

void BuildTexture (P_TEXTURE_IMAGE tex)
{
 glGenTextures(1, &texture[0]);
 glBindTexture(GL_TEXTURE_2D, texture[0]);
 glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_LINEAR);
 glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_LINEAR);
 gluBuild2DMipmaps(GL_TEXTURE_2D, GL_RGB, tex->width, tex->height, GL_RGBA, GL_UNSIGNED_BYTE, tex
}

void Blit(P_TEXTURE_IMAGE src, P_TEXTURE_IMAGE dst, int src_xstart, int src_ystart, int src_width, int src_height,
 int dst_xstart, int dst_ystart, int blend, int alpha)
{
 int i,j,k;
 unsigned char *s, *d; // Source & Destination

 // Clamp Alpha If Value Is Out Of Range
 if(alpha > 255) alpha = 255;
 if(alpha < 0) alpha = 0;

 // Check For Incorrect Blend Flag Values
 if(blend < 0) blend = 0;
 if(blend > 1) blend = 1;

This shouldn't need explaining. By now you should know how to build a texture. tex is the pointer to
the TEXTURE_IMAGE structure that we want to use. We build a linear filtered texture. In this
example, we're building mipmaps (smoother looking). We pass the width, height and data just like
we would if we were using glaux, but this time we get the information from the selected
TEXTURE_IMAGE structure.

Now for the blitter code :) The blitter code is very powerful. It lets you copy any section of a (src)
texture and paste it into a destination (dst) texture. You can combine as many textures as you want,
you can set the alpha value used for blending, and you can select whether the two images blend
together or cancel eachother out.

src is the TEXTURE_IMAGE structure to use as the source image. dst is the TEXTURE_IMAGE
structure to use for the destination image. src_xstart is where you want to start copying from on the
x axis of the source image. src_ystart is where you want to start copying from on the y axis of the
source image. src_width is the width in pixels of the area you want to copy from the source image.
src_height is the height in pixels of the area you want to copy from the source image. dst_xstart
and dst_ystart is where you want to place the copied pixels from the source image onto the
destination image. If blend is 1, the two images will be blended. alpha sets how tranparent the
copied image will be when it mapped onto the destination image. 0 is completely clear, and 255 is
solid.

We set up all our misc loop variables, along with pointers for our source image (s) and destination
image (d). We check to see if the alpha value is within range. If not, we clamp it. We do the same for
the blend value. If it's not 0-off or 1-on, we clamp it.

Now we have to set up the pointers. The destination pointer is the location of the destination data
plus the starting location on the destination images y axis (dst_ystart) * the destination images
width in pixels * the destination images bytes per pixel (format). This should give us the starting row
for our destination image.

We do pretty much the same thing for the source pointer. The source pointer is the location of the
source data plus the starting location on the source images y axis (src_ystart) * the source images
width in pixels * the source images bytes per pixel (format). This should give us the starting row for
our source image.

i loops from 0 to src_height which is the number of pixels to copy up and down from the source
image.

Jeff Molofee's OpenGL Windows Tutorial #30

Page 5 of 12

 d = dst->data + (dst_ystart * dst->width * dst->format); // Start Row - dst (Row * Width In Pixels * Bytes Per Pixel)
 s = src->data + (src_ystart * src->width * src->format); // Start Row - src (Row * Width In Pixels * Bytes Per Pixel)

 for (i = 0 ; i < src_height ; i++) // Height Loop
 {

 s = s + (src_xstart * src->format); // Move Through Src Data By Bytes Per Pixel
 d = d + (dst_xstart * dst->format); // Move Through Dst Data By Bytes Per Pixel
 for (j = 0 ; j < src_width ; j++) // Width Loop
 {

 for(k = 0 ; k < src->format ; k++, d++, s++) // "n" Bytes At A Time
 {
 if (blend) // If Blending Is On
 *d = ((*s * alpha) + (*d * (255-alpha))) >> 8; // Multiply Src Data*alpha Add Dst Data*(255
 else // Keep in 0-255 Range With >> 8
 *d = *s; // No Blending Just Do A Straight Copy
 }
 }
 d = d + (dst->width - (src_width + dst_xstart))*dst->format; // Add End Of Row
 s = s + (src->width - (src_width + src_xstart))*src->format; // Add End Of Row
 }
}

We already set the source and destination pointers to the correct rows in each image. Now we have
to move to the correct location from left to right in each image before we can start blitting the data.
We increase the location of the source pointer (s) by src_xstart which is the starting location on the
x axis of the source image times the source images bytes per pixel. This moves the source (s)
pointer to the starting pixel location on the x axis (from left to right) on the source image.

We do the exact same thing for the destination pointer. We increase the location of the destination
pointer (d) by dst_xstart which is the starting location on the x axis of the destination image
multiplied by the destination images bytes per pixel (format). This moves the destination (d) pointer
to the starting pixel location on the x axis (from left to right) on the destination image.

After we have calculated where in memory we want to grab our pixels from (s) and where we want to
move them to (d), we start the j loop. We'll use the j loop to travel from left to right through the
source image.

The k loop is used to go through all the bytes per pixel. Notice as k increases, our pointers for the
source and destination images also increase.

Inside the loop we check to see if blending is on or off. If blend is 1, meaning we should blend, we
do some fancy math to calculate the color of our blended pixels. The destination value (d) will equal
our source value (s) multiplied by our alpha value + our current destination value (d) times 255
minus the alpha value. The shift operator (>>8) keeps the value in a 0-255 range.

If blending is disabled (0), we copy the data from the source image directly into the destination
image. No blending is done and the alpha value is ignored.

The InitGL() code has changed quite a bit. All of the code below is new. We start off by allocating
enough memory to hold a 256x256x4 Bytes Per Pixel Image. t1 will point to the allocated ram if
everything went well.

After allocating memory for our image, we attempt to load the image. We pass ReadTextureData()
the name of the file we wish to open, along with a pointer to our Image Structure (t1).

Jeff Molofee's OpenGL Windows Tutorial #30

Page 6 of 12

int InitGL(GLvoid) // This Will Be Called Right After The GL Window Is Created
{
 t1 = AllocateTextureBuffer(256, 256, 4); // Get An Image Structure
 if (ReadTextureData("Data/Monitor.raw",t1)==0) // Fill The Image Structure With Data
 { // Nothing Read?
 MessageBox(NULL,"Could Not Read 'Monitor.raw' Image Data","TEXTURE ERROR",MB_OK | MB_ICONINFORMATION);
 return FALSE;
 }

 t2 = AllocateTextureBuffer(256, 256, 4); // Second Image Structure
 if (ReadTextureData("Data/GL.raw",t2)==0) // Fill The Image Structure With Data
 { // Nothing Read?
 MessageBox(NULL,"Could Not Read 'GL.raw' Image Data","TEXTURE ERROR",MB_OK | MB_ICONINFORMATION);
 return FALSE;
 }

 // Image To Blend In, Original Image, Src Start X & Y, Src Width & Height, Dst Location X & Y, Blend Flag, Alpha Value
 Blit(t2,t1,127,127,128,128,64,64,1,127); // Call The Blitter Routine

If we were unable to load the .RAW image, a message box will pop up on the screen to let the user
know there was a problem loading the texture.

We then do the same thing for t2. We allocate memory, and attempt to read in our second .RAW
image. If anything goes wrong we pop up a message box.

If we got this far, it's safe to assume the memory has been allocated and the images have been
loaded. Now to use our Blit() command to merge the two images into one.

We start off by passing Blit() t2 and t1, both point to our TEXTURE_IMAGE structures (t2 is the
second image, t1 is the first image.

Then we have to tell blit where to start grabbing data from on the source image. If you load the
source image into Adobe Photoshop or any other program capable of loading .RAW images you will
see that the entire image is blank except for the top right corner. The top right has a picture of the
ball with GL written on it. The bottom left corner of the image is 0,0. The top right of the image is the
width of the image-1 (255), the height of the image-1 (255). Knowing that we only want to copy 1/4 of
the src image (top right), we tell Blit() to start grabbing from 127,127 (center of our source image).

Next we tell blit how many pixels we want to copy from our source point to the right, and from our
source point up. We want to grab a 1/4 chunk of our image. Our image is 256x256 pixels, 1/4 of that
is 128x128 pixels. All of the source information is done. Blit() now knows that it should copy from 127
on the x axis to 127+128 (255) on the x axis, and from 127 on the y axis to 127+128 (255) on the y
axis.

So Blit() knows what to copy, and where to get the data from, but it doesn't know where to put the
data once it's gotten it. We want to draw the ball with GL written on it in the middle our the monitor
image. You find the center of the destination image (256x256) which is 128x128 and subtract half
the width and height of the source image (128x128) which is 64x64. So (128-64) x (128-64) gives us
a starting location of 64,64.

Last thing to do is tell our blitter routine we want to blend the two image (A one means blend, a zero
means do not blend), and how much to blend the images. If the last value is 0, we blend the images
0%, meaning anything we copy will replace what was already there. If we use a value of 127, the two
images blend together at 50%, and if you use 255, the image you are copying will be completely
transparent and will not show up at all.

The pixels are copied from image2 (t2) to image1 (t1). The mixed image will be stored in t1.

After we have mixed the two images (t1 and t2) together, we build a texture from the combined

Jeff Molofee's OpenGL Windows Tutorial #30

Page 7 of 12

 BuildTexture (t1); // Load The Texture Map Into Texture Memory

 DeallocateTexture(t1); // Clean Up Image Memory Because Texture Is
 DeallocateTexture(t2); // In GL Texture Memory Now

 glEnable(GL_TEXTURE_2D); // Enable Texture Mapping

 glShadeModel(GL_SMOOTH); // Enables Smooth Color Shading
 glClearColor(0.0f, 0.0f, 0.0f, 0.0f); // This Will Clear The Background Color To Black
 glClearDepth(1.0); // Enables Clearing Of The Depth Buffer
 glEnable(GL_DEPTH_TEST); // Enables Depth Testing
 glDepthFunc(GL_LESS); // The Type Of Depth Test To Do

 return TRUE;
}

GLvoid DrawGLScene(GLvoid)
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Clear The Screen And The Depth Buffer
 glLoadIdentity(); // Reset The View
 glTranslatef(0.0f,0.0f,-5.0f);

 glRotatef(xrot,1.0f,0.0f,0.0f);
 glRotatef(yrot,0.0f,1.0f,0.0f);
 glRotatef(zrot,0.0f,0.0f,1.0f);

 glBindTexture(GL_TEXTURE_2D, texture[0]);

 glBegin(GL_QUADS);
 // Front Face
 glNormal3f(0.0f, 0.0f, 1.0f);
 glTexCoord2f(1.0f, 1.0f); glVertex3f(1.0f, 1.0f, 1.0f);
 glTexCoord2f(0.0f, 1.0f); glVertex3f(-1.0f, 1.0f, 1.0f);
 glTexCoord2f(0.0f, 0.0f); glVertex3f(-1.0f, -1.0f, 1.0f);
 glTexCoord2f(1.0f, 0.0f); glVertex3f(1.0f, -1.0f, 1.0f);
 // Back Face
 glNormal3f(0.0f, 0.0f,-1.0f);
 glTexCoord2f(1.0f, 1.0f); glVertex3f(-1.0f, 1.0f, -1.0f);
 glTexCoord2f(0.0f, 1.0f); glVertex3f(1.0f, 1.0f, -1.0f);
 glTexCoord2f(0.0f, 0.0f); glVertex3f(1.0f, -1.0f, -1.0f);
 glTexCoord2f(1.0f, 0.0f); glVertex3f(-1.0f, -1.0f, -1.0f);
 // Top Face
 glNormal3f(0.0f, 1.0f, 0.0f);
 glTexCoord2f(1.0f, 1.0f); glVertex3f(1.0f, 1.0f, -1.0f);
 glTexCoord2f(0.0f, 1.0f); glVertex3f(-1.0f, 1.0f, -1.0f);
 glTexCoord2f(0.0f, 0.0f); glVertex3f(-1.0f, 1.0f, 1.0f);
 glTexCoord2f(1.0f, 0.0f); glVertex3f(1.0f, 1.0f, 1.0f);
 // Bottom Face
 glNormal3f(0.0f,-1.0f, 0.0f);
 glTexCoord2f(0.0f, 0.0f); glVertex3f(1.0f, -1.0f, 1.0f);
 glTexCoord2f(1.0f, 0.0f); glVertex3f(-1.0f, -1.0f, 1.0f);
 glTexCoord2f(1.0f, 1.0f); glVertex3f(-1.0f, -1.0f, -1.0f);

images (t1).

After the texture has been created, we can deallocate the memory holding our two
TEXTURE_IMAGE structures.

The rest of the code is pretty standard. We enable texture mapping, depth testing, etc.

I shouldn't even have to explain the code below. We move 5 units into the screen, select our single
texture, and draw a texture mapped cube. You should notice that both textures are now combined
into one. We don't have to render everything twice to map both textures onto the cube. The blitter
code combined the images for us.

Jeff Molofee's OpenGL Windows Tutorial #30

Page 8 of 12

 glTexCoord2f(0.0f, 1.0f); glVertex3f(1.0f, -1.0f, -1.0f);
 // Right Face
 glNormal3f(1.0f, 0.0f, 0.0f);
 glTexCoord2f(1.0f, 0.0f); glVertex3f(1.0f, -1.0f, -1.0f);
 glTexCoord2f(1.0f, 1.0f); glVertex3f(1.0f, 1.0f, -1.0f);
 glTexCoord2f(0.0f, 1.0f); glVertex3f(1.0f, 1.0f, 1.0f);
 glTexCoord2f(0.0f, 0.0f); glVertex3f(1.0f, -1.0f, 1.0f);
 // Left Face
 glNormal3f(-1.0f, 0.0f, 0.0f);
 glTexCoord2f(0.0f, 0.0f); glVertex3f(-1.0f, -1.0f, -1.0f);
 glTexCoord2f(1.0f, 0.0f); glVertex3f(-1.0f, -1.0f, 1.0f);
 glTexCoord2f(1.0f, 1.0f); glVertex3f(-1.0f, 1.0f, 1.0f);
 glTexCoord2f(0.0f, 1.0f); glVertex3f(-1.0f, 1.0f, -1.0f);
 glEnd();

 xrot+=0.3f;
 yrot+=0.2f;
 zrot+=0.4f;
}

GLvoid KillGLWindow(GLvoid) // Properly Kill The Window
{
 if (fullscreen) // Are We In Fullscreen Mode?
 {
 if (!ChangeDisplaySettings(NULL,CDS_TEST)) { // If The Shortcut Doesn't Work
 ChangeDisplaySettings(NULL,CDS_RESET); // Do It Anyway (To Get The Values Out Of The Registry)
 ChangeDisplaySettings(&DMsaved,CDS_RESET); // Change Resolution To The Saved Settings
 }
 else // Not Fullscreen
 {
 ChangeDisplaySettings(NULL,CDS_RESET); // Do Nothing
 }

 ShowCursor(TRUE); // Show Mouse Pointer
 }

 if (hRC) // Do We Have A Rendering Context?
 {
 if (!wglMakeCurrent(NULL,NULL)) // Are We Able To Release The DC And RC Contexts
 {
 MessageBox(NULL,"Release Of DC And RC Failed.","SHUTDOWN ERROR",MB_OK | MB_ICONINFORMATION);
 }

 if (!wglDeleteContext(hRC)) // Are We Able To Delete The RC?
 {
 MessageBox(NULL,"Release Rendering Context Failed.","SHUTDOWN ERROR",MB_OK | MB_ICONINFORMATION);
 }
 hRC=NULL; // Set RC To NULL
 }

 if (hDC && !ReleaseDC(hWnd,hDC)) // Are We Able To Release The DC
 {
 MessageBox(NULL,"Release Device Context Failed.","SHUTDOWN ERROR",MB_OK | MB_ICONINFORMATION);
 hDC=NULL; // Set DC To NULL
 }

 if (hWnd && !DestroyWindow(hWnd)) // Are We Able To Destroy The Window?
 {
 MessageBox(NULL,"Could Not Release hWnd.","SHUTDOWN ERROR",MB_OK | MB_ICONINFORMATION);
 hWnd=NULL; // Set hWnd To NULL
 }

The KillGLWindow() code has a few changes. You'll notice the code to switch from fullscreen mode
back to your desktop is now at the top of KillGLWindow(). If the user ran the program in fullscreen
mode, the first thing we do when we kill the window is try to switch back to the desktop resolution. If
the quick way fails to work, we reset the screen using the information stored in DMsaved. This
should restore us to our orignal desktop settings.

Jeff Molofee's OpenGL Windows Tutorial #30

Page 9 of 12

 if (!UnregisterClass("OpenGL",hInstance)) // Are We Able To Unregister Class
 {
 MessageBox(NULL,"Could Not Unregister Class.","SHUTDOWN ERROR",MB_OK | MB_ICONINFORMATION);
 hInstance=NULL; // Set hInstance To NULL
 }
}

BOOL CreateGLWindow(char* title, int width, int height, int bits, bool fullscreenflag)
{
 GLuint PixelFormat; // Holds The Results After Searching For A Match
 WNDCLASS wc; // Windows Class Structure
 DWORD dwExStyle; // Window Extended Style
 DWORD dwStyle; // Window Style

 fullscreen=fullscreenflag; // Set The Global Fullscreen Flag

 hInstance = GetModuleHandle(NULL); // Grab An Instance For Our Window
 wc.style = CS_HREDRAW | CS_VREDRAW | CS_OWNDC; // Redraw On Size, And Own DC For Window.
 wc.lpfnWndProc = (WNDPROC) WndProc; // WndProc Handles Messages
 wc.cbClsExtra = 0; // No Extra Window Data
 wc.cbWndExtra = 0; // No Extra Window Data
 wc.hInstance = hInstance; // Set The Instance
 wc.hIcon = LoadIcon(NULL, IDI_WINLOGO); // Load The Default Icon
 wc.hCursor = LoadCursor(NULL, IDC_ARROW); // Load The Arrow Pointer
 wc.hbrBackground = NULL; // No Background Required For GL
 wc.lpszMenuName = NULL; // We Don't Want A Menu
 wc.lpszClassName = "OpenGL"; // Set The Class Name

 EnumDisplaySettings(NULL, ENUM_CURRENT_SETTINGS, &DMsaved); // Save The Current Display State (NEW)

 if (fullscreen) // Attempt Fullscreen Mode?
 {
 DEVMODE dmScreenSettings; // Device Mode
 memset(&dmScreenSettings,0,sizeof(dmScreenSettings)); // Makes Sure Memory's Cleared
 dmScreenSettings.dmSize=sizeof(dmScreenSettings); // Size Of The Devmode Structure
 dmScreenSettings.dmPelsWidth = width; // Selected Screen Width
 dmScreenSettings.dmPelsHeight = height; // Selected Screen Height
 dmScreenSettings.dmBitsPerPel = bits; // Selected Bits Per Pixel
 dmScreenSettings.dmFields=DM_BITSPERPEL|DM_PELSWIDTH|DM_PELSHEIGHT;

 // Try To Set Selected Mode And Get Results. NOTE: CDS_FULLSCREEN Gets Rid Of Start Bar.
 if (ChangeDisplaySettings(&dmScreenSettings,CDS_FULLSCREEN)!=DISP_CHANGE_SUCCESSFUL)
 {
 // If The Mode Fails, Offer Two Options. Quit Or Use Windowed Mode.
 if (MessageBox(NULL,"The Requested Fullscreen Mode Is Not Supported By\nYour Video Card. Use Windowed Mode Instead?","NeHe GL",MB_YESNO|MB_ICONEXCLAMATION)==IDYES)
 {
 fullscreen=FALSE; // Windowed Mode Selected. Fullscreen = FALSE
 }
 else
 {
 // Pop Up A Message Box Letting User Know The Program Is Closing.
 MessageBox(NULL,"Program Will Now Close.","ERROR",MB_OK|MB_ICONSTOP);
 return FALSE; // Return FALSE

I've made some changes in CreateGLWindow. The changes will hopefully elimintate alot of the
problems people are having when they switch to and from from fullscreen mode. I've included the
first part of CreateGLWindow() so you can easily follow through the code.

The big change here is that we now save the current desktop resolution, bit depth, etc. before we
switch to fullscreen mode. That way when we exit the program, we can set everything back exactly
how it was. The first line below copies the display settings into the DMsaved Device Mode structure.
Nothing else has changed, just one new line of code.

Jeff Molofee's OpenGL Windows Tutorial #30

Page 10 of 12

 }
 }
 }

int WINAPI WinMain(HINSTANCE hInstance, // Instance
 HINSTANCE hPrevInstance, // Previous Instance
 LPSTR lpCmdLine, // Command Line Parameters
 int nCmdShow) // Window Show State
{
 MSG msg; // Windows Message Structure
 BOOL done=FALSE; // Bool Variable To Exit Loop

 // Ask The User Which Screen Mode They Prefer
 if (MessageBox(NULL,"Would You Like To Run In Fullscreen Mode?", "Start FullScreen?",MB_YESNO|MB_ICONQUESTION)==IDNO)
 {
 fullscreen=FALSE; // Windowed Mode
 }

 // Create Our OpenGL Window
 if (!CreateGLWindow("Andreas Löffler, Rob Fletcher & NeHe's Blitter & Raw Image Loading Tutorial", 640, 480, 32, fullscreen))
 {
 return 0; // Quit If Window Was Not Created
 }

 while(!done) // Loop That Runs While done=FALSE
 {
 if (PeekMessage(&msg,NULL,0,0,PM_REMOVE)) // Is There A Message Waiting?
 {
 if (msg.message==WM_QUIT) // Have We Received A Quit Message?
 {
 done=TRUE; // If So done=TRUE
 }
 else // If Not, Deal With Window Messages
 {
 TranslateMessage(&msg); // Translate The Message
 DispatchMessage(&msg); // Dispatch The Message
 }
 }

 if (!active) // Program Inactive?
 {
 WaitMessage(); // Wait For A Message / Do Nothing (NEW ... Thanks Jim Strong)
 }

 if (keys[VK_ESCAPE]) // Was Escape Pressed?
 {
 done=TRUE; // ESC Signalled A Quit
 }

 if (keys[VK_F1]) // Is F1 Being Pressed?
 {
 keys[VK_F1]=FALSE; // If So Make Key FALSE
 KillGLWindow(); // Kill Our Current Window
 fullscreen=!fullscreen; // Toggle Fullscreen / Windowed Mode
 // Recreate Our OpenGL Window

 WinMain() starts out the same as always. Ask the user if they want fullscreen or not, then start the
loop.

I have made some changes to the code below. If the program is not active (minimized) we wait for a
message with the command WaitMessage(). Everything stops until the program receives a message
(usually maximizing the window). What this means is that the program no longer hogs the processor
while it's minimized. Thanks to Jim Strong for the suggestion.

Jeff Molofee's OpenGL Windows Tutorial #30

Page 11 of 12

 if (!CreateGLWindow("Andreas Löffler, Rob Fletcher & NeHe's Blitter & Raw Image Loading Tutorial",640,480,16,fullscreen))
 {
 return 0; // Quit If Window Was Not Created
 }
 }

 DrawGLScene(); // Draw The Scene
 SwapBuffers(hDC); // Swap Buffers (Double Buffering)
 }

 // Shutdown
 KillGLWindow(); // Kill The Window
 return (msg.wParam); // Exit The Program
}

Well, that ´s it! Now the doors are open for creating some very cool blending effects for your games,
engines or even applications. With texture buffers we used in this tutorial you could do more cool
effects like real-time plasma or water. When combining these effects all together you´re able to do
nearly photo-realistic terrain. If something doesn´t work in this tutorial or you have suggestions how
to do it better, then please don´t hesitate to E-Mail me. Thank you for reading and good luck in
creating your own special effects!

Some information about Andreas: I´m an 18 years old pupil who is currently studying to be a
software engineer. I´ve been programming for nearly 10 years now. I've been programming in
OpenGL for about 1.5 years.

Andreas Löffler - Original Code / HTML
Rob Fletcher - Modified Code (Rewrite)
Jeff Molofee (NeHe) - Code Modifications / New HTML

* DOWNLOAD Visual C++ Code For This Lesson.
* DOWNLOAD Irix / GLUT Code For This Lesson. (Conversion by Rob Fletcher)
* DOWNLOAD Mac OS Code For This Lesson. (Conversion by Morgan Aldridge)

Jeff Molofee's OpenGL Windows Tutorial #30

Page 12 of 12

 Lesson 31

Collision Detection and Physically Based Modeling Tutorial

by

Dimitrios Christopoulos (christop@fhw.gr)

The source code upon which this tutorial is based, is from an older contest entry of mine (at
OGLchallenge.dhs.org). The theme was Collision Crazy and my entry (which by the way took the 1st
place :)) was called Magic Room. It features collision detection, physically based modeling and
effects.

Collision Detection

A difficult subject and to be honest as far as I have seen up until now, there has been no easy
solution for it. For every application there is a different way of finding and testing for collisions. Of
course there are brute force algorithms which are very general and would work with any kind of
objects, but they are expensive.

We are going to investigate algorithms which are very fast, easy to understand and to some extent
quite flexible. Furthermore importance must be given on what to do once a collision is detected and
how to move the objects, in accordance to the laws of physics. We have a lot stuff to cover. Lets
review what we are going to learn:

1) Collision Detection

l Moving Sphere - Plane
l Moving Sphere - Cylinder
l Moving Sphere - Moving Sphere

2) Physically Based Modeling

l Collision Response
l Moving Under Gravity Using Euler Equations

3) Special Effects

l Explosion Modeling Using A Fin-Tree Billboard Method
l Sounds Using The Windows Multimedia Library (Windows Only)

4) Explanation Of The Code

l The Code Is Divided Into 5 Files

Lesson31.cpp : Main Code For This Tutorial
Image.cpp, Image.h : Code To Load Bitmaps
Tmatrix.cpp, Tmatrix.h : Classes To Handle Rotations
Tray.cpp, Tray.h : Classes To Handle Ray Operations
Tvector.cpp, Tvector.h : Classes To Handle Vector Operations

Jeff Molofee's OpenGL Windows Tutorial #31

Page 1 of 13

A lot of handy code! The Vector, Ray and Matrix classes are very useful. I used them until now for
personal projects of my own.

1) Collision Detection

For the collision detection we are going to use algorithms which are mostly used in ray tracing. Lets
first define a ray.

A ray using vector representation is represented using a vector which denotes the start and a vector
(usually normalized) which is the direction in which the ray travels. Essentially a ray starts from the
start point and travels in the direction of the direction vector. So our ray equation is:

PointOnRay = Raystart + t * Raydirection

t is a float which takes values from [0, infinity).

With 0 we get the start point and substituting other values we get the corresponding points along the
ray.

PointOnRay, Raystart, Raydirection, are 3D Vectors with values (x,y,z). Now we can use this ray
representation and calculate the intersections with plane or cylinders.

Ray - Plane Intersection Detection

A plane is represented using its Vector representation as:

Xn dot X = d

Xn, X are vectors and d is a floating point value.
Xn is its normal.
X is a point on its surface.
d is a float representing the distance of the plane along the normal, from the center of the coordinate
system.

Essentially a plane represents a half space. So all that we need to define a plane is a 3D point and a
normal from that point which is perpendicular to that plane. These two vectors form a plane, ie. if we
take for the 3D point the vector (0,0,0) and for the normal (0,1,0) we essentially define a plane
across x,z axes. Therefore defining a point and a normal is enough to compute the Vector
representation of a plane.

Using the vector equation of the plane the normal is substituted as Xn and the 3D point from which
the normal originates is substituted as X. The only value that is missing is d which can easily be
computed using a dot product (from the vector equation).

(Note: This Vector representation is equivalent to the widely known parametric form of the plane Ax
+ By + Cz + D=0 just take the three x,y,z values of the normal as A,B,C and set D=-d).

The two equations we have so far are:

PointOnRay = Raystart + t * Raydirection
Xn dot X = d

If a ray intersects the plane at some point then there must be some point on the ray which satisfies
the plane equation as follows:

Xn dot PointOnRay = d or (Xn dot Raystart) + t * (Xn dot Raydirection) = d

solving for t:

t = (d - Xn dot Raystart) / (Xn dot Raydirection)

Jeff Molofee's OpenGL Windows Tutorial #31

Page 2 of 13

int TestIntersionPlane(const Plane& plane,const TVector& position,const TVector& direction, double& lamda, TVector& pNormal)
{
 double DotProduct=direction.dot(plane._Normal); // Dot Product Between Plane Normal And Ray Direction
 double l2;

 // Determine If Ray Parallel To Plane
 if ((DotProduct<ZERO)&&(DotProduct>-ZERO))
 return 0;

 l2=(plane._Normal.dot(plane._Position-position))/DotProduct; // Find Distance To Collision Point

 if (l2<-ZERO) // Test If Collision Behind Start
 return 0;

 pNormal=plane._Normal;
 lamda=l2;
 return 1;
}

int TestIntersionCylinder(const Cylinder& cylinder,const TVector& position,const TVector& direction, double& lamda, TVector& pNormal,TVector& newposition)

replacing d:

t= (Xn dot PointOnRay - Xn dot Raystart) / (Xn dot Raydirection)

summing it up:

t= (Xn dot (PointOnRay - Raystart)) / (Xn dot Raydirection)

t represents the distance from the start until the intersection point along the direction of the ray.
Therefore substituting t into the ray equation we can get the collision point. There are a few special
cases though. If Xn dot Raydirection = 0 then these two vectors are perpendicular (ray runs parallel
to plane) and there will be no collision. If t is negative the collision takes place behind the starting
point of the ray along the opposite direction and again there is no intersection.

The code above calculates and returns the intersection. It returns 1 if there is an intersection
otherwise it returns 0. The parameters are the plane, the start and direction of the vector, a double
(lamda) where the collision distance is stored if there was any, and the returned normal at the
collision point.

Ray - Cylinder Intersection

Computing the intersection between an infinite cylinder and a ray is much more complicated that is
why I won't explain it here. There is way too much math involved too easily explain and my goal is
primarily to give you tools how to do it without getting into alot of detail (this is not a geometry class).
If anyone is interested in the theory behind the intersection code, please look at the Graphic Gems II
Book (pp 35, intersection of a with a cylinder). A cylinder is represented as a ray, using a start and
direction (here it represents the axis) vector and a radius (radius around the axis of the cylinder).
The relevant function is:

Returns 1 if an intersection was found and 0 otherwise.

The parameters are the cylinder structure (look at the code explanation further down), the start,
direction vectors of the ray. The values returned through the parameters are the distance, the normal
at the intersection point and the intersection point itself.

Sphere - Sphere Collision

A sphere is represented using its center and its radius. Determining if two spheres collide is easy. By

Jeff Molofee's OpenGL Windows Tutorial #31

Page 3 of 13

/***/
/*** Find if any of the current balls ***/
/*** intersect with each other in the current timestep ***/
/*** Returns the index of the 2 intersecting balls, the point and time of intersection ***/
/***/

int FindBallCol(TVector& point, double& TimePoint, double Time2, int& BallNr1, int& BallNr2)
{
 TVector RelativeV;
 TRay rays;
 double MyTime=0.0, Add=Time2/150.0, Timedummy=10000, Timedummy2=-1;
 TVector posi; // Test All Balls Against Eachother In 150 Small Steps
 for (int i=0;i<NrOfBalls-1;i++)
 {
 for (int j=i+1;j<NrOfBalls;j++)
 {
 RelativeV=ArrayVel[i]-ArrayVel[j]; // Find Distance
 rays=TRay(OldPos[i],TVector::unit(RelativeV));
 MyTime=0.0;

 if ((rays.dist(ArrayPos[j])) > 40) continue; // If Distance Between Centers Greater Than 2*radius

finding the distance between the two centers (dist method of the TVector class) we can determine if
they intersect, if the distance is less than the sum of their two radius.

The problem lies in determining if 2 MOVING spheres collide. Bellow is an example where 2 sphere
move during a time step from one point to another. Their paths cross in-between but this is not
enough to prove that an intersection occurred (they could pass at a different time) nor can the
collision point be determined.

Figure 1

The previous intersection methods were solving the equations of the objects to determine the
intersection. When using complex shapes or when these equations are not available or can not be
solved, a different method has to be used. The start points, endpoints, time step, velocity (direction
of the sphere + speed) of the sphere and a method of how to compute intersections of static spheres
is already known. To compute the intersection, the time step has to be sliced up into smaller pieces.
Then we move the spheres according to that sliced time step using its velocity, and check for
collisions. If at any point collision is found (which means the spheres have already penetrated each
other) then we take the previous position as the intersection point (we could start interpolating
between these points to find the exact intersection position, but that is mostly not required).

The smaller the time steps, the more slices we use the more accurate the method is. As an example
lets say the time step is 1 and our slices are 3. We would check the two balls for collision at time 0 ,
0.33, 0.66, 1. Easy !!!!

The code which performs this is:

Jeff Molofee's OpenGL Windows Tutorial #31

Page 4 of 13

 // An Intersection Occurred
 while (MyTime<Time2) // Loop To Find The Exact Intersection Point
 {
 MyTime+=Add;
 posi=OldPos[i]+RelativeV*MyTime;
 if (posi.dist(OldPos[j])<=40)
 {
 point=posi;
 if (Timedummy>(MyTime-Add)) Timedummy=MyTime-Add;
 BallNr1=i;
 BallNr2=j;
 break;
 }
 }
 }
 }

 if (Timedummy!=10000)
 {
 TimePoint=Timedummy;
 return 1;
 }
 return 0;
}

How To Use What We Just Learned

So now that we can determine the intersection point between a ray and a plane/cylinder we have to use it
somehow to determine the collision between a sphere and one of these primitives. What we can do so far is
determine the exact collision point between a particle and a plane/cylinder. The start position of the ray is the
position of the particle and the direction of the ray is its velocity (speed and direction). To make it usable for
spheres is quite easy. Look at Figure 2a to see how this can be accomplished.

Figure 2a Figure 2b

Each sphere has a radius, take the center of the sphere as the particle and offset the surface along the normal
of each plane/cylinder of interest. In Figure 2a these new primitives are represented with dotted lines. Your
actual primitives of interest are the ones represented by continuous lines, but the collision testing is done with
the offset primitives (represented with dotted lines). In essence we perform the intersection test with a little
offset plane and a larger in radius cylinder. Using this little trick the ball does not penetrate the surface if an
intersection is determined with its center. Otherwise we get a situation as in Figure 2b, where be sphere
penetrates the surface. This happens because we determine the intersection between its center and the
primitives, which means we did not modify our original code!

Having determined where the collision takes place we have to determine if the intersection takes place in our
current time step. Timestep is the time we move our sphere from its current point according to its velocity.
Because we are testing with infinite rays there is always the possibility that the collision point is after the new
position of the sphere. To determine this we move the sphere, calculate its new position and find the distance
between the start and end point. From our collision detection procedure we also get the distance from the start
point to its collision point. If this distance is less than the distance between start and end point then there is a
collision. To calculate the exact time we solve the following simple equation. Represent the distance between

Jeff Molofee's OpenGL Windows Tutorial #31

Page 5 of 13

start - end point with Dst, the distance between start - collision point Dsc, and the time step as T. The time
where the collision takes place (Tc) is:

Tc= Dsc*T / Dst

All this is performed of course if an intersection is determined. The returned time is a fraction of the whole time
step, so if the time step was 1 sec, and we found an intersection exactly in the middle of the distance, the
calculated collision time would be 0.5 sec. this is interpreted as "0.5 sec after the start there is an intersection".
Now the intersection point can be calculated by just multiplying Tc with the current velocity and adding it to the
start point.

Collision point= Start + Velocity*Tc

This is the collision point on the offset primitive, to find the collision point on the real primitive we add to that
point the reverse of the normal at that point (which is also returned by the intersection routines) by the radius of
the sphere. Note that the cylinder intersection routine returns the intersection point if there is one so it does not
need to be calculated.

2) Physically Based Modeling

Collision Response

To determine how to respond after hitting Static Objects like Planes, Cylinders is as important as
finding the collision point itself. Using the algorithms and functions described, the exact collision
point, the normal at the collision point and the time within a time step in which the collision occurs
can be found.

To determine how to respond to a collision, laws of physics have to be applied. When an object
collides with the surface its direction changes i.e.. it bounces off. The angle of the of the new
direction (or reflection vector) with the normal at the collision point is the same as the original
direction vector. Figure 3 shows a collision with a sphere.

Figure 3

R is the new direction vector
I is the old direction vector before the collision
N is the Normal at the collision point

The new vector R is calculated as follows:

R= 2*(-I dot N)*N + I

The restriction is that the I and N vectors have to be unit vectors. The velocity vector as used in our

Jeff Molofee's OpenGL Windows Tutorial #31

Page 6 of 13

rt2=ArrayVel[BallNr].mag(); // Find Magnitude Of Velocity
ArrayVel[BallNr].unit(); // Normalize It

// Compute Reflection
ArrayVel[BallNr]=TVector::unit((normal*(2*normal.dot(-ArrayVel[BallNr]))) + ArrayVel[BallNr]);
ArrayVel[BallNr]=ArrayVel[BallNr]*rt2; // Muliply With Magnitude To Obtain Final Velocity Vector

examples represents speed and direction. Therefore it can not be plugged into the equation in the
place of I, without any transformation. The speed has to be extracted. The speed for such a velocity
vector is extracted finding the magnitude of the vector. Once the magnitude is found, the vector can
be transformed to a unit vector and plugged into the equation giving the reflection vector R. R shows
us now the direction, of the reflected ray, but in order to be used as a velocity vector it must also
incorporate the speed. Therefore it gets, multiplied with the magnitude of the original ray, thus
resulting in the correct velocity vector.

In the example this procedure is applied to compute the collision response if a ball hits a plane or a
cylinder. But it works also for arbitrary surfaces, it does not matter what the shape of the surface is.
As long as a collision point and a Normal can be found the collision response method is always the
same. The code which does these operations is:

When Spheres Hit Other Spheres Determining the collision response, if two balls hit each
other is much more difficult. Complex equations of particle dynamics have to be solved and therefore
I will just post the final solution without any proof. Just trust me on this one :) During the collision of 2
balls we have a situation as it is depicted in Figure 4.

Figure 4

U1 and U2 are the velocity vectors of the two spheres at the time of impact. There is an axis
(X_Axis) vector which joins the 2 centers of the spheres, and U1x, U2x are the projected vectors of
the velocity vectors U1,U2 onto the axis (X_Axis) vector.

U1y and U2y are the projected vectors of the velocity vectors U1,U2 onto the axis which is
perpendicular to the X_Axis. To find these vectors a few simple dot products are needed. M1, M2 is
the mass of the two spheres respectively. V1,V2 are the new velocities after the impact, and V1x,
V1y, V2x, V2y are the projections of the velocity vectors onto the X_Axis.

In More Detail:

a) Find X_Axis

X_Axis = (center2 - center1);
Unify X_Axis, X_Axis.unit();

b) Find Projections

Jeff Molofee's OpenGL Windows Tutorial #31

Page 7 of 13

TVector pb1,pb2,xaxis,U1x,U1y,U2x,U2y,V1x,V1y,V2x,V2y;
double a,b;
pb1=OldPos[BallColNr1]+ArrayVel[BallColNr1]*BallTime; // Find Position Of Ball1
pb2=OldPos[BallColNr2]+ArrayVel[BallColNr2]*BallTime; // Find Position Of Ball2
xaxis=(pb2-pb1).unit(); // Find X-Axis
a=xaxis.dot(ArrayVel[BallColNr1]); // Find Projection
U1x=xaxis*a; // Find Projected Vectors
U1y=ArrayVel[BallColNr1]-U1x;
xaxis=(pb1-pb2).unit(); // Do The Same As Above
b=xaxis.dot(ArrayVel[BallColNr2]); // To Find Projection
U2x=xaxis*b; // Vectors For The Other Ball
U2y=ArrayVel[BallColNr2]-U2x;
V1x=(U1x+U2x-(U1x-U2x))*0.5; // Now Find New Velocities
V2x=(U1x+U2x-(U2x-U1x))*0.5;
V1y=U1y;
V2y=U2y;
for (j=0;j<NrOfBalls;j++) // Update All Ball Positions
ArrayPos[j]=OldPos[j]+ArrayVel[j]*BallTime;
ArrayVel[BallColNr1]=V1x+V1y; // Set New Velocity Vectors
ArrayVel[BallColNr2]=V2x+V2y; // To The Colliding Balls

U1x= X_Axis * (X_Axis dot U1)
U1y= U1 - U1x
U2x =-X_Axis * (-X_Axis dot U2)
U2y =U2 - U2x

c)Find New Velocities

(U1x * M1)+(U2x*M2)-(U1x-U2x)*M2
V1x= --------------------------------
M1+M2
(U1x * M1)+(U2x*M2)-(U2x-U1x)*M1
V2x= --------------------------------
M1+M2

In our application we set the M1=M2=1, so the equations get even simpler.

d)Find The Final Velocities

V1y=U1y
V2y=U2y
V1=V1x+V1y
V2=V2x+V2y

The derivation of that equations has a lot of work, but once they are in a form like the above they can
be used quite easily. The code which does the actual collision response is:

Moving Under Gravity Using Euler Equations

To simulate realistic movement with collisions, determining the the collision point and computing the
response is not enough. Movement based upon physical laws also has to be simulated.

The most widely used method for doing this is using Euler equations. As indicated all the
computations are going to be performed using time steps. This means that the whole simulation is
advanced in certain time steps during which all the movement, collision and response tests are
performed. As an example we can advanced a simulation 2 sec. on each frame. Based on Euler
equations, the velocity and position at each new time step is computed as follows:

Velocity_New = Velovity_Old + Acceleration*TimeStep
Position_New = Position_Old + Velocity_New*TimeStep

Now the objects are moved and tested angainst collision using this new velocity. The Acceleration

Jeff Molofee's OpenGL Windows Tutorial #31

Page 8 of 13

// Render / Blend Explosions
glEnable(GL_BLEND); // Enable Blending
glDepthMask(GL_FALSE); // Disable Depth Buffer Writes
glBindTexture(GL_TEXTURE_2D, texture[1]); // Upload Texture
for(i=0; i<20; i++) // Update And Render Explosions
{
 if(ExplosionArray[i]._Alpha>=0)
 {
 glPushMatrix();
 ExplosionArray[i]._Alpha-=0.01f; // Update Alpha
 ExplosionArray[i]._Scale+=0.03f; // Update Scale
 // Assign Vertices Colour Yellow With Alpha
 // Colour Tracks Ambient And Diffuse
 glColor4f(1,1,0,ExplosionArray[i]._Alpha); // Scale
 glScalef(ExplosionArray[i]._Scale,ExplosionArray[i]._Scale,ExplosionArray[i]._Scale);
 // Translate Into Position Taking Into Account The Offset Caused By The Scale
 glTranslatef((float)ExplosionArray[i]._Position.X()/ExplosionArray[i]._Scale,(float)ExplosionArray[i]._Position.Y()/ExplosionArray[i]._Scale,
 (float)ExplosionArray[i]._Position.Z()/ExplosionArray[i]._Scale);
 glCallList(dlist); // Call Display List
 glPopMatrix();
 }
}

for each object is determined by accumulating the forces which are acted upon it and divide by its
mass according to this equation:

Force = mass * acceleration

A lot of physics formulas :)

But in our case the only force the objects get is the gravity, which can be represented right away as
a vector indicating acceleration. In our case something negative in the Y direction like (0,-0.5,0). This
means that at the beginning of each time step, we calculate the new velocity of each sphere and
move them testing for collisions. If a collision occurs during a time step (say after 0.5 sec with a time
step equal to 1 sec.) we advance the object to this position, compute the reflection (new velocity
vector) and move the object for the remaining time (which is 0.5 in our example) testing again for
collisions during this time. This procedure gets repeated until the time step is completed.

When multiple moving objects are present, each moving object is tested with the static geometry for
intersections and the nearest intersection is recorded. Then the intersection test is performed for
collisions among moving objects, where each object is tested with everyone else. The returned
intersection is compared with the intersection returned by the static objects and the closest one is
taken. The whole simulation is updated to that point, (i.e. if the closest intersection would be after 0.5
sec. we would move all the objects for 0.5 seconds), the reflection vector is calculated for the
colliding object and the loop is run again for the remaining time.

3) Special Effects

Explosions

Every time a collision takes place an explosion is triggered at the collision point. A nice way to model
explosions is to alpha blend two polygons which are perpendicular to each other and have as the
center the point of interest (here intersection point). The polygons are scaled and disappear over
time. The disappearing is done by changing the alpha values of the vertices from 1 to 0, over time.
Because a lot of alpha blended polygons can cause problems and overlap each other (as it is stated
in the Red Book in the chapter about transparency and blending) because of the Z buffer, we borrow
a technique used in particle rendering. To be correct we had to sort the polygons from back to front
according to their eye point distance, but disabling the Depth buffer writes (not reads) also does the
trick (this is also documented in the red book). Notice that we limit our number of explosions to
maximum 20 per frame, if additional explosions occur and the buffer is full, the explosion is
discarded. The source which updates and renders the explosions is:

Jeff Molofee's OpenGL Windows Tutorial #31

Page 9 of 13

// While Time Step Not Over
while (RestTime>ZERO)
{
 lamda=10000; // Initialize To Very Large Value
 // For All The Balls Find Closest Intersection Between Balls And Planes / Cylinders
 for (int i=0;i<NrOfBalls;i++)
 {
 // Compute New Position And Distance
 OldPos[i]=ArrayPos[i];
 TVector::unit(ArrayVel[i],uveloc);
 ArrayPos[i]=ArrayPos[i]+ArrayVel[i]*RestTime;
 rt2=OldPos[i].dist(ArrayPos[i]);
 // Test If Collision Occured Between Ball And All 5 Planes
 if (TestIntersionPlane(pl1,OldPos[i],uveloc,rt,norm))
 {
 // Find Intersection Time
 rt4=rt*RestTime/rt2;
 // If Smaller Than The One Already Stored Replace In Timestep
 if (rt4<=lamda)
 {
 // If Intersection Time In Current Time Step

Sound

For the sound the windows multimedia function PlaySound() is used. This is a quick and dirty way to
play wav files quickly and without trouble.

4) Explaining the Code

Congratulations...

If you are still with me you have survived successfully the theory section ;) Before having fun playing
around with the demo, some further explanations about the source code are necessary. The main
flow and steps of the simulation are as follows (in pseudo code):

 While (Timestep!=0)
 {
 For each ball
 {
 compute nearest collision with planes;
 compute nearest collision with cylinders;
 Save and replace if it the nearest intersection
 in time computed until now;
 }
 Check for collision among moving balls;
 Save and replace if it the nearest intersection
 in time computed until now;
 If (Collision occurred)
 {
 Move All Balls for time equal to collision time;
 (We already have computed the point, normal and collision time.)
 Compute Response;
 Timestep-=CollisonTime;
 }
 else
 Move All Balls for time equal to Timestep
 }

The actual code which implements the above pseudo code is much harder to read but essentially is
an exact implementation of the pseudo code above.

Jeff Molofee's OpenGL Windows Tutorial #31

Page 10 of 13

 if (rt4<=RestTime+ZERO)
 if (! ((rt<=ZERO)&&(uveloc.dot(norm)>ZERO)))
 {
 normal=norm;
 point=OldPos[i]+uveloc*rt;
 lamda=rt4;
 BallNr=i;
 }
 }
 }

 if (TestIntersionPlane(pl2,OldPos[i],uveloc,rt,norm))
 {

 // ...The Same As Above Omitted For Space Reasons
 }

 if (TestIntersionPlane(pl3,OldPos[i],uveloc,rt,norm))
 {

 // ...The Same As Above Omitted For Space Reasons
 }

 if (TestIntersionPlane(pl4,OldPos[i],uveloc,rt,norm))
 {

 // ...The Same As Above Omitted For Space Reasons
 }

 if (TestIntersionPlane(pl5,OldPos[i],uveloc,rt,norm))
 {

 // ...The Same As Above Omitted For Space Reasons
 }

 // Now Test Intersection With The 3 Cylinders
 if (TestIntersionCylinder(cyl1,OldPos[i],uveloc,rt,norm,Nc))
 {
 rt4=rt*RestTime/rt2;
 if (rt4<=lamda)
 {
 if (rt4<=RestTime+ZERO)
 if (! ((rt<=ZERO)&&(uveloc.dot(norm)>ZERO)))
 {
 normal=norm;
 point=Nc;
 lamda=rt4;
 BallNr=i;
 }
 }
 }

 if (TestIntersionCylinder(cyl2,OldPos[i],uveloc,rt,norm,Nc))
 {
 // ...The Same As Above Omitted For Space Reasons
 }

 if (TestIntersionCylinder(cyl3,OldPos[i],uveloc,rt,norm,Nc))
 {
 // ...The Same As Above Omitted For Space Reasons
 }

 }

 // After All Balls Were Tested With Planes / Cylinders Test For Collision
 // Between Them And Replace If Collision Time Smaller
 if (FindBallCol(Pos2,BallTime,RestTime,BallColNr1,BallColNr2))
 {
 if (sounds)
 PlaySound("Explode.wav",NULL,SND_FILENAME|SND_ASYNC);

Jeff Molofee's OpenGL Windows Tutorial #31

Page 11 of 13

 if ((lamda==10000) || (lamda>BallTime))
 {
 RestTime=RestTime-BallTime;
 TVector pb1,pb2,xaxis,U1x,U1y,U2x,U2y,V1x,V1y,V2x,V2y;
 double a,b;
 .
 .
 Code Omitted For Space Reasons
 The Code Is Described In The Physically Based Modeling
 Section Under Sphere To Sphere Collision
 .
 .
 //Update Explosion Array And Insert Explosion
 for(j=0;j<20;j++)
 {
 if (ExplosionArray[j]._Alpha<=0)
 {
 ExplosionArray[j]._Alpha=1;
 ExplosionArray[j]._Position=ArrayPos[BallColNr1];
 ExplosionArray[j]._Scale=1;
 break;
 }
 }

 continue;
 }
 }

 // End Of Tests
 // If Collision Occured Move Simulation For The Correct Timestep
 // And Compute Response For The Colliding Ball
 if (lamda!=10000)
 {
 RestTime-=lamda;
 for (j=0;j<NrOfBalls;j++)
 ArrayPos[j]=OldPos[j]+ArrayVel[j]*lamda;
 rt2=ArrayVel[BallNr].mag();
 ArrayVel[BallNr].unit();
 ArrayVel[BallNr]=TVector::unit((normal*(2*normal.dot(-ArrayVel[BallNr]))) + ArrayVel[BallNr]);
 ArrayVel[BallNr]=ArrayVel[BallNr]*rt2;

 // Update Explosion Array And Insert Explosion
 for(j=0;j<20;j++)
 {
 if (ExplosionArray[j]._Alpha<=0)
 {
 ExplosionArray[j]._Alpha=1;
 ExplosionArray[j]._Position=point;
 ExplosionArray[j]._Scale=1;
 break;
 }
 }
 }
 else RestTime=0;
} // End Of While Loop

The Main Global Variables Of Importance Are:

Represent the direction and position of the camera. The camera is moved
using the LookAt function. As you will probably notice, if not in hook mode
(which I will explain later), the whole scene rotates around, the degree of
rotation is handled with camera_rotation.

TVector dir
TVector pos(0,-
50,1000);
float
camera_rotation=0;

Represent the acceleration applied to the moving balls. Acts as gravity in
the application.

TVector accel(0,-
0.05,0);

Arrays which hold the New and old ball positions and the velocity vector of
TVector ArrayVel[10];
TVector ArrayPos

Jeff Molofee's OpenGL Windows Tutorial #31

Page 12 of 13

The Main Functions Of Interest Are:

each ball. The number of balls is hard coded to 10. [10];
TVector OldPos[10];
int NrOfBalls=3;

The time step we use. double Time=0.6;

If 1 the camera view changes and a (the ball with index 0 in the array) ball
is followed. For making the camera following the ball we used its position
and velocity vector to position the camera exactly behind the ball and make
it look along the velocity vector of the ball.

int hook_toball1=0;

Self explanatory structures for holding data about explosions, planes and
cylinders.

struct Plane
struct Cylinder
struct Explosion

The explosions are stored in a array, of fixed length. Explosion
ExplosionArray[20];

Perform Intersection tests with primitives
int TestIntersionPlane(....);
int TestIntersionCylinder
(...);

Loads Textures from bmp files void LoadGLTextures();

Has the rendering code. Renders the balls, walls, columns and
explosions void DrawGLScene();

Performs the main simulation logic void idle();

Sets Up OpenGL state void InitGL();

Find if any balls collide again each other in current time step int FindBallCol(...);

For more information look at the source code. I tried to comment it as best as I could. Once the
collision detection and response logic is understood, the source should become very clear. For any
more info don't hesitate to contact me.

As I stated at the beginning of this tutorial, the subject of collision detection is a very difficult subject
to cover in one tutorial. You will learn a lot in this tutorial, enough to create some pretty impressive
demos of your own, but there is still alot more to learn on this subject. Now that you have the basics,
all the other sources on Collision Detection and Physically Based Modeling out there should become
easier to understand. With this said, I send you on your way and wish you happy collisions!!!

Some information about Dimitrios Christopoulos: He is currently working as a Virtual Reality software
engineer at the Foundation of the Hellenic World in Athens/Greece (www.fhw.gr). Although Born in
Germany, he studied in Greece at the University of Patras for a B.Sc. in Computer Engineering and
Informatics. He holds also a MSc degree (honours) from the University of Hull (UK) in Computer
Graphics and Virtual Environments. He did his first steps in game programming using Basic on an
Commodore 64, and switched to C/C++/Assembly on the PC platform after the start of his studium.
During the last few years OpenGL has become his graphics API of choice. For more information visit
his Homepage.

Dimitrios Christopoulos - Code / HTML
Jeff Molofee (NeHe) - HTML Modifications

* DOWNLOAD Visual C++ Code For This Lesson.
* DOWNLOAD Mac OS Code For This Lesson. (Conversion by Morgan Aldridge)
* DOWNLOAD Borland C++ Builder 4.0 Code For This Lesson. (Conversion by Dave Rowbotham)

Jeff Molofee's OpenGL Windows Tutorial #31

Page 13 of 13

// Vertex Structure
struct Vertex
{
 char m_boneID; // For Skeletal Animation
 float m_location[3];
};

// Vertices Used
int m_numVertices;
Vertex *m_pVertices;

 Lesson 32

Model Rendering Tutorial

by

Brett Porter (brettporter@yahoo.com)

The source for this project has been extracted from PortaLib3D, a library I have written to enable
users to do things like displaying models with very little extra code. But so that you can trust such a
library, you should understand what it is doing, so this tutorial aims to help with that.

The portions of PortaLib3D included here retain my copyright notices. This doesn't mean they can't
be used by you - it means that if you cut-and-paste the code into your project, you have to give me
proper credit. That's all. If you choose to read, understand, and re-implement the code yourself (and
it is what you are encouraged to do if you are not actually using the library. You don't learn anything
with cut-and-paste!), then you free yourself of that obligation. Let's face it, the code is nothing
special. Ok, let's get onto something more interesting!

OpenGL Base Code

The OpenGL base code is in Lesson32.cpp . Mostly it came from Lesson 6, with a small
modification to the loading of textures and the drawing routine. The changes will be discussed later.

Milkshape 3D

The model I use in this example is from Milkshape 3D. The reason I use this is because it is a damn
fine modelling package, and it includes its file-format so it is easy to parse and understand. My next
plan is to implement an Anim8or file reader because it is free and of course a 3DS reader.

However, the file format, while it will be described briefly here, is not the major concern for loading a
model. You must create your own structures that are suitable to store the data, and then read the file
into that. So first, let's describe the structures required for a model.

Model Data Structures

These model data structures come from the class Model in Model.h. First, and most important, we
need vertices:

For now, you can ignore the m_boneID variable - that will come in a future tutorial! The m_location

Jeff Molofee's OpenGL Windows Tutorial #32

Page 1 of 9

// Triangle Structure
struct Triangle
{
 float m_vertexNormals[3][3];
 float m_s[3], m_t[3];
 int m_vertexIndices[3];
};

// Triangles Used
int m_numTriangles;
Triangle *m_pTriangles;

// Mesh
struct Mesh
{
 int m_materialIndex;
 int m_numTriangles;
 int *m_pTriangleIndices;
};

// Meshes Used
int m_numMeshes;
Mesh *m_pMeshes;

// Material Properties
struct Material
{
 float m_ambient[4], m_diffuse[4], m_specular[4], m_emissive[4];
 float m_shininess;
 GLuint m_texture;
 char *m_pTextureFilename;
};

// Materials Used
int m_numMaterials;
Material *m_pMaterials;

array represents the coordinate of the vertex (X,Y,Z). The two variables store the number of vertices
and the actual vertices in a dynamic array which is allocated by the loader.

Next we need to group these vertices into triangles:

Now, the 3 vertices that make up the triangle are stored in m_vertexIndices. These are offsets into
the array of m_pVertices. This way each vertex need only be listed once, saving memory (and
calculations when it comes to animating later). m_s and m_t are the (s,t) texture coordinates for
each of the 3 vertices. The texture used is the one applied to this mesh (which is described next).
Finally we have the m_vertexNormals member which stores the normal to each of the 3 vertices.
Each normal has 3 float coordinates describing the vector.

The next structure we have in a model is a mesh. A mesh is a group of triangles that all have the
same material applied to them. The collection of meshes make up the entire model. The mesh
structure is as follows:

This time you have m_pTriangleIndices storing the triangles in the mesh in the same way as the
triangle stored indicies to its vertices. It will be dynamically allocated because the number of
triangles in a mesh is not known in advance, and is specified by m_numTriangles. Finally,
m_materialIndex is the index of the material (texture and lighting coeffecients) to use for the mesh.
I'll show you the material structure below:

Jeff Molofee's OpenGL Windows Tutorial #32

Page 2 of 9

bool MilkshapeModel::loadModelData(const char *filename)
{
 ifstream inputFile(filename, ios::in | ios::binary | ios::nocreate);
 if (inputFile.fail())
 return false; // "Couldn't Open The Model File."

 inputFile.seekg(0, ios::end);
 long fileSize = inputFile.tellg();
 inputFile.seekg(0, ios::beg);

 byte *pBuffer = new byte[fileSize];
 inputFile.read(pBuffer, fileSize);
 inputFile.close();

 const byte *pPtr = pBuffer;
 MS3DHeader *pHeader = (MS3DHeader*)pPtr;
 pPtr += sizeof(MS3DHeader);

 if (strncmp(pHeader->m_ID, "MS3D000000", 10) != 0)
 return false; // "Not A Valid Milkshape3D Model File."

 if (pHeader->m_version < 3 || pHeader->m_version > 4)
 return false; // "Unhandled File Version. Only Milkshape3D Version 1.3 And 1.4 Is Supported."

Here we have all the standard lighting coeffecients in the same format as OpenGL: ambient, diffuse,
specular, emissive and shininess. We also have the texture object m_texture and the filename
(dynamically allocated) of the texture so that it can be reloaded if the OpenGL context is lost.

The Code - Loading the Model

Now, on to loading the model. You will notice there is a pure virtual function called loadModelData,
which takes the filename of the model as an argument. What happens is we create a derived class,
MilkshapeModel, which implements this function, filling in the protected data structures mentioned
above. Lets look at that function now:

 First, the file is opened. It is a binary file, hence the ios::binary qualifier. If it is not found, the function
returns false to indicate an error.

 The above code determines the size of the file in bytes.

 Then the file is read into a temporary buffer in its entirety.

Now, a pointer is acquired to out current position in the file, pPtr. A pointer to the header is saved,
and then the pointer is advanced past the header. You will notice several MS3D... structures being
used here. These are declared at the top of MilkshapeModel.cpp , and come directly from the file
format specification. The fields of the header are checked to make sure that this is a valid file we are
reading.

Jeff Molofee's OpenGL Windows Tutorial #32

Page 3 of 9

 int nVertices = *(word*)pPtr;
 m_numVertices = nVertices;
 m_pVertices = new Vertex[nVertices];
 pPtr += sizeof(word);

 int i;
 for (i = 0; i < nVertices; i++)
 {
 MS3DVertex *pVertex = (MS3DVertex*)pPtr;
 m_pVertices[i].m_boneID = pVertex->m_boneID;
 memcpy(m_pVertices[i].m_location, pVertex->m_vertex, sizeof(float)*3);
 pPtr += sizeof(MS3DVertex);
 }

 int nTriangles = *(word*)pPtr;
 m_numTriangles = nTriangles;
 m_pTriangles = new Triangle[nTriangles];
 pPtr += sizeof(word);

 for (i = 0; i < nTriangles; i++)
 {
 MS3DTriangle *pTriangle = (MS3DTriangle*)pPtr;
 int vertexIndices[3] = { pTriangle->m_vertexIndices[0], pTriangle->m_vertexIndices[1], pTriangle
 float t[3] = { 1.0f-pTriangle->m_t[0], 1.0f-pTriangle->m_t[1], 1.0f-pTriangle->m_t[2] };
 memcpy(m_pTriangles[i].m_vertexNormals, pTriangle->m_vertexNormals, sizeof(float)*3*3);
 memcpy(m_pTriangles[i].m_s, pTriangle->m_s, sizeof(float)*3);
 memcpy(m_pTriangles[i].m_t, t, sizeof(float)*3);
 memcpy(m_pTriangles[i].m_vertexIndices, vertexIndices, sizeof(int)*3);
 pPtr += sizeof(MS3DTriangle);
 }

 int nGroups = *(word*)pPtr;
 m_numMeshes = nGroups;
 m_pMeshes = new Mesh[nGroups];
 pPtr += sizeof(word);
 for (i = 0; i < nGroups; i++)
 {
 pPtr += sizeof(byte); // Flags
 pPtr += 32; // Name

 word nTriangles = *(word*)pPtr;
 pPtr += sizeof(word);
 int *pTriangleIndices = new int[nTriangles];
 for (int j = 0; j < nTriangles; j++)
 {
 pTriangleIndices[j] = *(word*)pPtr;
 pPtr += sizeof(word);
 }

 char materialIndex = *(char*)pPtr;

The above code reads each of the vertex structures in the file. First memory is allocated in the model
for the vertices, and then each is parsed from the file as the pointer is advanced. Several calls to
memcpy will be used in this function, which copies the contents of the small arrays easily. The
m_boneID member can still be ignored for now - its for skeletal animation!

As for the vertices, this part of the function stores all of the triangles in the model. While most of it
involves just copying the arrays from one structure to another, you'll notice the difference for the
vertexIndices and t arrays. In the file, the vertex indices are stores as an array of word values, but in
the model they are int values for consistency and simplicity (no nasty casting needed). So this just
converts the 3 values to integers. The t values are all set to 1.0-(original value). The reason for this
is that OpenGL uses a lower-left coordinate system, whereas Milkshape uses an upper-left
coordinate system for its texture coordinates. This reverses the y coordinate.

Jeff Molofee's OpenGL Windows Tutorial #32

Page 4 of 9

 pPtr += sizeof(char);

 m_pMeshes[i].m_materialIndex = materialIndex;
 m_pMeshes[i].m_numTriangles = nTriangles;
 m_pMeshes[i].m_pTriangleIndices = pTriangleIndices;
 }

 int nMaterials = *(word*)pPtr;
 m_numMaterials = nMaterials;
 m_pMaterials = new Material[nMaterials];
 pPtr += sizeof(word);
 for (i = 0; i < nMaterials; i++)
 {
 MS3DMaterial *pMaterial = (MS3DMaterial*)pPtr;
 memcpy(m_pMaterials[i].m_ambient, pMaterial->m_ambient, sizeof(float)*4);
 memcpy(m_pMaterials[i].m_diffuse, pMaterial->m_diffuse, sizeof(float)*4);
 memcpy(m_pMaterials[i].m_specular, pMaterial->m_specular, sizeof(float)*4);
 memcpy(m_pMaterials[i].m_emissive, pMaterial->m_emissive, sizeof(float)*4);
 m_pMaterials[i].m_shininess = pMaterial->m_shininess;
 m_pMaterials[i].m_pTextureFilename = new char[strlen(pMaterial->m_texture)+1];
 strcpy(m_pMaterials[i].m_pTextureFilename, pMaterial->m_texture);
 pPtr += sizeof(MS3DMaterial);
 }

 reloadTextures();

 delete[] pBuffer;

 return true;
}

void Model::reloadTextures()
{
 for (int i = 0; i < m_numMaterials; i++)
 if (strlen(m_pMaterials[i].m_pTextureFilename) > 0)
 m_pMaterials[i].m_texture = LoadGLTexture(m_pMaterials[i].m_pTextureFilename);
 else
 m_pMaterials[i].m_texture = 0;
}

The above code loads the mesh data structures (also called groups in Milkshape3D). Since the
number of triangles varies from mesh to mesh, there is no standard structure to read. Instead, they
are taken field by field. The memory for the triangle indices is dynamically allocated within the mesh
and read one at a time.

Lastly, the material information is taken from the buffer. This is done in the same way as those
above, copying each of the lighting coefficients into the new structure. Also, new memory is
allocated for the texture filename, and it is copied into there. The final call to reloadTextures is used
to actually load the textures and bind them to OpenGL texture objects. That function, from the Model
base class, is described later.

The last fragment frees the temporary buffer now that all the data has been copied and returns
successfully.

So at this point, the protected member variables of the Model class are filled with the model
information. You'll note also that this is the only code in MilkshapeModel because it is the only code
specific to Milkshape3D. Now, before the model can be rendered, it is necessary to load the textures
for each of its materials. This is done with the following code:

Jeff Molofee's OpenGL Windows Tutorial #32

Page 5 of 9

void Model::draw()
{
 GLboolean texEnabled = glIsEnabled(GL_TEXTURE_2D);

 // Draw By Group
 for (int i = 0; i < m_numMeshes; i++)
 {

 int materialIndex = m_pMeshes[i].m_materialIndex;
 if (materialIndex >= 0)
 {
 glMaterialfv(GL_FRONT, GL_AMBIENT, m_pMaterials[materialIndex].m_ambient);
 glMaterialfv(GL_FRONT, GL_DIFFUSE, m_pMaterials[materialIndex].m_diffuse);
 glMaterialfv(GL_FRONT, GL_SPECULAR, m_pMaterials[materialIndex].m_specular);
 glMaterialfv(GL_FRONT, GL_EMISSION, m_pMaterials[materialIndex].m_emissive);
 glMaterialf(GL_FRONT, GL_SHININESS, m_pMaterials[materialIndex].m_shininess);

 if (m_pMaterials[materialIndex].m_texture > 0)
 {
 glBindTexture(GL_TEXTURE_2D, m_pMaterials[materialIndex].m_texture);
 glEnable(GL_TEXTURE_2D);
 }
 else
 glDisable(GL_TEXTURE_2D);
 }
 else
 {
 glDisable(GL_TEXTURE_2D);
 }

 glBegin(GL_TRIANGLES);
 {

For each material, the texture is loaded using a function from NeHe's base code (slightly modified
from it's previous version). If the texture filename was an empty string, then it is not loaded, and
instead the texture object identifier is set to 0 to indicate there is no texture.

The Code - Drawing the Model

Now we can start the code to draw the model! This is not difficult at all now that we have a careful
arrangement of the data structures in memory.

This first part saves the state of texture mapping within OpenGL so that the function does not disturb
it. Note however that it does not preserve the material properties in the same way.

Now we loop through each of the meshes and draw them individually:

m_pMeshes[i] will be used to reference the current mesh. Now, each mesh has its own material
properties, so we set up the OpenGL states according to that. If the materialIndex of the mesh is -1
however, there is no material for this mesh and it is drawn with the OpenGL defaults.

The material properties are set according to the values stored in the model. Note that the texture is
only bound and enabled if it is greater than 0. If it is set to 0, you'll recall, there was no texture, so
texturing is disabled. Texturing is also disabled if there was no material at all for the mesh.

Jeff Molofee's OpenGL Windows Tutorial #32

Page 6 of 9

 for (int j = 0; j < m_pMeshes[i].m_numTriangles; j++)
 {
 int triangleIndex = m_pMeshes[i].m_pTriangleIndices[j];
 const Triangle* pTri = &m_pTriangles[triangleIndex];

 for (int k = 0; k < 3; k++)
 {
 int index = pTri->m_vertexIndices[k];

 glNormal3fv(pTri->m_vertexNormals[k]);
 glTexCoord2f(pTri->m_s[k], pTri->m_t[k]);
 glVertex3fv(m_pVertices[index].m_location);
 }
 }
 }
 glEnd();
 }

 if (texEnabled)
 glEnable(GL_TEXTURE_2D);
 else
 glDisable(GL_TEXTURE_2D);
}

 Model *pModel = NULL; // Holds The Model Data

 pModel = new MilkshapeModel();
 if (pModel->loadModelData("data/model.ms3d") == false)
 {
 MessageBox(NULL, "Couldn't load the model data/model.ms3d", "Error", MB_OK | MB_ICONERROR);
 return 0; // If Model Didn't Load, Quit
 }

The above section does the rendering of the triangles for the model. It loops through each of the
triangles for the mesh, and then draws each of its three vertices, including the normal and texture
coordinates. Remember that each triangle in a mesh and likewise each vertex in a triangle is
indexed into the total model arrays (these are the two index variables used). pTri is a pointer to the
current triangle in the mesh used to simplify the code following it.

This final fragment of code sets the texture mapping state back to its original value.

The only other code of interest in the Model class is the constructor and destructor. These are self
explanatory. The constructor initializes all members to 0 (or NULL for pointers), and the destructor
deletes the dynamic memory for all of the model structures. You should note that if you call the
loadModelData function twice for one Model object, you will get memory leaks. Be careful!

The final topic I will discuss here is the changes to the base code to render using the new Model
class, and where I plan to go from here in a future tutorial introducing skeletal animation.

 At the top of the code in Lesson32.cpp the model is declared, but not initialised. It is created in
WinMain:

The model is created here, and not in InitGL because InitGL gets called everytime we change the
screen mode (losing the OpenGL context). But the model doesn't need to be reloaded, as its data
remains intact. What doesn't remain intact are the textures that were bound to texture objects when
we loaded the object. So the following line is added to InitGL:

Jeff Molofee's OpenGL Windows Tutorial #32

Page 7 of 9

 pModel->reloadTextures();

int DrawGLScene(GLvoid) // Here's Where We Do All The Drawing
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Clear The Screen And The Depth Buffer
 glLoadIdentity(); // Reset The View
 gluLookAt(75, 75, 75, 0, 0, 0, 0, 1, 0);

 glRotatef(yrot,0.0f,1.0f,0.0f);

 pModel->draw();

 yrot+=1.0f;
 return TRUE; // Keep Going
}

This takes the place of calling LoadGLTextures as we used to. If there was more than one model in
the scene, then this function must be called for all of them. If you get white objects all of a sudden,
then your textures have been thrown away and not reloaded correctly.

Finally there is a new DrawGLScene function:

Simple? We clear the colour buffer, set the identity into the model/view matrix, and then set an eye
projection with gluLookAt. If you haven't used gluLookAt before, essentially it places the camera at
the position of the first 3 parameters, places the center of the scene at the position of the next 3
parameters, and the last 3 parameters describe the vector that is "up". In this case, we look from
(75, 75, 75) to (0,0,0) - as the model is drawn about (0,0,0) unless you translate before drawing it -
and the positive Y-axis is facing up. The function must be called first, and after loading the identity to
behave in this fashion.

To make it a bit more interesting, the scene gradually rotates around the y-axis with glRotatef.

Finally, the model is drawn with its draw member function. It is drawn centered at the origin
(assuming it was modelled around the origin in Milkshape 3D!), so If you want to position or rotate or
scale it, simply call the appropriate GL functions before drawing it. Voila! To test it out - try making
your own models in Milkshape (or use its import function), and load them instead by changing the
line in WinMain. Or add them to the scene and draw several models!

What Next?

In a future tutorial for NeHe Productions, I will explain how to extend this class structure to
incorporate skeletal animation. And if I get around to it, I will write more loader classes to make the
program more versatile.

The step to skeletal animation is not as large as it may seem, although the math involved is much
more tricky. If you don't understand much about matrices and vectors, now is the time to read up
them! There are several resources on the web that can help you out.

See you then!

Some information about Brett Porter: He is currently working as a Java programmer for IDM's
gameplayNOW. Born in Australia, he studied at the University of Wollongong, recently graduating
with a BCompSc and a BMath. He began programming in BASIC 12 years ago on a Commodore 64
"clone" called the VZ300, but soon moved up to Pascal, Intel assembly, C++ and Java. During the
last few years 3D programming has become an interest and OpenGL has become his graphics API
of choice. For more information visit his Homepage.

Brett Porter - Code / HTML
Jeff Molofee (NeHe) - HTML Modifications

Jeff Molofee's OpenGL Windows Tutorial #32

Page 8 of 9

* DOWNLOAD Visual C++ Code For This Lesson.
* DOWNLOAD Borland C++ Builder 4.0 Code For This Lesson. (Conversion by Dave Rowbotham)

Jeff Molofee's OpenGL Windows Tutorial #32

Page 9 of 9

Table of Contents

Disclaimer..1

 Chapter 1 − Introduction ..2
 1.1 About this report..2
1.2 Style Conventions...2
 1.3 Background Material...2
1.4 Aims And Objectives..3
1.5 What is OpenGL?...3
1.6 Discussions With The Supervisor−Time Plan...4
1.7 The structure of this project..4

Chapter 2 − Opening a window and drawing simple graphics with OpenGL...6
2.1 Opening a window using OpenGL..6
2.2 Creating and showing a cube..9
2.3 Difference between flat and smooth shading...11
2.4 Modelling and projection transformations...15

Chapter 3 − Creating a hierarchical, 3D, wire frame model...22
3.1 Building a basic hierarchical model...22
3.2 Improving the basic model..36

Chapter 4− Lighting ...42
4.1 Getting started with lighting..43
4.2 Colour Tracking..45
4.3 Setting up an object’s material properties and shininess...47
4.4 The Material – Lights program ..48
4.5 Adding lights to the basic model...57

Chapter 5 − Improving the model: “A more elaborate geometrical example...61
5.2 Creating the complex model...63

Chapter 6 − Texture Mapping...69
6.2 Opening several windows with OpenGL...72
6.3 Creating a texture..74
6.4 A texture mapped man...79

Chapter 7 − Conclusions – Future possibilities..83

Appendix I − Using Borland C++ 5.02..84

Appendix II − Using The FLTK Library ..87

Appendix III − Using Paint Shop Pro 5.0...89

Appendix IV − Bibliography..92

i

Disclaimer
This document named "A 3D Case Study using OpenGL", was initially written as part of a third year project
in the University of Hull, by Fotis Chatzinikos.

This document is free for personal use. For commercial or academic use please contact the Developers
Gallery Webmaster at: WebMaster@dev−gallery.com

For updates and the code that accompanies this tutorial please visit the Developers
Gallery (www.dev−gallery.com)

Feel free to join our newsletter, so that you will be kept up to date with any additions to the site.

Document Version 1.0

Fotis Chatzinikos, August 29th, 2000

1

mailto:WebMaster@dev-gallery.com
http://www.dev-gallery.com
http://www.dev-gallery.com
http://www.dev-gallery.com

 Chapter 1 − Introduction

 1.1 About this report

This report was written as part of the final year project with the title “A 3D Case study using OpenGL”. In
the following pages of this paper, a great deal of information can be found about several different aspects of
this project.

Firstly, some information about the style conventions used during the development of this project report is
provided. Some background work done mainly in the summer follows. The aims and objectives of this
project are the following topic.

Further on, is a short report on what is OpenGL and why it was chosen for the development of this project.
The discussions with the supervisor and the time plan of the two semesters also appears here.

Following, a discussion is done on the structure of this project and finally some comments are done on the
structure of the accompanying compact disc, which contains all the work done, including this report.

1.2 Style Conventions

In this project report the following style conventions are used :

· The actual text of the report is written in Arial, size 12. Chapter headings are use Arial , size 20
and secondary heading are of size 16.

· Code is written in Courier New, size 10.

· OpenGL and glut command summaries are shaded with light blue boxes.

· Variables, arguments, parameter names, etceteras are in Italics.

· OpenGL functions start with ‘gl’, GLUT functions start with ‘glut’.

· Constants of type GL_* or GLUT_* are predefined (OpenGL and GLUT specific).

Note: In the online version of the tutorial not all of the previous apply.

 1.3 Background Material

During the summer (before the 5th Semester) some background work was done. This work included searching
several Internet sites for information about OpenGL. There are quite a few sites with information on OpenGL
but the most useful one proved to be www/opengl.org. At the particular site information is held about
OpenGL documentation, specification definitions, developers, example programs, etceteras.

Some information was also needed on human walking in order to make the human model to walk. From Tony
White’s book on animation [1], the walking cycle of the human model was retrieved.

Some experimentation with OpenGL was done also before the beginning of the 5th semester in order to be
familial with the particular graphics system.

2

http://www.opengl.org

1.4 Aims And Objectives

The title of this project is “A 3D Case Study Using OpenGL”, so one of the most defined aims of this project
is to learn to use OpenGL. What is OpenGL and why it was chosen for the development of this problem are
discussed later on. This may be the easiest identifiable aim of the project but is not the most important one.

More important aims are to understand the concept of 3D graphics. People may leave in a three dimensional
world but building three dimensional applications is not the easiest thing somebody can do.

Another aim of this project is to learn how to model three dimensional hierarchical objects such as cars,
articulated robot arms, humans etceteras. In few words objects with multiple moving parts that are related in
some order.

In software engineering terms, a combination of the incremental and prototyping models was used in order to
design and work with this project (divide and conquer). This model is based on the idea of constructing a
simple and small system as soon as possible, as such a system is probably not complicated; and a simple (not
complicated) system is probably correct. As the development of the project is continuing more parts are
added to the initial system (Incremental Model). At any points that there is an uncertainty about which
algorithm or technique should be used, different solutions can be tried out (Prototyping).

This software engineering model suits the particular project as one of the main objectives of this project is to
produce an OpenGL tutorial, something that is clearly incremental.

This technique suits also the developer of this project as he prefers to have something working during the
whole development time. Following this technique there was always the drawback of spending more time
than designing the whole system and then implementing it, but there was no possibility of reaching the
deadline without a working system.

Several Appendices are included with this report. The reason behind these appendices is to keep the length of
the main report relatively short, without any loss of information. A short description of the appendices now
follows.

 · Appendix I : Using Borland C/C++ 5.02 to build an OpenGL DOS console WINDOWS
program.

· Appendix II: Using the FLTK (Fast Light Tool Kit) GUI (Graphical User Interface) to construct
buttons, dialogs, menu etceteras in C.

· Appendix III: Using Paint Shop Pro to retrieve the model data

· Appendix IV: Bibliography

1.5 What is OpenGL?

According to the OpenGL data sheet, OpenGL is an industry standard, stable, reliable and portable, evolving,
scalable, easy to use and well−documented API.

But lets explain all these buzzwords. OpenGL is an industry standard (by now) as it has been available from
1992. The OpenGL specification is managed by an independent consortium, the OpenGL Architecture
Review Board, some of its members being SGI (Silicon Graphics) and Microsoft.

OpenGL is available for more than seven years in a variety of systems. Additions to the specification
(through extensions) are well controlled by the consortium and proposed updates are announced in time for
developers to adopt changes. Backwards compatibility is also ensured.

 Chapter 1 − Introduction

3

OpenGL is reliable as all applications based on OpenGL produce consistent visual display results on any
OpenGL API compliant hardware. Portability is also a fact as OpenGL is available in a variety of systems,
such as PCs, Macintoshes, Silicon Graphics and UNIX based machines and so on. OpenGL is available also
in different bindings, some of them being C and C++, Java and FORTAN.

OpenGL is evolving through its extensions mechanism that allows new hardware innovations to be accessible
to the API, as soon as the developers have the hardware (and the extension) ready.

OpenGL is also scalable as it can run in a variety of computers, from ‘simple’ home systems to workstations
and supercomputers. This is achieved through OpenGL’s hardware capabilities inquiry mechanism.

OpenGL is well structured with logical commands (a few hundred). OpenGL also encapsulates information
about the underlying hardware, freeing the application developer from having to design hardware specific
code.

OpenGL’s data sheet says that numerous books are available on the subject. Actually at the start of 1998 only
two of them were widely available, the OpenGL programming guide [3], and the OpenGL Super Bible [4].
The truth is that at the end of 1998 a few more books appeared about OpenGL and that the World Wide Web
has enough resources available for free.

Lets see now the programmers view of Open. To the programmer OpenGL is a set of commands. Firstly he
opens a window in the frame buffer into which the program will draw. After this some calls are made to
establish a GL context. When this is done, the programmer is free to use the OpenGL commands to describe
2D and 3D objects and alter their appearance but changing their attributes (or state). The programmer is also
free to manipulate directly the frame buffer with calls like read and write pixels.

So why was OpenGL chosen for the development of this project. Why OpenGL instead of DirectX, GKS or
XGKS ?

The answer is a combination of the just mentioned OpenGL advantages and the fact that DirectX is quicker
(only at the moment) but OpenGL is more precise and that GKS (and X−GKS) are years in the market but are
not as platform independent as OpenGL (OpenGL is also free). And for scientific visualisation, virtual
environments, CAD/CAM/CAE, medical imaging and so on (not just games) precision and platform
independence are the key features.

1.6 Discussions With The Supervisor−Time Plan

Supervisor meeting took place every Monday during the first semester. At each meeting the supervisor was
told of new developments during the previous week. These developments were discussed and on one
occasion a change in the program was made (the program made to read data from a file). Another decision
that may be of some importance is, that it was agreed that after finish the modelling of the human (chapter 4)
no further improvements were to be done, until texture mapping (the next chapter) was finished.

1.7 The structure of this project

The structure of this project is such that a newcomer to three−dimensional graphics and OpenGL can follow
easily, building up knowledge before moving on to more complicated concepts, in other words this project is
written in the form of an OpenGL tutorial.

The topic of the second chapter is simple window construction, as OpenGL needs a graphical (windowing)
operating system, and the introduction of modelling and projection transformations. The reader first learns
how to open windows using OpenGL, and then a discussion follows on modelling transformations like
rotation, scaling and translation and projection transformations like orthographic and perspective viewing.

 Chapter 1 − Introduction

4

In the third chapter a first attempt is made to create a simple model of a man and the appropriate animation
cycle, which resulted in a model constructed from basic geometrical shapes (spheres and cubes). Previously
acquired knowledge of modelling and projection transformations is used in order to construct this simple
model. At first the example programs use data that are ‘hard−wired’ in the program, but latter on the
examples become data−driven.

The model of a man was chosen because it is an interesting case. Firstly, it is a hierarchical model, meaning
that there are many interrelations between certain parts of the body such that cause the rotation and
movement of body parts when other, higher in the hierarchy parts are moving. Secondly, the animation of a
human walk cycle is a very interesting topic that is still a research topic. In this project a simple, but effective
animation technique was chosen, based on the idea of ‘key−framing’.

The fourth chapter introduces OpenGL’s lighting model and continues with a discussion on materials and
their properties. A material is an object property approximating real−life materials. When proper material
components are chosen, material like wood, glass, steel, etc. can be constructed. A program is constructed
where a user can experiment with the light and material properties in order to familiarise with the concept.

A more elaborate geometrical example is presented in the fifth chapter, as its discussion topic is the
improvement of the basic, model of a man. A three−dimensional model of a man is created, using a technique
that is able to construct a three−dimensional model from several two−dimensional images.

The sixth chapter introduces texture mapping, a technique that enables the use of images as parts of objects,
making OpenGL programs more attractive and ‘real’. The topic of texture mapping is not going to be
throughoutly exhausted, as the subject is quite complicated and the applications of texture mapping are
inexhaustible. An example program is created that can load a bitmap image, select a part of it, in order to
create a texture and then this texture is applied on a rotating cube and then on the improved model of a man
itself. The user can interactively set different texture properties like texture filters and so on. A function that
is able of saving a texture as a bitmap file is also available.

The seventh, and final chapter contains the conclusions of this report and future possibilities that arise from
this project.

 Chapter 1 − Introduction

5

Chapter 2 − Opening a window and drawing simple
graphics with OpenGL
As mentioned in the first chapter, OpenGL programs need a graphical window interface in order to work,
possibilities include Microsoft’s Windows systems, Silicon Graphics systems and X−Windows systems. In
this chapter introductory material of OpenGL will be discussed, things like opening and naming a window,
clearing the window and drawing simple graphics like a cube.

The first example demonstrates how to open a window by using the GL Utility Toolkit named GLUT. This
library will be used quite often as it contains many functions that without them simple OpenGL programs
would be quite tedious to write.

The second program goes a bit further and demonstrates how to create and show a cube using OpenGL. At
this point the cube looks two−dimensional as the projection used is orthographic (projections are described in
detail later).

The third example expands the second one, in order to show the difference between flat and smooth shading.
A square is drawn either by using flat or smooth shading. The user is able to change back and forth
interactively in order to see the difference.

The fourth program draws four cubes. Two of them are displayed with orthographic projection and two with
perspective projection. Different order of translation and rotation is also applied in order to demonstrate the
different effect.

2.1 Opening a window using OpenGL

The goal of this section is to create an OpenGL−based window. There are many ways in which a window can
be created and shown under the various windowing systems, but OpenGL’s Utility Toolkit, GLUT, provides
some functions that can create a window in an Operating System independent way. This means that programs
created with GLUT will operate under different windowing systems without having to change the code
manually.

In order to use OpenGL and GLUT the header file glut.h is needed. This file contains references also to the
header files opengl.h and glu.h. These three files are all that is needed at the moment in order to construct
some simple OpenGL programs. The file windows.h is also need to be included before the inclusion of the
OpenGL header files, otherwise the compiler will give quite a few errors. In order to make the program
portable, the following piece of code can be written (as the file windows.h will not be needed for example
with a Silicon Graphics machine).

Example 2.1 Checking for execution platform type

#ifdef __FLAT__
#include windows.h
#endif

This will check at compile time if the environment is a Microsoft’s Win32 environment (Windows 95/98/NT)
and if the check is true the file will be included, otherwise the file will not be included (in X−Windows for
example).

A window has several properties, like dimensions, name, buffers and so on. These properties must be
initialised before the actual window is created and shown. GLUT provides several functions for this particular
reason. In this example the calls to these functions can be found inside the body of the main function. The
initialisation of the window is the topic of the next paragraph.

6

Before using any GLUT functions the OpenGL Utility Toolkit, GLUT must be initialised. This is done by
calling the function glutInit inside the main function of the program. After GLUT is initialised the display
mode of the window must be initialised, too. Calling the function glutInitDisplayMode will do the last.
This function accepts quite a few arguments as the display mode of a window can be double or single
buffered, RGB or indexed colour table, with or without a depth buffer etc.

The next thing to do is to call the function glutCreateWindow in order to create the actual window, but
prior to that, the two functions glutInitWindowSize and glutInitWindowPosition must be called. The first
one as its name implies is responsible for setting the size of the window and the second one for setting the
window’s initial position. Both size and position can change later on. The last two functions accept two
integer arguments, each specifying pixel dimensions. In the case of glutInitWindowSize the arguments are
its width and height. In the second case the two arguments are the horizontal and vertical distance from the
upper left corner of the monitor, where the window in creation should appear (if possible). The function
glutCreateWindow accepts a string as its argument. This string will be used as the window’s name.

Now that the window is actually created, only a few steps remain before the window is ready and visible.

In the following lines, the code that is responsible for doing all the previous operations can be seen (Example
2.2).

Example 2.2 Code to initialise and create a window

int main(int argc, char** argv)
{
 glutInit (&argc, argv) ;
 glutInitDisplayMode (GLUT_DOUBLE | GLUT_RGB) ;
 glutInitWindowSize (400, 100) ;
 glutInitWindowPosition (100, 100) ;
 glutCreateWindow ("First Chapter − Opening an OpenGL Window") ;

 init() ;
 glutDisplayFunc (display) ;

 glutMainLoop () ;

 return 0 ;
}

In this piece of code the actual calls to the GL functions can be seen, in order to create a RGB, double
buffered window that has 400 pixels width, 100 pixels height and is named “First Chapter – Opening an
OpenGL Window”. This window will be positioned (if possible) 100 pixels from the upper left corner of the
screen (both horizontally and vertically). Some other functions are visible here that have not been mentioned
before.

The function init is responsible for any initialisation needed prior to the window construction and/or
visualisation. Its structure can be seen here.

Example 2.3 The init function

void init(void)
{
 glClearColor(1.0, 1.0, 1.0, 0.0) ;
 glShadeModel(GL_FLAT) ;
}

This function contains just two OpenGL calls. The first one, named glClearColor is responsible for setting
the initial clearing colour. The clearing (background) colour in this occasion is set to white (all colour values,

Chapter 2 − Opening a window and drawing simple graphics with OpenGL

7

Red, Green and Blue are set to one). The fourth value (0.0) is the one called alpha value and is normally used
for blending. At this point the alpha value is of no importance.

Next the function glShadeModel is called in order to set the shading model. The shading model can be either
GL_SMOOTH or GL_FLAT. When the shading model is GL_FLAT only one colour per polygon is used,
whereas when the shading model is set to GL_SMOOTH the colour of a polygon is interpolated among the
colours of its vertices. An example will demonstrate this particular difference later on.

Back in the main function, two more calls follow the call to the function init. The first one, named
glutDisplayFunc, is the first and most important event callback function that will appear in this report. The
callback functions are special functions that are registered in order to do some specific operations. Whenever
GLUT determines that the contents of a window need to be redisplayed, the callback function registered by
glutDisplayFunc is executed. Therefore all the code that has to do with drawing must be inside the display
callback function.

The following code shows the function display. display is the function registered as the display callback by
calling the function glutDisplayFunc(display).

Example 2.4 Basic display function

void display(void)
{
 glClear(GL_COLOR_BUFFER_BIT) ;
 glutSwapBuffers() ;
}

Like all the functions that will be used as display callback functions, display is of type void. As this program
is quite simple and no actual drawing happens in the window, the contents of this function are quite simple,
too. They are actually the only “compulsory” function calls that should always appear in any display callback
function.

The first one, glClear must be called prior to any drawing as it clears the background. It can be omitted if it
is desired to draw several times without clearing the background! It accepts one argument that specifies the
desired buffer to be cleared. In this program, as no actual drawing happens, this function just clears the
background to the colour set previously in the init function by the function glClearColor.

The function glutSwapBuffers does exactly what its name implies. It swaps the back buffer with the front
buffer, as when a window is double buffered, the default drawing buffer is the back buffer. Any actual
drawing happens in the back buffer and when the drawing is ready the two buffers are swapped in order to
achieve smoothness and remove any flickering. If a window had only a single buffer the call glFlash would
be used instead.

Back in the main function the last routine called is glutMainLoop. After all setup is done, GLUT programs
enter this event−processing loop, never to exit until the program is finished.

The results of the program, after compiling, linking and running can be viewed in plate 2.1. Further
information on how to make an OpenGL project in Borland C/C++, compile and link, can be found in
Appendix I.

Chapter 2 − Opening a window and drawing simple graphics with OpenGL

8

2.2 Creating and showing a cube

Now that it has been demonstrated what must be done to create and show a simple OpenGL window, it is the
time to go a bit further and create a simple cube.

In this section the previously acquired knowledge is going to be used in order to create a window. When the
window is created, it is then quite easy to draw a simple wireframe cube just by calling some OpenGL
functions. The steps needed to create such a simple cube will be the topic of this section.

As the following programs (in the next chapters) will be quite complicated, a first attempt will be made in
this program to try and create a project that its code will be separated in more than one files (in order to keep
the code simple and easy to understand). For the purposes of this example only three files will be needed. The
first one will contain the main program and is named main.c, the second one is called model.c and will
contain the functions that will be responsible for drawing any models, in this case a simple function that
draws a wireframe cube of constant size. The last file is named model.h and it is the header file that will
contain any function definitions needed by the main program. These functions will be implemented in the
model.c file.

This program is mainly the same as the previous one with the only additions being a slight change of the
display function in order to draw a wireframe cube and the splitting of the project in three different files.

Example 2.5 Display function that draws a wireframe cube

void display(void)
{
 glClear(GL_COLOR_BUFFER_BIT) ;
 Draw_Wireframe_Cube() ;
 glutSwapBuffers() ;
}

As it can be seen in Example 2.5 the only difference from the display function in the previous program
(Example 2.4) is the inclusion of the function Draw_Wireframe_Cube. This function is responsible for
creating a simple wireframe cube of size one. This function is available to the main program by including the
header file model.h. The structure of this file can be seen in example 2.6.

Example 2.6 Basic header file

#ifndef MODEL
#define MODEL

#ifdef __FLAT__
 #include <windows.h>
#endif

Chapter 2 − Opening a window and drawing simple graphics with OpenGL

9

#include <gl/glut.h>

void Draw_Wireframe_Cube(void) ;

#endif

This header file contains the definition of the function Draw_Wireframe_Cube. It can be seen that this
function is of type void and that it does not accept any parameters. The implementation of this function can
be found in the file model.c and example 2.7 shows the contents of this file. The statement #ifndef is used
for conditional compilation and compilation time minimisation. When the compiler tries to compile the
particular file, it checks if the file is already defined. If the file is not defined, then it continues compiling,
otherwise it does not compile the file. For example if a particular header file is referenced from several
implementation files, and the compiler has already compiled the particular header file (and named it using the
#define ‘identifier’ statement) there would be no reason to recompile it.

Example 2.7 Basic implementation file

#include "model.h"
void Draw_Wireframe_Cube (void)
{
 glColor3f(0.0,0.0,0.0) ;
 glutWireCube(1.0) ;
}

It can be seen in this example that an implementation file must include its definition file (in this case model.h)
and of course the implementation of the functions defined in the header file. When including files, <> are
used to direct the compiler to look for the particular file in the systems directory and “” are used to direct the
compiler to look in the current directory for the specified file.

In example 2.7, two new GL functions are introduced (an OpenGL and a GLUT function). The
OpenGL function named glColor3f is responsible for setting the current colour. As the working colour mode
is RGB (Red−Green−Blue), this function accepts three parameters; one for the red, one for the green and one
for the blue value of the colour. The values of these parameters can range from 0.0 to 1.0 (black being zeros
for all red, green and blue parameters and white being ones for all three parameters). In this example the
colour is set to black (0.0, 0.0, 0.0).

The GLUT function named glutWireCube is responsible for drawing a wireframe cube that its size is
specified by its one, floating point, parameter. In this example the size of the wireframe cube is set to one. So
the function Draw_Wireframe_Cube just sets the colour to black and draws a wireframe cube.

At this point the program is ready. If it is compiled and run the results will be the ones shown in plate 2.2.

The cube looks like a simple rectangle because the default OpenGL projection is orthographic (more on
projections in section 2.4), so only the front face of the cube is visible and in such a way that it hides the five
remaining faces.

Chapter 2 − Opening a window and drawing simple graphics with OpenGL

10

2.3 Difference between flat and smooth shading

In this example the difference between flat and smooth shading will be demonstrated. In this case a square
will be drawn, but without using the GLUT function glutWireCube (or glutSolidCube). These
GLUT functions will not be used, as they do not provide any way of setting different colours to different
vertices, and in order to demonstrate smooth shading at least two of the vertices of a polygon should be of a
different colour. It would be easier to create a rectangle by using the function glutSolidCube and then scaling
it down in order to make it flat (a flat cube is a square), but as it was just mentioned this can not be done
(because of the colours). A custom function will be created that will draw a square with four different colours
assigned to each of the four vertices. Example 2.8 demonstrates this function called Draw_A_Rectangle.

Example 2.8 Function Draw_A_Rectangle

void Draw_A_Rectangle(void)
{
 glBegin(GL_QUADS) ;
 glColor3f(0.0,1.0,0.0) ;
 glVertex2f(0.25,0.25) ;
 glColor3f(1.0,1.0,0.0) ;
 glVertex2f(0.25,0.75) ;
 glColor3f(1.0,0.0,0.0) ;
 glVertex2f(0.75,0.75) ;
 glColor3f(0.0,0.0,1.0) ;
 glVertex2f(0.75,0.25) ;
 glEnd() ;
}

A square has four vertices and as seen in example 2.8 only four calls to the function glVertex2f are needed.
The function glVertex2f specifies two−dimensional vertices. Other graphics systems need an extra vertex in
order to ‘close’ a shape; OpenGL does not need this extra call as when glBegin is called with the parameter
GL_QUADS, OpenGL automatically connects the first and the fourth vertices. When a shape (a geometric
primitive) is constructed in OpenGL, it is always bracketed between the commands glBegin and glEnd.

Between glBegin and glEnd several different OpenGL commands can be issued. In this example only two
different ones are used; glColor3f to set the current colour and immediately afterwards glVertex2f to specify
a vertex of the previously set colour. By passing the particular values in the four glVertex2f commands, a
rectangle that lies from 0.25, 0.25 to 0.75, 0.75 is created. With its four vertices having the colours green,
yellow, red and blue (from left to right).

If the previous program (demonstrated in section 2.2) is slightly changed and instead of using the function

Chapter 2 − Opening a window and drawing simple graphics with OpenGL

11

Draw_Only_Cube uses the function Draw_A_Rectangle (inside the display function), the result will be the
one shown in Plate 2.3. The square will appear blue and at the upper right corner of the window.

The square appears blue because the shading mode was set to GL_FLAT (in example 2.3); that means that
only one colour per polygon is used. Later on this example the effect of smooth shading will be shown. At the
moment, the concentration will be on why the rectangle appears on the upper right corner of the window.
This happens because the default projection mapping of OpenGL is orthographic and has boundaries from –1
to 1 in all three dimensions. An orthographic projection can be thought as a 3D rectangle. This results in the
showing of the rectangle in the upper right corner of the window, as the centre of the window has the
co−ordinates 0,0 and the upper right corner the co−ordinates 1,1 (on the X, Y axes). If the rectangle needs to
be shown in the centre of the screen, a means of manipulating the projection area has to be found. Introducing
the function glutReshapeFunc can do this.

This is another GLUT callback function, quite similar to the one described before named glutDisplayFunc.
This function specifies the function that will be called whenever the window is resized or moved. It can also
be used to initialise the projection type. Example 2.9 shows the reshape function for the particular program.

Example 2.9 Reshape function that specifies a 2D area (0,0 to 1,1)

void reshape(int w, int h)
{
 glViewport (0, 0, (GLsizei)w, (GLsizei)h) ;
 glMatrixMode(GL_PROJECTION) ;
 glLoadIdentity() ;
 gluOrtho2D(0.0,1.0,0.0,1.0) ;
 glMatrixMode(GL_MODELVIEW) ;
 glLoadIdentity() ;
}

In this function a few new OpenGL functions are used. The first one, glViewport is responsible for setting
the current window’s viewport. A viewport specifies the part of the window that all the drawing will take
place, with parts out of the viewport normally clipped out. In this case the viewport will be the whole window
as the values that are passed to the function glViewport specify the viewport to lie from point (0, 0) and for
w pixels width and h pixels height. w and h are the width and height of the current window, so the viewport is
the whole window.

The next call is to the function glMatrixMode. This function is responsible for setting the current matrix
mode, as in OpenGL more that one mode exists. As it is seen the argument to the first call of
glMatrixMode is GL_PROJECTION; this means that any matrix manipulations from this point onwards will

Chapter 2 − Opening a window and drawing simple graphics with OpenGL

12

affect the projection matrix. A couple of lines later the same routine is called, but this time the argument is
GL_MODELVIEW. This indicates that succeeding transformations now affect the modelview matrix instead
of the projection matrix.

In example 2.9 after a call to the routine glMatrixMode (in both occasions), a call to the routine
glLoadIdentity follows. This routine is responsible for clearing the current modifiable matrix from any
previous transformations by setting it to the initial identity matrix.

The function that is responsible for setting the projection area of the window follows. As previously noticed,
the default OpenGL projection is 3D orthographic with boundaries from –1 to 1 in all three dimensions. The
routine gluOrtho2D is used to transform the projection to two−dimensional (by setting the z boundaries to –1
and 1). The clipping boundaries are specified with four arguments that the routine accepts. In this case the 2D
orthographic projection area is set to be from (0, 0), the lower left corner of the window to (1, 1) being the
upper right corner of the window.

If the main function is slightly modified in order to include a call to the routine glutReshapeFunc with the
argument being reshape (just after the call to glutDisplayFunc), the results from the program will be the
ones shown in Plate 2.4.a. The problem is that if the window is slightly reshaped (Plate 2.4.b) the rectangle
will also be
reshaped (it will stop being a square).

This can be changed so that the rectangle will always appear as it was initially set. Example 2.10
demonstrates the slight change to the reshape function in order to accommodate that.

Example 2.10 Reshape function that ………..

void reshape(int w, int h)
{
 if (w >= h)
 glViewport(0, 0, (GLsizei)h, (GLsizei)h) ;
 else
 glViewport(0, 0, (GLsizei)w, (GLsizei)w) ;
 ……………
}

Chapter 2 − Opening a window and drawing simple graphics with OpenGL

13

This code finds which of the two sides (height or width) is longer and then sets the viewport in such a way
that it is always square (either h x h or w x w). When the new program is compiled and run the results are the
ones shown in Plate 2.5.

Now that everything about the projection used is explained, it is time to go on and see what happens if the
argument passed to glShadeModel changes from GL_FLAT to GL_SMOOTH. This time the rectangle will
not appear blue but its colour will be calculated by interpolating the colours of its four vertices. Plate 2.6
shows exactly that.

This example also gives an opportunity to introduce keyboard interaction, by introducing the GLUT routine
glutKeyboardFunc. This function is similar to glutDisplayFunc and glutReshapeFunc, as it is used to
register a keyboard callback routine. Example 2.11 shows the structure of the keyboard function that can
change between flat and smooth shading by using the keys ‘f’−‘F’ (for flat shading) and ‘s’−‘S’ (for smooth
shading).

Example 2.11 The keyboard function

void keyboard (unsigned char key, int x, int y)
{
 switch (key)
 {

 case 's' :
 case 'S' :
 glShadeModel(GL_SMOOTH) ;
 break ;
 case 'f' :
 case 'F' :
 glShadeModel(GL_FLAT) ;
 break ;
 default :
 break ;
 }
 glutPostRedisplay() ;

Chapter 2 − Opening a window and drawing simple graphics with OpenGL

14

}

 A new GLUT routine is also introduced in this function, glutPostRedisplay. This routine marks the current
window as needing to be redrawn. At the next opportunity, the callback function registered by
glutDisplayFunc will be called to redraw the window. If the routine glutPostRedisplay was not included at
this point, the user could press keys without receiving any feedback at all. This happens because
OpenGL does not know that the contents of the window change whenever the user presses a key, as it is quite
normal that the keyboard will be used for reasons other than changing the contents of the window.

2.4 Modelling and projection transformations

This section will try to explain the main modelling transformations, translate, rotate and scale and the basic
projection transformations, orthographic and perspective projection. In order to achieve that, four cubes will
be drawn in the four quadrants of the window. The upper two cubes will be shown using orthographic
projection; whereas the lower two by using perspective projection. Different order of modelling
transformations will be used to demonstrate this particular difference.

Modelling transformations are used to position and orient the models. Three basic transformations are
available in OpenGL and these are translation, rotation and scaling. The order of these transformations is not
irrelevant to the final transformation. For example, if an object is firstly translated and then rotated, it will
have a different position and orientation from the same object that has been firstly rotated and then translated.
This particular difference will be demonstrated later in the example program, but for now this difference can
be viewed in Plate 2.7. In the picture on the left, a cube is firstly rotated 45 degrees and then translated x

Chapter 2 − Opening a window and drawing simple graphics with OpenGL

15

units. In the picture on the right, the same cube is firstly translated the same x units and then rotated by 45
degrees. After having introduced the concept of modelling transformations, the concept of projection
transformations will follow.

Specifying the projection transformation is like choosing a lens for a camera. This transformation can be
thought as choosing the field of view (FOV) or viewing volume and therefore what objects are inside and
how they look. Back to the camera example, it is like choosing among different lenses. With a wide−angle
lens, a bigger area is included in the photo than with a normal or telephoto lens, but with a telephoto lens
more detail appears in the photograph, as objects look nearer. In computer graphics zooming in and out of an
object is much easier than changing lenses in a camera, as the only thing to be done is to choose a smaller
field of view.

In addition to the field of view considerations, the projection transformation determines how objects project
(look) on the screen. Two types of projections are provided with OpenGL, perspective and orthographic
projection.

The first type of projection, perspective projection, matches how objects appear in real life. Perspective
makes objects that are further away appear smaller; for example it makes the two sides of a road appear to
converge in the distance. For realistic looking pictures, this type of projection should be used.

Orthographic projection on the other hand, maps objects directly on the screen, without altering their relative
size. This type of projection is useful for many CAD−based applications like circuit design or architectural
planning, as the user needs to see actual measurements of objects, rather than how these objects look.
Architects can use perspective projection in order to visualise how a particular building or room would look
from a particular viewpoint, and then switch to orthographic projection in order to print out the blueprint
plans.

Now that the theory of modelling and projection transformations is partially explained, the actual example
that demonstrates these transformations can follow.

This project is split into four different implementation files and their corresponding header files (except the
main program that does not have a special header file). The file main.c contains the main program, the file
model.c contains the modelling routines, the file transformations.c contains the modelling transformation
routines and the file keyboard.c contains the keyboard interaction routines.

Starting by the main program it can be noted that there is no need for a reshape function as all the operations
that would normally occur in the body of such a function are carried out in the body of the display function.
A two−dimensional array of type float is used in order to communicate the rotation, translation and scaling
values in the four different files. Actually this array is needed in the transformations file, so it was declared in
the header of this file as #extern.

In the body of the init function (example 2.11) this array is partially initialised. The remaining array elements
are not initialised here, as there is no need to do so. The constants SCALE and ROTATE are declared in the
file model.h as 2 and 1 (TRANS is also declared there as 0). The scaling elements are initialised to 1 (no
scaling) and the rotate elements of the array are initialised to zero, except the first one that is initialised to 1
(initially rotate only the x−axis).

Example 2.12 Init function

void init(void)
{
 glClearColor(1.0, 1.0, 1.0, 0.0) ;
 glShadeModel(GL_FLAT) ;
 tran[SCALE][0] = 1.0 ;
 tran[SCALE][1] = 1.0 ;

Chapter 2 − Opening a window and drawing simple graphics with OpenGL

16

 tran[SCALE][2] = 1.0 ;
 tran[ROTATE][0] = 1.0 ;
 tran[ROTATE][1] = 0.0 ;
 tran[ROTATE][2] = 0.0 ;
}

The main function of the program is the same as the one in the previous program with the only difference
being that there is no glutReshapeFunc, as a reshape function is not needed. A function that is quite
different (from the previous program) is the display function, as this is the place where the actual drawing
and placing of the four cubes that constitute this example happens. Example 2.12 contains the code of this
function.

Example 2.13 display function that positions and draws four cubes

void display(void)
{
 glClear(GL_COLOR_BUFFER_BIT) ;
 glShadeModel(GL_FLAT) ;
 glMatrixMode(GL_PROJECTION) ;
 glLoadIdentity() ;
 glViewport(0,125,125,125) ;
 glOrtho(−2.0,2.0,−2.0,2.0,2.0,−2.0) ;

 glMatrixMode(GL_MODELVIEW) ;
 Draw_Cube_Transl_Rot() ;

 glMatrixMode(GL_PROJECTION) ;
 glLoadIdentity() ;
 glViewport(0,0,100,100) ;
 gluPerspective(60.0, 1.0,1.0,20.0) ;
 glTranslatef(0.0,0.0,−4.0) ;

 glMatrixMode(GL_MODELVIEW) ;
 Draw_Cube_Transl_Rot() ;

 glMatrixMode(GL_PROJECTION) ;
 glLoadIdentity() ;
 glViewport(100,100,100,100) ;
 glOrtho(−2.0,2.0,−2.0,2.0,2.0,−2.0) ;

 glMatrixMode(GL_MODELVIEW) ;
 Draw_Cube_Rot_Transl()

 glMatrixMode(GL_PROJECTION) ;
 glLoadIdentity() ;
 glViewport(100,0,100,100) ;
 gluPerspective(60.0, 1.0,1.0,20.0) ;
 glTranslatef(0.0,0.0,−4.0) ;

 glMatrixMode(GL_MODELVIEW)
 Draw_Cube_Rot_Transl() ;
 glutSwapBuffers() ;
}

This function contains four very similar parts. All of them start by setting the projection matrix as the current.
A call to glLoadIdentity follows in order to initialise the matrix and then a call to glViewport is done in
order to set the viewport. The arguments to the glViewport routine are such that will divide the window (of
200 by 200 pixels) in four equal quadrants. After this is done a call to either glOrtho or gluPerspective is
done in order to set the projection of the current quadrant. Plate 2.8 shows the co−ordinates of the four
quadrants and their projection.

Chapter 2 − Opening a window and drawing simple graphics with OpenGL

17

The call to glOrtho and its arguments are quite easy to understand, as it is similar to the routine
gluOrtho2D that has already been explained (the only difference is that glOrtho sets also the z boundaries).
The routine gluPerspective needs further explanations. This routine creates a symmetric perspective−view
frustum (a three−dimensional area). The first argument to the routine is the angle of the field of view (in the
x−z plane). The second argument is the aspect ratio of the frustum (normally its width divided by its height)
and the remaining two arguments are the near and far values of the frustum. These values the distances
between the viewpoint and the clipping planes along the negative z−axis, and they should always be positive.
As the frustum will always lie on the negative z−axis the object shown most times will be needed to be
translated some value x before shown to the screen. This is why a call to glTranslatef(0.0, 0.0, −4.0) is
necessary after a call to gluPerspective. The correct amount of translation and frustum creation is not
something that can be shown exactly but comes naturally after becoming ‘comfortable’ with the concept.

When this is done a call to glMatrixMode(GL_MODELVIEW) resets the current matrix to the modelview
matrix in order to draw the four cubes. After the matrix is set to modelview a call to either
Draw_Cube_Transl_Rot (for the two quadrants on the left−hand side) or Draw_Cube_Rot_Transl (for the
two quadrants on the right−hand side) is done. This is done because these two functions that both draw a
cube, contain calls to the routines glTranslate and glRotate. As explained before the order of these routines
is important. To demonstrate this, the routine Draw_Cube_Transl_Rot draws the cube after applying the
transformations in the order of translate and then rotate, whereas the second one draws the cube after
applying these two transformations in the opposite order, in order to visualise the difference.

At this point the main program is ready. The two custom functions that were used, Draw_Cube_Transl_Rot
and Draw_Cube_Rot_Trans are available in the program by including the header file keyboard.h as this file
contains references also to the files model.h and transformations.h .

This section will be continued by examining these two custom functions whose implementation is in the file
transformations.c. Example 2.13 contains the code of the first one, Draw_Cube_Transl_Rot. The code of
the second one is the same with the only difference being that the order of the routines glTranslate and
glRotate is the opposite.

Example 2.14 display function that positions and draws four cubes

void Draw_Cube_Transl_Rot (void)
{
 glPushMatrix() ;
 glTranslatef (tran[TRANS][0],tran[TRANS][1],tran[TRANS][2]) ;
 glRotatef (tran[ROTATE][3], tran[ROTATE][0], tran[ROTATE][1],tran[ROTATE][2]) ;
 glScalef(tran[SCALE][0],tran[SCALE][1],tran[SCALE][2])

Chapter 2 − Opening a window and drawing simple graphics with OpenGL

18

 Draw_Black_Cube() ;
 glPopMatrix() ;
}

It is noticeable that two statements named glPushMatrix and glPopMatrix wrap the body of the function.
The routine glPushMatrix is responsible for saving the current matrix in the matrix stack. The matrix stack is
a stack that is used to save and restore transformation matrices during the execution of an OpenGL program.
Actually there are three different matrix stacks; one for modelling transformations, one for projection
transformations and one for texture transformations. This means that a particular matrix can be saved in the
stack by using glPushMatrix, transformations that modify the matrix can be done and when the previous to
the modifications matrix is needed again, it can be loaded or ‘popped’ from the stack by using the command
glPopMatrix. These two routines are particularly helpful when building hierarchical models and they are
going to be explained in detail when time comes.

Between these two calls four more routines are called, a glTranslate, a glRotate and a glScale.
glTranslate and glScale accept three arguments being the X, Y, and Z values the object should be translated
or scaled. In the case of glScale an argument of 1 means no scaling, an argument of 0.5 means reduce the
scale in half and an argument of 2 means double the scale. glRotate accepts four arguments with the first one
being the amount of degrees the object should be scaled and the other three varying from 0 to 1. If 0 is passed
the particular axis is not rotated, whereas if 1 is passed the particular axis is fully rotated. The arguments of
these routines (elements of the tran array) are modified externally by other functions that will be explained
shortly. After all modelling transformations are done, a call to Draw_Black_Cube is made in order to draw a
transformed (due to the modelling transformations) black cube. The routine Draw_Black_Cube can be found
in the file model.c and it is a very simple routine as it just sets the current colour to black and uses the routine
glutWireCube(1.0) to draw a cube of size 1.0.

At this point if the program is compiled and run the results will be the ones shown in Plate 2.9. The
difference between perspective and orthographic projection is clearly visible, but the difference in the order
of the application of the modelling transformations is not yet visible, as none of them have been applied yet.

The file keyboard.c contains the keyboard function that is needed in order to interact with the program
through the keyboard. This function is shown in example 2.15.

Example 2.15 display function that positions and draws four cubes

void keyboard (unsigned char key, int x, int y)
{
 switch(key)

Chapter 2 − Opening a window and drawing simple graphics with OpenGL

19

 {
 case 'a' :
 Rotate_Cube() ;
 glutPostRedisplay() ;
 break ;
 case 's' :
 Rotate_Cube3D() ;
 glutPostRedisplay() ;
 break ;
 case 'd' :
 Move_Cube() ;
 glutPostRedisplay() ;
 break ;
 case 'f' :
 Scale_Cube() ;
 glutPostRedisplay() ;
 break ;
 case '1' :
 glutIdleFunc(Small_Anim) ;
 break ;
 default :
 glutIdleFunc(NULL) ;
 break ;
 }
}

After examining example 2.14 it is clear that by pressing the keys a, s, d, f and 1 five different things will
happen. These five functions will be explained shortly. Something new to this function is the call to the
function glutIdleFunc. This function can be called in order to do something when the program is idle, for
example a small animation. The effect of this function becomes inactive when a NULL is passed to it. As it is
seen in the example if the user presses any other than the specified keys, a call to glutIdleFunc is done with a
NULL argument in order to stop any previously issued glutIdleFunc routine.

Back in Example 2.10, a single call to glutPostRedisplay was issued just after the end of the switch
statement. This approach is not followed here because it is not needed to issue a
glutPostRedisplay command every time a key is pressed. However, in the case of the key ‘1’ the call to
glutPostRedisplay must be inside the function Small_Anim.

These five functions are part of the file transformations.c. These functions will be explained here but their
code will not appear as they are quite simple to understand. The first one, Rotate_Cube3D sets the first three
rotation elements of the tran array to 1, and the fourth one is incremented by 1 each time the function is
called. This is done because of the structure of the glRotate function. As these array elements are used in a
call to glRotate of the same form used in example 2.13 and the function is required to rotate all three axes,
the last three arguments to the glRotate function should be 1 (tran[0] to tran[2]) and the first argument should
contain the degrees of the required rotation (tran[3]).

The second function, Rotate_Cube gradually rotates first the x−axis for 85 degrees, then the y−axis for the
same degrees, then the z−axis for the same amount of degrees and finally continuously rotates all three axes.

The third function, Move_Cube does some translation transformations that result in the movement of the
cube in a square pattern (rightwardsà upwards à leftwards à downwards à rightwards à and so on).

The fourth function, Scale_Cube scales the cube up and down between twice its original size and a quarter of
it.

The remaining function, Small_Anim uses the previously defined functions Rotate_Cube3D and
Move_Cube in order to demonstrate the difference in the application of the modelling transformations. The
results of this function will be different when using the functions Draw_Cube_Trans_Rot and
Draw_Cube_Rot_Trans to visualise the cube as it simultaneously translates and rotates the axes.

Chapter 2 − Opening a window and drawing simple graphics with OpenGL

20

If the program is compiled and run, and the user presses the key ‘1’ to invoke the function Small_Anim, the
results will be the ones shown in Plate 2.10. The difference between both the order of applying the modelling
transformations and the projection transformations is now clearly visible.

Chapter 2 − Opening a window and drawing simple graphics with OpenGL

21

Chapter 3 − Creating a hierarchical, 3D, wire frame
model
Now that the basic OpenGL and GLUT structure and routines has been explained, it is time to go on and try
to put this new knowledge in work. The goal of this chapter is the creation of a hierarchical, wire frame
model of a man.

Previously acquired knowledge, like modeling and projection transformations will be used in order to create
and animate this model. This chapter is divided into two sections.

In the first section, in order to discuss and explain hierarchical models and their creation, without having to
cope with an overcomplicated example, instead of trying to create the whole model of the man, only its lower
part will be constructed including its base, legs and feet.

This incomplete model will then be animated. A ‘walking’ function will be created for this reason. When this
example will be finished and enough knowledge and experience will be accumulated, the second section will
follow naturally.

In the second section, the incomplete model of the man will be completed and by the end of the section a
complete, three dimensional, wire−frame model of man (based on rectangles and spheres) will be ready. The
‘walking’ function from the previous section will be slightly modified in order to accommodate the whole
body.

3.1 Building a basic hierarchical model

This section will start by describing not the code of the program but the structure of and the concepts behind
hierarchical models.

Imaging that it was required to build a car for some simulation reasons. For the sake of this example this car
is composed of the car’s body, four wheels and six windows. There is a front window, a back window and
two windows on each side of the car. The side windows are symmetrical and each wheel has five bolts (Plate
3.1).

For the purposes of this example only the right (visible in the picture) side components will be used. That is,
two wheels, ten bolts and two side windows.

In order to avoid repetition it would be also be desirable to build the car in a hierarchical way; meaning that
when the five bolts are correctly placed on the wheel, they should move in accordance with the wheel without
any exterior help. Also it would be desirable that when the body of the car moves, its parts would not stay
behind but follow its movement.

22

In order to achieve this a hierarchy has to be built with the car’s body being the topmost item in it and then
following it, the windows and the wheels, with the bolts being subordinate to the wheels. This hierarchy has
the result of when the car’s body is moving, the windows and wheels will move in accordance with it. Further
on when the wheels rotate the bolts will rotate also.

OpenGL provides the means to build hierarchical models through the functions glPushMatrix and
glPopMatrix. If it assumed that functions are available that each one of them draws a part of the car i.e. bolt,
wheel, window and body then Plate 3.2 demonstrates the needed hierarchy and example 3.1 the appropriate
pseudo−code to achieve it.

Example 3.1 Pseudo−code that demonstrates the car’s hierarchy

function draw_car
{
 glPushMatrix
 draw_body_of_car
 glPushMatrix
 go_to_side_window_front_position
 draw_side_window
 go_to_side_window_back_position
 inverse_axes
 draw_side_window

 inverse_axes
 go_to_front_wheel_position
 draw_wheel_and_bolts
 go_to_back_wheel_position
 draw_wheel_and_bolts
 glPopMatrix
 glPopMatrix
}
function draw_wheel_and_bolts
{
 glPushMatrix
 draw_wheel
 glPushMatrix
 for counter = 1 up to 5 do
 {
 go_to_bolt_position
 draw_bolt
 }
 glPopMatrix
 glPopMatrix
}

In example 3.1 the function go_to* is used to translate to the needed point every time. The function
inverse_axes is used to inverse the x−axis in order to use the draw_window function to draw the side back

Chapter 3 − Creating a hierarchical, 3D, wire frame model

23

window (as it is the mirror of the side front window). If now a glTranslate routine is issued just before the
function draw_car, the whole car will be moved including the windows and wheels and if furthermore a
relation exists that when the car moves the wheels rotate, the bolts will also rotate in accordance with wheels.

Furthermore, the commands glPushMatrix and glPopMatrix can be used to save time when positioning
parts of a scene. For example lets say that the body of the car has a length of 100 units and that the
co−ordinates system is positioned at the center of the car, so the car co−ordinates lie from –50 to 50. Lets also
assume that the wheels have to be positioned both at ten points before the boundaries of the car. This can be
done in two ways.

Without using the matrix stack, a glTranslate(40, 0, 0) should be issued in order to move the center of the
coordinates forty units on the x−axis, then the wheel would be drawn by calling draw_wheel_and_bolts and
then the center of the co−ordinates should be moved eighty units back in order to position the second wheel,
by calling glTranslate(−80, 0, 0).

If the matrix stack is used, and the appropriate commands glPushMatrix and glPopMatrix, the same can be
done in the following, more robust way. A call to glPushMatrix can be done in order to save the current
matrix and then a call to glTranslate(40, 0, 0) and a call to draw_wheel_and_bolts can be done in order to
draw the first wheel in the correct position. Then a call to glPopMatrix can be done in order to retrieve the
prior to the translation matrix and then a call to glTranslate(−40, 0, 0) and a call to
draw_wheel_and_bolts can be done in order to position and draw the second wheel.

Now that some understanding of hierarchical models and the matrix stack has been acquired, the actual
design of the basic model can start. Plate 3.3 shows the parts of this first basic model and their hierarchical
relation.

As it is seen in Plate 3.3, in this occasion the top most item in the hierarchy is the base of the body, followed
by the upper leg joint, the upper leg, the lower leg joint, the lower leg, the foot joint and finally the foot.
Joints are depicted as spheres and the other parts of the body as rectangles.

Chapter 3 − Creating a hierarchical, 3D, wire frame model

24

So now if a rotation is applied to the base, all other parts are going to be rotated whereas if a rotation is
applied to the lower leg joint, only the joint and the parts lower from it will rotate (Plate 3.4).

Now is the appropriate time to go on and start constructing the code that will draw and latter on animate this
model.

The project at this point is split into three files. As always the main program will residue in the file called
main.c. Another file will be used called model.c that will contain all the functions that will be needed in order
to position, draw and animate this model. The file model.h contains the function definitions of the file
model.c.

In order to construct this basic model, some relative metrics have to be calculated that will approximate a
human body. As the point of this example was not accuracy but a demonstration of hierarchical model
creation, the relative heights and widths of the body parts were based on a not so accurate hand−drawn sketch
of a man. Accurate modeling will be the subject of a latter chapter. Example 3.2 shows part of the file
model.h, were the relative metrics of the body can be found.

Example 3.2 Size definitions of the models parts

#define FOOT_JOINT_SIZE HEAD_JOINT_SIZE
#define FOOT_HEIGHT FOOT_JOINT_SIZE * 2.0
#define FOOT_WIDTH LO_LEG_WIDTH
#define FOOT FOOT_WIDTH * 2.0
#define UP_ARM_HEIGHT TORSO_HEIGHT * 0.625
#define UP_ARM_WIDTH TORSO_WIDTH/4.0
#define UP_ARM_JOINT_SIZE HEAD_JOINT_SIZE * 2.0
#define LO_ARM_HEIGHT TORSO_HEIGHT * 0.5
#define LO_ARM_WIDTH UP_ARM_WIDTH
#define LO_ARM_JOINT_SIZE UP_ARM_JOINT_SIZE * 0.75
#define HAND_HEIGHT LO_ARM_HEIGHT / 2.0
#define HAND_WIDTH LO_ARM_WIDTH
#define HAND LO_ARM_WIDTH / 2.0
#define TORSO_WIDTH TORSO_HEIGHT * 0.75
#define TORSO_HEIGHT 0.8
#define TORSO TORSO_WIDTH / 3.0
#define HEAD_WIDTH HEAD_HEIGHT * 0.93
#define HEAD_HEIGHT TORSO_HEIGHT * 0.375
#define HEAD_JOINT_SIZE HEAD_HEIGHT/6
#define BASE_WIDTH TORSO_WIDTH
#define BASE_HEIGHT TORSO_HEIGHT / 4.0
#define UP_LEG_HEIGHT LO_ARM_HEIGHT
#define UP_LEG_JOINT_SIZE UP_ARM_JOINT_SIZE
#define UP_LEG_WIDTH UP_LEG_JOINT_SIZE * 2.0
#define LO_LEG_HEIGHT UP_LEG_HEIGHT
#define LO_LEG_WIDTH UP_LEG_WIDTH

Chapter 3 − Creating a hierarchical, 3D, wire frame model

25

#define LO_LEG_JOINT_SIZE UP_LEG_JOINT_SIZE
#define LEG_HEIGHT UP_LEG_HEIGHT + LO_LEG_HEIGHT + FOOT_HEIGHT + 2* (FOOT_JOINT_SIZE
 + UP_LEG_JOINT_SIZE + LO_LEG_JOINT_SIZE)

As it seen in the example only the torso height is defined and all the other parts of the body are related to this
height, for example the torso width is three quarters of the torso height etc. This was done having in mind the
case that the model is needed to change dimensions, only the torso height has to be changed, as this change
will affect all the other parts of the body. In this first section of the chapter not all of the previously defined
parts will be needed, but nevertheless they were defined, as they will be needed in the next section, when a
full body will be build.

Now that the size of the parts of the body is defined, it is the time to start building the body. The model at this
point is constructed from three main parts, the ‘base’ (lower torso) and the two legs. Example 3.3 shows the
code that creates the base.

Example 3.3 The function that draws the base of the basic model

void Draw_Base(int frame)
{
 glPushMatrix() ;
 glScalef(BASE_WIDTH, BASE_HEIGHT, TORSO) ;
 glColor3f(0.0,1.0,1.0) ;

 if (frame == WIRE)
 glutWireCube(1.0) ;
 else
 glutSolidCube(1.0) ;
 glPopMatrix() ;
}

The function Draw_Base accepts one argument. This argument will be used to draw either a wireframe base
(by passing the value WIRE) or a solid base (by passing the value SOLID). At this point a solid base will be
of no use (as the model will be wireframe) but the same function will be used later, when dealing with light,
to construct a solid base.

The body of the function starts by calling the function glPushMatrix in order to save the current matrix
before applying any modifications to it. A call to glScale follows with the values BASE_WIDTH,
BASE_HEIGHT and TORSO. The result of this call is the scaling of the axes to these new values (from left
to right, the axes x, y and z). Now when glutWireCube(1.0) is called (or glutSolidCube(1.0)) the result will
not be a cube but a rectangle approximating the ‘base’ (as seen in Plates 3.3 and 3.4).

This function is quite easy to understand, as there is no hierarchy of objects involved or any rotations. The
function Draw_Leg is slightly more complicated as it contains three parts, the upper leg, the lower leg and
the foot. These three parts are constructed by three different functions. These three functions are similar to
each other and example 3.4 shows the function that draws the upper leg, named Draw_Upper_Leg.

Example 3.4 The function that draws the upper leg of the basic model

void Draw_Upper_Leg(int frame)
{
 glPushMatrix() ;
 glScalef(UP_LEG_JOINT_SIZE, UP_LEG_JOINT_SIZE, UP_LEG_JOINT_SIZE) ;
 glColor3f(0.0,1.0,0.0) ;
 if (frame == WIRE)
 glutWireSphere(1.0,8,8) ;
 else
 glutSolidSphere(1.0,8,8) ;
 glPopMatrix() ;
 glTranslatef(0.0,− UP_LEG_HEIGHT * 0.75, 0.0) ;

Chapter 3 − Creating a hierarchical, 3D, wire frame model

26

 glPushMatrix() ;
 glScalef(UP_LEG_WIDTH,UP_LEG_HEIGHT,UP_LEG_WIDTH) ;
 glColor3f(0.0,0.0,1.0) ;
 if (frame == WIRE)
 glutWireCube(1.0) ;
 else
 glutSolidCube(1.0) ;
 glPopMatrix() ;
}

In the body of the function, the starting routine glPushMatrix is used to save the current matrix prior to the
scaling. After the matrix is saved the function glScale is used to scale the axes in the appropriate dimensions
for the drawing of the upper leg joint. When this is done, the current colour is set to green and the joint is
drawn (either as wireframe or solid, depending on the value passed to the function) and then the matrix is
restored by calling the function glPopMatrix. This has the effect of restoring the axes to their initial
one−to−one relation. Following this a call to glTranslate is issued in order to move the centre of the axes in
the new positioned required to draw the upper leg. At this point the just explained technique is repeated in
order to save the matrix, scale the axes, choose the colour (blue this time) and finally draw the upper leg. At
this point the function Draw_Upper_Leg (the function that draws the upper leg and the upper leg joint) is
ready. The functions Draw_Lower_Leg and Draw_Foot are similar to this one, so they will not be explained
explicitly.

Now is the time to take a look at the function Draw_Leg. This function combines the previously mentioned
functions in order to build the whole leg, including the rotation routines, routines that will be needed for the
animation of the model. Example 3.5 contains the code of this function.

Example 3.5 The function that creates the whole leg of the basic model

void Draw_Leg(int side, int frame)
{
 glPushMatrix() ;
 glRotatef(walking_angles[side][3],1.0,0.0,0.0) ;
 Draw_Upper_Leg(frame) ;
 glTranslatef(0.0,− UP_LEG_HEIGHT * 0.75,0.0) ;
 glRotatef(walking_angles[side][4],1.0,0.0,0.0) ;
 Draw_Lower_Leg(frame) ;
 glTranslatef(0.0,− LO_LEG_HEIGHT * 0.625, 0.0) ;
 glRotatef(walking_angles[side][5],1.0,0.0,0.0) ;
 Draw_Foot(frame) ;
 glPopMatrix() ;
}

As before, the function’s body starts by saving the current matrix. Next is a call to glRotate. The values
passed to this routine show that the object that is drawn after this function is called, will be rotated only on
the x−axis (as the second parameter is 1.0 and the third and fourth are 0.0). The first parameter, is the amount
of degrees the x−axis should be rotated. This value is contained in the array walking_angles. This is a two
dimensional array of size two by six, that is declares in the file main.c (and is available to this file by
declaring it as #extern) and contains all the required, for the walking animation, angles. Its structure is such
that will keep six rotation angles (upper arm, lower arm, hand, upper leg, lower leg and foot) for both sides
(left and right arms and legs).

Following that, the function Draw_Upper_Leg is called in order to draw the upper part of the leg. Next the
centre of the axes is moved to the new required position by calling the routine glTranslate and the rest of the
function continue to a similar to the just described manner (rotate axes, draw part and move the centre of the
axes to the new position). When the leg is created (including upper leg, lower leg and foot) the function
glPopMatrix is used to restore the initial (prior to this function) matrix.

Chapter 3 − Creating a hierarchical, 3D, wire frame model

27

Now that two functions are ready, one that draws a base and one that draws a leg, it is quite straight forward
what is needed in order to have the completed (for this section) model. Example 3.6 shows the code needed in
order to build finally the basic model.

Example 3.6 The function that creates the basic model

void Draw_Base_Legs(void)
{
 glPushMatrix() ;
 glTranslatef(0.0,base_move,0.0) ;
 Draw_Base(WIRE) ;
 glTranslatef(0.0,−(BASE_HEIGHT),0.0) ;
 glPushMatrix() ;
 glTranslatef(TORSO_WIDTH * 0.33,0.0,0.0) ;
 Draw_Leg(LEFT,WIRE) ;
 glPopMatrix() ;
 glTranslatef(−TORSO_WIDTH * 0.33,0.0,0.0) ;
 Draw_Leg(RIGHT,WIRE) ;
 glPopMatrix() ;
}

As it is seen in example 3.6, just after saving the current matrix by calling the routine glPushMatrix a call to
the routine glTranslate is done with one of its parameters being the value base_move. The particular call will
be explained in a while. Following that, the base is drawn by calling the function Draw_Base. Next the
centre of the axes is moved lower in order to draw the legs. The matrix is saved, the axes are moved to the
left and the left leg is drawn; the matrix is restored, the axes are moved to the right and the right leg is drawn.
Finally the routine glPopMatrix is called in order to restore the initial matrix. If this program is compiled
and run the results will be the ones shown in Plate 3.5

In example 3.6 the first call to the routine glTranslate was left without an explanation. As it can be seen a
value is passed to this routine, named base_move. This value is the vertical displacement of the body, due to

Chapter 3 − Creating a hierarchical, 3D, wire frame model

28

the walking animation. When a human walks, its torso does not remain at the same point but moves slightly
up and down due to the angle of the legs (Plate 3.6). Example 3.7 contains the function that calculates this
vertical displacement.

Example 3.7 The function that calculates the vertical displacement of the body

double find_base_move(double langle_up, double langle_lo, double rangle_up, double rangle_lo)
{
 double result1, result2, first_result, second_result, radians_up, radians_lo ;
 radians_up = (PI*langle_up)/180.0 ;
 radians_lo = (PI*langle_lo−langle_up)/180.0 ;
 result1 = (UP_LEG_HEIGHT + 2*UP_LEG_JOINT_SIZE) * cos(radians_up) ;
 result2 = (LO_LEG_HEIGHT + 2 * (LO_LEG_JOINT_SIZE + FOOT_JOINT_SIZE) + FOOT_HEIGHT)
 * cos(radians_lo) ;
 first_result = LEG_HEIGHT − (result1 + result2) ;
 radians_up = (PI*rangle_up)/180.0 ;
 radians_lo = (PI*rangle_lo−rangle_up)/180.0 ;
 result1 = (UP_LEG_HEIGHT + 2*UP_LEG_JOINT_SIZE) * cos(radians_up) ;
 result2 = (LO_LEG_HEIGHT + 2 * (LO_LEG_JOINT_SIZE + FOOT_JOINT_SIZE) + FOOT_HEIGHT)
 * cos(radians_lo) ;
 second_result = LEG_HEIGHT − (result1 + result2) ;

 if (first_result <= second_result)
 return (− first_result) ;
 else
 return (− second_result) ;
}

As it can be seen in Plate 3.7 the vertical displacement VD can be calculated by subtracting the values
upper_leg_vertical and lower_leg_vertical by the leg’s length, LL:

VD = LL – (upper_leg_vertical + lower_leg_vertical) (1)

At this point the vertical displacement due to the foot is not taken into account.

Back to the function find_base_move, the angles are firstly converted from degrees to radians (as the library
routine cos that is used to find the cosine of the angles needs the angles to be in radians). Then the previously
defined function (1) is used to find the vertical displacement. In the function, VD is represented as
final_result, upper_leg_vertical as result1 and lower_leg_vertical as result2. To find result1 and result2 the
following functions are used (consult Plate 3.7):

result1 = X * cos(r) (2)

result2 = Y * cos(f) (3)

Chapter 3 − Creating a hierarchical, 3D, wire frame model

29

The vertical displacement for both legs is found and then a check is done to see which one of the two is
touching the ground (its vertical displacement will be less than the others will); this value is then returned by
the function.

At this point there is available to the user a function that draws a basic model; there is also a function that is
able to calculate the vertical displacement of this particular model. A remaining function to construct, is a
function that will give life to this model, an animation function that will make the model walk.

In this, first section, of the chapter the angles of the walking animation will be ‘hardwired’, meaning that the
program will not read them from a file but they will exist in the body of the animation function. Later, in the
second section of this chapter, this will change, as the program will become data driven (it will read all its
data from files).

This function will be based on the technique of key framing. This technique firstly identifies a number of key
frames. These key frames are frames where something important for the animation happens. At these key
frames the angle of every part of the body will be provided to the program, meaning that the programmer will
explicitly calculate and pass these angles to the function. Then the function will use these key frames to
calculate the angles of every part of the body for every frame of the animation.

This will be accomplished by taking the angle between two key frames and divide this angle among the other
frames. For example, if the lower part of the leg has to be moved twenty degrees between two key frames and
this has to be done in twenty frames, the function will calculate that the lower part of the leg has to be moved
one degree every single frame (twenty degrees divided by twenty frames = one degree per frame), in order to
accomplish the stated need.

 The walking animation function was based on the book by Tony Wight “Moving Pictures”. In this book a
walking animation cycle was provided based on eight key frames. The first four key frames were used in
order to animate the first half of the walking movement and the rest four in order to animate the second half.
The second half of the animation is the same as the first part but in reverse. In the first half of the animation
the leg that was in front before the animation starts will end up being behind and the leg that was behind will
end up in front. The second half of the animation does just the reverse of first half of the animation in order to
complete the walking cycle and start from the beginning for a new cycle.

Chapter 3 − Creating a hierarchical, 3D, wire frame model

30

The animation function that was build for the previously discussed model, is based on the sketches found in
this book, so its structure follows the structure that was described in the previous paragraph. The angles used
were calculated from the sketches in the book. Plate 3.8 shows the walking cycle as appeared in the book.
Example 3.8 contains part of the code of this function.

Example 3.8 Part of the walking animation function

void animate_base(void)
{
 static frames = FRAMES,
 zoom_fl = 0,
 flag = 1 ;
 float l_upleg_dif ,
 r_upleg_dif ,
 l_upleg_add ,
 r_upleg_add ,
 l_loleg_dif ,
 r_loleg_dif ,
 l_loleg_add ,
 r_loleg_add ;
 switch (flag)
 {
 case 1 :
 l_upleg_dif = 15 ;
 r_upleg_dif = 5 ;

Chapter 3 − Creating a hierarchical, 3D, wire frame model

31

 l_loleg_dif = 15 ;
 r_loleg_dif = 5 ;
 l_upleg_add = l_upleg_dif / FRAMES ;
 r_upleg_add = r_upleg_dif / FRAMES ;
 l_loleg_add = l_loleg_dif / FRAMES ;
 r_loleg_add = r_loleg_dif / FRAMES ;
 walking_angles[0][3] += r_upleg_add ;
 walking_angles[1][3] += l_upleg_add ;
 walking_angles[0][4] += r_loleg_add ;
 walking_angles[1][4] += l_loleg_add ;
 langle_count −= l_upleg_add ;
 langle_count2 −= l_loleg_add ;
 rangle_count −= r_upleg_add ;
 rangle_count2 −= r_loleg_add ;

 base_move = find_base_move (langle_count, langle_count2, rangle_count, rangle_count2) ;
 frames−− ;
 if (frames == 0)
 {
 flag = 2 ;
 frames = FRAMES ;
 }
 break ;

 case 2 :
………………………………… repeat until case 8 then go to case 1………………
 if (zoom_flag)
 {
 switch (zoom_fl)
 {
 case 0 :
 zoom += 0.05 ;
 if (zoom > 2.5) zoom_fl = 1 ;
 break ;
 case 1 :
 zoom −= 0.05 ;
 if (zoom < −2.5) zoom_fl = 0 ;
 break ;
 default :
 break ;
 }
 }
 if (rotate_flag)
 {
 rotate = (rotate + 1) % 360 ;
 }
 glutPostRedisplay() ;
}

At the start of this function some variables are declared. The variables frames, zoom_fl and flag are declared
as static because they are needed to be initialised only once (the first time the function is called). Just after
the variables declaration a switch statement follows. This is the skeleton of the function, as all the operations
needed to be done for the walking animation happen inside this statement.

This switch statement depends on the variable flag, which is initially set to 1. This means that the first part of
this statement (the one under the label ‘case 1 :’) will be executed until the variable flag changes from 1 to a
different value (in this case it will eventually become 2).

Inside this part of the switch statement, the variables l_upleg_dif, l_loleg_dif, r_up_leg_dif and r_loleg_dif
are initialised to some values. These values are the difference of the angles of the left and right upper and
lower leg between the first two key frames.

Chapter 3 − Creating a hierarchical, 3D, wire frame model

32

After this the variables l_upleg_add, l_loleg_add, r_upleg_add and r_loleg_add are calculated, by dividing
the initial angle difference (between the two key frames) by the number of frames that are needed in order to
make the animation. These will be the roatation values for a single frame animation. The number of needed
frames between two key frames is constant and is defined in this case as twenty in the file model.h.

The next step is to copy the values of the previously calculated variables in the proper places in the array
walking_angles. This, externally defined array that was described previously is used in the
draw_base function in order to animate the model. The values of the variables are not just copied but they
are added to the previous value of the array in order that the array will contain the angles for the next frame.
This is done because the rotation is not incremental; for example if the function glRotate(20, 1.0, 0.0, 0.0)
was used to rotate the upper leg by twenty degrees and at the next step the upper leg is needed to be rotated
by five degrees more, the correct call will be glRotate(25, 1.0, 0.0, 0.0) and not glRotate(5, 1.0, 0.0, 0.0.).
OpenGL follows this non−incremental technique in order to diminish cumulative errors that may appear if
this particular modelling transformation was based on an incremental technique.

After this is done these values are subtracted from the variables langle_count, langle_count2, rangle_count
and rangle_count2. These four variables are initialised externally, in the file main.c, and contain the initial
values of the angles of the body parts. These variables will be used with the function base_move in order to
calculate the body’s vertical displacement. By doing so the values of the variables r (*angle_count) and q
(*angle_count2) of both left and right legs (l / r) are retrieved (review Plate 3.7).

After the new angles are calculated by the technique explained in the previous paragraph, the values of these
variables are passed to the function base_move, in order to find the vertical displacement of the body.

This is the end of the first cycle (transition from key frame one to key frame two). The variable frames is
decrement and a check is done to see if the value of frames is equal to 0. If it is 0, it means that the second
key frame is reached and that the value of the variable flag must be incremented (in order to move to the next
case in the switch, the second cycle). The variable frames is also reinitialised to FRAMES (the defined,
constant number of frames between two key frames).

This will continue until the end of case 8 will be reached and then flag will be set to 1 for the walking cycle
to start from the beginning. At the end of the switch statement some more code is visible in example 3.8. This
code calculates the value of the variables zoom and rotate. These variables are used externally, in the main
program to zoom in and out (on the z−axis) and rotate the model (on the y−axis).

Now that all the main functions of the program are ready, only one is left in order to finish the program. This
is the keyboard function that will provide the needed interaction between the user and the program. This
function has the same structure as the one described in example 2.11, so it will not be examined here. For
reference, table 3.1 contains the keys that are used by the program and their operations.

At this point the program is nearly ready, as only a couple of operations remain to be done in the main
program in order to have a fully working program. In the main program all the previously described as
external variables are declared. When this is done, the variables langle_count, langle_count2, rangle_count
and rangle_count2 are initialised to the values 30, 0, −30 and 0. These, as described before, are the initial

Chapter 3 − Creating a hierarchical, 3D, wire frame model

33

angles of both left and right, upper and lower leg. The variables zoom_flag and rotate_flag are initialised to
GL_FALSE (at first the model will not be zoomed or rotated) and the variables rotate and zoom are set to 0.0,
as the model is initially not zoomed nor rotated.

Something new appears also in the function init. Example 3.9 contains the code of this function.

Example 3.9 The init function that prints out general information about the OpenGL version

void init(void)
{
 const GLubyte* information ;
 glClearColor(1.0, 1.0, 1.0, 0.0) ;

 glShadeModel(GL_FLAT) ;

 information = glGetString(GL_VENDOR) ;
 printf("VENDOR : %s\n", information) ;

 information = glGetString(GL_RENDERER) ;
 printf("RENDERER : %s\n", information) ;

 information = glGetString(GL_EXTENSIONS) ;
 printf("EXTENSIONS : %s\n", information) ;

 information = glGetString(GL_VERSION) ;
 printf("VERSION : %s\n", information) ;

 walking_angles[0][3] = langle_count ;
 walking_angles[1][3] = rangle_count ;
 walking_angles[0][4] = langle_count2 ;
 walking_angles[1][4] = rangle_count2 ;

 base_move = find_base_move(langle_count, langle_count2, rangle_count, rangle_count) ;

}

In this function the variable information (of type Glubyte pointer) is used with the OpenGL function
glGetString in order to retrieve and then print general information about the OpenGL version, vendor,
extensions supported, etc.

In this function the array that is used to store the angles is also initialised. The initial vertical displacement of
the model is found also by calling the function base_move and passing the legs initial angles.

A new callback function is also used in this program. The function glutSpecialFunc is similar to the
glutKeyboardFunc but is used to register a callback function responsible for the keys that do not generate an
ASCII code, like the directional keys, the Control and Alt key, and the Function keys (F1 to F12). The
structure of this function is similar to the one of the keyboard function shown in example 2.11. After
registering the function special by calling the function glutSpecialFunc in the main function the user will be
able to use the up and down directional keys to zoom in and out of the model and the left and right directional
keys to rotate the model on the y−axis. The calls to the routines glTranslatef (0.0, 0.0, zoom) and
glRotatef (rotate, 0.0, 1.0, 0.0) just before drawing the model in the display function will allow for the
zooming and rotation effects.

Chapter 3 − Creating a hierarchical, 3D, wire frame model

34

At this point, the first section of the second chapter is completed. After compiling and run the program the
user will be able to see this basic model walking. Plate 3.9 contains some screen−shots that were taken from
this program.

Chapter 3 − Creating a hierarchical, 3D, wire frame model

35

3.2 Improving the basic model

The goal of this section is to create a wireframe model of a man that will be able of walking. This program
will be based on the previously constructed (in section 3.1) program. The structure of this new program will
be similar to the previous one with the difference that this second program will have a more ‘professional’
touch. For example the animation angles will be read from a file instead of being hardwired in the walking
procedure; the program will also be split into five different parts that each one of them will contain relevant
functions. These five files are going to be main_model.c, model.c, inout.c, anim.c and keyboard.c. Each one
of them will also have its header file. Another file will also be constructed that will contain general
definitions, general.h.

This section’s keyboard interaction is the same as in the previous section, so no particular interest will be
given to it. The animation function, animate_body, is also similar to the one used in the previous program,
the only difference being that now, instead of calculating the walking angles of the legs, it calculates the
walking angles of the arms also. The technique used to calculate the arms walking angles is the same as the
previously explained one (the one that is used to calculate the legs walking angles), so there is no reason for
explicit demonstration of this new function.

Chapter 3 − Creating a hierarchical, 3D, wire frame model

36

The file inout.c contains the newly created functions that are responsible for file input−output (reading the
angles from a file and other file related functions). The custom function Open_Files was created for this
particular program and accepts one argument. Depending on the argument it can open two different files. If
the argument is ‘r’ it will try to open the file ‘data.txt’, for reading, from three pre−defined directories,
‘e:\bp\chapter3\model2\’, ‘g:\data\’, or ‘a:\’, in order to read the walking animation angles. If the file is not
found in this directories the function notifies the user that the file was not found and the program exits. If the
argument is ‘w’ the function will try to open the file ‘test.txt’ for writing in the same three directories. This
function will be improved in a later example in order to check for the files, not in previously defined
directories but in the directory the actual program is found. The file ‘test.txt’ is used later on from a function
in order to print the walking angles for testing reasons.

The next function implemented in this file will use the structure anim_angles to store the animation angles
read from the file. This structure is defined in the file general.h and can be found in example 3.10.

Example 3.10 The definition of the structure anim_angles

typedef struct
{
 float head ;
 float upbody ;
 float lobody ;
 float l_uparm ;
 float l_loarm ;
 float l_hand ;
 float l_upleg ;
 float l_loleg ;
 float l_foot ;
 float r_uparm ;
 float r_loarm ;
 float r_hand ;
 float r_upleg ;
 float r_loleg ;
 float r_foot ;

} anim_angles ;

As it can be seen in this example the structure anim_angles contains fifteen elements of type float. Each one
of these elements will store the animation angle for a particular body part, for example the left upper
arm(l_uparm in the structure), etc.

The function Read_Data_From_File calls the previously described function Open_Files(‘r’) in order to
open the file data.txt for reading. This function accepts two arguments of type anim_angles. The first one
named init is actually a pointer to the particular structure and is used to store the initial (prior to the
animation) angles. The second argument, array[], is an array of four anim_angles elements. In this array the
angles of the first four key frames will be stored. As the key frames are symmetrical (the last four to the first
four) the values of this array will also be used to find the angles of the last four keyframes. The structure of
this function is very simple as it just uses fscanf calls to read the angles from the file and place them in one of
the two just mentioned variables (init or array). An integer variable named scan_counter is also used in this
function to count how many values are actually read from the file. The number of the angles read is then
output to the screen for testing reasons.

The last function implemented in this file is the function Write_Test_Data. This function accepts the same
two arguments, the function Read_Data_From_File had, but instead of initialising them it uses them to
output their values into a file, for testing reasons. Its structure is very simple, as it just calls the function
Open_Files(‘w’) to open the file ‘test.txt’ for writing and then with several fprintf calls, it writes the angles
of the animation in the file. By comparing the two files, ‘data.txt’ and ‘test.txt’ a user can find out if the
program reads in the correct animation angles.

Chapter 3 − Creating a hierarchical, 3D, wire frame model

37

Now is the time to take a look at the contents of the file model.c. This file contains all the functions that are
responsible for drawing the model on the screen. It contains all the previously implemented model functions
like Draw_Upper_Leg, Draw_Lower_Leg, Draw_Foot, Draw_Leg, etc.

It also contains the newly created functions that draw the head, the upper arm, the lower arm, the hand and
the torso. These functions were constructed in a manner similar to the one described in the first section of the
chapter. A function that draws all the parts together, in order to draw the complete model of a man, was also
created and implemented in this file. This pseudocode of this function, named Draw_Model can be seen in
example 3.11. Plate 3.10 contains the parts that constitute the new improved model and their hierarchy.

Example 3.11 The pseudo−code of the function that creates and draws the complete model of a man.

function Draw_Model
{
 save_the_matrix (prior to this function)
 create_base
 save_the_matrix (to place the second in the hierarchy torso)
 translate_to_correct_place
 create_torso
 save_the_matrix(to place the third in the hierarchy head)
 translate_to_correct_place
 create_head
 restore_the_matrix
 restore_the_matrix
 save_the_matrix (to place the second in the hierarchy arms)
 translate_to_correct_place
 create_left_arm
 translate_to_correct_place
 create_right_arm
 restore_the_matrix
 save_the_matrix (to place the second in the hierarchy legs)
 translate_to_correct_place
 create_left_leg
 translate_to_correct_place
 create_right_leg
 restore_the_matrix

Chapter 3 − Creating a hierarchical, 3D, wire frame model

38

 restore_the_matrix
}

The structure of this function is similar to the structure of the function Draw_Base_Legs, which was
described in the first section of this chapter.

Firstly the matrix prior to this function is saved, then the base is created and the matrix is saved again (to
place the second in the hierarchy) torso. The centre of the co−ordinates is moved to the correct place and the
torso is created. The matrix is saved again (to place the third in the hierarchy) head, the co−ordinates are
moved to the new place and the head is created. The matrix is restored twice (to climb up the hierarchy twice)
and the just explained technique is repeated in order to create the legs and arms. Example 3.12 contains the
code of the function Draw_Model, based on the pseudo−code shown in example 3.11.

Example 3.12 The function that creates and draws the complete model of a man.

void Draw_Model(int frame)
{
 glPushMatrix() ;
 glTranslatef(0.0,base_move,0.0) ;
 Draw_Base(frame) ;
 glPushMatrix() ;
 glPushMatrix() ;
 glTranslatef(0.0, TORSO_HEIGHT / 2.0, 0.0) ;
 Draw_Torso(frame) ;
 glPopMatrix() ;
 glPushMatrix() ;
 glPushMatrix() ;
 glTranslatef(0.0, TORSO_HEIGHT + (HEAD_HEIGHT/2.0) +HEAD_JOINT_SIZE * 2.0, 0.0) ;
 Draw_Head(frame) ;
 glPopMatrix() ;
 glPopMatrix() ;
 glPushMatrix() ;
 glTranslatef(0.0,TORSO_HEIGHT * 0.875,0.0) ;
 glPushMatrix() ;
 glTranslatef(TORSO_WIDTH * 0.66, 0.0,0.0) ;
 Draw_Arm(LEFT,frame) ;
 glPopMatrix() ;
 glTranslatef(− (TORSO_WIDTH * 0.66), 0.0,0.0) ;
 Draw_Arm(RIGHT,frame) ;
 glPopMatrix() ;
 glPushMatrix() ;
 glTranslatef(0.0,−(BASE_HEIGHT*1.5),0.0) ;
 glPushMatrix() ;
 glTranslatef(TORSO_WIDTH * 0.33,0.0,0.0) ;
 Draw_Leg(LEFT,frame) ;
 glPopMatrix() ;
 glTranslatef(−TORSO_WIDTH * 0.33,0.0,0.0) ;
 Draw_Leg(RIGHT,frame) ;
 glPopMatrix() ;
 glPopMatrix() ;
}

Now that the functions that draw and animate the body are ready, only a couple of steps remain before having
a complete and ready to run program.

The file main_model.c is similar to the first sections, main.c file. The only differences being the declaration
of the variable init_angles and the array angles[4], that will be used from the in−out functions to store the
animation angles.

Chapter 3 − Creating a hierarchical, 3D, wire frame model

39

A second difference is found in the function display, where instead of the call Draw_Base_Legs that was
used in the previous section to draw the incomplete model, a call to Draw_Model is done to draw the
complete model. Prior to drawing the model some code can be found. This code (shown in example 3.13) is
responsible for creating a wireframe rectangle (at the place of where the floor should be) and a horizontal line
near the ‘base’ of the model. These two serve as reference for the user, in order to help him see the vertical
displacement of the body.

Chapter 3 − Creating a hierarchical, 3D, wire frame model

40

At this point the program is ready. If it is compiled and run, the results can be found in Plate 3.11. If instead
of using the value WIRE when calling the function Draw_Model the value SOLID is used, the results can be
found in Plate 3.12. The solid model (shown in Plate 3.12) will be much improved in the next chapter with
the addition of light.

Chapter 3 − Creating a hierarchical, 3D, wire frame model

41

Chapter 4− Lighting
As already demonstrated, OpenGL computes the colour of each pixel in a scene and that information is held
into the frame buffer. Part of this computation depends on what lighting conditions exist in the scene and in
which way objects absorb and/or reflect light. Actually in some cases the objects appear invisible until light is
added.

Light is very important in real life as well as in graphics. For example, the sea looks bright green in the
morning, blue during the day and black during the night. The colour of the water does not actually change, as
it is always transparent, but the reflection conditions change.

By using OpenGL, the lighting conditions and the properties of the objects can be changed in order to
produce many, sometimes stunning effects.

OpenGL approximates light and lighting as if light could be broken into red, green and blue components
(R−G−B colour model). Thus, the colour of the light sources can be characterised from the amounts of the
red, green and blue light they emit, and the material of an object characterised by the percentage of red, green
and blue light it reflects in various directions.

In the OpenGL lighting model, light comes from several light sources in the scene that can be individually
turned on and off. Some light comes from a particular direction and some light is scattered around the scene.
For example, when you turn on a light bulb in a room, some light arrives at a particular object in the room
directly from the bulb and some light arrives at the object after bouncing on one or more other surfaces, like
walls, furniture, etc. This bounced light is called ambient and it is assumed that it is so scattered that it does
not come from any particular direction, but from everywhere.

In the OpenGL lighting model, a light source has an effect only when some surface that absorbs and/or
reflects light is present. Each surface is composed of a material that has various properties. A material might
emit its own light (like headlights in cars), might absorb some percentage of the incoming light and might
reflects some light in a particular direction.

The OpenGL lighting model considers light to be divided into four independent components: emissive,
ambient, diffuse and specular. All four components are computed independently and then added together.

A fifth element might influence the appearance of an object and that is the shininess of the object. Depending
on the shininess, a particular object reflects the incoming specular light in different ways.

This chapter is divided into five sections; each one dedicated to a particular lighting effect.

The first example draws four wireframe and four solid cubes. Some of them are drawn with lighting turned
on, while some of them are drawn with lighting turned off in order to demonstrate the difference in
appearance of objects when lighting is used.

In the second example, the OpenGL feature colour tracking is demonstrated. Normally when lighting is
enabled, the objects must have a material assigned to them. Depending to the material used objects appear
deferent when lit (like in the real world). For example a sphere that has a ‘wooden’ material (ambient,
diffuse, specular and emissive values that approximate wood’s behaviour) will look different from a ‘silver’
sphere. A material (in OpenGL) is what colour is to programs that do not use lighting. By using the colour
tracking feature a programmer might choose to assign colours to objects (instead of materials) and OpenGL
will convert them to materials. In some cases this is quite useful, as it is much simpler to assign colour from
assigning materials.

Assigning materials and manipulating their properties is the topic of the third example. Three red cubes are
created and different values of shininess are assigned to each of them in order to demonstrate this particular

42

light property.

In the fourth section of the chapter a program called ‘Material−Lights’ will be created. A user will be able to
change the material and light properties of several objects interactively in order to become familiar with the
concept. The program will also be able to save a particular ‘colour’ (a combination of material and light
conditions) for latter reference. The concept of windows and sub−windows will also be discussed in this
section.

Finally, the goal of the fifth section of this chapter will be to improve the previously constructed model of a
man. The model that was created in the last section of the previous chapter will be taken and its structure will
be slightly modified in order to become a solid, lighted model.

4.1 Getting started with lighting

In this first section of this chapter, the necessary steps to create a light source will be explained. When
lighting is used with objects that are not supposed to be drawn using lighting some strange effects appear. In
order to demonstrate these effects and the correct use of lighting, this example draws four wireframe cubes
and four solid cubes, each one of them with different lighting conditions. These lighting conditions will be a
combination of the following: lighting enabled, lighting disabled, depth testing enabled and depth testing
disabled. Depth testing is an OpenGL feature that does hidden surface removal by using the depth buffer.

When drawing solid, lighted objects it is very important to draw the objects that are nearer to the viewing
position and eliminate any objects obscured by others nearer to the eye.

The elimination of parts of solid objects that are obscured by others is called hidden−surface removal. The
easiest way of achieving this in OpenGL is to use the depth buffer. In order to use the depth buffer, a window
must be created that will have such a buffer. Passing the argument GLUT_DEPTH in the function
glutInitDisplayMode does this. When this is done the OpenGL function glEnable can be called with the
value GL_DEPTH_TEST in order to add hidden−surface removal to the particular program.

This program is based on the example in the fourth section of chapter 2. It uses all the functions that were
defined there in order to draw and position the eight cubes (four wireframe and four solid ones).

A difference is that all the cubes are drawn by using perceptive projection and that glEnable and
glDisable statements appear inside the display function in order to activate and deactivate lighting and
hidden−surface removal.

Before using lighting, at least one of OpenGL’s lights must be enabled. For this example one light is enough,
and passing the value GL_LIGHT0 to the routine glEnable (inside the body of the init function) has the
effect of activating one light. Different OpenGL implementations may provide different amounts of lights but
all of them have at least eight lights. Example 4.1 contains the display function of this program.

Example 4.1 Display function that draws eight cubes with/without lighting and depth testing

void display(void)
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT) ;

 glViewport(0,win_size_V / 2, win_size_H / 4 ,win_size_V / 2) ;
 glDisable(GL_LIGHTING) ;
 glDisable(GL_DEPTH_TEST) ;

 Draw_Cube_Transl_Rot(WIRE) ;

Chapter 4− Lighting

43

 glViewport(win_size_H / 4,win_size_V / 2, win_size_H / 4 ,win_size_V / 2) ;
 glEnable(GL_DEPTH_TEST) ;
 Draw_Cube_Transl_Rot(WIRE) ;

 glViewport(2 * (win_size_H / 4),win_size_V / 2, win_size_H / 4 , win_size_V / 2) ;
 glEnable(GL_LIGHTING) ;
 glDisable(GL_DEPTH_TEST) ;
 Draw_Cube_Transl_Rot(WIRE) ;

 glViewport(3 * (win_size_H / 4),win_size_V / 2, win_size_H / 4 , win_size_V / 2) ;
 glEnable(GL_DEPTH_TEST) ;
 Draw_Cube_Transl_Rot(WIRE) ;

 glViewport(0,0, win_size_H / 4 ,win_size_V / 2) ;
 glDisable(GL_LIGHTING) ;
 glDisable(GL_DEPTH) ;
 Draw_Cube_Transl_Rot(SOLID) ;

 glViewport(win_size_H / 4,0, win_size_H / 4 ,win_size_V / 2) ;
 glEnable(GL_DEPTH_TEST) ;
 Draw_Cube_Transl_Rot(SOLID) ;

 glViewport(2*(win_size_H / 4),0, win_size_H / 4 ,win_size_V / 2) ;
 glDisable(GL_DEPTH_TEST) ;
 glEnable(GL_LIGHTING) ;
 Draw_Cube_Transl_Rot(SOLID) ;

 glViewport(3*(win_size_H / 4),0, win_size_H / 4 ,win_size_V / 2) ;
 glEnable(GL_DEPTH_TEST) ;
 Draw_Cube_Transl_Rot(SOLID) ;

 glutSwapBuffers() ;
}

As it seen in this example, the display function is divided into eight similar parts. Each one of them calls the
routine glViewport in order to specify where the particular cube should be drawn. The first four cubes (upper
part of the window) are drawn as wireframes, while the last four are drawn as solid (lower part of the
window).

Plate 4.2 contains the results of the compiled and executed program. The remaining parts of the program are
not discussed, as they are the same ones used in Chapter 2, section 4.

As seen in Plate 4.2 the best looking wire frame cube is the top, left−most cube and the best looking solid

Chapter 4− Lighting

44

cube is the bottom right−most one.

From this example some observations may be made. When drawing wire frame objects, depth testing does
not have any effects (as it does hidden−surface removal and not hidden−line removal). Also when drawing
wire frame objects all lights should be disabled, as in the opposite case the objects do not appear clear (i.e. the
top, two cubes on the right of Plate 4.2).

On the other hand if the lower part of Plate 4.1 is observed, it can be seen that when solid models are drawn,
lighting should be enabled, otherwise the objects do not appear three−dimensional. Depth testing should also
be enabled when drawing solid, lighted models as in the opposite case (when depth−testing is disabled), the
different parts of the object may be drawn in the wrong order with the results shown in the lower part of Plate
4.2, second cube from the right hand−side.

This happens because when depth testing is not enabled, no information is held about the depth of the objects
on the screen relative to the viewpoint, so no calculation can be done in order to hide surfaces that are not
visible.

4.2 Colour Tracking

As mentioned in the introduction of this chapter, colour tracking is an OpenGL feature that enables the
programmer to assign colours instead of materials to objects that are going to be used in programs that use
lighting. Colour tracking minimises also performance costs associated with material assigning.

This is a very useful feature of OpenGL, as it removes the overhead of having to assign manually the material
properties of objects when something like that is not needed. If, for example a program just needs a simple
red sphere and the properties of the material are of no importance (i.e. just a red sphere not a ‘wooden’ or
‘metal’ red sphere), the routine glColor can be used in conjunction with colour tracking in order to achieve
the same effect more easily.

In order to demonstrate what colour tracking does, three solid cubes will be drawn on the screen each one
having a different colour assigned to it (red, green and blue) with the routine glColor. Example 4.2 contains
the code of the particular display function.

Example 4.2 Display function that draws three cubes (a red, a green and a blue one)

void display(void)
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT) ;

 glShadeModel(GL_SMOOTH) ;

 glViewport(0,0, win_size_H / 3 ,win_size_V) ;

 glColor3f(1.0,0.0,0.0) ;
 Draw_Solid_Cube_2() ;

 glViewport(win_size_H / 3,0, win_size_H / 3 ,win_size_V) ;
 glColor3f(0.0,1.0,0.0) ;
 Draw_Solid_Cube_2() ;

 glViewport(2*(win_size_H / 3),0, win_size_H / 3 ,win_size_V) ;
 glColor3f(0.0,0.0,1.0) ;
 Draw_Solid_Cube_2() ;

 glutSwapBuffers() ;
}

In this code, as it can be seen three viewports are defined, one for each.. Their colours are (from left to right)

Chapter 4− Lighting

45

red, green, and blue. The cubes are drawn by using the previously defined function
Draw_Cube_Transl_Rot (Second Chapter). This function is slightly modified, in order to set the cube’s
colour outside the function.

If this example is compiled and run, with lighting enabled (and the basic LIGHT0), the results will be the
ones demonstrated in Plate 4.3.

The three cubes appear grey scaled and not colour because colour tracking was not enabled. As the material
of the cubes was not specified, but instead calls to glColor were used, colour tracking must be enabled in
order for the cubes to appear in colour.

This can be done either in the display, or in the init function by calling the routine glColorMaterial. This
function accepts two arguments, the first one being the polygon face that colour tracking is to be enabled and
the second is one of the four light components (diffuse, specular, ambient and emissive).

The polygon face can be the back face (GL_BACK), the front face (GL_FRONT) or both the back and front
face (GL_FRONT_AND_BACK). By default front−facing polygons are the polygons whose vertices appear
in a counter−clockwise order on the screen. Using the function glFrontFace, and supplying the desired
front−face orientation (either GL_CCW for counter−clockwise orientation or GL_CW for clockwise
orientation) can change what appears to be front−facing polygons.

Plate 4.4 contains the results of the program if colour tracking is enabled with the parameters GL_FRONT
and GL_DIFFUSE.

In order to use colour tracking the function glEnable must be called with the parameter
GL_COLOR_MATERIAL, just after calling the function glColorMaterial.

Chapter 4− Lighting

46

4.3 Setting up an object’s material properties and shininess

The subject of this section is the setting up of object’s material. In this section instead of using the routine
glColor in conjunction with colour tracking to create lighted objects, the more specific glMaterial will be
used.

This routine will be used to specify the material’s different components, diffuse, specular, emissive and
ambient and how shiny objects are by setting the shininess. Because of the complex interaction between an
object’s material surface and incident light, specifying material properties so that an object has a desired,
certain appearance is an art and is not something that can be learned from one moment to the other.

This routine, glMaterial accepts three arguments, the first being the face of the object that the material is
going to be assigned, the second is the particular light component that needs to be set and the last one is a
pointer to an array of values that will specify the appearance of the material (normally the array contains a
red, a green, a blue and an alpha value). As mentioned before, the alpha value is used for blending and other
‘special effects’ and will not be used here. In the case of shininess the third parameter is not a pointer to an
array but the actual value (0 to 128).

In this example the previously defined Draw_Cube_Transl_Rot will be slightly modified in order firstly to
contain the appropriate material setting routines and secondly to draw a sphere instead of a cube (specular
hilights are better shown on spheres, because of the larger amount of faces). Example 4.3 contains the code of
this new function, called Draw_Solid_Sphere.

Example 4.3 Draw_Solid_Sphere funtion

void Draw_Solid_Sphere(GLfloat mat_diffuse[],GLfloat mat_specular[],
 GLfloat mat_shininess[])

{
 glMaterialfv(GL_FRONT, GL_DIFFUSE, mat_diffuse) ;
 glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular) ;
 glMaterialfv(GL_FRONT, GL_SHININESS, mat_shininess) ;

 glPushMatrix() ;
 glTranslatef(tran[TRANS][0],tran[TRANS][1],tran[TRANS][2]) ;
 glRotatef(tran[ROTATE][3], tran[ROTATE][0], tran[ROTATE][1], tran[ROTATE][2]) ;

 glScalef(tran[SCALE][0],tran[SCALE][1],tran[SCALE][2]) ;
 glutSolidSphere(1.0,16,16) ;
 glPopMatrix() ;
}

This function accepts three arrays of type Glfloat. These arrays contain the values of the diffuse, specular and
shininess components of the material. In this program, the emissive and ambient properties of the materials
are not changed.

The body of the function should appear familiar. The only difference from the function
Draw_Cube_Transl_Rot, being the addition of the three glMaterial calls. As seen in the example, both
three calls set the front−face of the polygon to the specified values of the particular material property.

Back in the main program these three arrays are initialised to the values shown in example 4.4.

Example 4.4 The arrays containing the material properties values

GLfloat mat_diff[] = {1.0, 0.0, 0.0, 1.0} ;
GLfloat mat_spec[] = {1.0, 0.0, 0.0, 1.0} ;

Chapter 4− Lighting

47

GLfloat mat_shin1[] = {0.0} ;
GLfloat mat_shin2[] = {5.0} ;
GLfloat mat_shin3[] = {50.0} ;

As seen in the example, the array mat_diff, that contains the values of the diffuse component of the material is
set to red (1.0, 0.0, 0.0). The array mat_spec that contains the specular component values is also set to red.
Three more array are specified called mat_shin1, mat_shin2 and mat_shin3. These three arrays contain the
shininess value of the three cubes that will be shortly drawn. Example 4.5 contains the code of the new
display function. As it can be seen there, three viewports are defined and a red sphere of different shininess is
rendered into each one of them. The results of this program can be seen in Plate 4.4.

Example 4.5 The display function that draws three red spheres with different shininess values

void display(void)

{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT) ;

 glShadeModel(GL_SMOOTH) ;
 glViewport(0,0, win_size_H / 3 ,win_size_V) ;
 Draw_Solid_Sphere(mat_diff,mat_spec,mat_shin1) ;

 glViewport(win_size_H / 3,0, win_size_H / 3 ,win_size_V) ;
 Draw_Solid_Sphere(mat_diff,mat_spec,mat_shin2) ;

 glViewport(2*(win_size_H / 3),0, win_size_H / 3 ,win_size_V) ;
 Draw_Solid_Sphere(mat_diff,mat_spec,mat_shin3) ;

 glutSwapBuffers() ;
}

4.4 The Material – Lights program

The goal of this section is to create a program that a user will be able to see an object and how different
materials and lights affect the appearance of the particular object. As this example is quite complicated, its
discussion will be divided into several parts.

Firstly the appearance of the program will be considered. As the goal of this section is to show how different
materials and lights affect an object, an object should appear on the screen. Also it should be clear by now
that materials and lights are divided into deferent components. A material consists of four components (five if
the shininess is included). These are the diffuse, the specular, the ambient and the emission. A light is also
divided into components, and they are the diffuse, the specular and the ambient component.

Chapter 4− Lighting

48

All these components (except the shininess) are further composed from their red, green and blue elements.
Some means of showing to the user the values of all these components and their elements should be found.

A solution was to create a function that would draw on the screen a graph, showing the red, green and blue
values of a particular component. If now this function is used seven times, the four material components and
the three light components could be visualised on the screen.

The problem is that orthographic projection should be used for drawing the graphs and perspective projection
for drawing the objects. A solution to this problem would be to divide the window into several sub−windows,
so that each sub−window could be assigned a different projection style.

It was then decided that eight sub−windows should be created. The main one would be used for drawing the
objects and the other seven for drawing the seven material and light components.

Plate 4.6 shows the positioning of the eight sub−windows.

The creation of the sub−windows can now start. GLUT provides a function named
glutCreateSubwindow that can be used for this particular reason. This function accepts five arguments. The
first one is the name of the parent window, the next two are the window initial x and y position and the last
two are the window’s width and height. Example 4.6 shows part of the main function that creates the main
window and two of the sub−windows.

Example 4.6 Part of the main function that creates two sub−windows

parent_win = glutCreateWindow("Chapter 3 − Materials and Lights") ;

 init_parent() ;

 glutDisplayFunc(display_parent) ;
 glutReshapeFunc(reshape_parent) ;
 glutKeyboardFunc(keyboard) ;
 glutSpecialFunc(special) ;

 child_win = glutCreateSubWindow(parent_win, 3*(win_size_H/4), 0, win_size_H/4, win_size_V/4) ;

 init_child_mat() ;

Chapter 4− Lighting

49

 glutDisplayFunc(display_child) ;
 glutReshapeFunc(reshape_child) ;

 child_win2 = glutCreateSubWindow(parent_win, 3*(win_size_H/4), win_size_V/4, win_size_H/4,
 win_size_V/4) ;

 init_child_mat() ;

 glutDisplayFunc(display_child2) ;
 glutReshapeFunc(reshape_child) ;

As it can be seen in this example, the main window is created using the familiar function
glutCreateWindow. Any callback functions that are needed for the main window are registered and then the
first sub−window, named child_win is created by calling the function glutCreateSubWindow. Two callback
functions are registered to this sub−window (a display and a reshape one) and then another sub−window is
created by using the same technique.

As seen in the example both sub−windows use the same reshape function. This function (shown in example
4.7) just creates an orthographic projection.

Example 4.7 The sub−windows reshape function

void reshape_child(int w, int h)
{
 glViewport(0, 0,(GLsizei)w,(GLsizei)h) ;
 glMatrixMode(GL_PROJECTION) ;
 glLoadIdentity() ;
 glOrtho(10.0,70.0,−10.0,110.0,−1.0,1.0) ;
 glMatrixMode(GL_MODELVIEW) ;
 glLoadIdentity() ;
}

Now that the sub−windows are created, it is time to create their contents. As mentioned before, an object will
be drawn in the main sub−window to show the effect of assigning different values to the material and light
components. In order for the user to see better these effects, eight different objects will be available to him.
The function that will draw these objects can be seen in example 4.8.

Example 4. 8 Function that draws one of eight possible objects

void Draw_Object(int object)
{
 glPushMatrix() ;
 glTranslatef(tran[TRANS][0],tran[TRANS][1],tran[TRANS][2]) ;
 glRotatef(tran[ROTATE][3], tran[ROTATE][0], tran[ROTATE][1], tran[ROTATE][2]) ;
 glScalef(tran[SCALE][0],tran[SCALE][1],tran[SCALE][2]) ;
 switch (object)
 {
 case 1 :
 glutSolidSphere(1.0,32,32) ;
 break ;
 case 2 :
 glutSolidCube(1.0) ;
 break ;
 case 3 :
 glutSolidCone(1.0,1.0,32,32) ;
 break ;
 case 4 :
 glutSolidTorus(0.3,0.7,32,32) ;
 break ;
 case 5 :
 glutSolidOctahedron() ;
 break ;

Chapter 4− Lighting

50

 case 6 :
 glutSolidTetrahedron() ;
 break ;
 case 7 :
 glutSolidIcosahedron() ;
 break ;
 case 8 :
 glutSolidTeapot(0.5) ;
 break ;
 default :
 break ;
 }
 glPopMatrix() ;
}

As seen in the example one of the following objects will be drawn to the screen depending on the value
passed to the function: sphere, cube, cone, octahedron, tetrahedron, icosahedron, or teapot.

The function that will draw the seven graphs (one by one) must be constructed now. Plate 4.7 shows what this
function is needed to draw.

As seen in the Plate, this function should draw a graph containing a red, a green, and a blue bar. Each bar
stands for one of the three elements of the material and light components (red, green and blue). Each bar will
have an index that will show the current value of the element. The code of this function named Draw_Graph
can be found in Example 4.9.

Example 4. 9 The Draw_Graph function

void Draw_Graph(GLfloat Red_Height, GLfloat Green_Height, GLfloat Blue_Height)
{
 GLfloat Red[] = {1.0,0.0,0.0,1.0} ;
 GLfloat Green[] = {0.0,1.0,0.0,1.0} ;
 GLfloat Blue[] = {0.0,0.0,1.0,1.0} ;

 glPushMatrix() ;
 Draw_Bar(15,0,Red,Red_Height) ;
 Draw_Bar(35,0,Green,Green_Height) ;
 Draw_Bar(55,0,Blue,Blue_Height) ;
 glPopMatrix() ;

 glutPostRedisplay() ;
}

As seen in the example this function accepts three arguments. These arguments are the red, green and blue
values of the component’s elements that will be passed to the function Draw_Bar in order to position the
index of the bars in the correct position. The function Draw_Bar accepts four arguments. The first two are

Chapter 4− Lighting

51

used to position the bar inside the window the third one to colour the bar and the last one to position the bars
index in the correct place.

The bars are drawn by using smooth shading in order to draw the lower part black and the upper part the
specified colour. Using this technique the index’s position can approximate the colour of the component’s
particular element. Example 4.10 shows the code of the Draw_Bar function.

Example 4. 10 The Draw_Bar function

void Draw_Bar(GLfloat x, GLfloat y,GLfloat color[],GLfloat height)
 {
 glPushMatrix() ;
 glBegin(GL_POLYGON) ;
 glColor3f(color[0] , color[1], color[2]) ;
 glVertex2f(x ,y + 100.0) ;
 glVertex2f(x + 10.0,y + 100.0) ;
 glColor3f(0.0, 0.0, 0.0) ;
 glVertex2f(x + 10.0,y) ;
 glVertex2f(x ,y) ;
 glEnd() ;
 glPopMatrix() ;
 glPushMatrix() ;
 glTranslatef(0.0,height*100,0.0) ;
 glBegin(GL_POLYGON) ;
 glColor3f(1.0,1.0,1.0) ;
 glVertex2f(x−1,y+2) ;
 glVertex2f(x+11,y+2) ;
 glVertex2f(x+11,y−1) ;
 glVertex2f(x−1,y−1) ;
 glEnd() ;
 glPopMatrix() ;
 }

As seen in the example this function is divided into two parts. The first part positions and creates a smoothly
shaded rectangle while the second part uses the fourth argument of the function in order to position and draw
the bar’s index.

At this point nearly all the parts of the program used to demonstrate lighting effects are ready. A function,
which still needs to be constructed, is the one that will be able to set the material and light properties.
Actually two functions will be used for that purpose. The one named Set_Material will be responsible for
setting up the object’s material and the one called Set_Light_ADS will be used to set up the light
components. Example 4.11 contains the Set_Material function and Example 4.12 contains the
Set_Light_ADS function.

Example 4. 11 The Set_Material function

void Set_Material(GLenum pname, GLfloat ambient[], GLfloat diffuse[], GLfloat specular[],
 GLfloat shininess[], GLfloat emission[])
{
 glMaterialfv(pname,GL_AMBIENT,ambient) ;
 glMaterialfv(pname,GL_DIFFUSE,diffuse) ;
 glMaterialfv(pname,GL_SPECULAR,specular) ;
 glMaterialfv(pname,GL_SHININESS,shininess) ;
 glMaterialfv(pname,GL_EMISSION,emission) ;
}

Example 4. 12 The Set_Light_ADS function

void Set_Light_ADS(GLenum light, GLfloat ambient[], GLfloat diffuse[],
 GLfloat specular[])

Chapter 4− Lighting

52

{
 glLightfv(light, GL_AMBIENT, ambient) ;
 glLightfv(light, GL_DIFFUSE, diffuse) ;
 glLightfv(light, GL_SPECULAR, specular) ;
}

The function Set_Material accepts six arguments. The first one, pname is used to specify the face to which
the material is going to be applied. The other five arguments are arrays that contain the values that are going
to be used in order to set the material up. This function uses the previously described routine glMaterial in
order to set the various material components.

The function Set_Light_ADS (ADS stands for ambient, diffuse and specular) is similar to the function
Set_Material. This time the function accepts four arguments. The first one is the light that is going to be set
(i.e. LIGHT0) and the other three are arrays that contain the red, green and blue values of the diffuse,
specular and ambient components of the light.

These arrays (containing the material and light components) are set inside the function keyboard. This
function provides the needed keyboard interaction. The user can now manipulate the components and their
elements by pressing several keys. Example 4.13 contains part of this function.

Example 4. 13 Part of the material−lights program keyboard function

void keyboard (unsigned char key, int x, int y)
{
 static float steping = 0.05;
 switch(key)
 {
 case 'Q' :
 Increase(MATERIAL,AMBIENT,RED,steping) ;
 glutPostRedisplay() ;
 break ;
 case 'q' :
 Decrease(MATERIAL,AMBIENT,RED,steping) ;
 glutPostRedisplay() ;
 break ;

As seen in the example the key ‘Q’ is used to increase the red element of the ambient component of the
material by an amount equal to steping. ‘q’ is used to decrease the particular element by an amount equal to
steping. The functions Increase and Decrease used here are two functions that increase or decrease the
particular element of the particular component by an amount steping, making sure that the value of the
element will not be greater than 1.0 or less than 0.0.

Plate 4.8 contains the program’s window when initially run. The user can manipulate the various components
by using the keys shown in Table 4.2. A function was also created in this program that is able to save the
current material and light configuration in a file, for later reference.

The user can now ‘play’ with the material and light properties in order to understand how these can be
combined to produce the needed colours, materials and effects.

This program can also be used to create a particular colour and then save it to the disk. For example, if a
‘golden’ colour is needed for a particular object in another program, a programmer can experiment with this
program until the needed ‘golden’ colour is approximated and then he can save it and uses it in the other
program.

Chapter 4− Lighting

53

Plate 4.9 contains the window of the program after a user has created a ‘golden’ colour. The graphs on the
right and lower part of the screen show the current values of the red, green and blue elements of the material
and light components. The four graphs on the right part of the screen show the material components (from top
to bottom) ambient. diffuse, specular and emission and the three graphs on the lower part of the screen (left to
right) the light components ambient, diffuse and specular.

Chapter 4− Lighting

54

Plate 4.10 shows how deferent objects appear under the same material−light configuration.

Chapter 4− Lighting

55

Chapter 4− Lighting

56

4.5 Adding lights to the basic model

This section is based on the program described in the second chapter, second section. This program is also
data−driven, meaning that all its data are read from files.

For this reason two functions were used, named Read_Data_From_File and Read_Material_From_File.
The first one (as described in Chapter 2) opens a file and reads the walking animation angles, the second one
reads the body’s materials. These functions will not be described here, as they contain only standard C calls
in order to open a file and read some values.

The function Read_Data_From_File stores the data it reads into two variables of type anim_angles while
the function Read_Material_From_File stores its data into variables of type body_material. The
anim_angles structure was described back in Chapter 2, the custom type body_material is shown in Example
4.14.

Example 4. 14 The custom body_material

typedef struct
{
 float head[4][4] ;
 float head_j[4][4] ;
 float upbody[4][4] ;
 float lobody[4][4] ;
 float uparm_j[2][4][4] ;
 float uparm[2][4][4] ;
 float loarm_j[2][4][4] ;
 float loarm[2][4][4] ;
 float hand[2][4][4] ;
 float upleg_j[2][4][4] ;
 float upleg[2][4][4] ;
 float loleg_j[2][4][4] ;
 float loleg[2][4][4] ;
 float foot_j[2][4][4] ;
 float foot[2][4][4] ;
} body_materials ;

As seen in the example this structure is composed of floating point arrays. Body parts that appear twice in the
body (like legs and arms) are arrays of dimension [2][4][4]. This array has these dimensions because a
material has four components, diffuse, specular, ambient and emission ([2][4][4]), each component has four
elements, red, green, blue and alpha ([2][4][4]) and the body has two of the particular parts, left and right
([2][[4][4]). Parts that appear only once (like the head for example) are simply arrays of type [4][4].

Chapter 4− Lighting

57

Now that materials and angles are read and available to the program and the animation functions exist from
the previously constructed program only the functions that draw the lit model remain to construct.

This is actually quite easy, as the only action needed to be taken is slightly modify the already ready
modelling functions (constructed in the second section of the second chapter).

For this reason the previously constructed (previous section) function Set_Material is going to be used.
Example 4.15 contains the Draw_Head function constructed back in the second chapter. This function does
not contain the appropriate for lighting use routines, so a new function Draw_Head is going to be
constructed containing a call to the function Set_Material in the appropriate point. Example 4.16 contains
the new Draw_Head function.

Example 4. 15 The old Draw_Head function

void Draw_Head(int frame)
{
 glPushMatrix() ;
 glPushMatrix() ;
 glScalef(HEAD_WIDTH,HEAD_HEIGHT, TORSO) ;
 glColor3f(0.0,0.0,1.0) ;
 if (frame == WIRE)
 glutWireCube(1.0) ;
 else
 glutSolidCube(1.0)
 glPopMatrix() ;
 glTranslatef(0.0,−HEAD_HEIGHT * 0.66,0.0) ;
 glPushMatrix() ;
 glScalef(HEAD_JOINT_SIZE,HEAD_JOINT_SIZE,HEAD_JOINT_SIZE) ;
 glColor3f(0.0,1.0,0.0) ;
 if (frame == WIRE)
 glutWireSphere(1.0,8,8);
 else
 glutSolidSphere(1.0,8,8);
 glPopMatrix() ;
 glPopMatrix() ;
}

Example 4. 16 The new Draw_Head function

void Draw_Head(int frame)
{
 glPushMatrix() ;
 glPushMatrix() ;
 glScalef(HEAD_WIDTH,HEAD_HEIGHT, TORSO) ;
 if (frame == WIRE)
 {
 glColor3f(0.0,0.0,1.0) ;
 glutWireCube(1.0) ;

 else
 {

 Set_Material(GL_FRONT,material.head[0], material.head[1], material.head[2],
 mat_shine,material.head[3]);
 glutSolidCube(1.0) ;
 }
 glPopMatrix() ;
 glTranslatef(0.0,−HEAD_HEIGHT * 0.66,0.0) ;
 glPushMatrix() ;
 glScalef(HEAD_JOINT_SIZE,HEAD_JOINT_SIZE,HEAD_JOINT_SIZE) ;

Chapter 4− Lighting

58

 if (frame == WIRE)
 {
 glColor3f(0.0,1.0,0.0) ;
 glutWireSphere(1.0,8,8) ;
 }
 else
 {
 Set_Material(GL_FRONT,material.head_j[0], material.head_j[1], material.head_j[2],
 mat_shine,material.head_j[3]) ;
 glutSolidSphere(1.0,8,8) ;
 }

 glPopMatrix() ;
 glPopMatrix() ;
}

As seen in the example only a small, easy to identify part of the code needs to be changed (hi−lighted in
yellow). After applying these changes to all the modelling functions the program is ready to be compiled and
run.

A new OpenGL feature is also used in this example in order to cut−down execution time. In the init function
after the usual by now calls to glEnable with parameters GL_LIGHTING, GL_LIGHT0 and
GL_DEPTH_TEST a new call can be found; that is glEnable(GL_CALL_FACE). When this value
(GL_CALL_FACE) is passed to the routine glEnable, the OpenGL feature culling is enabled.

When culling is used all the back faced polygons are ‘removed’, meaning that no calculations are done
concerning them and that they will not appear on the screen. That has the effect of cutting down to half the
polygons a model is using, something that can dramatically increase the speed in cases of millions of
polygons.

As the remaining of the program remains the same with the program discussed back in the second section of
the second chapter, this program (and Chapter) can be considered finished.

After compiling and running this programs the results are the ones shown in Plate 4.11.

Chapter 4− Lighting

59

Chapter 4− Lighting

60

Chapter 5 − Improving the model: “A more elaborate
geometrical example
The topic of this chapter is the improvement of the basic model (constructed from spheres and cubes)
discussed in chapter 2. Such a model may be good enough for demonstrating basic OpenGL concepts but it is
not good enough for a commercial application that needs a model that approximates the human body, like a
game, a virtual reality application, etc.

The data set for a human body was needed in order to construct a more elaborate example. Such data sets are
available through the Internet; some of them free of charge, some not. Such data sets are normally
constructed by scanning a three−dimensional object (in this case a human body). As three−dimensional
scanners are quite expensive and there is always the possibility of not being able to find a ready−made model,
it was decided that for this project a good modeling exercise would be to create the model’s data set from
scratch.

A technique had to be devised that would be able to create this three−dimensional model. In the first section
of this chapter this technique is discussed, while the second part of the chapter contains a discussion of the
program that reads the data set created in the first section and produces a three−dimensional model of a man.

After some research on the subject it was decided that a good technique was to try and analyze some
conventional, two−dimensional photographs of a human body and try to retrieve the underlying
three−dimensional model. A few anatomy books were consulted to find an appropriate model, and after some
thought the model depicted in Plate 5.1 was chosen. Initially the model was not so clear, as in the process of
photocopying and scanning, some noise was introduced to the image. This was corrected by applying the
Paint Shop filter named find contour, resulting in the three images shown in Plate 5.1 (front, back and side
view).

61

Each one of these three images contains two−dimensional information about the model. By using two images
in conjunction, three−dimensional information can be created. The first step was to design some reference
axes. Plate 5.2 shows the torso and the appropriate axes that were assigned to it.

Chapter 5 − Improving the model: “A more elaborate geometrical example

62

At this point, it is quite easy to retrieve the data sets of the front and back part of torso (in two dimensions, x
and y). By making lines parallel to the x−axis, the third dimension (depth, z) can be found for every single
point. Plate 5.3 shows how to find the third dimension (z) of a random (x,y) point.

Applying this technique to an appropriate number of points can result in a very good quality,
three−dimensional data set of the torso. If the technique is used on all body parts, the three−dimensional data
set of a man model, will be constructed. This data set is going to be used in the next section of this chapter to
create the OpenGL based model. Also, as seen in Plates 5.2 and 5.3 some parts of the body, like the torso
have a degree of symmetry, so only half the points are needed (as the other half can be created by mirroring).

The goal of this section was not to create the full data set of a human model, but to show that the particular
technique is working. As time was short, it was decided that it would be better to go on with the following
parts of the projects than spending time finishing the data set of the model. In order to have enough data for
the next section (the creation of the model) the points of the neck, torso and legs were retrieved.

5.2 Creating the complex model

The goal of this section is to use the points retrieved in the previous section to create a better−looking model
of a man. As the body points are saved in a file some functions were created in order to load and store these
points. These functions read the body points and store them in a structure named body_points. This structure
is a set of multi−dimensional arrays, one for each body part. This structure is defined in the file general.h and
it can be seen in Example 5.1.

Example 5.1 The structure body_points

typedef struct
{
 float neck[2][2][10][3] ;
 float torso[2][2][23][3] ;
 float upper_leg[2][2][2][23][3] ;
 float lower_leg[2][2][2][18][3] ;
} body_points ;

As mention in section 5.1 only the neck, torso and legs are going to be created in this section, so the custom
type body_points contains an array for each one of these four parts. Starting from right to left, the first
dimension is used to store the three−dimensional elements of the points (x, y, z), the second dimension to
store the actual points (1st, 2nd, 3rd and so on), the third dimension is used to distinguish between left and right
side of a body part, the fourth to distinguish between front and back side of a body part, and when a fifth
dimension is present is used to distinguish between left and right body parts (for example legs or arms).

Chapter 5 − Improving the model: “A more elaborate geometrical example

63

Now that the structure were the points are going to be stored is explained, it is the time to discuss the
functions that will read the points from the file.

These functions are implemented in the file named inout.c and the first one to be discussed is going to be the
function Return_Directory. This function is going to be used in order to find the directory from which the
program was executed so any needed files can be loaded from the same directory. This function accepts only
one argument, a pointer to a character string. In every C/C++ program the first element of the argv array of
the main function contains the directory from which the program was executed, including the name of the
program (i.e. d:\programs\model\my_program.exe). The function Return_Directory takes this string and
traverses it from right to left, until it finds a ‘\’ character, then it returns the rest of the string, as the remaining
part is the directory from which the program was executed. This information will be used later from other
function to read any needed data.

The function Read_Body_Points_From_File does what its name suggests. This function accepts two
arguments, the first one is the directory where the file should be and the second is a pointer to a
body_points structure where the points will be stored. The directory of the file is found at run time by using
the previously discussed function Return_Directory (the file should be at the same directory the program
was executed).

As mentioned in the first section of this chapter not all the points were digitised only the key ones. Points that
could be calculated by mirroring other points were not digitised. In the body of this function, after reading the
digitised points from the file, the functions Mirror_Data_Neck_Torso, Mirror_Data_Upper_Leg and
Mirror_Data_Lower_Leg are used to create the rest of the body points. As the neck and the torso have
y−axis symmetry, the function Mirror_Data_Neck_Torso calculates the left−hand side points of both the
front and back side of the torso by mirroring the right−hand side (digitised) points. The leg does not have
y−axis symmetry between its left and right sides but it has y−axis symmetry as the whole part (the left leg is
the mirror image of the right leg). So the functions Mirror_Data_Upper_Leg and
Mirror_Data_Lower_Leg instead of mirroring points inside the leg, they are used to calculate the points of
the left leg by inverting the points of the right leg.

Now that the points are read and available to the program, some function have to be created that will use
these points in order to create the model. Plate 5.4 contains the results of drawing the points that construct the
front part of the torso. These points can be connected in a variety of ways in order to create a solid model. As
3D accelerators usually accelerate models constructed from triangles, this approach will be followed.

When OpenGL lighting is used, the normal of the surfaces must be calculated. A normal is a vector that is
perpendicular to the surface at a particular point and is used to calculate how light is reflected from the
surface. Until now there was no reason to calculate the normals of the objects used, as these objects were
created by using the available GLUT functions that contain also the needed normals.

Chapter 5 − Improving the model: “A more elaborate geometrical example

64

A function was created that given three points of a three dimensional area that lies on the same plane in space
(these points do not lie on a straight line), can calculate the unit normal to the surface.

This function calculates the perpendicular to the plane (the normal) by using the function

[v1−v2]x[v2−v3]

where the symbol ‘x’ means the cross product. v1, v2 and v3 are the three vectors that can be created when
the three supplied points are joined.

Now that the function that calculates the normal to a surface is created, it is time to create the actual surfaces.
As all the functions that create the body parts are similar, it was chosen to describe only one of them, the one
that creates the torso. Example 5.4 contains this function.

Example 5.4 The Draw_Torso function

void Draw_Torso(int frame, float torso[2][2][23][3])
{
 glPushMatrix() ;
 if (frame == WIRE)
 glColor3f(1.0,0.0,0.0) ;
 else
 Set_Material(GL_FRONT,material.torso[0], material.torso[1], material.torso[2], material.shine[NECK], material.torso[3]) ;
 create_torso_front(torso[FRONT][LEFT], torso[FRONT][RIGHT]) ;
 create_torso_back(torso[BACK][LEFT], torso[BACK][RIGHT]) ;
 create_torso_sides(torso[FRONT][LEFT], torso[FRONT][RIGHT], torso[BACK][LEFT], torso[BACK][RIGHT]) ;
 glPopMatrix() ;
}

As seen in the example the structure of the Draw_Torso function is similar to the previous
Draw_Torso function the difference being that instead of calling the GLUT functions to create the torso the
custom made functions create_torso_front, create_torso_back and create_torso_sides are called.

The function accepts two arguments. The first one, frame can take the values WIRE or SOLID and is used in
order to assign a colour or set a material (depending on if the model is wireframe or solid). The second
argument contains the points that will be used to create the torso. Example 5.5 contains the function
create_torso_front the other two functions will not be discussed here, as they are similar to this one.

Example 5.5 The create_torso_front function

void create_torso_front(float left[23][3], float right[23][3])
{
 int counter ;
 float normal[3] ;
 for (counter = 0 ; counter <22 ; counter++)
 {
 Calculate_Normal(left[counter],left[counter+1],right[counter+1],normal) ;
 glBegin(GL_TRIANGLE_STRIP) ;
 glNormal3fv(normal);
 glVertex3fv(left[counter]) ;
 glVertex3fv(left[counter+1]) ;
 glVertex3fv(right[counter]) ;
 glVertex3fv(right[counter+1]) ;
 glEnd() ;
 }
}

Chapter 5 − Improving the model: “A more elaborate geometrical example

65

As seen in the example the body of this function is basically a for loop. Its time the for loop is executed, a
normal is found by passing three appropriate values to the function Calculate_Normal and then the function
glBegin is called with a GL_TRIANGLE_STRIP value. As explained previously the value passed to the
function glBegin specifies what kind of object is going to be created. The value GL_TRIANGLE_STRIP is
used to create triangle strips in the way shown in Plate 5.5.

The front part of the torso is constructed from 46 points. 23 of them are on the left−hand side and 23 on the
right−hand side. The easiest way to create the front−torso surface using triangles is to create 22 triangle
strips, each one of them constructed from 4 points. The way in which the points are selected is also important,
as all triangles on the same surface should have the same orientation, in order not to have problems later
when trying to use culling or a similar operation. Plate 5.6 shows the points and in which way they should be
connected.

When four points are used to create a triangle strip, they should be specified in the order of: L1 à L2 à R1 à
R2, as OpenGL will use vertices L1, L2 and R1 to create the first triangle and vertices R1, L2 and R2 to
create the second triangle (in the exact order). In this way all triangles of a triangle strip are oriented in the
same, anti−clockwise way.

Chapter 5 − Improving the model: “A more elaborate geometrical example

66

When the for loop finishes executing (22 times), the front part of the torso will be ready containing 22
triangle strips each one of them constructed from two triangles, giving a total of 44 triangles. The results of
this function can be seen in Plate 5.7.

Using the same technique all the other modelling functions are created.

In order to animate the model a small change is needed in the base_move function, as the constants
UP_LEG_HEIGHT, LO_LEG_HEIGHT and LEG_HEIGHT do not exist anymore. In order to solve this
problem the two values UP_LEG_HEIGHT and LO_LEG_HEIGHT can be specified as externals and the
value LEG_HEIGHT can be calculated (LEG_HEIGHT = UP_LEG_HEIGHT + LO_LEG_HEIGHT). The
values of UP_LEG_HEIGHT and LO_LEG_HEIGHT are then calculated in the function init, in the main
program, by finding the absolute value of the difference of the first and last points in the leg data set.

If this program is compiled and run the results will be the ones shown in Plate 5.8. Table 5.1 contains the
keys used in the program and their associated operations.

Chapter 5 − Improving the model: “A more elaborate geometrical example

67

Chapter 5 − Improving the model: “A more elaborate geometrical example

68

Chapter 6 − Texture Mapping
Until now, every geometric primitive has been drawn as either a solid color or smoothly shaded by
interpolating the colors of its vertices. Texture mapping allows images to be glued on polygons and then
follow the polygon’s transformations.

With texture mapping, any image (scanned, drawn, etc.) can be applied onto a polygon, giving the polygon a
completely different touch. Texture mapping ensures that acceptable things will happen to the image when
the underlying polygon undergoes any transformations. For example if perspective projection is used in the
scene any images used as textures will appear smaller as they get further from the viewpoint.

Texture mapping has many applications, some of them being wallpaper patterns, ground images in flight
simulators, textures that make polygons look like natural substances such as marble, wood and so on.

Textures are simply rectangular arrays of data. The individual values in the texture array are often called
texels. What makes texture mapping tricky is that rectangular textures can be mapped to non−rectangular
regions, and this must be done in a reasonable way.

As texture mapping is such a large area, this chapter will not try to discuss the whole subject but explain the
basics of texture mapping, how texture mapping is used in OpenGL and some of the basic filters that can be
applied to textures.

As the application/example that was constructed for this Chapter is quite a lot more complicated than any of
the previously discussed ones, its development will be divided into several sections.

Section one will discuss the functions needed in order to open and display a windows bitmap image (bmp)
file. This image file was chosen because it does not use any compression when saving the image, so it is
relatively easy to open and load the image.

As this program uses several windows, section two will discuss what has to be done in order to open and
manage more than one window. Some functions of the Fast Light Tool Kit library are also explained in this
section, as they are used in order to create the programs interface (buttons, pull−down menus etc.).

Section three continues and describes how a texture is created and then applied onto a polygon. As a simple
example the texture is applied onto a cube.

The last section of this chapter explains the operations needed to put everything together, as well as
describing the needed changes in the human model function to incorporate texture mapping.

In order to use texture mapping, some images must be available to the program. The easiest way to load and
use an image as a texture is to save the image as a bmp file. This file format is very common among
Microsoft Windows platforms and all image manipulation applications are able to save in this format. When
the image is saved in the particular file format some function have to be created to load the image and make
any needed manipulations to its data format in order to be of use with OpenGL.

Three functions were created for this reason (based on functions found in the book “OpenGL Super bible”)
named LoadBitmapMy, ConvertRGB and SaveDIBitmap.

The first function, LoadBitmapMy accepts two arguments and returns a pointer of type void. The first
argument is a pointer to a character string that contains the directory and filename of the image. The second
argument is a pointer to a BITMAPINFO structure. Every bitmap image contains a header of that type
(BITMAPINFO), so when function LoadBitmapMy is called, the header of the image will be stored in a
variable of type BITMAPINFO and the actual bitmap bits (each pixel of the image) will be stored in a pointer
of type void.

69

This function is quite complicated, but there is no need to explain in depth what happens inside it. The main
point is that an attempt is made to open the bitmap image file specified in the parameter filename; if this
operation is successful, a check follows to discover whether the file is a bitmap file; if this check succeeds,
memory is allocated for the bitmap header, the bitmap header is read and if everything is correct, memory is
allocated for the actual image and the image is read. If everything went fine, the image is contained in the
variable bits (of type void pointer) which is returned from the function.

The function SaveDIBitmap is similar to this one, as instead of opening a file and reading a bitmap into a
void pointer variable, it receives an image in the form of a void pointer variable and saves it to the disk.

A problem with bitmap files is that the colour values are not saved in the order used by OpenGL (R−G−B),
but in the order Blue, Green, Red. A function was needed that would swap the red and blue values of the
image and that is the purpose of the ConvertRGB function.

At this point, after calling the two functions ReadBitmapMy, and ConvertRGB a bitmap image is available
to the program (in the form of a void pointer variable). Now some appropriate OpenGL calls are needed in
order to display this image in a window.

First of all, and in order to display the image correctly without any distortions, the projection used must be
orthographic and the lower−left corner must be at (0,0) while the upper−right corner at (width –1, height –1)
where width and height are the width and height of the image. This projection makes sure that the image will
be displayed ‘as−is’ in a one−to−one way. Example 6.1 contains the reshape function that does that.

Example 6.1 The reshape function used to display an image

void reshape_main(int w,int h)
{
 glViewport(0,0,w,h) ;
 glMatrixMode(GL_PROJECTION) ;
 glLoadIdentity() ;
 glOrtho(0, width−1,0, height−1, −1,1) ;
 glMatrixMode(GL_MODELVIEW) ;
 glLoadIdentity() ;
}

Now that the projection is set, is the time to do the actual drawing. The display function that is used to draw
the image on the screen is shown in example 6.2.

Example 6.2 The display function used to display a bitmap image

void display(void)
{
 glClear(GL_COLOR_BUFFER_BIT) ;

 if (BitmapBits != NULL)
 {
 glPixelStorei(GL_UNPACK_ALIGNMENT, 4);
 glRasterPos2i(0,0);
 glPushMatrix() ;
 glDrawPixels(BitmapInfo−>bmiHeader.biWidth ,
 BitmapInfo−>bmiHeader.biHeight,
 GL_RGB, GL_UNSIGNED_BYTE, BitmapBits);
 glPopMatrix() ;
 }
 glutSwapBuffers() ;
}

As seen in the example after the colour buffer is cleared by calling the function glClear, a check is done to
see whether the variable BitmapBits (used to store the image) contains any data.

Chapter 6 − Texture Mapping

70

If the variable is empty (NULL), nothing is done, otherwise the function glPixelStorei is called with the
arguments (GL_UNPACK_ALIGNMENT, 4). This call specifies how data are going to be ‘unpacked’ from
memory in order to draw it, in this case, by the function glDrawPixels. As the image is represented as a
linked list of values (Red, Green, Blue, Alpha, etc.) OpenGL needs to know how to ‘unpack’ this data,
meaning that the programmer should specify that for example every pixel is represented in the linked list by
four values (R−G−B−A).

When this is done, a call to glRasterPos follows in order to set the current raster position.

As the orthographic projection used has its lower−left corner at point (0,0), the current raster position is set to
the lower−left corner of the screen. This is needed because the function glDrawPixels starts drawing the
lower−left part of the image at the current raster position and incrementally to the top−right.

After the call to glRasterPos the current matrix is saved, the function glDrawPixels is called in order to draw
the image and the matrix is restored.

The function glDrawPixels accepts five parameters. The first one is the width of the image to be drawn and
the second is the height. The third parameter indicates the kind of pixel data elements to be used (Table 6.2)
and the fourth one the type of each element (Table 6.3). The fifth parameter is a pointer to an array that
contains the pixel data to be drawn.

As seen in the example, the width and height of the image are passed to the function by using the bitmaps
header. The format is set to R−G−B mode and the type to unsigned bytes. The array that contains the pixel
data is the previously mentioned array BitmapBits.

The bitmap’s header information (the width and the height) is also used in order to resize the window that the
bitmap is drawn, in order to be the same size.

Chapter 6 − Texture Mapping

71

Plate 6.1 contains some screenshots from images loaded using this program.

6.2 Opening several windows with OpenGL

This example will use several windows. One will be used for displaying the bitmap image from which the
texture will be created (this window was the subject of the previous section). Another window will be used to
show the texture (when this is created) and two more windows will be used to demonstrate texture mapping.
One will be used for displaying a texture mapped cube and a second one to display the texture mapped model
of a man.

The technique used to create the four windows is the same one employed in section 4, chapter 4. Example 6.3
shows part of the main function that creates the four windows and assigns to them any needed callback
functions.

Example 6.3 Part of the main function that creates four windows

main_win = glutCreateWindow("Sixth Chapter – Texture Mapping") ;
glutHideWindow() ;
create_panel(argc,argv) ;
init() ;

glutDisplayFunc(display) ;
glutReshapeFunc(reshape_main) ;
glutKeyboardFunc(keyboard) ;
glutMouseFunc(mouse) ;

Chapter 6 − Texture Mapping

72

glutPassiveMotionFunc(passive_motion) ;
glutInitWindowSize(box_width,box_height) ;
glutInitWindowPosition(0,0) ;

texture_win = glutCreateWindow("Texture") ;
glutDisplayFunc(display2) ;
glutHideWindow() ;
init_cube_win() ;
glutInitWindowSize(200,200) ;
glutInitWindowPosition(0,100) ;

cube_win = glutCreateWindow("Distorted Cube Window") ;
glutDisplayFunc(display_cube) ;
glutReshapeFunc(reshape_cube) ;
glutSpecialFunc(special) ;
glutKeyboardFunc(keyboard) ;
glutHideWindow() ;
init_torso_win() ;

glutInitWindowSize(200,200) ;
glutInitWindowPosition(0,300) ;

torso_win = glutCreateWindow("Torso Window") ;
glutDisplayFunc(display_torso) ;
glutReshapeFunc(reshape_torso) ;
glutSpecialFunc(special) ;
glutKeyboardFunc(keyboard) ;
glutHideWindow() ;

As seen in the example, after the creation of every window (by calling the function glutCreateWindow) a
call to the function glutHideWindow is issued. This GLUT function is responsible for hiding the current
window, meaning that the window is created, but it is not visible to the user. This was done, because it was
decided that no other windows other than the main interaction window should be visible to the user when the
program is firstly run.

The main interaction window is created by calling the custom function create_panel. This function contains
the needed Fast Light Tool Kit (FLTK) routine calls to create a FLTK window, containing some buttons and
pull−down menus.

The problem with FLTK is that it is written in C++, so a C++ syntax must be used. After some thought it was
decided that it would be overcomplicated to try and discuss the FLTK calls that are needed to create the user
interface window, as the reader is used to the standard C conversions, so this window will be accepted ‘as is’.

As seen in the previous example each window is assigned its own display and reshape functions. This was
done because each window displays different graphics and thus needs different reshape conditions.

Chapter 6 − Texture Mapping

73

A new GLUT routine also appears in this piece of code, named glutPassiveMotion. This routine is
responsible for registering a passive motion callback function. What is meant by the term passive motion is
that the mouse moves inside a window without any of its buttons pressed (active motion would therefore be
the mouse does move when one or more of its buttons is pressed). This function is used in this program to
animate a small selection box, when a texture is selected from a larger image.

6.3 Creating a texture

The topic of this section is the creation of a variable size texture. OpenGL textures can be of several different
dimensions, depending to the implementation. Most OpenGL implementations support textures of
dimensions up to 256 by 256 pixels (one−dimensional textures are possible but they are not discussed here).
The size of two−dimensional textures must be a power of two (2x2, 4x4, 8x8 and so on).

In this program, the texture will be created by selecting a region of a (usually) larger image. A selection box
will be rendered inside the image window (discussed in the first section of this chapter) and the user will be
able to ‘lock’ the selection rectangle at some convenient to him point to create the texture. By locking it is
meant that the selection rectangle will not follow the mouse movement from this point onwards.

The selection box is animated while the user moves the mouse inside the window using the callback function
registered with glutPassiveMotion. When a convenient place is found the user can press the right mouse
button to ‘lock’ the selection rectangle and then create the texture.

The texture is created by calling the function show_texture_cb. This function is shown in example 6.4.

Chapter 6 − Texture Mapping

74

Example 6.4 The function show_texture_cb

void showTexture_cb(Fl_Widget *, void *)
{
 NewBitmapBits = array ;
 glReadPixels(mouse_coX,height − mouse_coY, box_width, box_height, GL_RGB,GL_UNSIGNED_BYTE, NewBitmapBits);
 glutSetWindow(texture_win) ;
 glutReshapeWindow(box_width,box_height) ;
 glutShowWindow() ;
 glutPostRedisplay() ;
 glutSetWindow(main_win) ;
}

Actually the texture is not created at this point but later on; what happens in this function is that the function
glReadPixels is used to read the pixels which are under the selection area into the variable array. The routine
glReadPixels has exactly the opposite effect of the previously explained routine glDrawPixels.

When the pixels inside the selection box are stored in the variable array, the routine glutSetWindow is used
to set the texture window as the current, then the texture window is resized to the dimensions of the texture.
Finally the window is shown.

The size of the texture created depends on the size of the selection box. The size of the selection box (and the
texture’s) can be set by calling the function texturesize_cb. The body of this function is actually a switch
statement and each time the function is called a flag is incremented, thus cycling among the predefined
texture sizes (one of the switch cases). Plate 6.3 contains various sizes textures, created by this method.

The actual texture, as mentioned before, is not created in the function create_texture_cb, but in the body of
the display function that creates the texture mapped cube.

In the body of this function, after the usual function calls (glClear etc.), the routine glEnable is called with
the value GL_TEXTURE_2D passed to it. This call enables OpenGL’s texture mapping ability.

Chapter 6 − Texture Mapping

75

The next routine appearing for the first time in this function is glTexParameter. This routine is responsible
for setting various parameters that control how a texture is treated and it accepts three arguments; the first
argument can be either GL_TEXTURE_2D, or GL_TEXTURE_1D to indicate a two− or one−dimensional
texture. The possible combinations of values for the second and third parameter are shown in Table 6.4.
Visual examples of the effect of this function will be found near the end of this section.

Back in the body of the display_cube function, just after the calls to glTexParameter, a call to glTexEnv is
issued. The purpose of this function is to specify how the texture colours are going to be calculated. The
colour of a texture can be the colour of its own texels, or a combination of its own colour and the surface on
which it is applied. Visual examples of the effects of this routine will appear at the end of this section.

Following, the routine glTexImage2D is called. This is the most important routine in the
display_cube function, as it is the one that defines the actual two−dimensional texture. This function accepts
quite a few arguments, therefore an example is given here to explain what each one is used for.

glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, box_width, box_height, 0, GL_RGB,
GL_UNSIGNED_BYTE, array) ;

The first parameter can be either GL_TEXTURE_2D or GL_PROXY_TEXTURE_2D. In this report the
constant GL_PROXY_TEXTURE_2D is not discussed, so GL_TEXTURE_2D is used. The second
parameter is used when supplying multiple resolutions of the texture. Multiple texture resolutions are used for
mip−maping, something that is not covered in this report, so this parameter is set to 0 (only one resolution).

The next parameter indicates which of the R, G, B, and Alpha components or luminance or intensity values
are selected for use in describing the texels of the image. This can be one for thirty eight symbolic constants.
The one used here, GL_RGB, specifies that the Red, Green and Blue components are used to describe the
texel.

The next two parameters specify the width and the height of the texture, and as described before they are in
this case the width and the height of the selection box. The next parameter is the border of the texture and can
be either 0 (no border) or 1. Both the width and the height of the texture must have the form 2m + 2b, where
m is a nonnegative integer and b is the width of the border. In this example no borders are used (0 is passed to
the function).

The following two parameters describe the format and type of the texture image data, and they have the same
meaning as in the case of glDrawPixels (Tables 6.2 and 6.3), with the exception of GL_STENCIL_INDEX
and GL_DEPTH_COMPONENT (for the format parameter).

Finally the last parameter contains the texture−image data. These data describe the texture image itself as

Chapter 6 − Texture Mapping

76

well as the border.

At this point the texture environment, the appearance and the texture itself are constructed, set and ready to
use. It will now be discussed what texture co−ordinates are and how they should be specified.

In OpenGL, textures are treated as normal objects, so it is typical to be able to set their co−ordinates. When
texture mapping is used, both object and texture co−ordinates must be provided for each vertex. After
transformation, the object co−ordinates determine where on screen that particular vertex is rendered. The
texture co−ordinates determine which texel in the texture map is assigned to that vertex. Texture co−ordinates
are interpolated between vertices in the same way colour values were.

Depending on the texture co−ordinates applied, the texture can be mapped one−to−one, inverted, stretched,
shrunk, etc. Certain visual examples will appear later on to help visualise the concept.

For the moment, every vertex of the cube is assigned either a 0 or 1 texture co−ordinate (inside the
display_cube function). This results in the (square) texture, mapped one−to−one to each (square) face of the
cube.

At this point the display function display_cube that will be used to draw a texture mapped cube is ready.
Plate 6.4 contains some screenshots of the texture mapped cube (the default values of environment and
texture parameters are used).

Plate 6.5 demonstrates the effects of the function glTexEnv, as it contains screenshots with different
environment settings and Plate 6.6 shows the cube under the effect of different texture mapping filters
(glTexParameter).

The last plate in this section, Plate 6.7 shows what happens when different texture co−ordinates are used (in
conjunction with the glTexParameter parameters GL_TEXTURE_WRAP_S and
GL_TEXTURE_WRAP_T). For this reason the function display_cube was slightly modified, and instead of
setting the texture co−ordinates inside the function, global variables are used as the texture co−ordinates,
which can be changed with the keyboard’s directional keys (arrows).

In this project global variables are used in some occasions, but not as a result of ‘bad programming practice’
but because functions like this one (display) are of type void, meaning that they can not receive any
parameters.

Chapter 6 − Texture Mapping

77

Chapter 6 − Texture Mapping

78

6.4 A texture mapped man

The goal of this section is to apply the texture mapping techniques discussed in the previous section onto the
model created in Chapter 5. For that reason the modelling functions constructed in Chapter 5 (Draw_Leg,
Draw_Arm, etc.) will have to be modified to include texture co−ordinates statements.

The same texture will be applied to the whole body, so any texture construction and setting will be done in
the main program. The modelling functions will only have to include the appropriate texture co−ordinates
statements.

As mentioned in the previous section, every object must have its texture co−ordinates assigned appropriately,
otherwise the texture will be so distorted that will be unrecognisable.

The same texture will be applied to all the parts of the body, once on each side (i.e. the texture will appear
four times on the torso at its front, back, left and right side). As the body parts are not square and they are
constructed from many vertices, a way must be found to calculate the texture co−ordinates for every vertex.

Every ‘side’ (front, back, left or right) is constructed from two arrays, the ‘left’ and the ‘right’ (refer to
Chapter 5). The ‘horizontal’ texture co−ordinates are quite easy to assign, as no calculation is involved. If
every vertex in the ’left’ array is assigned a x (horizontal) texture co−ordinate of 0 and every vertex in the
‘right’ array a x co−ordinate of 1, a nice, ‘tight clothes effect’, can be achieved (as the texture will be shrunk,
the impression of clothes tight to the body will be given).

The problem appears when trying to assign the ‘vertical’ (y values) co−ordinates of the vertices. It is clear
that the lower point of every part will be assigned the value 0 and the higher point the value 1, but how can
the in−between values be calculated?

Every vertex in the array has three values, a x, an y and a z value. The appropriate y texture co−ordinate can
be calculated by the following technique:

· the higher vertex of the body part is assigned a texture value of 1 (y value)

· the distance between this point and the next point is found

· this distance is divided by the total body part length

· the next (lower) vertex of the body part is assigned a value of 1 minus the calculated value ((point –
next_point) / length)

· the technique, is repeated until all vertices have texture co−ordinates assigned to them, the last vertex of
the body part will have a value of 0.

A demonstration of this technique, can be found in example 6.5, where the function that draws the front part
of the torso is shown.

Example 6.5 The function create_torso_front (texture mapped)

void create_torso_front(float left[23][3], float right[23][3])
{
 int counter ;
 float normal[3] ;
 float texLenght = abs(left[0][1])+abs(left[22][1]),
 texCooUp = 1,
 texCooDown = 0 ;
 for (counter = 0 ; counter <22 ; counter++)

Chapter 6 − Texture Mapping

79

 {
 Calculate_Normal(left[counter], left[counter+1], right[counter+1],normal) ;
 texCooDown += abs((abs(left[counter+1][1]) − abs(left[counter][1])))/texLenght ;

 glBegin(GL_TRIANGLE_STRIP) ;
 glNormal3fv(normal);
 glTexCoord2f(0.0,texCooUp) ; glVertex3fv(left[counter]) ;
 glTexCoord2f(0.0,1−texCooDown); glVertex3fv(left[counter+1]);
 glTexCoord2f(1.0,texCooUp); glVertex3fv(right[counter]) ;
 glTexCoord2f(1.0,1−texCooDown); glVertex3fv(right[counter+1]);
 glEnd() ;
 texCooUp = 1−texCooDown ;
 }
}

When all modelling functions are changed the program is ready. Plate 6.8 contains the finished program. The
user can manipulate the various buttons and pull−down menus in order to load a picture, create a texture, save
a texture and so on. Table 6.5 contains a description of the components of the user interface and their
associated actions. Plate 6.10 contains some screen shots from the final version, while Plate 6.9 shows the
texture that was used to create the results shown in Plate 6.10.

Chapter 6 − Texture Mapping

80

Plate 6.8

Plate 6.9

Chapter 6 − Texture Mapping

81

Plate 6.10

Chapter 6 − Texture Mapping

82

Chapter 7 − Conclusions – Future possibilities
This project constituted an introduction to OpenGL and three−dimensional graphics. It was an effort for the
writer to learn and at the same time attempt to design a tutorial on this subject, so that future readers will be
able to follow his work and possibly expand it.

This paper began with the discussion of the basics of both three−dimensional graphics and the OpenGL
structure. The introduction contained the theoretical framework needed for the project, including the reasons
for the specific structure followed. The topic of the second chapter was simple window construction, as
OpenGL needs a graphical (windowing) operating system, and the introduction of modelling and projection
transformations. In the third chapter a first attempt was made to create a simple model of a man and the
appropriate animation cycle, which resulted in a model constructed from basic geometrical shapes (spheres
and cubes).

The fourth chapter introduced OpenGL’s lighting model and continued with the discussion of materials and
their properties. A program was constructed where a user can experiment with the light and material
properties in order to familiarise with the concept. A more elaborate geometrical example was presented in
the fifth chapter, as its discussion topic was the improvement of the basic, until now, model. The sixth
chapter introduced texture mapping, a technique that enables the use of images as parts of objects, making
OpenGL programs more attractive. The topic of texture mapping has not been thoroughly exhausted, as the
subject is quite complicated and the applications of texture mapping are inexhaustible.

During the specific time limits that were set for this project, all its primary objectives were accomplished.
Given more time, further elaboration and ‘special effects’ could have been achieved. The list of those is
practically unlimited but some ideas include shadows, fog, blending, collision detection, ‘selection and
feedback’, and possibly the use of the DirectX component Direct Sound for sound effects. Actually, research
was made on the previous two topics but it was not published in this paper as completion was not achieved.

This project was a good opportunity for the writer to be introduced in long scale, real life problems in
opposition to the academic, small scale practical coursework. It would be an accomplishment if the present
paper manages to assist people who wish to make a start with three−dimensional graphics and OpenGL.

83

Appendix I − Using Borland C++ 5.02
The main environment used in the development of this project was Borland C++ 5.02. In order to open
windows using the OpenGL tool kit (GLUT) the C project must be specified as WIN32. The problem is that a
WIN32 project is not as simple as a DOS C program, as the main function is not the one used anymore. The
best way to open windows using GLUT is to build a WIN32 console project. This type of project still uses
the main function as its basic function but has all the advantages of a WIN32 application. The following steps
are needed in order to build such a project in Borland C++ 5.02.

Figure I. 1

Run Borland C++ 5.02. Wait until the environment is loaded and select : New −> Project (figure I.1).

When this is done a window with several options will appear (figure I.2).In the sub−window named Project
Path and Name, type in the path of the project (or press browse and select a path). In Target Name type in the
project name. At sub−window Target Type select Application[.exe]. At the sub−window Platform select
Win32 and at Target Model select Console. Do not change any other options and press OK.

The new project is ready (figure I.3) !

84

Figure I. 2

Figure I. 3

Delete any files the environment has created (such as my_new_project.cpp) by pressing the right mouse
button on the file name and choosing Delete node.

Now insert the needed files for the project by pressing the right mouse button on the project name and
selecting Add Node (figure I.4).

Appendix I − Using Borland C++ 5.02

85

Figure I. 4

A browser window will appear, choose all the needed files (such as main.c etceteras). Insert also the files
opengl.lib, glu.lib and glut.lib. These three libraries are the ones needed in order to use OpenGL. The
environment is now going to look something like figure I.5.

Figure I. 5

The project is now ready. The program can be executed by pressing Debug−>Run.

If you do not have the borland libraries, you can create them using the following procedure:

Find the opengl and glu dynamic link libraries (.dlls). These come normally with your graphics card drivers.
When you have located them copy them in a temporary directory, and use borland's command line program
'implib'.

This program takes as input a dynamic link file (dll) and produces the corresponding library file (lib).

Appendix I − Using Borland C++ 5.02

86

Appendix II − Using The FLTK Library
FLTK (Fast Light Tool Kit) is a GUI (graphical user interface) for UNIX (X−Windows) and Windows
(95/98/NT) and is fully compatible with OpenGL. Because of its compatibility with both windows systems
it was used for the creation of buttons and other widgets for some of the programs created in this project.

The following example of how to use FLTK to build a simple FLTK window with a box (widget) inside it
saying hello world is taken from the FLTK help file.

More examples on using FLTK (taken from the created OpenGL programs) and the specification of the
FLTK tool kit will appear in the website (www.dev−gallery.com).

#include <FL/Fl.H>
#include <FL/Fl_Window.H>
#include <FL/Fl_Box.H>
int main(int argc, char **argv)
{
Fl_Window *window = new Fl_Window(300,180);
Fl_Box *box = new Fl_Box(FL_UP_BOX,20,40,260,100,"Hello, World!");
box−>labelsize(36);
box−>labelfont(FL_BOLD+FL_ITALIC);
box−>labeltype(FL_SHADOW_LABEL);
window−>end();
window−>show(argc, argv);
return Fl::run();
}

All programs must include the file <FL/Fl.H>. In addition the program must include a header file for each
FLTK class it uses, here <FL/Fl_Window.H> and <FL/Fl_Box.H>.

The program then creates a window and then creates the widgets inside the window. Here a single Fl_Box is
created. The arguments to the constructor are a value for the box() property (most constructors do not have
this), values for x(), y(), w(), h() to define the position and size of the box, and a value for label() to define the
text printed in the box.

All the widgets have several attributes and there is a method for setting and getting the current value of each
of them. box−>labelsize(36) sets the labelsize() to 36. You could get the value with box−>labelsize().

Often you have to set many properties, so you will be relieved to know that almost all of these methods are
trivial inline functions.

labelfont() is set to a symbolic value which is compiled into a constant integer, 3 in this case. All properties
that cannot be described by a single small number use a 1−byte index into a table. This makes the widget
smaller, allows the actual definition of the property to be deferred until first use, and you can redefine
existing entries to make global style changes.

labeltype(FL_SHADOW_LABEL) also stores a 1−byte symbolic value, in this case indicating a procedure to
draw drop shadows under the letters should be called to draw the label.

The constructor for widgets adds them as children of the "current group" (usually a window). window−>end()
stops adding them to this window. For more control over the construction of objects, you can end() the
window immediately, and then add the objects with window−>add(box). You can also do window−>begin()
to switch what window new objects are added to.

window−>show() finally puts the window on the screen. It is not until this point that the X server is opened.
FLTK provides some optional and rather simple command−line parsing if you call show(argv, argc). If you

87

http://www.dev-gallery.com

don't want this, just call show() with no arguments, and the unused argument code is not linked into your
program, making it smaller!

Fl::run() makes FLTK enter a loop to update the screen and respond to events. By default when the user
closes the last window FLTK exits by calling exit(0). run() does not actually return, it is declared to return an
int so you can end your main() function with "return Fl::run()".

Appendix II − Using The FLTK Library

88

Appendix III − Using Paint Shop Pro 5.0
The task of chapter four was to improve the simple (in chapter one) model of a human into something better
than just rectangles and spheres. In order to do something like that data were needed in some form of a
human body.

In the Internet there many resources of freely available data sets of human models. Another less straight
forward way was chosen in this project. If the ready made data (from the Internet) were used the developer of
this project would not know how to retrieve such data.

Nowadays three dimensional scanners are available but their price is so high that they are not yet massively
available. In such a case that somebody does not posses a 3D scanner but has to model an object, and the
objects data set is not freely available in the Internet, then the question is what happens?

In this project the pessimistic (but realistic) approach was chosen that the developer does not have any access
to a 3D scanner and that the data set of the object is not available. In this case other means of retrieving the
data of a three dimensional object have to be found.

One such technique is the one described in the following lines. For the purpose of this task, the painting
program Paint Shop Pro 5.0 was used.

Firstly, three photographs of a human male body were scanned from a book on anatomy [5−10], a front, a
back and a side view. These three photos were then put into Paint Shop Pro (figure III.2) . Four more layers
were created on top of the basic one (the background) these four layers held the following data :

· 0 (background) the picture

· 1 black background (invisible in the beggining)

· 2 vertical rulers

· 3 horisontal rulers

· 4 points

Figure III. 1

By using the mouse points were drawn (on the points layer) wherever a curve changed direction (in order that
two consecutive points could form a line without a big percentage of loss of information) figure III.1.

89

Figure III. 2

Figure III. 3

By following the technique demonstrated at figure III.1 the points of the body were retrieved from the three
two dimensional images (figure III.4). By disabling all layers except the points and the black background
layer the points can be observed quite better (without any other confusing information) (figure III.3).

Appendix III − Using Paint Shop Pro 5.0

90

Figure III. 4

By working on several pictures like figure 3 the relations between height width and depth can be retrieved
(further information in the final report).

The task is completed! A three dimensional image has been created by the manipulation of several two
dimensional ones.

Note : The photocopies of human bodies used in this project were found in Farnham, Surrey (Library of the
College of Arts).

Appendix III − Using Paint Shop Pro 5.0

91

Appendix IV − Bibliography

[1] Moving Pictures (In Greek)
Tony White

[2] The Male And Female Figure In Motion
Eadweard Muybridge
Dover Publications, Inc
New York

[3] OpenGL Programming Guide (Second Edition)
OpenGL Architecture Review Board
Mason Woo, Jackie Neider, Tom Davis
ISBN 0−201−46138−2

[4] OpenGL Superbible
Richard S. Wright Jr, Michael Sweet
ISBN 1−57169−073−5

[5] The Human Machine (The anatomical Strucure And Mechanism Of The Human
Body)
George B.Buidgman
Dover Publications, Inc
New York

[6] Anatomical Man, Bones And Muscles For The Student
Silvio Zaniboni
London
Alec Tiranti 1963

[7] Illustrator's Figgure Reference Manual
Bloomsbury
ISBN 0−74750−008−8

[8] Anatomical Diagrams For The Use Of Art Students
James M.Dunlop A.R.C.A.
G.Bell & Sons Ltd, York House Portugal Street
W.C.2 MDCCCCLII

[10] Anatomy For Artists
Eugene Wolff
Fourth Edition (1962)

92

[11] OpenGL, GLU and GLUT specification manuals

[12] http://www.opengl.org

[13] http://www.gamasutra.com

[14] many many more Internet sites

Appendix IV − Bibliography

93

http://www.opengl.org
http://www.gamasutra.com

DrawSprocket & OpenGL Tutorial

Page 1 of 12

DrawSprocket & OpenGL Tutorial for CodeWarrior
by Morgan Aldridge

Intro

I'll admit it, I'm not the best Mac developer in the world. So why am I writing this tutorial? Because I love it. I've been coding on Macs since Logo on a Mac Classic and only recently (6 months ago) switched
from '040 68K Macs to a PowerPC G3 (iMac, Rev B). So what was the first thing I set out to learn on PowerPC? OpenGL. As soon as I had gotten the basics down I fell in love with it, but there aren't as many
forums and tutorials out there for us Mac developers so I had to teach myselft GLUT from the demos that came with Apple's OpenGL 1.0 SDK. GLUT is not hard, but it would have been much easier with
some help.

When I finally taught myself how to make a true Mac application (sorry, I don't consider GLUT applications to be TRUE MacOS applications even though they technically are) I decided I might as well show
others how to do it (better late than never). Why would I want to make a MacOS application when I could use GLUT? Well, I wanted real fullscreen, gama fades, and faster control over input, not to mention
the significant decrease in size that I could get by not using GLUT. One problem that had been bugging me about making the transition to non-GLUT Mac applications is that they wouldn't be as portable
(with GLUT I can just recompile under Windows and have the exact program running perfectly), but by the time I had finished I realised just how easy it was still going to be to do the ports.

What You'll Need To Get Started

I know, you're getting tired of listening to me, so on to the tutorial. Basically you should already know how to do MacOS programming in C/C++, but if you need some help or a refresher course then check
out Macintosh C. You will also need Apple's OpenGL SDK 1.0 and the DrawSprocket SDK. If you don't already know how to use OpenGL then I highly suggest you check out
which has tons of OpenGL tutorials (including MacOS ports). Oh, and don't forget a compiler, if you don't have one I suggest getting
the Discovery Programming edition) or if you don't want to spend any money, or don't have any to spend, you can get MPW
explained in this tutorial which is aimed toward CodeWarrior users.

Preparing Your Project for OpenGL

In order for your application to take advantage of OpenGL you will need to add the following OpenGL stub libraries to your application's project (If you don't know how to create a new project for your
compiler then refer to its user documentation):

l OpenGLLibraryStub
l OpenGLUtilityStub
l OpenGLMemoryStub

Then to gain access to DrawSprocket functions you need to add DrawSprocketLib. The application that I will be developing throughout this tutorial is called glDrawSprocketTest, the following is a
screenshot of the CodeWarrior Pro 5 project window for it:

(Note that I also added tk.lib, this is a toolkit library which I use for image loading on occasion)

DrawSprocket & OpenGL Tutorial

Page 2 of 12

Now On To The Good Stuff

Well, I'm just going to go straight down through my "main.c" file and explain stuff, so first things first, included header files:

/**> HEADER FILES <**/
#include <stdlib.h> // ANSI C cross platform headers
#include <stdio.h>
#include <Types.h> // Standard MacOS Headers
#include <Memory.h>
#include <Quickdraw.h>
#include <Fonts.h>
#include <Events.h>
#include <Menus.h>
#include <Windows.h>
#include <TextEdit.h>
#include <Dialogs.h>
#include <OSUtils.h>
#include <ToolUtils.h>
#include <SegLoad.h>
#include <Sound.h>
#include <DrawSprocket.h> // DrawSprocket
#include <agl.h> // Apple's OpenGL
#include <glu.h> // Used for setting perspective and making objects
#include <tk.h> // Used for loading images

You should already know the first two headers, they just provide standard, non-OS specific memory, file, and other functions. The next
important new ones: DrawSprocket.h provides access to DrawSprocket functions; agl.h provides access to Apple's OpenGL functions specific to the MacOS; glu.h provides access to functions for setting
the perspective when rendering and also provides easy functions for creating spheres, columns, disks, etc; tk.h is only used in this application for loading textures, if you are using a different method then
you don't have to include it.

Next we come to my constant declarations:

/**> CONSTANT DECLARATIONS <**/
#define kMoveToFront (WindowPtr) - 1L

// Screen Dimensions
#define SCREEN_WIDTH 640
#define SCREEN_HEIGHT 480

// Texture filters
#define NEAREST 0
#define LINEAR 1
#define MIPMAP 2

Most of these won't make sense until you see them when they are used, but I'll describe them now anyway. kMoveToFront is used while creating a new window, it specifies that the new window should be
the front window. SCREEN_WIDTH and SCREEN_HEIGHT are also used for creating the new window for specifying the height and width, they are also used when setting up the perspective. NEAREST,
LINEAR, and MIPMAP specify the type filtering to use when loading a texture with a custom function.

Next up: global variables. Only the first three of these are specifically used for DrawSprocket and AGL, but I will explain all of them anyway.

/**> GLOBAL VARIABLES <**/
DSpContextAttributes gDSpContextAttributes; // Global DrawSprocket context attributes
DSpContextReference gDSpContext; // The global DrawSprocket context
AGLContext gOpenGLContext; // The global OpenGL (AGL) context
// Texture Maps
GLuint gTutorialTexture;
// Lighting Info
GLfloat gLightAmbient[] = { 0.5, 0.5, 0.5, 1.0 };
GLfloat gLightDiffuse[] = { 1.0, 1.0, 1.0, 1.0 };

DrawSprocket & OpenGL Tutorial

Page 3 of 12

GLfloat gLightPosition[] = { 0.5, 1.0, 2.0, 1.0 };
// Material Info
GLfloat gMaterialAmbient[] = { 0.5, 0.5, 0.5, 1.0 };
GLfloat gMaterialDiffuse[] = { 0.5, 0.5, 0.5, 1.0 };
GLfloat gMaterialSpecular[] = { 0.9, 0.9, 0.9, 1.0 };
GLfloat gMaterialShininess = 25;

gDSpContextAttributes is used for storing the attributes of the DrawSprocket context after creating it. Attributes include things such as color depth and screen resolution. gDSpContext stores the context
created with gDSpContextAttributes, it'll get used to return the screen to it's original resolution and bit depth when the application quits. gOpenGLContext is the AGL context which is created containing
things such as color depth, depth buffer depth, and more, this will get explained more later. gLightAmbient, gLightDiffuse, and gLightPosition are used for configuring a single light (I won't describe how
lighting works because there are better tutorials out there which can teach you this). gMaterialAmbient, gMaterialDiffuse, gMaterialSpecular, and gMaterialShininess specify material information which is
also used for the lighting, but describes the obejects not the lights themselves.

You know we're starting to get to the good stuff when you reach the function prototypes and that's where we are now. You may have started to notice that my in-code comments almost make it unnecissary
to write a tutorial, but there are those out there which might want the extra explenation. Well, the function prototypes are also fairly self explanetory, but I also need to specify which of these functions are
really essential and which aren't.

/**> FUNCTION PROTOTYPES <**/
void ToolboxInit(void);
CGrafPtr SetupScreen(void);
void CreateWindow(CGrafPtr &theFrontBuffer);
void ShutdownScreen(CGrafPtr theFrontBuffer);
AGLContext SetupAGL(AGLDrawable window);
void CleanupAGL(AGLContext context);
void Reshape3D(int w, int h);
void InitGL(void);
void DrawGL(AGLContext context);
void LoadGLTexture(char *fileName, GLuint *texture, int filter);

ToolboxInit() initializes the MacOS Toolbox for your application (this gives you application the ability to draw windows, use dialogs and text edit features, and much more). SetupScreen() fades out the
screen, creates a new DrawSprocket context, creates a new window, and then fades back in. CreateWindow() is called from SetupScreen() and creates a new window. ShutdownScreen() is used when your
application quits and returns the screen to its original state. SetupAGL() creates a new AGL context which is used by OpenGL for drawing into an offsceen buffer and it also keeps track of depth test buffers
and the like. CleanupAGL() gets rid of an AGL context. InitGL() initializes OpenGL things such as depth testing, backface culling, and is also where I load my textures (it is not a MacOS specific function).
DrawGL() does all the OpenGL drawing and swaps the offscreen buffer at the end. LoadGLTexture() is a function which I wrote to load a texture with a specified filter.

The main() Function

/********************> main() <*****/
void main(void)
{
 CGrafPtr theScreen;

 // Do a bunch of MacOS Inits
 ToolboxInit();

The call to ToolboxInit() will prepare our application to work as a MacOS application, if we don't call it our application would be faceless, in other words it would run completely in the background and would
not be able take advantage of the MacOS GUI at all.

 // Prepare the screen
 HideCursor();
 theScreen = SetupScreen();

First we'll hide the cursor, then we will prepare the screen using DrawSprocket by calling SetupScreen(). SetupScreen() returns a pointer to a color grahics port which provides a drawing area for our
application.

 // Setup the OpenGL context
 gOpenGLContext = SetupAGL((AGLDrawable)theScreen);

DrawSprocket & OpenGL Tutorial

Page 4 of 12

 if (!gOpenGLContext)
 return;
 Reshape3D(SCREEN_WIDTH, SCREEN_HEIGHT);

SetupAGL() returns an AGL context for us to use, but if it doesn't create it correctly then the application will just quit. We then call Reshape3D() to set up OpenGL to draw in 3D.

 // Init OpenGL settings
 InitGL();

InitGL() will load our textures, set up depth testing, lighting, and backface culling.

 // Event Loop
 while (!Button())
 DrawGL(gOpenGLContext);

Here we will keep drawing our OpenGL scene until the mouse button is pressed. This is where you would normally put an event loop to handle key presses, mouse movement, and all sorts of other stuff, but
this is supposed to be a really simple tutorial so I didn't bother with it.

 // Get rid of the texture I loaded
 glDeleteTextures(1, &gTutorialTexture);

Here I'm deleting the texture that was created during InitGL() because the application is finished running (the mouse button was pressed) and we're starting to clean up what our application allocated.

 // Clean up the stuff we set up
 CleanupAGL(gOpenGLContext);
 ShutdownScreen(theScreen);
 ShowCursor();

CleanupAGL() will dispose of our AGL context for us (so don't try to use it after this) and ShutdownScreen() will get rid of our CGrafPtr (color graphics port) and return the screen to its original resolution
and color depth. Then we have to call ShowCursor(), remember we hid it at the beginning of the program, so that we don't accidentally leave the user with a hidden mouse.

 FlushEvents(everyEvent, 0);
 ExitToShell();
}

Now we clear all events from the event que so that other applications don't get any events that were supposed to go to our application. And finally quit with ExitToShell() which is not necissarily needed,
but since Apple has been puting it there in a bunch of example applications I figured I might as well do it too.

The ToolboxInit() Function

/********************> ToolboxInit() <*****/
void ToolboxInit(void)
{
 MaxApplZone();

 InitGraf(&qd.thePort);
 InitFonts();
 InitWindows();
 InitMenus();
 TEInit();
 InitDialogs(0L);
 InitCursor();
}

There's really not much to this function, all it does is call a bunch of MacOS functions which let it draw to the screen, use fonts, windows, menus, text edit services, dialogs, and the cursor. There's not much

DrawSprocket & OpenGL Tutorial

Page 5 of 12

you need to know about it beyond that. Most tutorials don't include this function, they leave it for the developer to figure out, but I had a terrible time remembering it when I first began MacOS programming
many, many, years ago, so I included it anyway.

The SetupScreen() Function

/********************> SetupScreen() <*****/
CGrafPtr SetupScreen(void)
{
 OSStatus theError;
 CGrafPtr theFrontBuffer;

 // Start DrawSprocket
 theError = DSpStartup();
 if (theError)
 DebugStr("\pUnable to startup\n");

This makes a call to DSpStartup() which is a DrawSprocket function which registers our application with DrawSprocket so that we can use its features.

 // Set the Context Attributes
 gDSpContextAttributes.displayWidth = SCREEN_WIDTH;
 gDSpContextAttributes.displayHeight = SCREEN_HEIGHT;
 gDSpContextAttributes.colorNeeds = kDSpColorNeeds_Require;
 gDSpContextAttributes.displayDepthMask = kDSpDepthMask_16;
 gDSpContextAttributes.displayBestDepth = 16;
 gDSpContextAttributes.pageCount = 1;

This is where we set the attributes that we want our screen to have, they are not necissarily what we will get, for example, say we ask for a screen resolution of 512x384 on an iMac, the iMac doesn't support
that resolution so it will give use 640x480 with a 512x384 window in it. But, we can also cause some problems, lets say we ask for a resolution of 1024x768 on a monitor that only supports upto 800x600 then
we'll have problems and won't be able to create a context at all.

 // Find the best context for our attributes
 theError = DSpFindBestContext(&gDSpContextAttributes, &gDSpContext);
 if (theError)
 DebugStr("\pUnable to find a suitable device\n");

DSpFindBestContext() tries to find a context that closely matches the attributes that we pass to it.

 // Reserve that context
 theError = DSpContext_Reserve(gDSpContext, &gDSpContextAttributes);
 if (theError)
 DebugStr("\pUnable to create the display!");

DSpContext_Reserve() reserves the context for our application.

 // Fade out
 theError = DSpContext_FadeGammaOut(NULL, NULL);
 if(theError)
 DebugStr("\pUnable to fade the display!");

This fades the screen out to black. Note that we're not telling it what context to fade out, so you can use this command whenever and it still works (as long as DrawSprocket is running).

 theError = DSpContext_SetState(gDSpContext, kDSpContextState_Active);
 if (theError)
 DebugStr("\pUnable to set the display!");

DrawSprocket & OpenGL Tutorial

Page 6 of 12

Now we've set the screen to the state of the new context we created.

 // Fade in
 theError = DSpContext_FadeGammaIn(NULL, NULL);
 if (theError)
 DebugStr("\pUnable to fade the display!");

Fade the screen back in (works exactly like DSpContext_FadeGammaOut(), but in reverse).

 // Create a window to draw in
 CreateWindow(theFrontBuffer);

This is where we create a window. Apple usually puts the window code in this function, but I prefer to put in a seperate function because it makes it easier to understand and more reusable.

 return theFrontBuffer;
}

The last thing we do is return the color graphics port that CreateWindow() made for us. As you can see, the functions for setting the screen resolution and color depth are fairly easy, so read through
DrawSprocket.h and try to figure out how to do other stuff if you want to.

The CreateWindow() Function

/********************> CreateWindow() <*****/
void CreateWindow(CGrafPtr &theFrontBuffer)
{
 Rect rect;
 AuxWinHandle awh;
 CTabHandle theColorTable;
 OSErr error;
 RGBColor backColor = { 0xFFFF, 0xFFFF, 0xFFFF };
 RGBColor foreColor = { 0x0000, 0x0000, 0x0000 };

 // Set the window rect
 rect.top = rect.left = 0;
 DSpContext_LocalToGlobal(gDSpContext, (Point*)&rect);
 rect.right = rect.left + SCREEN_WIDTH;
 rect.bottom = rect.top + SCREEN_HEIGHT;

That code creates the rect for the new window, not too hard to understand.

 // Create a new color window
 theFrontBuffer = (CGrafPtr)NewCWindow(NULL, &rect, "\p", 0, plainDBox, kMoveToFront, 0, 0);

NewCWindow() creates a new color window which we store in our color graphics port (theFrontBuffer), we pass in the rect we created and set it to be a plaindBox window (just a plain square, no thick
borders, title bar, or anything like that), and tell it to move it to the front (remember that from the constant declarations?)

 // set the content color of the window to black to avoid a white flash when the window appears
 if (GetAuxWin((WindowPtr)theFrontBuffer, &awh))
 {
 theColorTable = (**awh).awCTable;
 error = HandToHand((Handle*)&theColorTable);
 if (error)
 DebugStr("\pOut of memory!");

 (**theColorTable).ctTable[wContentColor].rgb.red = 0;
 (**theColorTable).ctTable[wContentColor].rgb.green = 0;

DrawSprocket & OpenGL Tutorial

Page 7 of 12

 (**theColorTable).ctTable[wContentColor].rgb.blue = 0;

 CTabChanged(theColorTable);

 // the color table will be disposed by the window manager when the window is disposed
 SetWinColor((WindowPtr)theFrontBuffer, (WCTabHandle)theColorTable);
 }

All that code does is create a color table for the window and change the content color of it to black so that when the window is shown it doesn't start out as white which would cause a white flash on our
black screen (we don't want that, we want it to look professional).

 // Show the window
 ShowWindow((GrafPtr)theFrontBuffer);
 SetPort((GrafPtr)theFrontBuffer);

If you haven't learned ShowWindow() and ShowPort() yet you should. When a window is created it isn't visible, so you have to call ShowWindow() to make it visible, then you need to call SetPort() to make
that window the current graphics port (the current area to draw into).

 // Set current pen colors
 RGBForeColor(&foreColor);
 RGBBackColor(&backColor);
}

To finish everything up we just set the forground drawing color to that listed at the top of the function (black) and the background color also to that listed at the top of the function (white).

The ShutdownScreen() Function

/********************> ShutdownScreen() <*****/
void ShutdownScreen(CGrafPtr theFrontBuffer)
{
 DSpContext_FadeGammaOut(NULL, NULL);
 DisposeWindow((WindowPtr)theFrontBuffer);
 DSpContext_SetState(gDSpContext, kDSpContextState_Inactive);
 DSpContext_FadeGammaIn(NULL, NULL);
 DSpContext_Release(gDSpContext);
 DSpShutdown();
}

Very little code to this function. We start out by calling DSpContext_FadeGammaOut() to fade out the screen, next we dispose the window which we created with CreateWindow() by calling DisposeWindow
(). We call DSpContext_SetState() to make our DrawSprocket context inactive, fade back in with DSpContext_FadeGammaIn(), and release our context with DSpContext_Release(). Finally we call
DSpShutdown() to unregister our application from DrawSprocket, this will mean that our application can't use DrawSprocket anymore, that's why this function is called when our application is done and in
the process of quitting.

The SetupAGL() Function

/********************> SetupAGL() <*****/
AGLContext SetupAGL(AGLDrawable window)
{
 GLint attrib[] = { AGL_RGBA, AGL_DEPTH_SIZE, 24, AGL_DOUBLEBUFFER, AGL_NONE };
 AGLPixelFormat format;
 AGLContext context;
 GLboolean ok;

 // Choose an rgb pixel format
 format = aglChoosePixelFormat(NULL, 0, attrib);
 if (format == NULL)
 return NULL;

DrawSprocket & OpenGL Tutorial

Page 8 of 12

To create a picel format we pass aglChoosePixelFormat() our attributes (much like we did when creating our DrawSprocket context). Once we have a pixel format we will use it to create a AGL context.

 // Create an AGL context
 context = aglCreateContext(format, NULL);
 if (context == NULL)
 return NULL;

We use aglCreateContext() to create our AGL context from our pixel format that we just chose.

 // Attach the window to the context
 ok = aglSetDrawable(context, window);
 if (!ok)
 return NULL;

aglSetDrawable() sets a drawable (in this case a window) for the context. With a drawable set when you use OpenGL to render a scene then our AGL context will know which window to draw into.

 // Make the context the current context
 ok = aglSetCurrentContext(context);
 if (!ok)
 return NULL;

And then you have to set the AGL context that we made as the current context. Notice that all along we've been making sure that our calls for AGL and DrawSprocket are working correctly, you should get
used to this because one missed call can cause quite a few problems.

 // The pixel format is no longer needed so get rid of it
 aglDestroyPixelFormat(format);

 return context;
}

To finish up this function we destroy our pixel format (we only needed it for creating our AGL context) and to return the pixel context.

The CleanupAGL() Function

/********************> CleanupAGL() <*****/
void CleanupAGL(AGLContext context)
{
 aglSetCurrentContext(NULL);
 aglSetDrawable(context, NULL);
 aglDestroyContext(context);
}

This is another one of those short functions, I guess it's just easier to throw stuff away than it is to make it. Anyway, We start by setting no context as the current one, then set the drawable for our AGL
context to none, and finally destroy our context.

The Reshape3D() Function

/********************> Reshape3D() <*****/
void Reshape3D(int w, int h)
{
 glViewport(0, 0, w, h);
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluPerspective(65.0, (GLfloat)w / (GLfloat)h, 0.5, 50);
 glMatrixMode(GL_MODELVIEW);

DrawSprocket & OpenGL Tutorial

Page 9 of 12

 glLoadIdentity();
 glTranslatef(0.0, 0.0, 0.0);
}

This function can be used for any OpenGL application on any platform because it uses only standard OpenGL and GLU functions (no AGL functions). It starts by creating an OpenGL view port, then loads
an identity matrix, sets the perspective with gluPerspective().

The InitGL() Function

/********************> InitGL() <*****/
void InitGL(void)
{
 // Load some textures
 LoadGLTexture("Tutorial.sgi", &gTutorialTexture, LINEAR);
 glShadeModel(GL_SMOOTH);
 glEnable(GL_TEXTURE_2D);

I said I wouldn't explain all the stuff in InitGL() very extensively because there are better places to learn it, but I will give a little info on my texture loaded. My texture loader doesn't actually do the work of
loading the actual image, it leaves that upto tkRGBImageLoad(), or whatever image loader I am using at the time, but it does build textures from those images and using a specified filter. It takes filters of eithe
NEAREST, LINEAR, or MIPMAP (mipmap isn't really a filter, but is handy to have a quick method to load mipmaps).

 // Enable depth testing
 glClearDepth(1.0);
 glDepthFunc(GL_LESS);
 glEnable(GL_DEPTH_TEST);

Depth testing handles when polygons are infront or behind each other, so this code just sets a depth test function and enables depth testing.

 // Enable backface culling
 glFrontFace(GL_CCW);
 glCullFace(GL_BACK);
 glEnable(GL_CULL_FACE);

glFrontFace() specifies which order the vertices are in for a polygon to be facing forward (clockwise or counter-clockwise). I then select which face, front or back, to cull and enable culling.

 // Configure a light
 glLightfv(GL_LIGHT0, GL_AMBIENT, gLightAmbient);
 glLightfv(GL_LIGHT0, GL_DIFFUSE, gLightDiffuse);
 glLightfv(GL_LIGHT0, GL_POSITION, gLightPosition);
 glLightModelf(GL_LIGHT_MODEL_TWO_SIDE, GL_TRUE);
 glEnable(GL_COLOR_MATERIAL);
 glEnable(GL_LIGHT0);
 glEnable(GL_LIGHTING);

All these settings are for lighting, you should pay attention to GL_COLOR_MATERIAL, it lets materials have lighting and retain their colors (normally materials are grey when lighting is enabled, so it comes
in handy).

 // Setup Material stuff
 glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT, gMaterialAmbient);
 glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, gMaterialDiffuse);
 glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR, gMaterialSpecular);
 glMaterialf(GL_FRONT_AND_BACK, GL_SHININESS, gMaterialShininess);
}

This is all material info (lighting mostly). You can put pretty much anything in the InitGL() function, it's another one of those non-AGL specific functions (unless you put AGL code in it).

DrawSprocket & OpenGL Tutorial

Page 10 of 12

The DrawGL() Function

/********************> DrawGL() <*****/
void DrawGL(AGLContext context)
{
 static float rot;

 rot += 0.1;

I just continue adding to a rotation (by the way, all this simple application does is rotate a rectangle which has a different image on each side).

 // Clear color buffer to black
 glClearColor(0, 0, 0, 1);
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 // Load the identity matrix
 glLoadIdentity();

No fancy AGL stuff here, it's just a simple call to OpenGL's glClear() function which clears, in this case, the offscreen buffer and the depth buffer. Then I call glLoadIdentity() to load an identity matrix.

 // Move the view back a bit
 glTranslatef(0, 0, -3);

 // Set the light's position
 glLightfv(GL_LIGHT0, GL_POSITION, gLightPosition);

I start by calling glTranslatef() to move our scene back by three units so we're not sitting with our eyeballs right at the object (which I'll be leaving at the origin). Then I set the light's position (you have to do
this every time you update, but right after you do camera translations and rotations so that the light doesn't appear to move when it's not supposed to).

 // Rotation for the quads
 glRotatef(rot, 0, 1, 0);

This just rotates the object.

 // Draw the quads
 glBindTexture(GL_TEXTURE_2D, gTutorialTexture);
 glBegin(GL_QUADS);
 // Front Quad
 glNormal3f(0, 0, 1);
 glTexCoord2f(1, 1); glVertex3f(1, 0.5, 0);
 glTexCoord2f(0, 1); glVertex3f(-1, 0.5, 0);
 glTexCoord2f(0, 0.5); glVertex3f(-1, -0.5, 0);
 glTexCoord2d(1, 0.5); glVertex3f(1, -0.5, 0);
 // Back Quad
 glNormal3f(0, 0, -1);
 glTexCoord2f(1, 0.5); glVertex3f(-1, 0.5, 0);
 glTexCoord2f(0, 0.5); glVertex3f(1, 0.5, 0);
 glTexCoord2f(0, 0); glVertex3f(1, -0.5, 0);
 glTexCoord2d(1, 0); glVertex3f(-1, -0.5, 0);
 glEnd();

The object is two texture mapped quads (one for each side of the rectangle) so I start by binding the texture (the top half of the texture is for the front quad and the bottom half is for the back quad) and then
specifying the texture coordinates and vertices that make up the quads.

 // Copy the offscreen buffer to the screen
 aglSwapBuffers(context);

DrawSprocket & OpenGL Tutorial

Page 11 of 12

}

This is the only line of code in the whole function that is specific to AGL, aglSwapBuffers() does the same thing as glutSwapBuffers() (for GLUT), it copies the image from the offscreen buffer into the
drawable that we set for out AGL context.

The LoadGLTexture() Function

This function is only needed for this tutorial, it's not one of the DrawSprocket or AGL functions needed, but I do find it fairly useful so feel free to use it.

/********************> LoadGLTexture() <*****/
void LoadGLTexture(char *fileName, GLuint *texture, int filter)
{
 TK_RGBImageRec *tempTexture;

 // Load the file
 tempTexture = tkRGBImageLoad(fileName);

the tkRGBImageLoad() function is part of tk.lib, it loads and RGB image, in this case an sgi image in RGB format with RLE compression, which you can then use to create an OpenGL 2D image.

 glPixelStorei(GL_UNPACK_ALIGNMENT, 1);

 // Generate a texture
 glGenTextures(1, texture);
 glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);

glGenTextures() allocates memory for a texture. For this function I specify that I am only generating one texture, but one one of the cool features the glGenTextures() function is that you can tell it to allocate
memory for more than one texture and pass in an array to store the addresses in.

 switch (filter)
 {
 case NEAREST:
 // Create Nearest Filtered Texture
 glBindTexture(GL_TEXTURE_2D, *texture);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
 glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, tempTexture->sizeX, tempTexture
 break;
 case LINEAR:
 // Create Linear Filtered Texture
 glBindTexture(GL_TEXTURE_2D, *texture);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
 glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, tempTexture->sizeX, tempTexture
 break;
 case MIPMAP:
 // Create MipMapped Texture
 glBindTexture(GL_TEXTURE_2D, *texture);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_NEAREST);
 gluBuild2DMipmaps(GL_TEXTURE_2D, GL_RGB, tempTexture->sizeX, tempTexture
 break;
 }

Each case in the switch statement takes tempTexture and sets a filter (GL_NEAREST or GL_LINEAR) and then calls glTexImage2D() to store the data of tempTexture into texture. The only exception is
MIPMAP, which is more than just a filter, it actally generates optimized textures for various distances so they look better.

 free(tempTexture);
}

DrawSprocket & OpenGL Tutorial

Page 12 of 12

Now we just get rid of tempTexture because we've already copied it's data into our new texture. Remember to use glDeleteTextures() (shown in main()) to free up the texture that you passed to LoadGLTexture
() because if you don't they will stay in your 3D graphics accelerator card's memory until the computer is shut down, and this can cause your computer to crash after running your application a bunch of
times.

Let's Wrap Things Up (a.k.a. Where's The Download?)

Well, that was the last function, so the tutorial is officially done. The source code and CodeWarrior Pro 5 project for glDrawSprocketTest can be downloaded from
any questions, comments, or corrections feel free to e-mail me at classic@sover.net. I hope you found this tutorial useful.

Version 1.2.1 - April 1, 1999

The OpenGL
R

Graphics System:

A Speci�cation
(Version 1.2.1)

Mark Segal
Kurt Akeley

Editor (version 1.1): Chris Frazier
Editor (versions 1.2, 1.2.1): Jon Leech

Version 1.2.1 - April 1, 1999

Copyright c 1992-1999 Silicon Graphics, Inc.

This document contains unpublished information of
Silicon Graphics, Inc.

This document is protected by copyright, and contains information propri-
etary to Silicon Graphics, Inc. Any copying, adaptation, distribution, public
performance, or public display of this document without the express written
consent of Silicon Graphics, Inc. is strictly prohibited. The receipt or pos-
session of this document does not convey any rights to reproduce, disclose,
or distribute its contents, or to manufacture, use, or sell anything that it
may describe, in whole or in part.

U.S. Government Restricted Rights Legend

Use, duplication, or disclosure by the Government is subject to restrictions
set forth in FAR 52.227.19(c)(2) or subparagraph (c)(1)(ii) of the Rights
in Technical Data and Computer Software clause at DFARS 252.227-7013
and/or in similar or successor clauses in the FAR or the DOD or NASA FAR
Supplement. Unpublished rights reserved under the copyright laws of the
United States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N.
Shoreline Blvd., Mountain View, CA 94039-7311.

OpenGL is a registered trademark of Silicon Graphics, Inc.
Unix is a registered trademark of The Open Group.

The "X" device and X Windows System are trademarks of
The Open Group.

Version 1.2.1 - April 1, 1999

Contents

1 Introduction 1

1.1 Formatting of Optional Features 1

1.2 What is the OpenGL Graphics System? 1

1.3 Programmer's View of OpenGL 2

1.4 Implementor's View of OpenGL 2

1.5 Our View . 3

2 OpenGL Operation 4

2.1 OpenGL Fundamentals . 4

2.1.1 Floating-Point Computation 6

2.2 GL State . 6

2.3 GL Command Syntax . 7

2.4 Basic GL Operation . 9

2.5 GL Errors . 11

2.6 Begin/End Paradigm . 12

2.6.1 Begin and End Objects 15

2.6.2 Polygon Edges . 18

2.6.3 GL Commands within Begin/End 19

2.7 Vertex Speci�cation . 19

2.8 Vertex Arrays . 21

2.9 Rectangles . 28

2.10 Coordinate Transformations 28

2.10.1 Controlling the Viewport 30

2.10.2 Matrices . 31

2.10.3 Normal Transformation 34

2.10.4 Generating Texture Coordinates 36

2.11 Clipping . 38

2.12 Current Raster Position . 40

2.13 Colors and Coloring . 43

i

Version 1.2.1 - April 1, 1999

ii CONTENTS

2.13.1 Lighting . 44
2.13.2 Lighting Parameter Speci�cation 49

2.13.3 ColorMaterial . 51
2.13.4 Lighting State . 53

2.13.5 Color Index Lighting 53
2.13.6 Clamping or Masking 54

2.13.7 Flatshading . 54
2.13.8 Color and Texture Coordinate Clipping 55

2.13.9 Final Color Processing 56

3 Rasterization 57

3.1 Invariance . 59
3.2 Antialiasing . 59

3.3 Points . 60
3.3.1 Point Rasterization State 62

3.4 Line Segments . 62
3.4.1 Basic Line Segment Rasterization 64

3.4.2 Other Line Segment Features 66
3.4.3 Line Rasterization State 69

3.5 Polygons . 70
3.5.1 Basic Polygon Rasterization 70

3.5.2 Stippling . 72
3.5.3 Antialiasing . 72

3.5.4 Options Controlling Polygon Rasterization 73
3.5.5 Depth O�set . 73

3.5.6 Polygon Rasterization State 75
3.6 Pixel Rectangles . 75

3.6.1 Pixel Storage Modes 75
3.6.2 The Imaging Subset 76

3.6.3 Pixel Transfer Modes 78
3.6.4 Rasterization of Pixel Rectangles 88

3.6.5 Pixel Transfer Operations 100
3.7 Bitmaps . 110
3.8 Texturing . 111

3.8.1 Texture Image Speci�cation 112
3.8.2 Alternate Texture Image Speci�cation Commands . . 118

3.8.3 Texture Parameters 123
3.8.4 Texture Wrap Modes 124

3.8.5 Texture Mini�cation 125
3.8.6 Texture Magni�cation 131

Version 1.2.1 - April 1, 1999

CONTENTS iii

3.8.7 Texture State and Proxy State 131

3.8.8 Texture Objects . 132

3.8.9 Texture Environments and Texture Functions 135

3.8.10 Texture Application 138

3.9 Color Sum . 138

3.10 Fog . 138

3.11 Antialiasing Application . 140

4 Per-Fragment Operations and the Framebu�er 141

4.1 Per-Fragment Operations . 142

4.1.1 Pixel Ownership Test 142

4.1.2 Scissor test . 143

4.1.3 Alpha test . 143

4.1.4 Stencil test . 144

4.1.5 Depth bu�er test . 145

4.1.6 Blending . 146

4.1.7 Dithering . 149

4.1.8 Logical Operation . 150

4.2 Whole Framebu�er Operations 150

4.2.1 Selecting a Bu�er for Writing 150

4.2.2 Fine Control of Bu�er Updates 152

4.2.3 Clearing the Bu�ers 153

4.2.4 The Accumulation Bu�er 155

4.3 Drawing, Reading, and Copying Pixels 156

4.3.1 Writing to the Stencil Bu�er 156

4.3.2 Reading Pixels . 156

4.3.3 Copying Pixels . 162

4.3.4 Pixel Draw/Read state 162

5 Special Functions 164

5.1 Evaluators . 164

5.2 Selection . 170

5.3 Feedback . 173

5.4 Display Lists . 175

5.5 Flush and Finish . 179

5.6 Hints . 179

6 State and State Requests 181

6.1 Querying GL State . 181

6.1.1 Simple Queries . 181

Version 1.2.1 - April 1, 1999

iv CONTENTS

6.1.2 Data Conversions . 182

6.1.3 Enumerated Queries 182

6.1.4 Texture Queries . 184

6.1.5 Stipple Query . 185

6.1.6 Color Matrix Query 185

6.1.7 Color Table Query . 185

6.1.8 Convolution Query . 186

6.1.9 Histogram Query . 187

6.1.10 Minmax Query . 188

6.1.11 Pointer and String Queries 189

6.1.12 Saving and Restoring State 189

6.2 State Tables . 193

A Invariance 218

A.1 Repeatability . 218

A.2 Multi-pass Algorithms . 219

A.3 Invariance Rules . 219

A.4 What All This Means . 221

B Corollaries 222

C Version 1.1 225

C.1 Vertex Array . 225

C.2 Polygon O�set . 226

C.3 Logical Operation . 226

C.4 Texture Image Formats . 226

C.5 Texture Replace Environment 226

C.6 Texture Proxies . 227

C.7 Copy Texture and Subtexture 227

C.8 Texture Objects . 227

C.9 Other Changes . 227

C.10 Acknowledgements . 228

D Version 1.2 230

D.1 Three-Dimensional Texturing 230

D.2 BGRA Pixel Formats . 230

D.3 Packed Pixel Formats . 230

D.4 Normal Rescaling . 231

D.5 Separate Specular Color . 231

D.6 Texture Coordinate Edge Clamping 231

Version 1.2.1 - April 1, 1999

CONTENTS v

D.7 Texture Level of Detail Control 232
D.8 Vertex Array Draw Element Range 232
D.9 Imaging Subset . 232

D.9.1 Color Tables . 232
D.9.2 Convolution . 233
D.9.3 Color Matrix . 233
D.9.4 Pixel Pipeline Statistics 234
D.9.5 Constant Blend Color 234
D.9.6 New Blending Equations 234

D.10 Acknowledgements . 234

E Version 1.2.1 238

F ARB Extensions 239
F.1 Naming Conventions . 239
F.2 Multitexture . 240

F.2.1 Dependencies . 240
F.2.2 Issues . 240
F.2.3 Changes to Section 2.6 (Begin/End Paradigm) 240
F.2.4 Changes to Section 2.7 (Vertex Speci�cation) 241
F.2.5 Changes to Section 2.8 (Vertex Arrays) 243
F.2.6 Changes to Section 2.10.2 (Matrices) 244
F.2.7 Changes to Section 2.10.4 (Generating Texture Coor-

dinates) . 245
F.2.8 Changes to Section 2.12 (Current Raster Position) . . 246
F.2.9 Changes to Section 3.8 (Texturing) 246
F.2.10 Changes to Section 3.8.5 (Texture Mini�cation) 248
F.2.11 Changes to Section 3.8.8 (Texture Objects) 248
F.2.12 Changes to Section 3.8.10 (Texture Application) . . . 249
F.2.13 Changes to Section 5.1 (Evaluators) 249
F.2.14 Changes to Section 5.3 (Feedback) 249
F.2.15 Changes to Section 6.1.2 (Data Conversions) 251
F.2.16 Changes to Section 6.1.12 (Saving and Restoring State)251

Index of OpenGL Commands 256

Version 1.2.1 - April 1, 1999

List of Figures

2.1 Block diagram of the GL. 9

2.2 Creation of a processed vertex from a transformed vertex and
current values. 13

2.3 Primitive assembly and processing. 13

2.4 Triangle strips, fans, and independent triangles. 16

2.5 Quadrilateral strips and independent quadrilaterals. 17

2.6 Vertex transformation sequence. 28

2.7 Current raster position. 41

2.8 Processing of RGBA colors. 43

2.9 Processing of color indices. 43

2.10 ColorMaterial operation. 51

3.1 Rasterization. 57

3.2 Rasterization of non-antialiased wide points. 61

3.3 Rasterization of antialiased wide points. 61

3.4 Visualization of Bresenham's algorithm. 64

3.5 Rasterization of non-antialiased wide lines. 67

3.6 The region used in rasterizing an antialiased line segment. . . 69

3.7 Operation of DrawPixels. 88

3.8 Selecting a subimage from an image 93

3.9 A bitmap and its associated parameters. 110

3.10 A texture image and the coordinates used to access it. 118

4.1 Per-fragment operations. 142

4.2 Operation of ReadPixels. 156

4.3 Operation of CopyPixels. 162

5.1 Map Evaluation. 166

5.2 Feedback syntax. 176

vi

Version 1.2.1 - April 1, 1999

LIST OF FIGURES vii

F.1 Creation of a processed vertex from a transformed vertex and
current values. 241

F.2 Current raster position. 246
F.3 Multitexture pipeline. 249

Version 1.2.1 - April 1, 1999

List of Tables

2.1 GL command su�xes . 8

2.2 GL data types . 10

2.3 Summary of GL errors . 13

2.4 Vertex array sizes (values per vertex) and data types 22

2.5 Variables that direct the execution of InterleavedArrays. . 26

2.6 Component conversions . 44

2.7 Summary of lighting parameters. 46

2.8 Correspondence of lighting parameter symbols to names. . . . 50

2.9 Polygon atshading color selection. 55

3.1 PixelStore parameters pertaining to one or more of Draw-
Pixels, TexImage1D, TexImage2D, and TexImage3D. . 76

3.2 PixelTransfer parameters. 78

3.3 PixelMap parameters. 79

3.4 Color table names. 80

3.5 DrawPixels and ReadPixels types 91

3.6 DrawPixels and ReadPixels formats. 92

3.7 Swap Bytes Bit ordering. 92

3.8 Packed pixel formats. 94

3.9 UNSIGNED BYTE formats. Bit numbers are indicated for each
component. 95

3.10 UNSIGNED SHORT formats . 96

3.11 UNSIGNED INT formats . 97

3.12 Packed pixel �eld assignments 98

3.13 Color table lookup. 103

3.14 Computation of �ltered color components. 104

3.15 Conversion from RGBA pixel components to internal texture,
table, or �lter components. 114

3.16 Correspondence of sized internal formats to base internal for-
mats. 115

viii

Version 1.2.1 - April 1, 1999

LIST OF TABLES ix

3.17 Texture parameters and their values. 124

3.18 Replace and modulate texture functions. 136

3.19 Decal and blend texture functions. 137

4.1 Values controlling the source blending function and the source
blending values they compute. f = min(As; 1�Ad). 148

4.2 Values controlling the destination blending function and the
destination blending values they compute. 148

4.3 Arguments to LogicOp and their corresponding operations. . 151

4.4 Arguments to DrawBu�er and the bu�ers that they indicate.152

4.5 PixelStore parameters pertaining to ReadPixels,
GetTexImage1D, GetTexImage2D, GetTexImage3D,
GetColorTable, GetConvolutionFilter, GetSeparable-
Filter, GetHistogram, and GetMinmax. 158

4.6 ReadPixels index masks. 160

4.7 ReadPixels GL Data Types and Reversed component con-
version formulas. 161

5.1 Values speci�ed by the target to Map1. 165

5.2 Correspondence of feedback type to number of values per vertex.174

6.1 Texture, table, and �lter return values. 185

6.2 Attribute groups . 191

6.3 State variable types . 192

6.4 GL Internal begin-end state variables (inaccessible) 194

6.5 Current Values and Associated Data 195

6.6 Vertex Array Data . 196

6.7 Transformation state . 197

6.8 Coloring . 198

6.9 Lighting (see also Table 2.7 for defaults) 199

6.10 Lighting (cont.) . 200

6.11 Rasterization . 201

6.12 Texture Objects . 202

6.13 Texture Objects (cont.) . 203

6.14 Texture Environment and Generation 204

6.15 Pixel Operations . 205

6.16 Framebu�er Control . 206

6.17 Pixels . 207

6.18 Pixels (cont.) . 208

6.19 Pixels (cont.) . 209

Version 1.2.1 - April 1, 1999

x LIST OF TABLES

6.20 Pixels (cont.) . 210
6.21 Pixels (cont.) . 211
6.22 Evaluators (GetMap takes a map name) 212
6.23 Hints . 213
6.24 Implementation Dependent Values 214
6.25 More Implementation Dependent Values 215
6.26 Implementation Dependent Pixel Depths 216
6.27 Miscellaneous . 217

F.1 Changes to State Tables . 252
F.2 Changes to State Tables (cont.) 253
F.3 New State Introduced by Multitexture 254
F.4 New Implementation-Dependent Values Introduced by Mul-

titexture . 255

Version 1.2.1 - April 1, 1999

Chapter 1

Introduction

This document describes the OpenGL graphics system: what it is, how it
acts, and what is required to implement it. We assume that the reader has
at least a rudimentary understanding of computer graphics. This means
familiarity with the essentials of computer graphics algorithms as well as
familiarity with basic graphics hardware and associated terms.

1.1 Formatting of Optional Features

Starting with version 1.2 of OpenGL, some features in the speci�cation are
considered optional; an OpenGL implementation may or may not choose to
provide them (see section 3.6.2).

Portions of the speci�cation which are optional are so labelled where
they are de�ned. Additionally, those portions are typeset in gray, and state
table entries which are optional are typeset against a gray background .

1.2 What is the OpenGL Graphics System?

OpenGL (for \Open Graphics Library") is a software interface to graphics
hardware. The interface consists of a set of several hundred procedures and
functions that allow a programmer to specify the objects and operations
involved in producing high-quality graphical images, speci�cally color images
of three-dimensional objects.

Most of OpenGL requires that the graphics hardware contain a frame-
bu�er. Many OpenGL calls pertain to drawing objects such as points, lines,
polygons, and bitmaps, but the way that some of this drawing occurs (such
as when antialiasing or texturing is enabled) relies on the existence of a

1

Version 1.2.1 - April 1, 1999

2 CHAPTER 1. INTRODUCTION

framebu�er. Further, some of OpenGL is speci�cally concerned with frame-
bu�er manipulation.

1.3 Programmer's View of OpenGL

To the programmer, OpenGL is a set of commands that allow the speci�-
cation of geometric objects in two or three dimensions, together with com-
mands that control how these objects are rendered into the framebu�er.
For the most part, OpenGL provides an immediate-mode interface, mean-
ing that specifying an object causes it to be drawn.

A typical program that uses OpenGL begins with calls to open a window
into the framebu�er into which the program will draw. Then, calls are made
to allocate a GL context and associate it with the window. Once a GL con-
text is allocated, the programmer is free to issue OpenGL commands. Some
calls are used to draw simple geometric objects (i.e. points, line segments,
and polygons), while others a�ect the rendering of these primitives includ-
ing how they are lit or colored and how they are mapped from the user's
two- or three-dimensional model space to the two-dimensional screen. There
are also calls to e�ect direct control of the framebu�er, such as reading and
writing pixels.

1.4 Implementor's View of OpenGL

To the implementor, OpenGL is a set of commands that a�ect the opera-
tion of graphics hardware. If the hardware consists only of an addressable
framebu�er, then OpenGL must be implemented almost entirely on the host
CPU. More typically, the graphics hardware may comprise varying degrees
of graphics acceleration, from a raster subsystem capable of rendering two-
dimensional lines and polygons to sophisticated oating-point processors
capable of transforming and computing on geometric data. The OpenGL
implementor's task is to provide the CPU software interface while dividing
the work for each OpenGL command between the CPU and the graphics
hardware. This division must be tailored to the available graphics hardware
to obtain optimum performance in carrying out OpenGL calls.

OpenGL maintains a considerable amount of state information. This
state controls how objects are drawn into the framebu�er. Some of this
state is directly available to the user: he or she can make calls to obtain its
value. Some of it, however, is visible only by the e�ect it has on what is
drawn. One of the main goals of this speci�cation is to make OpenGL state

Version 1.2.1 - April 1, 1999

1.5. OUR VIEW 3

information explicit, to elucidate how it changes, and to indicate what its
e�ects are.

1.5 Our View

We view OpenGL as a state machine that controls a set of speci�c draw-
ing operations. This model should engender a speci�cation that satis�es
the needs of both programmers and implementors. It does not, however,
necessarily provide a model for implementation. An implementation must
produce results conforming to those produced by the speci�ed methods, but
there may be ways to carry out a particular computation that are more
e�cient than the one speci�ed.

Version 1.2.1 - April 1, 1999

Chapter 2

OpenGL Operation

2.1 OpenGL Fundamentals

OpenGL (henceforth, the \GL") is concerned only with rendering into a
framebu�er (and reading values stored in that framebu�er). There is no
support for other peripherals sometimes associated with graphics hardware,
such as mice and keyboards. Programmers must rely on other mechanisms
to obtain user input.

The GL draws primitives subject to a number of selectable modes. Each
primitive is a point, line segment, polygon, or pixel rectangle. Each mode
may be changed independently; the setting of one does not a�ect the settings
of others (although many modes may interact to determine what eventually
ends up in the framebu�er). Modes are set, primitives speci�ed, and other
GL operations described by sending commands in the form of function or
procedure calls.

Primitives are de�ned by a group of one or more vertices. A vertex
de�nes a point, an endpoint of an edge, or a corner of a polygon where
two edges meet. Data (consisting of positional coordinates, colors, normals,
and texture coordinates) are associated with a vertex and each vertex is
processed independently, in order, and in the same way. The only exception
to this rule is if the group of vertices must be clipped so that the indicated
primitive �ts within a speci�ed region; in this case vertex data may be
modi�ed and new vertices created. The type of clipping depends on which
primitive the group of vertices represents.

Commands are always processed in the order in which they are received,
although there may be an indeterminate delay before the e�ects of a com-
mand are realized. This means, for example, that one primitive must be

4

Version 1.2.1 - April 1, 1999

2.1. OPENGL FUNDAMENTALS 5

drawn completely before any subsequent one can a�ect the framebu�er. It
also means that queries and pixel read operations return state consistent
with complete execution of all previously invoked GL commands. In gen-
eral, the e�ects of a GL command on either GL modes or the framebu�er
must be complete before any subsequent command can have any such e�ects.

In the GL, data binding occurs on call. This means that data passed
to a command are interpreted when that command is received. Even if the
command requires a pointer to data, those data are interpreted when the
call is made, and any subsequent changes to the data have no e�ect on the
GL (unless the same pointer is used in a subsequent command).

The GL provides direct control over the fundamental operations of 3D
and 2D graphics. This includes speci�cation of such parameters as trans-
formation matrices, lighting equation coe�cients, antialiasing methods, and
pixel update operators. It does not provide a means for describing or mod-
eling complex geometric objects. Another way to describe this situation is
to say that the GL provides mechanisms to describe how complex geometric
objects are to be rendered rather than mechanisms to describe the complex
objects themselves.

The model for interpretation of GL commands is client-server. That is, a
program (the client) issues commands, and these commands are interpreted
and processed by the GL (the server). The server may or may not operate
on the same computer as the client. In this sense, the GL is \network-
transparent." A server may maintain a number of GL contexts, each of which
is an encapsulation of current GL state. A client may choose to connect to
any one of these contexts. Issuing GL commands when the program is not
connected to a context results in unde�ned behavior.

The e�ects of GL commands on the framebu�er are ultimately controlled
by the window system that allocates framebu�er resources. It is the window
system that determines which portions of the framebu�er the GL may access
at any given time and that communicates to the GL how those portions
are structured. Therefore, there are no GL commands to con�gure the
framebu�er or initialize the GL. Similarly, display of framebu�er contents
on a CRT monitor (including the transformation of individual framebu�er
values by such techniques as gamma correction) is not addressed by the GL.
Framebu�er con�guration occurs outside of the GL in conjunction with the
window system; the initialization of a GL context occurs when the window
system allocates a window for GL rendering.

The GL is designed to be run on a range of graphics platforms with vary-
ing graphics capabilities and performance. To accommodate this variety, we
specify ideal behavior instead of actual behavior for certain GL operations.

Version 1.2.1 - April 1, 1999

6 CHAPTER 2. OPENGL OPERATION

In cases where deviation from the ideal is allowed, we also specify the rules
that an implementation must obey if it is to approximate the ideal behavior
usefully. This allowed variation in GL behavior implies that two distinct
GL implementations may not agree pixel for pixel when presented with the
same input even when run on identical framebu�er con�gurations.

Finally, command names, constants, and types are pre�xed in the GL
(by gl, GL , and GL, respectively in C) to reduce name clashes with other
packages. The pre�xes are omitted in this document for clarity.

2.1.1 Floating-Point Computation

The GL must perform a number of oating-point operations during the
course of its operation. We do not specify how oating-point numbers are
to be represented or how operations on them are to be performed. We require
simply that numbers' oating-point parts contain enough bits and that their
exponent �elds are large enough so that individual results of oating-point
operations are accurate to about 1 part in 105. The maximum representable
magnitude of a oating-point number used to represent positional or normal
coordinates must be at least 232; the maximum representable magnitude for
colors or texture coordinates must be at least 210. The maximum repre-
sentable magnitude for all other oating-point values must be at least 232.
x � 0 = 0 � x = 0 for any non-in�nite and non-NaN x. 1 � x = x � 1 = x.
x+0 = 0+x = x. 00 = 1. (Occasionally further requirements will be speci-
�ed.) Most single-precision oating-point formats meet these requirements.

Any representable oating-point value is legal as input to a GL command
that requires oating-point data. The result of providing a value that is not
a oating-point number to such a command is unspeci�ed, but must not
lead to GL interruption or termination. In IEEE arithmetic, for example,
providing a negative zero or a denormalized number to a GL command yields
predictable results, while providing a NaN or an in�nity yields unspeci�ed
results.

Some calculations require division. In such cases (including implied di-
visions required by vector normalizations), a division by zero produces an
unspeci�ed result but must not lead to GL interruption or termination.

2.2 GL State

The GL maintains considerable state. This document enumerates each state
variable and describes how each variable can be changed. For purposes
of discussion, state variables are categorized somewhat arbitrarily by their

Version 1.2.1 - April 1, 1999

2.3. GL COMMAND SYNTAX 7

function. Although we describe the operations that the GL performs on the
framebu�er, the framebu�er is not a part of GL state.

We distinguish two types of state. The �rst type of state, called GL
server state, resides in the GL server. The majority of GL state falls into
this category. The second type of state, called GL client state, resides in the
GL client. Unless otherwise speci�ed, all state referred to in this document
is GL server state; GL client state is speci�cally identi�ed. Each instance of
a GL context implies one complete set of GL server state; each connection
from a client to a server implies a set of both GL client state and GL server
state.

While an implementation of the GL may be hardware dependent, this
discussion is independent of the speci�c hardware on which a GL is imple-
mented. We are therefore concerned with the state of graphics hardware
only when it corresponds precisely to GL state.

2.3 GL Command Syntax

GL commands are functions or procedures. Various groups of commands
perform the same operation but di�er in how arguments are supplied to
them. To conveniently accommodate this variation, we adopt a notation for
describing commands and their arguments.

GL commands are formed from a name followed, depending on the par-
ticular command, by up to 4 characters. The �rst character indicates the
number of values of the indicated type that must be presented to the com-
mand. The second character or character pair indicates the speci�c type of
the arguments: 8-bit integer, 16-bit integer, 32-bit integer, single-precision
oating-point, or double-precision oating-point. The �nal character, if
present, is v, indicating that the command takes a pointer to an array (a
vector) of values rather than a series of individual arguments. Two speci�c
examples come from the Vertex command:

void Vertex3f(float x, float y, float z);

and

void Vertex2sv(short v[2]);

These examples show the ANSI C declarations for these commands. In
general, a command declaration has the form1

1The declarations shown in this document apply to ANSI C. Languages such as C++

Version 1.2.1 - April 1, 1999

8 CHAPTER 2. OPENGL OPERATION

Letter Corresponding GL Type

b byte

s short

i int

f float

d double

ub ubyte

us ushort

ui uint

Table 2.1: Correspondence of command su�x letters to GL argument types.
Refer to Table 2.2 for de�nitions of the GL types.

rtype Namef�1234gf� b s i f d ub us uigf�vg
([args ,] T arg1 , : : : , T argN [, args]);

rtype is the return type of the function. The braces (fg) enclose a series
of characters (or character pairs) of which one is selected. � indicates no
character. The arguments enclosed in brackets ([args ,] and [, args]) may
or may not be present. The N arguments arg1 through argN have type T,
which corresponds to one of the type letters or letter pairs as indicated in
Table 2.1 (if there are no letters, then the arguments' type is given explic-
itly). If the �nal character is not v, then N is given by the digit 1, 2, 3, or
4 (if there is no digit, then the number of arguments is �xed). If the �nal
character is v, then only arg1 is present and it is an array of N values of
the indicated type. Finally, we indicate an unsigned type by the shorthand
of prepending a u to the beginning of the type name (so that, for instance,
unsigned char is abbreviated uchar).

For example,

void Normal3ffdg(T arg);

indicates the two declarations

void Normal3f(float arg1, float arg2, float arg3);
void Normal3d(double arg1, double arg2, double arg3);

while

and Ada that allow passing of argument type information admit simpler declarations and
fewer entry points.

Version 1.2.1 - April 1, 1999

2.4. BASIC GL OPERATION 9

void Normal3ffdgv(T arg);

means the two declarations

void Normal3fv(float arg[3]);
void Normal3dv(double arg[3]);

Arguments whose type is �xed (i.e. not indicated by a su�x on the
command) are of one of 14 types (or pointers to one of these). These types
are summarized in Table 2.2.

2.4 Basic GL Operation

Figure 2.1 shows a schematic diagram of the GL. Commands enter the GL
on the left. Some commands specify geometric objects to be drawn while
others control how the objects are handled by the various stages. Most
commands may be accumulated in a display list for processing by the GL at
a later time. Otherwise, commands are e�ectively sent through a processing
pipeline.

The �rst stage provides an e�cient means for approximating curve and
surface geometry by evaluating polynomial functions of input values. The
next stage operates on geometric primitives described by vertices: points,
line segments, and polygons. In this stage vertices are transformed and lit,
and primitives are clipped to a viewing volume in preparation for the next
stage, rasterization. The rasterizer produces a series of framebu�er addresses
and values using a two-dimensional description of a point, line segment, or
polygon. Each fragment so produced is fed to the next stage that performs
operations on individual fragments before they �nally alter the framebu�er.
These operations include conditional updates into the framebu�er based
on incoming and previously stored depth values (to e�ect depth bu�ering),
blending of incoming fragment colors with stored colors, as well as masking
and other logical operations on fragment values.

Finally, there is a way to bypass the vertex processing portion of the
pipeline to send a block of fragments directly to the individual fragment
operations, eventually causing a block of pixels to be written to the frame-
bu�er; values may also be read back from the framebu�er or copied from
one portion of the framebu�er to another. These transfers may include some
type of decoding or encoding.

This ordering is meant only as a tool for describing the GL, not as a strict
rule of how the GL is implemented, and we present it only as a means to

Version 1.2.1 - April 1, 1999

10 CHAPTER 2. OPENGL OPERATION

GL Type Minimum Number of Bits Description

boolean 1 Boolean

byte 8 signed 2's complement binary inte-
ger

ubyte 8 unsigned binary integer

short 16 signed 2's complement binary inte-
ger

ushort 16 unsigned binary integer

int 32 signed 2's complement binary inte-
ger

uint 32 unsigned binary integer

sizei 32 Non-negative binary integer size

enum 32 Enumerated binary integer value

bitfield 32 Bit �eld

float 32 Floating-point value

clampf 32 Floating-point value clamped to
[0; 1]

double 64 Floating-point value

clampd 64 Floating-point value clamped to
[0; 1]

Table 2.2: GL data types. GL types are not C types. Thus, for example,
GL type int is referred to as GLint outside this document, and is not
necessarily equivalent to the C type int. An implementation may use more
bits than the number indicated in the table to represent a GL type. Correct
interpretation of integer values outside the minimum range is not required,
however.

Version 1.2.1 - April 1, 1999

2.5. GL ERRORS 11

Display
 List

Evaluator

Per−Vertex
Operations Rasteriz−

ation

Per−
Fragment
Operations

Framebuffer

Pixel
Operations

Primitive
Assembly

Texture
Memory

Figure 2.1. Block diagram of the GL.

organize the various operations of the GL. Objects such as curved surfaces,
for instance, may be transformed before they are converted to polygons.

2.5 GL Errors

The GL detects only a subset of those conditions that could be considered
errors. This is because in many cases error checking would adversely impact
the performance of an error-free program.

The command

enum GetError(void);

is used to obtain error information. Each detectable error is assigned a
numeric code. When an error is detected, a ag is set and the code is
recorded. Further errors, if they occur, do not a�ect this recorded code.
When GetError is called, the code is returned and the ag is cleared,
so that a further error will again record its code. If a call to GetError
returns NO ERROR, then there has been no detectable error since the last call
to GetError (or since the GL was initialized).

To allow for distributed implementations, there may be several ag-
code pairs. In this case, after a call to GetError returns a value other
than NO ERROR each subsequent call returns the non-zero code of a distinct
ag-code pair (in unspeci�ed order), until all non-NO ERROR codes have been

Version 1.2.1 - April 1, 1999

12 CHAPTER 2. OPENGL OPERATION

returned. When there are no more non-NO ERROR error codes, all ags are
reset. This scheme requires some positive number of pairs of a ag bit and
an integer. The initial state of all ags is cleared and the initial value of all
codes is NO ERROR.

Table 2.3 summarizes GL errors. Currently, when an error ag is set,
results of GL operation are unde�ned only if OUT OF MEMORY has occurred.
In other cases, the command generating the error is ignored so that it has
no e�ect on GL state or framebu�er contents. If the generating command
returns a value, it returns zero. If the generating command modi�es values
through a pointer argument, no change is made to these values. These error
semantics apply only to GL errors, not to system errors such as memory
access errors. This behavior is the current behavior; the action of the GL in
the presence of errors is subject to change.

Three error generation conditions are implicit in the description of every
GL command. First, if a command that requires an enumerated value is
passed a symbolic constant that is not one of those speci�ed as allowable for
that command, the error INVALID ENUM results. This is the case even if the
argument is a pointer to a symbolic constant if that value is not allowable
for the given command. Second, if a negative number is provided where an
argument of type sizei is speci�ed, the error INVALID VALUE results. Finally,
if memory is exhausted as a side e�ect of the execution of a command, the
error OUT OF MEMORY may be generated. Otherwise errors are generated only
for conditions that are explicitly described in this speci�cation.

2.6 Begin/End Paradigm

In the GL, most geometric objects are drawn by enclosing a series of coordi-
nate sets that specify vertices and optionally normals, texture coordinates,
and colors between Begin/End pairs. There are ten geometric objects that
are drawn this way: points, line segments, line segment loops, separated
line segments, polygons, triangle strips, triangle fans, separated triangles,
quadrilateral strips, and separated quadrilaterals.

Each vertex is speci�ed with two, three, or four coordinates. In addi-
tion, a current normal, current texture coordinates, and current color may
be used in processing each vertex. Normals are used by the GL in light-
ing calculations; the current normal is a three-dimensional vector that may
be set by sending three coordinates that specify it. Texture coordinates
determine how a texture image is mapped onto a primitive.

Primary and secondary colors are associated with each vertex (see sec-

Version 1.2.1 - April 1, 1999

2.6. BEGIN/END PARADIGM 13

Error Description O�ending com-
mand ignored?

INVALID ENUM enum argument out of range Yes

INVALID VALUE Numeric argument out of
range

Yes

INVALID OPERATION Operation illegal in current
state

Yes

STACK OVERFLOW Command would cause a stack
overow

Yes

STACK UNDERFLOW Command would cause a stack
underow

Yes

OUT OF MEMORY Not enough memory left to ex-
ecute command

Unknown

TABLE TOO LARGE The speci�ed table is too large Yes

Table 2.3: Summary of GL errors

tion 3.9). These associated colors are either based on the current color
or produced by lighting, depending on whether or not lighting is enabled.
Texture coordinates are similarly associated with each vertex. Figure 2.2
summarizes the association of auxiliary data with a transformed vertex to
produce a processed vertex.

The current values are part of GL state. Vertices and normals are trans-
formed, colors may be a�ected or replaced by lighting, and texture coordi-
nates are transformed and possibly a�ected by a texture coordinate genera-
tion function. The processing indicated for each current value is applied for
each vertex that is sent to the GL.

The methods by which vertices, normals, texture coordinates, and colors
are sent to the GL, as well as how normals are transformed and how vertices
are mapped to the two-dimensional screen, are discussed later.

Before colors have been assigned to a vertex, the state required by a
vertex is the vertex's coordinates, the current normal, the current edge ag
(see section 2.6.2), the current material properties (see section 2.13.2), and
the current texture coordinates. Because color assignment is done vertex-
by-vertex, a processed vertex comprises the vertex's coordinates, its edge
ag, its assigned colors, and its texture coordinates.

Figure 2.3 shows the sequence of operations that builds a primitive
(point, line segment, or polygon) from a sequence of vertices. After a primi-

Version 1.2.1 - April 1, 1999

14 CHAPTER 2. OPENGL OPERATION

lighting

vertex / normal
transformation

Current
Normal

Current
Color and
Materials

Current
Texture
Coords

texgen texture
matrix

Associated
Data

Transformed
Coordinates

Processed
Vertex

Out

(Colors, Edge Flag,
and Texture
Coordinates)

Vertex
Coordinates In

Current
Edge Flag

Figure 2.2. Association of current values with a vertex. The heavy lined
boxes represent GL state.

Processed
Vertices

Point,
Line Segment, or

Polygon
(Primitive)
Assembly

Begin/End
State

Point culling;
Line Segment
 or Polygon

Clipping

Color
Processing

Rasterization

Coordinates

Associated
Data

Figure 2.3. Primitive assembly and processing.

Version 1.2.1 - April 1, 1999

2.6. BEGIN/END PARADIGM 15

tive is formed, it is clipped to a viewing volume. This may alter the primitive
by altering vertex coordinates, texture coordinates, and colors. In the case
of a polygon primitive, clipping may insert new vertices into the primitive.
The vertices de�ning a primitive to be rasterized have texture coordinates
and colors associated with them.

2.6.1 Begin and End Objects

Begin and End require one state variable with eleven values: one value for
each of the ten possible Begin/End objects, and one other value indicating
that no Begin/End object is being processed. The two relevant commands
are

void Begin(enum mode);
void End(void);

There is no limit on the number of vertices that may be speci�ed between
a Begin and an End.

Points. A series of individual points may be speci�ed by calling Begin
with an argument value of POINTS. No special state need be kept between
Begin and End in this case, since each point is independent of previous
and following points.

Line Strips. A series of one or more connected line segments is speci�ed
by enclosing a series of two or more endpoints within a Begin/End pair
when Begin is called with LINE STRIP. In this case, the �rst vertex speci�es
the �rst segment's start point while the second vertex speci�es the �rst
segment's endpoint and the second segment's start point. In general, the
ith vertex (for i > 1) speci�es the beginning of the ith segment and the end
of the i� 1st. The last vertex speci�es the end of the last segment. If only
one vertex is speci�ed between the Begin/End pair, then no primitive is
generated.

The required state consists of the processed vertex produced from the
last vertex that was sent (so that a line segment can be generated from it
to the current vertex), and a boolean ag indicating if the current vertex is
the �rst vertex.

Line Loops. Line loops, speci�ed with the LINE LOOP argument value to
Begin, are the same as line strips except that a �nal segment is added from
the �nal speci�ed vertex to the �rst vertex. The additional state consists of
the processed �rst vertex.

Separate Lines. Individual line segments, each speci�ed by a pair of
vertices, are generated by surrounding vertex pairs with Begin and End

Version 1.2.1 - April 1, 1999

16 CHAPTER 2. OPENGL OPERATION

when the value of the argument to Begin is LINES. In this case, the �rst
two vertices between a Begin and End pair de�ne the �rst segment, with
subsequent pairs of vertices each de�ning one more segment. If the number
of speci�ed vertices is odd, then the last one is ignored. The state required
is the same as for lines but it is used di�erently: a vertex holding the �rst
vertex of the current segment, and a boolean ag indicating whether the
current vertex is odd or even (a segment start or end).

Polygons. A polygon is described by specifying its boundary as a series
of line segments. When Begin is called with POLYGON, the bounding line
segments are speci�ed in the same way as line loops. Depending on the
current state of the GL, a polygon may be rendered in one of several ways
such as outlining its border or �lling its interior. A polygon described with
fewer than three vertices does not generate a primitive.

Only convex polygons are guaranteed to be drawn correctly by the GL.
If a speci�ed polygon is nonconvex when projected onto the window, then
the rendered polygon need only lie within the convex hull of the projected
vertices de�ning its boundary.

The state required to support polygons consists of at least two processed
vertices (more than two are never required, although an implementation may
use more); this is because a convex polygon can be rasterized as its vertices
arrive, before all of them have been speci�ed. The order of the vertices is sig-
ni�cant in lighting and polygon rasterization (see sections 2.13.1 and 3.5.1).

Triangle strips. A triangle strip is a series of triangles connected along
shared edges. A triangle strip is speci�ed by giving a series of de�ning ver-
tices between a Begin/End pair when Begin is called with TRIANGLE STRIP.
In this case, the �rst three vertices de�ne the �rst triangle (and their order is
signi�cant, just as for polygons). Each subsequent vertex de�nes a new tri-
angle using that point along with two vertices from the previous triangle. A
Begin/End pair enclosing fewer than three vertices, when TRIANGLE STRIP

has been supplied to Begin, produces no primitive. See Figure 2.4.
The state required to support triangle strips consists of a ag indicating

if the �rst triangle has been completed, two stored processed vertices, (called
vertex A and vertex B), and a one bit pointer indicating which stored vertex
will be replaced with the next vertex. After a Begin(TRIANGLE STRIP),
the pointer is initialized to point to vertex A. Each vertex sent between a
Begin/End pair toggles the pointer. Therefore, the �rst vertex is stored as
vertex A, the second stored as vertex B, the third stored as vertex A, and
so on. Any vertex after the second one sent forms a triangle from vertex A,
vertex B, and the current vertex (in that order).

Triangle fans. A triangle fan is the same as a triangle strip with one

Version 1.2.1 - April 1, 1999

2.6. BEGIN/END PARADIGM 17

(a) (b) (c)

1

2

3

4

5 1

2
3

4

5
1

2

3

4

5

6

Figure 2.4. (a) A triangle strip. (b) A triangle fan. (c) Independent triangles.
The numbers give the sequencing of the vertices between Begin and End.
Note that in (a) and (b) triangle edge ordering is determined by the �rst
triangle, while in (c) the order of each triangle's edges is independent of the
other triangles.

exception: each vertex after the �rst always replaces vertex B of the two
stored vertices. The vertices of a triangle fan are enclosed between Begin
and End when the value of the argument to Begin is TRIANGLE FAN.

Separate Triangles. Separate triangles are speci�ed by placing ver-
tices between Begin and End when the value of the argument to Begin
is TRIANGLES. In this case, The 3i + 1st, 3i + 2nd, and 3i + 3rd vertices (in
that order) determine a triangle for each i = 0; 1; : : : ; n� 1, where there are
3n+k vertices between the Begin and End. k is either 0, 1, or 2; if k is not
zero, the �nal k vertices are ignored. For each triangle, vertex A is vertex
3i and vertex B is vertex 3i+1. Otherwise, separate triangles are the same
as a triangle strip.

The rules given for polygons also apply to each triangle generated from
a triangle strip, triangle fan or from separate triangles.

Quadrilateral (quad) strips. Quad strips generate a series of edge-
sharing quadrilaterals from vertices appearing between Begin and End,
when Begin is called with QUAD STRIP. If the m vertices between the Begin
and End are v1; : : : ; vm, where vj is the jth speci�ed vertex, then quad i has
vertices (in order) v2i, v2i+1, v2i+3, and v2i+2 with i = 0; : : : ; bm=2c. The
state required is thus three processed vertices, to store the last two vertices
of the previous quad along with the third vertex (the �rst new vertex) of
the current quad, a ag to indicate when the �rst quad has been completed,
and a one-bit counter to count members of a vertex pair. See Figure 2.5.

Version 1.2.1 - April 1, 1999

18 CHAPTER 2. OPENGL OPERATION

1

2

3

4

5

6

1

2 3

4 5

6 7

8

(a) (b)

Figure 2.5. (a) A quad strip. (b) Independent quads. The numbers give the
sequencing of the vertices between Begin and End.

A quad strip with fewer than four vertices generates no primitive. If
the number of vertices speci�ed for a quadrilateral strip between Begin and
End is odd, the �nal vertex is ignored.

Separate Quadrilaterals Separate quads are just like quad strips ex-
cept that each group of four vertices, the 4j+1st, the 4j+2nd, the 4j+3rd,
and the 4j + 4th, generate a single quad, for j = 0; 1; : : : ; n� 1. The total
number of vertices between Begin and End is 4n+ k, where 0 � k � 3; if
k is not zero, the �nal k vertices are ignored. Separate quads are generated
by calling Begin with the argument value QUADS.

The rules given for polygons also apply to each quad generated in a quad
strip or from separate quads.

2.6.2 Polygon Edges

Each edge of each primitive generated from a polygon, triangle strip, trian-
gle fan, separate triangle set, quadrilateral strip, or separate quadrilateral
set, is agged as either boundary or non-boundary. These classi�cations
are used during polygon rasterization; some modes a�ect the interpreta-
tion of polygon boundary edges (see section 3.5.4). By default, all edges are
boundary edges, but the agging of polygons, separate triangles, or separate
quadrilaterals may be altered by calling

void EdgeFlag(boolean ag);
void EdgeFlagv(boolean *ag);

to change the value of a ag bit. If ag is zero, then the ag bit is set to
FALSE; if ag is non-zero, then the ag bit is set to TRUE.

Version 1.2.1 - April 1, 1999

2.7. VERTEX SPECIFICATION 19

When Begin is supplied with one of the argument values POLYGON,
TRIANGLES, or QUADS, each vertex speci�ed within a Begin and End pair
begins an edge. If the edge ag bit is TRUE, then each speci�ed vertex begins
an edge that is agged as boundary. If the bit is FALSE, then induced edges
are agged as non-boundary.

The state required for edge agging consists of one current ag bit. Ini-
tially, the bit is TRUE. In addition, each processed vertex of an assembled
polygonal primitive must be augmented with a bit indicating whether or
not the edge beginning on that vertex is boundary or non-boundary.

2.6.3 GL Commands within Begin/End

The only GL commands that are allowed within any Begin/End pairs are
the commands for specifying vertex coordinates, vertex color, normal coor-
dinates, and texture coordinates (Vertex, Color, Index, Normal, Tex-
Coord), the ArrayElement command (see section 2.8), the EvalCoord
and EvalPoint commands (see section 5.1), commands for specifying light-
ing material parameters (Material commands; see section 2.13.2), display
list invocation commands (CallList and CallLists; see section 5.4), and
the EdgeFlag command. Executing any other GL command between the
execution of Begin and the corresponding execution of End results in the
error INVALID OPERATION. Executing Begin after Begin has already been
executed but before an End is executed generates the INVALID OPERATION

error, as does executing End without a previous corresponding Begin.
Execution of the commands EnableClientState, Dis-

ableClientState, PushClientAttrib, PopClientAttrib, EdgeFlag-
Pointer, TexCoordPointer, ColorPointer, IndexPointer, Normal-
Pointer, VertexPointer, InterleavedArrays, and PixelStore, is not
allowed within any Begin/End pair, but an error may or may not be gen-
erated if such execution occurs. If an error is not generated, GL operation
is unde�ned. (These commands are described in sections 2.8, 3.6.1, and
Chapter 6.)

2.7 Vertex Speci�cation

Vertices are speci�ed by giving their coordinates in two, three, or four dimen-
sions. This is done using one of several versions of the Vertex command:

void Vertexf234gfsifdg(T coords);
void Vertexf234gfsifdgv(T coords);

Version 1.2.1 - April 1, 1999

20 CHAPTER 2. OPENGL OPERATION

A call to any Vertex command speci�es four coordinates: x, y, z, and w.
The x coordinate is the �rst coordinate, y is second, z is third, and w is
fourth. A call to Vertex2 sets the x and y coordinates; the z coordinate is
implicitly set to zero and the w coordinate to one. Vertex3 sets x, y, and
z to the provided values and w to one. Vertex4 sets all four coordinates,
allowing the speci�cation of an arbitrary point in projective three-space.
Invoking a Vertex command outside of a Begin/End pair results in unde-
�ned behavior.

Current values are used in associating auxiliary data with a vertex as
described in section 2.6. A current value may be changed at any time by
issuing an appropriate command. The commands

void TexCoordf1234gfsifdg(T coords);
void TexCoordf1234gfsifdgv(T coords);

specify the current homogeneous texture coordinates, named s, t, r, and q.
The TexCoord1 family of commands set the s coordinate to the provided
single argument while setting t and r to 0 and q to 1. Similarly,TexCoord2
sets s and t to the speci�ed values, r to 0 and q to 1; TexCoord3 sets s, t,
and r, with q set to 1, and TexCoord4 sets all four texture coordinates.

The current normal is set using

void Normal3fbsifdg(T coords);
void Normal3fbsifdgv(T coords);

Byte, short, or integer values passed to Normal are converted to oating-
point values as indicated for the corresponding (signed) type in Table 2.6.

Finally, there are several ways to set the current color. The GL stores
both a current single-valued color index, and a current four-valued RGBA
color. One or the other of these is signi�cant depending as the GL is in color
index mode or RGBA mode. The mode selection is made when the GL is
initialized.

The command to set RGBA colors is

void Colorf34gfbsifd ubusuig(T components);
void Colorf34gfbsifd ubusuigv(T components);

The Color command has two major variants: Color3 and Color4. The
four value versions set all four values. The three value versions set R, G,
and B to the provided values; A is set to 1.0. (The conversion of integer
color components (R, G, B, and A) to oating-point values is discussed in
section 2.13.)

Version 1.2.1 - April 1, 1999

2.8. VERTEX ARRAYS 21

Versions of the Color command that take oating-point values accept
values nominally between 0.0 and 1.0. 0.0 corresponds to the minimum
while 1.0 corresponds to the maximum (machine dependent) value that a
component may take on in the framebu�er (see section 2.13 on colors and
coloring). Values outside [0; 1] are not clamped.

The command

void Indexfsifd ubg(T index);
void Indexfsifd ubgv(T index);

updates the current (single-valued) color index. It takes one argument, the
value to which the current color index should be set. Values outside the
(machine-dependent) representable range of color indices are not clamped.

The state required to support vertex speci�cation consists of four
oating-point numbers to store the current texture coordinates s, t, r, and
q, three oating-point numbers to store the three coordinates of the current
normal, four oating-point values to store the current RGBA color, and
one oating-point value to store the current color index. There is no notion
of a current vertex, so no state is devoted to vertex coordinates. The initial
values of s, t, and r of the current texture coordinates are zero; the initial
value of q is one. The initial current normal has coordinates (0; 0; 1). The
initial RGBA color is (R;G;B;A) = (1; 1; 1; 1). The initial color index is 1.

2.8 Vertex Arrays

The vertex speci�cation commands described in section 2.7 accept data in
almost any format, but their use requires many command executions to spec-
ify even simple geometry. Vertex data may also be placed into arrays that
are stored in the client's address space. Blocks of data in these arrays may
then be used to specify multiple geometric primitives through the execution
of a single GL command. The client may specify up to six arrays: one each
to store edge ags, texture coordinates, colors, color indices, normals, and
vertices. The commands

void EdgeFlagPointer(sizei stride, void *pointer);

void TexCoordPointer(int size, enum type, sizei stride,
void *pointer);

void ColorPointer(int size, enum type, sizei stride,
void *pointer);

Version 1.2.1 - April 1, 1999

22 CHAPTER 2. OPENGL OPERATION

Command Sizes Types

VertexPointer 2,3,4 short, int, float, double

NormalPointer 3 byte, short, int, float, double

ColorPointer 3,4 byte, ubyte, short, ushort, int,
uint, float, double

IndexPointer 1 ubyte, short, int, float, double

TexCoordPointer 1,2,3,4 short, int, float, double

EdgeFlagPointer 1 boolean

Table 2.4: Vertex array sizes (values per vertex) and data types.

void IndexPointer(enum type, sizei stride,
void *pointer);

void NormalPointer(enum type, sizei stride,
void *pointer);

void VertexPointer(int size, enum type, sizei stride,
void *pointer);

describe the locations and organizations of these arrays. For each com-
mand, type speci�es the data type of the values stored in the array. Because
edge ags are always type boolean, EdgeFlagPointer has no type argu-
ment. size, when present, indicates the number of values per vertex that
are stored in the array. Because normals are always speci�ed with three
values, NormalPointer has no size argument. Likewise, because color in-
dices and edge ags are always speci�ed with a single value, IndexPointer
and EdgeFlagPointer also have no size argument. Table 2.4 indicates
the allowable values for size and type (when present). For type the values
BYTE, SHORT, INT, FLOAT, and DOUBLE indicate types byte, short, int, float,
and double, respectively; and the values UNSIGNED BYTE, UNSIGNED SHORT, and
UNSIGNED INT indicate types ubyte, ushort, and uint, respectively. The er-
ror INVALID VALUE is generated if size is speci�ed with a value other than
that indicated in the table.

The one, two, three, or four values in an array that correspond to a single
vertex comprise an array element. The values within each array element are
stored sequentially in memory. If stride is speci�ed as zero, then array
elements are stored sequentially as well. Otherwise pointers to the ith and
(i+ 1)st elements of an array di�er by stride basic machine units (typically

Version 1.2.1 - April 1, 1999

2.8. VERTEX ARRAYS 23

unsigned bytes), the pointer to the (i+1)st element being greater. For each
command, pointer speci�es the location in memory of the �rst value of the
�rst element of the array being speci�ed.

An individual array is enabled or disabled by calling one of

void EnableClientState(enum array);
void DisableClientState(enum array);

with array set to EDGE FLAG ARRAY, TEXTURE COORD ARRAY, COLOR ARRAY,
INDEX ARRAY, NORMAL ARRAY, or VERTEX ARRAY, for the edge ag, texture coor-
dinate, color, color index, normal, or vertex array, respectively.

The ith element of every enabled array is transferred to the GL by calling

void ArrayElement(int i);

For each enabled array, it is as though the corresponding command from sec-
tion 2.7 or section 2.6.2 were called with a pointer to element i. For the ver-
tex array, the corresponding command isVertex[size][type]v, where size is
one of [2,3,4], and type is one of [s,i,f,d], corresponding to array types short,
int, float, and double respectively. The corresponding commands for
the edge ag, texture coordinate, color, color index, and normal arrays are
EdgeFlagv, TexCoord[size][type]v, Color[size][type]v, Index[type]v,
and Normal[type]v, respectively. If the vertex array is enabled, it is as
though Vertex[size][type]v is executed last, after the executions of the
other corresponding commands.

Changes made to array data between the execution of Begin and the
corresponding execution of End may a�ect calls to ArrayElement that are
made within the same Begin/End period in non-sequential ways. That is,
a call to ArrayElement that precedes a change to array data may access
the changed data, and a call that follows a change to array data may access
original data.

The command

void DrawArrays(enum mode, int �rst, sizei count);

constructs a sequence of geometric primitives using elements first through
first+count�1 of each enabled array. mode speci�es what kind of primitives
are constructed; it accepts the same token values as the mode parameter of
the Begin command. The e�ect of

DrawArrays (mode; first; count);

Version 1.2.1 - April 1, 1999

24 CHAPTER 2. OPENGL OPERATION

is the same as the e�ect of the command sequence

if (mode or count is invalid)

generate appropriate error
else f

int i;

Begin(mode);
for (i=0; i < count ; i++)

ArrayElement(first+ i);

End();
g

with one exception: the current edge ag, texture coordinates, color, color
index, and normal coordinates are each indeterminate after the execution of
DrawArrays, if the corresponding array is enabled. Current values corre-
sponding to disabled arrays are not modi�ed by the execution of DrawAr-
rays.

The command

void DrawElements(enum mode, sizei count, enum type,
void *indices);

constructs a sequence of geometric primitives using the count elements
whose indices are stored in indices. type must be one of UNSIGNED BYTE,
UNSIGNED SHORT, or UNSIGNED INT, indicating that the values in indices are
indices of GL type ubyte, ushort, or uint respectively. mode speci�es
what kind of primitives are constructed; it accepts the same token values as
the mode parameter of the Begin command. The e�ect of

DrawElements (mode; count; type; indices);

is the same as the e�ect of the command sequence

if (mode; count; or type is invalid)

generate appropriate error
else f

int i;

Begin(mode);
for (i=0; i < count ; i++)

ArrayElement(indices[i]);
End();

g

Version 1.2.1 - April 1, 1999

2.8. VERTEX ARRAYS 25

with one exception: the current edge ag, texture coordinates, color, color
index, and normal coordinates are each indeterminate after the execution
of DrawElements, if the corresponding array is enabled. Current val-
ues corresponding to disabled arrays are not modi�ed by the execution of
DrawElements.

The command

void DrawRangeElements(enum mode, uint start,
uint end, sizei count, enum type, void *indices);

is a restricted form of DrawElements. mode, count, type, and indices
match the corresponding arguments toDrawElements, with the additional
constraint that all values in the array indices must lie between start and end
inclusive.

Implementations denote recommended maximum amounts of vertex and
index data, which may be queried by callingGetIntegerv with the symbolic
constants MAX ELEMENTS VERTICES and MAX ELEMENTS INDICES. If end�start+1
is greater than the value of MAX ELEMENTS VERTICES, or if count is greater than
the value of MAX ELEMENTS INDICES, then the call may operate at reduced per-
formance. There is no requirement that all vertices in the range [start; end]
be referenced. However, the implementation may partially process unused
vertices, reducing performance from what could be achieved with an optimal
index set.

The error INVALID VALUE is generated if end < start. Invalidmode, count,
or type parameters generate the same errors as would the corresponding
call to DrawElements. It is an error for indices to lie outside the range
[start; end], but implementations may not check for this. Such indices will
cause implementation-dependent behavior.

The command

void InterleavedArrays(enum format, sizei stride,
void *pointer);

e�ciently initializes the six arrays and their enables to one of 14 con�gura-
tions. format must be one of 14 symbolic constants: V2F, V3F, C4UB V2F,
C4UB V3F, C3F V3F, N3F V3F, C4F N3F V3F, T2F V3F, T4F V4F, T2F C4UB V3F,
T2F C3F V3F, T2F N3F V3F, T2F C4F N3F V3F, or T4F C4F N3F V4F.

The e�ect of

InterleavedArrays(format; stride; pointer);

is the same as the e�ect of the command sequence

Version 1.2.1 - April 1, 1999

26 CHAPTER 2. OPENGL OPERATION

format et ec en st sc sv tc

V2F False False False 2
V3F False False False 3
C4UB V2F False True False 4 2 UNSIGNED BYTE

C4UB V3F False True False 4 3 UNSIGNED BYTE

C3F V3F False True False 3 3 FLOAT

N3F V3F False False True 3
C4F N3F V3F False True True 4 3 FLOAT

T2F V3F True False False 2 3

T4F V4F True False False 4 4
T2F C4UB V3F True True False 2 4 3 UNSIGNED BYTE

T2F C3F V3F True True False 2 3 3 FLOAT

T2F N3F V3F True False True 2 3

T2F C4F N3F V3F True True True 2 4 3 FLOAT

T4F C4F N3F V4F True True True 4 4 4 FLOAT

format pc pn pv s

V2F 0 2f
V3F 0 3f
C4UB V2F 0 c c+ 2f
C4UB V3F 0 c c+ 3f

C3F V3F 0 3f 6f
N3F V3F 0 3f 6f
C4F N3F V3F 0 4f 7f 10f
T2F V3F 2f 5f

T4F V4F 4f 8f
T2F C4UB V3F 2f c+ 2f c+ 5f
T2F C3F V3F 2f 5f 8f
T2F N3F V3F 2f 5f 8f

T2F C4F N3F V3F 2f 6f 9f 12f
T4F C4F N3F V4F 4f 8f 11f 15f

Table 2.5: Variables that direct the execution of InterleavedArrays. f
is sizeof(FLOAT). c is 4 times sizeof(UNSIGNED BYTE), rounded up to
the nearest multiple of f . All pointer arithmetic is performed in units of
sizeof(UNSIGNED BYTE).

Version 1.2.1 - April 1, 1999

2.8. VERTEX ARRAYS 27

if (format or stride is invalid)
generate appropriate error

else f
int str;

set et; ec; en; st; sc; sv; tc; pc; pn; pv; and s as a function
of Table 2.5 and the value of format.

str = stride;
if (str is zero)

str = s;
DisableClientState(EDGE FLAG ARRAY);
DisableClientState(INDEX ARRAY);
if (et) f

EnableClientState(TEXTURE COORD ARRAY);
TexCoordPointer(st, FLOAT, str, pointer);

g else f
DisableClientState(TEXTURE COORD ARRAY);

g
if (ec) f

EnableClientState(COLOR ARRAY);
ColorPointer(sc, tc, str, pointer + pc);

g else f
DisableClientState(COLOR ARRAY);

g
if (en) f

EnableClientState(NORMAL ARRAY);
NormalPointer(FLOAT, str, pointer + pn);

g else f
DisableClientState(NORMAL ARRAY);

g
EnableClientState(VERTEX ARRAY);
VertexPointer(sv, FLOAT, str, pointer + pv);

g

The client state required to implement vertex arrays consists of six
boolean values, six memory pointers, six integer stride values, �ve symbolic
constants representing array types, and three integers representing values
per element. In the initial state the boolean values are each disabled, the
memory pointers are each null, the strides are each zero, the array types are
each FLOAT, and the integers representing values per element are each four.

Version 1.2.1 - April 1, 1999

28 CHAPTER 2. OPENGL OPERATION

2.9 Rectangles

There is a set of GL commands to support e�cient speci�cation of rectangles
as two corner vertices.

void Rectfsifdg(T x1, T y1, T x2, T y2);
void Rectfsifdgv(T v1[2], T v2[2]);

Each command takes either four arguments organized as two consecutive
pairs of (x; y) coordinates, or two pointers to arrays each of which contains
an x value followed by a y value. The e�ect of the Rect command

Rect (x1; y1; x2; y2);

is exactly the same as the following sequence of commands:

Begin(POLYGON);
Vertex2(x1; y1);
Vertex2(x2; y1);
Vertex2(x2; y2);
Vertex2(x1; y2);

End();

The appropriate Vertex2 command would be invoked depending on which
of the Rect commands is issued.

2.10 Coordinate Transformations

Vertices, normals, and texture coordinates are transformed before their
coordinates are used to produce an image in the framebu�er. We begin
with a description of how vertex coordinates are transformed and how this
transformation is controlled.

Figure 2.6 diagrams the sequence of transformations that are applied to
vertices. The vertex coordinates that are presented to the GL are termed
object coordinates. The model-view matrix is applied to these coordinates to
yield eye coordinates. Then another matrix, called the projection matrix, is
applied to eye coordinates to yield clip coordinates. A perspective division
is carried out on clip coordinates to yield normalized device coordinates. A
�nal viewport transformation is applied to convert these coordinates into
window coordinates.

Version 1.2.1 - April 1, 1999

2.10. COORDINATE TRANSFORMATIONS 29

Object

Coordinates Coordinates

Eye

Coordinates

Window

Coordinates

Normalized
DeviceModel−View

Matrix

Perspective
Division

Viewport
Transformation

Coordinates

ClipProjection

Matrix

Figure 2.6. Vertex transformation sequence.

Object coordinates, eye coordinates, and clip coordinates are four-
dimensional, consisting of x, y, z, and w coordinates (in that order). The
model-view and perspective matrices are thus 4� 4.

If a vertex in object coordinates is given by

0
BB@
xo
yo
zo
wo

1
CCA and the model-view

matrix is M , then the vertex's eye coordinates are found as

0
BB@
xe
ye
ze
we

1
CCA =M

0
BB@
xo
yo
zo
wo

1
CCA :

Similarly, if P is the projection matrix, then the vertex's clip coordinates
are 0

BB@
xc
yc
zc
wc

1
CCA = P

0
BB@
xe
ye
ze
we

1
CCA :

The vertex's normalized device coordinates are then0
@xd
yd
zd

1
A =

0
@xc=wc

yc=wc

zc=wc

1
A :

Version 1.2.1 - April 1, 1999

30 CHAPTER 2. OPENGL OPERATION

2.10.1 Controlling the Viewport

The viewport transformation is determined by the viewport's width and
height in pixels, px and py, respectively, and its center (ox; oy) (also in

pixels). The vertex's window coordinates,

0
@xw
yw
zw

1
A, are given by

0
@xw
yw
zw

1
A =

0
@ (px=2)xd + ox

(py=2)yd + oy
[(f � n)=2]zd + (n+ f)=2

1
A :

The factor and o�set applied to zd encoded by n and f are set using

void DepthRange(clampd n, clampd f);

Each of n and f are clamped to lie within [0; 1], as are all arguments of type
clampd or clampf. zw is taken to be represented in �xed-point with at least
as many bits as there are in the depth bu�er of the framebu�er. We assume
that the �xed-point representation used represents each value k=(2m � 1),
where k 2 f0; 1; : : : ; 2m � 1g, as k (e.g. 1.0 is represented in binary as a
string of all ones).

Viewport transformation parameters are speci�ed using

void Viewport(int x, int y, sizei w, sizei h);

where x and y give the x and y window coordinates of the viewport's lower-
left corner and w and h give the viewport's width and height, respectively.
The viewport parameters shown in the above equations are found from these
values as ox = x+ w=2 and oy = y + h=2; px = w, py = h.

Viewport width and height are clamped to implementation-dependent
maximums when speci�ed. The maximum width and height may be found
by issuing an appropriate Get command (see Chapter 6). The maximum
viewport dimensions must be greater than or equal to the visible dimensions
of the display being rendered to. INVALID VALUE is generated if either w or h
is negative.

The state required to implement the viewport transformation is 6 inte-
gers. In the initial state, w and h are set to the width and height, respectively,
of the window into which the GL is to do its rendering. ox and oy are set to
w=2 and h=2, respectively. n and f are set to 0:0 and 1:0, respectively.

Version 1.2.1 - April 1, 1999

2.10. COORDINATE TRANSFORMATIONS 31

2.10.2 Matrices

The projection matrix and model-view matrix are set and modi�ed with
a variety of commands. The a�ected matrix is determined by the current
matrix mode. The current matrix mode is set with

void MatrixMode(enum mode);

which takes one of the pre-de�ned constants TEXTURE, MODELVIEW, COLOR,
or PROJECTION as the argument value. TEXTURE is described later in sec-
tion 2.10.2, and COLORis described in section 3.6.3. If the current matrix
mode is MODELVIEW, then matrix operations apply to the model-view matrix;
if PROJECTION, then they apply to the projection matrix.

The two basic commands for a�ecting the current matrix are

void LoadMatrixffdg(T m[16]);
void MultMatrixffdg(T m[16]);

LoadMatrix takes a pointer to a 4�4 matrix stored in column-major order
as 16 consecutive oating-point values, i.e. as

0
BB@
a1 a5 a9 a13
a2 a6 a10 a14
a3 a7 a11 a15
a4 a8 a12 a16

1
CCA :

(This di�ers from the standard row-major C ordering for matrix elements. If
the standard ordering is used, all of the subsequent transformation equations
are transposed, and the columns representing vectors become rows.)

The speci�ed matrix replaces the current matrix with the one pointed to.
MultMatrix takes the same type argument as LoadMatrix, but multiplies
the current matrix by the one pointed to and replaces the current matrix
with the product. If C is the current matrix and M is the matrix pointed
to by MultMatrix's argument, then the resulting current matrix, C 0, is

C 0 = C �M:

The command

void LoadIdentity(void);

Version 1.2.1 - April 1, 1999

32 CHAPTER 2. OPENGL OPERATION

e�ectively calls LoadMatrix with the identity matrix:

0
BB@
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1
CCA :

There are a variety of other commands that manipulate matrices. Ro-
tate, Translate, Scale, Frustum, and Ortho manipulate the current ma-
trix. Each computes a matrix and then invokes MultMatrix with this
matrix. In the case of

void Rotateffdg(T �, T x, T y, T z);

� gives an angle of rotation in degrees; the coordinates of a vector v are given
by v = (x y z)T . The computed matrix is a counter-clockwise rotation about
the line through the origin with the speci�ed axis when that axis is pointing
up (i.e. the right-hand rule determines the sense of the rotation angle). The
matrix is thus

0
BB@

0
R 0

0
0 0 0 1

1
CCA :

Let u = v=jjvjj = (x0 y0 z0)T . If

S =

0
@ 0 �z0 y0

z0 0 �x0
�y0 x0 0

1
A

then
R = uuT + cos �(I � uuT) + sin �S:

The arguments to

void Translateffdg(T x, T y, T z);

give the coordinates of a translation vector as (x y z)T . The resulting matrix
is a translation by the speci�ed vector:0

BB@
1 0 0 x
0 1 0 y
0 0 1 z
0 0 0 1

1
CCA :

Version 1.2.1 - April 1, 1999

2.10. COORDINATE TRANSFORMATIONS 33

void Scaleffdg(T x, T y, T z);

produces a general scaling along the x-, y-, and z- axes. The corresponding
matrix is 0

BB@
x 0 0 0
0 y 0 0
0 0 z 0
0 0 0 1

1
CCA :

For

void Frustum(double l, double r, double b, double t,
double n, double f);

the coordinates (l b � n)T and (r t � n)T specify the points on the near
clipping plane that are mapped to the lower-left and upper-right corners of
the window, respectively (assuming that the eye is located at (0 0 0)T). f
gives the distance from the eye to the far clipping plane. If either n or f is
less than or equal to zero, l is equal to r, b is equal to t, or n is equal to f ,
the error INVALID VALUE results. The corresponding matrix is

0
BBB@

2n
r�l

0 r+l
r�l

0

0 2n
t�b

t+b
t�b

0

0 0 �f+n
f�n

� 2fn
f�n

0 0 �1 0

1
CCCA :

void Ortho(double l, double r, double b, double t,
double n, double f);

describes a matrix that produces parallel projection. (l b�n)T and (r t �n)T
specify the points on the near clipping plane that are mapped to the lower-
left and upper-right corners of the window, respectively. f gives the distance
from the eye to the far clipping plane. If l is equal to r, b is equal to t, or n
is equal to f , the error INVALID VALUE results. The corresponding matrix is

0
BBB@

2
r�l

0 0 � r+l
r�l

0 2
t�b

0 � t+b
t�b

0 0 � 2
f�n

�f+n
f�n

0 0 0 1

1
CCCA :

There is another 4�4 matrix that is applied to texture coordinates. This
matrix is applied as

Version 1.2.1 - April 1, 1999

34 CHAPTER 2. OPENGL OPERATION

0
BB@
m1 m5 m9 m13

m2 m6 m10 m14

m3 m7 m11 m15

m4 m8 m12 m16

1
CCA
0
BB@
s
t
r
q

1
CCA ;

where the left matrix is the current texture matrix. The matrix is applied
to the coordinates resulting from texture coordinate generation (which may
simply be the current texture coordinates), and the resulting transformed co-
ordinates become the texture coordinates associated with a vertex. Setting
the matrix mode to TEXTURE causes the already described matrix operations
to apply to the texture matrix.

There is a stack of matrices for each of the matrix modes. For MODELVIEW
mode, the stack depth is at least 32 (that is, there is a stack of at least 32
model-view matrices). For the other modes, the depth is at least 2. The
current matrix in any mode is the matrix on the top of the stack for that
mode.

void PushMatrix(void);

pushes the stack down by one, duplicating the current matrix in both the
top of the stack and the entry below it.

void PopMatrix(void);

pops the top entry o� of the stack, replacing the current matrix with the
matrix that was the second entry in the stack. The pushing or popping takes
place on the stack corresponding to the current matrix mode. Popping a
matrix o� a stack with only one entry generates the error STACK UNDERFLOW;
pushing a matrix onto a full stack generates STACK OVERFLOW.

The state required to implement transformations consists of a four-
valued integer indicating the current matrix mode, a stack of at least two
4 � 4 matrices for each of COLOR, PROJECTION, and TEXTURE with associated
stack pointers, and a stack of at least 32 4� 4 matrices with an associated
stack pointer for MODELVIEW. Initially, there is only one matrix on each stack,
and all matrices are set to the identity. The initial matrix mode is MODELVIEW.

2.10.3 Normal Transformation

Finally, we consider how the model-view matrix and transformation state
a�ect normals. Before use in lighting, normals are transformed to eye co-
ordinates by a matrix derived from the model-view matrix. Rescaling and
normalization operations are performed on the transformed normals to make

Version 1.2.1 - April 1, 1999

2.10. COORDINATE TRANSFORMATIONS 35

them unit length prior to use in lighting. Rescaling and normalization are
controlled by

void Enable(enum target);

and

void Disable(enum target);

with target equal to RESCALE NORMAL or NORMALIZE. This requires two bits of
state. The initial state is for normals not to be rescaled or normalized.

If the model-view matrix is M , then the normal is transformed to eye
coordinates by:

(nx
0 ny

0 nz
0 q0) = (nx ny nz q) �M�1

where, if

0
BB@
x
y
z
w

1
CCA are the associated vertex coordinates, then

q =

8>>>><
>>>>:

0; w = 0;

�(nx ny nz)

0
@x
y
z

1
A

w
; w 6= 0

(2.1)

Implementations may choose instead to transform (nx ny nz) to eye
coordinates using

(nx
0 ny

0 nz
0) = (nx ny nz) �Mu

�1

where Mu is the upper leftmost 3x3 matrix taken from M .

Rescale multiplies the transformed normals by a scale factor

(nx
00 ny

00 nz
00) = f (nx

0 ny
0 nz

0)

If rescaling is disabled, then f = 1. If rescaling is enabled, then f is com-
puted as (mij denotes the matrix element in row i and column j of M�1,
numbering the topmost row of the matrix as row 1 and the leftmost column
as column 1)

f =
1p

m31
2 +m32

2 +m33
2

Version 1.2.1 - April 1, 1999

36 CHAPTER 2. OPENGL OPERATION

Note that if the normals sent to GL were unit length and the model-view
matrix uniformly scales space, then rescale makes the transformed normals
unit length.

Alternatively, an implementation may chose f as

f =
1q

nx0
2 + ny 0

2 + nz 0
2

recomputing f for each normal. This makes all non-zero length normals
unit length regardless of their input length and the nature of the model-
view matrix.

After rescaling, the �nal transformed normal used in lighting, nf , is
computed as

nf = m (nx
00 ny

00 nz
00)

If normalization is disabled, then m = 1. Otherwise

m =
1q

nx00
2 + ny 00

2 + nz 00
2

Because we specify neither the oating-point format nor the means
for matrix inversion, we cannot specify behavior in the case of a poorly-
conditioned (nearly singular) model-view matrix M . In case of an exactly
singular matrix, the transformed normal is unde�ned. If the GL implementa-
tion determines that the model-view matrix is uninvertible, then the entries
in the inverted matrix are arbitrary. In any case, neither normal transfor-
mation nor use of the transformed normal may lead to GL interruption or
termination.

2.10.4 Generating Texture Coordinates

Texture coordinates associated with a vertex may either be taken from the
current texture coordinates or generated according to a function dependent
on vertex coordinates. The command

void TexGenfifdg(enum coord, enum pname, T param);
void TexGenfifdgv(enum coord, enum pname, T params);

controls texture coordinate generation. coord must be one of the constants
S, T, R, or Q, indicating that the pertinent coordinate is the s, t, r, or q

Version 1.2.1 - April 1, 1999

2.10. COORDINATE TRANSFORMATIONS 37

coordinate, respectively. In the �rst form of the command, param is a sym-
bolic constant specifying a single-valued texture generation parameter; in the
second form, params is a pointer to an array of values that specify texture
generation parameters. pname must be one of the three symbolic constants
TEXTURE GEN MODE, OBJECT PLANE, or EYE PLANE. If pname is TEXTURE GEN MODE,
then either params points to or param is an integer that is one of the symbolic
constants OBJECT LINEAR, EYE LINEAR, or SPHERE MAP.

If TEXTURE GEN MODE indicates OBJECT LINEAR, then the generation function
for the coordinate indicated by coord is

g = p1xo + p2yo + p3zo + p4wo:

xo, yo, zo, and wo are the object coordinates of the vertex. p1; : : : ; p4 are
speci�ed by calling TexGen with pname set to OBJECT PLANE in which case
params points to an array containing p1; : : : ; p4. There is a distinct group of
plane equation coe�cients for each texture coordinate; coord indicates the
coordinate to which the speci�ed coe�cients pertain.

If TEXTURE GEN MODE indicates EYE LINEAR, then the function is

g = p01xe + p02ye + p03ze + p04we

where

(p01 p02 p03 p04) = (p1 p2 p3 p4)M
�1

xe, ye, ze, and we are the eye coordinates of the vertex. p1; : : : ; p4 are
set by calling TexGen with pname set to EYE PLANE in correspondence with
setting the coe�cients in the OBJECT PLANE case. M is the model-view matrix
in e�ect when p1; : : : ; p4 are speci�ed. Computed texture coordinates may
be inaccurate or unde�ned if M is poorly conditioned or singular.

When used with a suitably constructed texture image, calling TexGen
with TEXTURE GEN MODE indicating SPHERE MAP can simulate the reected im-
age of a spherical environment on a polygon. SPHERE MAP texture coordinates
are generated as follows. Denote the unit vector pointing from the origin to
the vertex (in eye coordinates) by u. Denote the current normal, after trans-
formation to eye coordinates, by n0. Let r = (rx ry rz)

T , the reection
vector, be given by

r = u� 2n0T
�
n0u

�
;

and let m = 2
q
r2x + r2y + (rz + 1)2. Then the value assigned to an s coor-

dinate (the �rst TexGen argument value is S) is s = rx=m + 1
2 ; the value

Version 1.2.1 - April 1, 1999

38 CHAPTER 2. OPENGL OPERATION

assigned to a t coordinate is t = ry=m + 1
2 . Calling TexGen with a co-

ord of either R or Q when pname indicates SPHERE MAP generates the error
INVALID ENUM.

A texture coordinate generation function is enabled or disabled using
Enable and Disable with an argument of TEXTURE GEN S, TEXTURE GEN T,
TEXTURE GEN R, or TEXTURE GEN Q (each indicates the corresponding texture
coordinate). When enabled, the speci�ed texture coordinate is computed
according to the current EYE LINEAR, OBJECT LINEAR or SPHERE MAP speci�ca-
tion, depending on the current setting of TEXTURE GEN MODE for that coordi-
nate. When disabled, subsequent vertices will take the indicated texture
coordinate from the current texture coordinates.

The state required for texture coordinate generation comprises a three-
valued integer for each coordinate indicating coordinate generation mode,
and a bit for each coordinate to indicate whether texture coordinate genera-
tion is enabled or disabled. In addition, four coe�cients are required for the
four coordinates for each of EYE LINEAR and OBJECT LINEAR. The initial state
has the texture generation function disabled for all texture coordinates. The
initial values of pi for s are all 0 except p1 which is one; for t all the pi are
zero except p2, which is 1. The values of pi for r and q are all 0. These values
of pi apply for both the EYE LINEAR and OBJECT LINEAR versions. Initially all
texture generation modes are EYE LINEAR.

2.11 Clipping

Primitives are clipped to the clip volume. In clip coordinates, the view
volume is de�ned by

�wc � xc � wc

�wc � yc � wc

�wc � zc � wc

:

This view volume may be further restricted by as many as n client-de�ned
clip planes to generate the clip volume. (n is an implementation dependent
maximum that must be at least 6.) Each client-de�ned plane speci�es a
half-space. The clip volume is the intersection of all such half-spaces with
the view volume (if there no client-de�ned clip planes are enabled, the clip
volume is the view volume).

A client-de�ned clip plane is speci�ed with

void ClipPlane(enum p, double eqn[4]);

Version 1.2.1 - April 1, 1999

2.11. CLIPPING 39

The value of the �rst argument, p, is a symbolic constant, CLIP PLANEi, where
i is an integer between 0 and n � 1, indicating one of n client-de�ned clip
planes. eqn is an array of four double-precision oating-point values. These
are the coe�cients of a plane equation in object coordinates: p1, p2, p3, and
p4 (in that order). The inverse of the current model-view matrix is applied
to these coe�cients, at the time they are speci�ed, yielding

(p01 p02 p03 p04) = (p1 p2 p3 p4)M
�1

(where M is the current model-view matrix; the resulting plane equation is
unde�ned ifM is singular and may be inaccurate ifM is poorly-conditioned)
to obtain the plane equation coe�cients in eye coordinates. All points with
eye coordinates (xe ye ze we)

T that satisfy

(p01 p02 p03 p04)

0
BB@
xe
ye
ze
we

1
CCA � 0

lie in the half-space de�ned by the plane; points that do not satisfy this
condition do not lie in the half-space.

Client-de�ned clip planes are enabled with the generic Enable com-
mand and disabled with the Disable command. The value of the argument
to either command is CLIP PLANEi where i is an integer between 0 and n;
specifying a value of i enables or disables the plane equation with index i.
The constants obey CLIP PLANEi = CLIP PLANE0+ i.

If the primitive under consideration is a point, then clipping passes it
unchanged if it lies within the clip volume; otherwise, it is discarded. If the
primitive is a line segment, then clipping does nothing to it if it lies entirely
within the clip volume and discards it if it lies entirely outside the volume.
If part of the line segment lies in the volume and part lies outside, then the
line segment is clipped and new vertex coordinates are computed for one or
both vertices. A clipped line segment endpoint lies on both the original line
segment and the boundary of the clip volume.

This clipping produces a value, 0 � t � 1, for each clipped vertex. If the
coordinates of a clipped vertex are P and the original vertices' coordinates
are P1 and P2, then t is given by

P = tP1 + (1� t)P2:

The value of t is used in color and texture coordinate clipping (sec-
tion 2.13.8).

Version 1.2.1 - April 1, 1999

40 CHAPTER 2. OPENGL OPERATION

If the primitive is a polygon, then it is passed if every one of its edges
lies entirely inside the clip volume and either clipped or discarded otherwise.
Polygon clipping may cause polygon edges to be clipped, but because poly-
gon connectivity must be maintained, these clipped edges are connected by
new edges that lie along the clip volume's boundary. Thus, clipping may
require the introduction of new vertices into a polygon. Edge ags are asso-
ciated with these vertices so that edges introduced by clipping are agged
as boundary (edge ag TRUE), and so that original edges of the polygon that
become cut o� at these vertices retain their original ags.

If it happens that a polygon intersects an edge of the clip volume's
boundary, then the clipped polygon must include a point on this boundary
edge. This point must lie in the intersection of the boundary edge and
the convex hull of the vertices of the original polygon. We impose this
requirement because the polygon may not be exactly planar.

A line segment or polygon whose vertices have wc values of di�ering signs
may generate multiple connected components after clipping. GL implemen-
tations are not required to handle this situation. That is, only the portion of
the primitive that lies in the region of wc > 0 need be produced by clipping.

Primitives rendered with clip planes must satisfy a complementarity cri-
terion. Suppose a single clip plane with coe�cients (p01 p02 p03 p04) (or a
number of similarly speci�ed clip planes) is enabled and a series of primitives
are drawn. Next, suppose that the original clip plane is respeci�ed with co-
e�cients (�p01 �p02 �p03 �p04) (and correspondingly for any other clip
planes) and the primitives are drawn again (and the GL is otherwise in the
same state). In this case, primitives must not be missing any pixels, nor
may any pixels be drawn twice in regions where those primitives are cut by
the clip planes.

The state required for clipping is at least 6 sets of plane equations (each
consisting of four double-precision oating-point coe�cients) and at least 6
corresponding bits indicating which of these client-de�ned plane equations
are enabled. In the initial state, all client-de�ned plane equation coe�cients
are zero and all planes are disabled.

2.12 Current Raster Position

The current raster position is used by commands that directly a�ect pixels in
the framebu�er. These commands, which bypass vertex transformation and
primitive assembly, are described in the next chapter. The current raster
position, however, shares some of the characteristics of a vertex.

Version 1.2.1 - April 1, 1999

2.13. COLORS AND COLORING 41

The state required for the current raster position consists of three window
coordinates xw, yw, and zw, a clip coordinate wc value, an eye coordinate
distance, a valid bit, and associated data consisting of a color and texture
coordinates. It is set using one of the RasterPos commands:

void RasterPosf234gfsifdg(T coords);
void RasterPosf234gfsifdgv(T coords);

RasterPos4 takes four values indicating x, y, z, and w. RasterPos3 (or
RasterPos2) is analogous, but sets only x, y, and z with w implicitly set
to 1 (or only x and y with z implicitly set to 0 and w implicitly set to 1).

The coordinates are treated as if they were speci�ed in a Vertex com-
mand. The x, y, z, and w coordinates are transformed by the current
model-view and perspective matrices. These coordinates, along with cur-
rent values, are used to generate a color and texture coordinates just as is
done for a vertex. The color and texture coordinates so produced replace
the color and texture coordinates stored in the current raster position's as-
sociated data. The distance from the origin of the eye coordinate system
to the vertex as transformed by only the current model-view matrix re-
places the current raster distance. This distance can be approximated (see
section 3.10).

The transformed coordinates are passed to clipping as if they represented
a point. If the \point" is not culled, then the projection to window coor-
dinates is computed (section 2.10) and saved as the current raster position,
and the valid bit is set. If the \point" is culled, the current raster position
and its associated data become indeterminate and the valid bit is cleared.
Figure 2.7 summarizes the behavior of the current raster position.

The current raster position requires �ve single-precision oating-point
values for its xw, yw, and zw window coordinates, its wc clip coordinate,
and its eye coordinate distance, a single valid bit, a color (RGBA and color
index), and texture coordinates for associated data. In the initial state, the
coordinates and texture coordinates are both (0; 0; 0; 1), the eye coordinate
distance is 0, the valid bit is set, the associated RGBA color is (1; 1; 1; 1)
and the associated color index color is 1. In RGBA mode, the associated
color index always has its initial value; in color index mode, the RGBA color
always maintains its initial value.

Version 1.2.1 - April 1, 1999

42 CHAPTER 2. OPENGL OPERATION

Texture
Matrix

Rasterpos In

Current
Texture

Coordinates

Current
Normal

Lighting

Vertex/Normal
Transformation

Texgen

Clip Project

Current
Raster

Position

Valid

Raster
Position

Raster
Distance

Associated
Data

Current
Color &

Materials

Figure 2.7. The current raster position and how it is set.

[0,2k−1]

float

Convert to
[0.0,1.0]

[−2k,2k−1] Convert to
[−1.0,1.0]

Current
RGBA
Color Lighting

Clamp to
[0.0, 1.0]

Flatshade?

Primitive
Clipping

Color
Clipping

Convert to
fixed−point

Figure 2.8. Processing of RGBA colors. The heavy dotted lines indicate
both primary and secondary vertex colors, which are processed in the same
fashion. See Table 2.6 for the interpretation of k.

Version 1.2.1 - April 1, 1999

2.13. COLORS AND COLORING 43

Convert to
float

[0,2n−1]

float

Current
Color
Index Lighting

Mask to

[0.0, 2n−1]

Flatshade?

Primitive
Clipping

Color
Clipping

Convert to
fixed−point

Figure 2.9. Processing of color indices. n is the number of bits in a color
index.

2.13 Colors and Coloring

Figures 2.8 and 2.9 diagram the processing of RGBA colors and color in-
dices before rasterization. Incoming colors arrive in one of several formats.
Table 2.6 summarizes the conversions that take place on R, G, B, and A com-
ponents depending on which version of the Color command was invoked to
specify the components. As a result of limited precision, some converted
values will not be represented exactly. In color index mode, a single-valued
color index is not mapped.

Next, lighting, if enabled, produces either a color index or primary and
secondary colors. If lighting is disabled, the current color index or color
is used in further processing (the current color is the primary color, and
the secondary color is (0; 0; 0; 0)). After lighting, RGBA colors are clamped
to the range [0; 1]. A color index is converted to �xed-point and then its
integer portion is masked (see section 2.13.6). After clamping or masking,
a primitive may be atshaded, indicating that all vertices of the primitive
are to have the same color. Finally, if a primitive is clipped, then colors
(and texture coordinates) must be computed at the vertices introduced or
modi�ed by clipping.

Version 1.2.1 - April 1, 1999

44 CHAPTER 2. OPENGL OPERATION

GL Type Conversion

ubyte c=(28 � 1)

byte (2c+ 1)=(28 � 1)

ushort c=(216 � 1)

short (2c+ 1)=(216 � 1)

uint c=(232 � 1)

int (2c+ 1)=(232 � 1)

oat c

double c

Table 2.6: Component conversions. Color, normal, and depth components,
(c), are converted to an internal oating-point representation, (f), using the
equations in this table. All arithmetic is done in the internal oating point
format. These conversions apply to components speci�ed as parameters to
GL commands and to components in pixel data. The equations remain the
same even if the implemented ranges of the GL data types are greater than
the minimum required ranges. (Refer to table 2.2)

2.13.1 Lighting

GL lighting computes colors for each vertex sent to the GL. This is accom-
plished by applying an equation de�ned by a client-speci�ed lighting model
to a collection of parameters that can include the vertex coordinates, the
coordinates of one or more light sources, the current normal, and parameters
de�ning the characteristics of the light sources and a current material. The
following discussion assumes that the GL is in RGBA mode. (Color index
lighting is described in section 2.13.5.)

Lighting may be in one of two states:

1. Lighting O�. In this state, the current color is assigned to the vertex
primary color. The secondary color is (0; 0; 0; 0).

2. Lighting On. In this state, the vertex primary and secondary colors
are computed from the current lighting parameters.

Lighting is turned on or o� using the generic Enable orDisable commands
with the symbolic value LIGHTING.

Version 1.2.1 - April 1, 1999

2.13. COLORS AND COLORING 45

Lighting Operation

A lighting parameter is of one of �ve types: color, position, direction, real,
or boolean. A color parameter consists of four oating-point values, one
for each of R, G, B, and A, in that order. There are no restrictions on the
allowable values for these parameters. A position parameter consists of four
oating-point coordinates (x, y, z, and w) that specify a position in object
coordinates (w may be zero, indicating a point at in�nity in the direction
given by x, y, and z). A direction parameter consists of three oating-point
coordinates (x, y, and z) that specify a direction in object coordinates. A
real parameter is one oating-point value. The various values and their
types are summarized in Table 2.7. The result of a lighting computation is
unde�ned if a value for a parameter is speci�ed that is outside the range
given for that parameter in the table.

There are n light sources, indexed by i = 0; : : : ; n�1. (n is an implemen-
tation dependent maximum that must be at least 8.) Note that the default
values for dcli and scli di�er for i = 0 and i > 0.

Before specifying the way that lighting computes colors, we introduce
operators and notation that simplify the expressions involved. If c1 and
c2 are colors without alpha where c1 = (r1; g1; b1) and c2 = (r2; g2; b2),
then de�ne c1 � c2 = (r1r2; g1g2; b1b2). Addition of colors is accomplished
by addition of the components. Multiplication of colors by a scalar means
multiplying each component by that scalar. If d1 and d2 are directions, then
de�ne

d1 � d2 = maxfd1 � d2; 0g:
(Directions are taken to have three coordinates.) If P1 and P2 are (homoge-
neous, with four coordinates) points then let

���!
P1P2 be the unit vector that

points from P1 to P2. Note that if P2 has a zero w coordinate and P1 has
non-zero w coordinate, then

���!
P1P2 is the unit vector corresponding to the

direction speci�ed by the x, y, and z coordinates of P2; if P1 has a zero w
coordinate and P2 has a non-zero w coordinate then

���!
P1P2 is the unit vector

that is the negative of that corresponding to the direction speci�ed by P1.
If both P1 and P2 have zero w coordinates, then

���!
P1P2 is the unit vector

obtained by normalizing the direction corresponding to P2 �P1.
If d is an arbitrary direction, then let d̂ be the unit vector in d's direction.

Let kP1P2k be the distance between P1 and P2. Finally, let V be the point
corresponding to the vertex being lit, and n be the corresponding normal.
Let Pe be the eyepoint ((0; 0; 0; 1) in eye coordinates).

Lighting produces two colors at a vertex: a primary color cpri and a
secondary color csec. The values of cpri and csec depend on the light model

Version 1.2.1 - April 1, 1999

46 CHAPTER 2. OPENGL OPERATION

Parameter Type Default Value Description

Material Parameters

acm color (0:2; 0:2; 0:2; 1:0) ambient color of material

dcm color (0:8; 0:8; 0:8; 1:0) di�use color of material

scm color (0:0; 0:0; 0:0; 1:0) specular color of material

ecm color (0:0; 0:0; 0:0; 1:0) emissive color of material

srm real 0.0 specular exponent (range:
[0:0; 128:0])

am real 0:0 ambient color index

dm real 1:0 di�use color index

sm real 1:0 specular color index

Light Source Parameters

acli color (0:0; 0:0; 0:0; 1:0) ambient intensity of light i

dcli(i = 0) color (1:0; 1:0; 1:0; 1:0) di�use intensity of light 0
dcli(i > 0) color (0:0; 0:0; 0:0; 1:0) di�use intensity of light i

scli(i = 0) color (1:0; 1:0; 1:0; 1:0) specular intensity of light 0
scli(i > 0) color (0:0; 0:0; 0:0; 1:0) specular intensity of light i

Ppli position (0:0; 0:0; 1:0; 0:0) position of light i

sdli direction (0:0; 0:0;�1:0) direction of spotlight for light
i

srli real 0.0 spotlight exponent for light i
(range: [0:0; 128:0])

crli real 180.0 spotlight cuto� angle for
light i (range: [0:0; 90:0],
180:0)

k0i real 1.0 constant attenuation factor
for light i (range: [0:0;1))

k1i real 0.0 linear attenuation factor for
light i (range: [0:0;1))

k2i real 0.0 quadratic attenuation factor
for light i (range: [0:0;1))

Lighting Model Parameters

acs color (0:2; 0:2; 0:2; 1:0) ambient color of scene

vbs boolean FALSE viewer assumed to be at
(0; 0; 0) in eye coordinates
(TRUE) or (0; 0;1) (FALSE)

ces enum SINGLE COLOR controls computation of col-
ors

tbs boolean FALSE use two-sided lighting mode

Table 2.7: Summary of lighting parameters. The range of individual color
components is (�1;+1).

Version 1.2.1 - April 1, 1999

2.13. COLORS AND COLORING 47

color control, ces. If ces = SINGLE COLOR, then the equations to compute cpri
and csec are

cpri = ecm

+ acm � acs
+

n�1X
i=0

(atti)(spoti) [acm � acli
+ (n ���!VPpli)dcm � dcli
+ (fi)(n� ĥi)srmscm � scli]

csec = (0; 0; 0; 0)

If ces = SEPARATE SPECULAR COLOR, then

cpri = ecm

+ acm � acs
+

n�1X
i=0

(atti)(spoti) [acm � acli
+ (n���!VPpli)dcm � dcli]

csec =
n�1X
i=0

(atti)(spoti)(fi)(n� ĥi)srmscm � scli

where

fi =

(
1; n���!VPpli 6= 0;
0; otherwise,

(2.2)

hi =

(��!
VPpli +

��!
VPe; vbs = TRUE;��!

VPpli + (0 0 1)T ; vbs = FALSE;
(2.3)

atti =

8><
>:

1
k0i + k1ikVPplik + k2ikVPplik2

; if Ppli's w 6= 0,

1:0; otherwise.

(2.4)

Version 1.2.1 - April 1, 1999

48 CHAPTER 2. OPENGL OPERATION

spoti =

8><
>:

(
���!
PpliV � ŝdli)srli ; crli 6= 180:0;

���!
PpliV � ŝdli � cos(crli);

0:0; crli 6= 180:0;
���!
PpliV � ŝdli < cos(crli);

1:0; crli = 180:0:

(2.5)

(2.6)

All computations are carried out in eye coordinates.

The value of A produced by lighting is the alpha value associated with
dcm. A is always associated with the primary color cpri; the alpha compo-
nent of csec is 0. Results of lighting are unde�ned if the we coordinate (w
in eye coordinates) of V is zero.

Lighting may operate in two-sided mode (tbs = TRUE), in which a front
color is computed with one set of material parameters (the front material)
and a back color is computed with a second set of material parameters (the
back material). This second computation replaces n with �n. If tbs = FALSE,
then the back color and front color are both assigned the color computed
using the front material with n.

The selection between back color and front color depends on the primitive
of which the vertex being lit is a part. If the primitive is a point or a line
segment, the front color is always selected. If it is a polygon, then the
selection is based on the sign of the (clipped or unclipped) polygon's signed
area computed in window coordinates. One way to compute this area is

a =
1

2

n�1X
i=0

xiwy
i�1
w � xi�1w yiw (2.7)

where xiw and yiw are the x and y window coordinates of the ith vertex of
the n-vertex polygon (vertices are numbered starting at zero for purposes of
this computation) and i� 1 is (i+1) mod n. The interpretation of the sign
of this value is controlled with

void FrontFace(enum dir);

Setting dir to CCW (corresponding to counter-clockwise orientation of the
projected polygon in window coordinates) indicates that if a � 0, then the
color of each vertex of the polygon becomes the back color computed for
that vertex while if a > 0, then the front color is selected. If dir is CW, then
a is replaced by �a in the above inequalities. This requires one bit of state;
initially, it indicates CCW.

Version 1.2.1 - April 1, 1999

2.13. COLORS AND COLORING 49

2.13.2 Lighting Parameter Speci�cation

Lighting parameters are divided into three categories: material parameters,
light source parameters, and lighting model parameters (see Table 2.7). Sets
of lighting parameters are speci�ed with

void Materialfifg(enum face, enum pname, T param);
void Materialfifgv(enum face, enum pname, T params);
void Lightfifg(enum light, enum pname, T param);
void Lightfifgv(enum light, enum pname, T params);
void LightModelfifg(enum pname, T param);
void LightModelfifgv(enum pname, T params);

pname is a symbolic constant indicating which parameter is to be set (see
Table 2.8). In the vector versions of the commands, params is a pointer to
a group of values to which to set the indicated parameter. The number of
values pointed to depends on the parameter being set. In the non-vector
versions, param is a value to which to set a single-valued parameter. (If
param corresponds to a multi-valued parameter, the error INVALID ENUM re-
sults.) For the Material command, face must be one of FRONT, BACK, or
FRONT AND BACK, indicating that the property name of the front or back ma-
terial, or both, respectively, should be set. In the case of Light, light is a
symbolic constant of the form LIGHTi, indicating that light i is to have the
speci�ed parameter set. The constants obey LIGHTi = LIGHT0+ i.

Table 2.8 gives, for each of the three parameter groups, the correspon-
dence between the pre-de�ned constant names and their names in the light-
ing equations, along with the number of values that must be speci�ed with
each. Color parameters speci�ed with Material and Light are converted
to oating-point values (if speci�ed as integers) as indicated in Table 2.6
for signed integers. The error INVALID VALUE occurs if a speci�ed lighting
parameter lies outside the allowable range given in Table 2.7. (The sym-
bol \1" indicates the maximum representable magnitude for the indicated
type.)

The current model-view matrix is applied to the position parameter indi-
cated with Light for a particular light source when that position is speci�ed.
These transformed values are the values used in the lighting equation.

The spotlight direction is transformed when it is speci�ed using only the
upper leftmost 3x3 portion of the model-view matrix. That is, if Mu is the
upper left 3x3 matrix taken from the current model-view matrix M , then

Version 1.2.1 - April 1, 1999

50 CHAPTER 2. OPENGL OPERATION

Parameter Name Number of values

Material Parameters (Material)

acm AMBIENT 4

dcm DIFFUSE 4

acm;dcm AMBIENT AND DIFFUSE 4

scm SPECULAR 4

ecm EMISSION 4

srm SHININESS 1

am; dm; sm COLOR INDEXES 3

Light Source Parameters (Light)

acli AMBIENT 4

dcli DIFFUSE 4

scli SPECULAR 4

Ppli POSITION 4

sdli SPOT DIRECTION 3

srli SPOT EXPONENT 1

crli SPOT CUTOFF 1

k0 CONSTANT ATTENUATION 1

k1 LINEAR ATTENUATION 1

k2 QUADRATIC ATTENUATION 1

Lighting Model Parameters (LightModel)

acs LIGHT MODEL AMBIENT 4

vbs LIGHT MODEL LOCAL VIEWER 1

tbs LIGHT MODEL TWO SIDE 1

ces LIGHT MODEL COLOR CONTROL 1

Table 2.8: Correspondence of lighting parameter symbols to names.
AMBIENT AND DIFFUSE is used to set acm and dcm to the same value.

Version 1.2.1 - April 1, 1999

2.13. COLORS AND COLORING 51

the spotlight direction 0
@ dx
dy
dz

1
A

is transformed to 0
@ d0x
d0y
d0z

1
A =Mu

0
@ dx
dy
dz

1
A :

An individual light is enabled or disabled by calling Enable or Disable
with the symbolic value LIGHTi (i is in the range 0 to n� 1, where n is the
implementation-dependent number of lights). If light i is disabled, the ith
term in the lighting equation is e�ectively removed from the summation.

2.13.3 ColorMaterial

It is possible to attach one or more material properties to the current color,
so that they continuously track its component values. This behavior is
enabled and disabled by calling Enable or Disable with the symbolic value
COLOR MATERIAL.

The command that controls which of these modes is selected is

void ColorMaterial(enum face, enum mode);

face is one of FRONT, BACK, or FRONT AND BACK, indicating whether the front
material, back material, or both are a�ected by the current color. mode
is one of EMISSION, AMBIENT, DIFFUSE, SPECULAR, or AMBIENT AND DIFFUSE and
speci�es which material property or properties track the current color. If
mode is EMISSION, AMBIENT, DIFFUSE, or SPECULAR, then the value of ecm,
acm, dcm or scm, respectively, will track the current color. If mode is
AMBIENT AND DIFFUSE, both acm and dcm track the current color. The re-
placements made to material properties are permanent; the replaced values
remain until changed by either sending a new color or by setting a new ma-
terial value when ColorMaterial is not currently enabled to override that
particular value. When COLOR MATERIAL is enabled, the indicated parameter
or parameters always track the current color. For instance, calling

ColorMaterial(FRONT, AMBIENT)

while COLOR MATERIAL is enabled sets the front material acm to the value of
the current color.

Version 1.2.1 - April 1, 1999

52 CHAPTER 2. OPENGL OPERATION

Current
Color

Front Ambient
Color

Up while ColorMaterial face is FRONT or FRONT_AND_BACK,
and ColorMaterial mode is AMBIENT or AMBIENT_AND_DIFFUSE,
and ColorMaterial is enabled. Down otherwise.

Material*(FRONT,AMBIENT)
To lighting equations

Front Diffuse
Color

Up while ColorMaterial face is FRONT or FRONT_AND_BACK,
and ColorMaterial mode is DIFFUSE or AMBIENT_AND_DIFFUSE,
and ColorMaterial is enabled. Down otherwise.

Material*(FRONT,DIFFUSE)
To lighting equations

Up while ColorMaterial face is FRONT or FRONT_AND_BACK,
and ColorMaterial mode is SPECULAR, and ColorMaterial is
enabled. Down otherwise.

Material*(FRONT,SPECULAR)
To lighting equations

Front Emission
Color

Up while ColorMaterial face is FRONT or FRONT_AND_BACK,
and ColorMaterial mode is EMISSION, and ColorMaterial is
enabled. Down otherwise.

Material*(FRONT,EMISSION)
To lighting equations

Front Specular
Color

Color*() To subsequent vertex operations

State values flow continuously along this path

State values flow along this path only when a command is issued

Figure 2.10. ColorMaterial operation. Material properties are continuously
updated from the current color while ColorMaterial is enabled and has the
appropriate mode. Only the front material properties are included in this
�gure. The back material properties are treated identically, except that face
must be BACK or FRONT AND BACK.

Version 1.2.1 - April 1, 1999

2.13. COLORS AND COLORING 53

2.13.4 Lighting State

The state required for lighting consists of all of the lighting parameters (front
and back material parameters, lighting model parameters, and at least 8 sets
of light parameters), a bit indicating whether a back color distinct from the
front color should be computed, at least 8 bits to indicate which lights are
enabled, a �ve-valued variable indicating the current ColorMaterial mode,
a bit indicating whether or not COLOR MATERIAL is enabled, and a single bit
to indicate whether lighting is enabled or disabled. In the initial state, all
lighting parameters have their default values. Back color evaluation does
not take place, ColorMaterial is FRONT AND BACK and AMBIENT AND DIFFUSE,
and both lighting and COLOR MATERIAL are disabled.

2.13.5 Color Index Lighting

A simpli�ed lighting computation applies in color index mode that uses
many of the parameters controlling RGBA lighting, but none of the RGBA
material parameters. First, the RGBA di�use and specular intensities of
light i (dcli and scli, respectively) determine color index di�use and specular
light intensities, dli and sli from

dli = (:30)R(dcli) + (:59)G(dcli) + (:11)B(dcli)

and
sli = (:30)R(scli) + (:59)G(scli) + (:11)B(scli):

R(x) indicates the R component of the color x and similarly for G(x) and
B(x).

Next, let

s =
nX
i=0

(atti)(spoti)(sli)(fi)(n� ĥi)srm

where atti and spoti are given by equations 2.4 and 2.5, respectively, and fi
and ĥi are given by equations 2.2 and 2.3, respectively. Let s0 = minfs; 1g.
Finally, let

d =
nX
i=0

(atti)(spoti)(dli)(n���!VPpli):

Then color index lighting produces a value c, given by

c = am + d(1� s0)(dm � am) + s0(sm � am):

The �nal color index is
c0 = minfc; smg:

Version 1.2.1 - April 1, 1999

54 CHAPTER 2. OPENGL OPERATION

The values am, dm and sm are material properties described in Tables 2.7
and 2.8. Any ambient light intensities are incorporated into am. As with
RGBA lighting, disabled lights cause the corresponding terms from the sum-
mations to be omitted. The interpretation of tbs and the calculation of front
and back colors is carried out as has already been described for RGBA
lighting.

The values am, dm, and sm are set with Material using a pname of
COLOR INDEXES. Their initial values are 0, 1, and 1, respectively. The ad-
ditional state consists of three oating-point values. These values have no
e�ect on RGBA lighting.

2.13.6 Clamping or Masking

After lighting (whether enabled or not), all components of both primary and
secondary colors are clamped to the range [0; 1].

For a color index, the index is �rst converted to �xed-point with an
unspeci�ed number of bits to the right of the binary point; the nearest
�xed-point value is selected. Then, the bits to the right of the binary point
are left alone while the integer portion is masked (bitwise ANDed) with
2n � 1, where n is the number of bits in a color in the color index bu�er
(bu�ers are discussed in chapter 4).

2.13.7 Flatshading

A primitive may be atshaded, meaning that all vertices of the primitive are
assigned the same color index or the same primary and secondary colors.
These colors are the colors of the vertex that spawned the primitive. For a
point, these are the colors associated with the point. For a line segment, they
are the colors of the second (�nal) vertex of the segment. For a polygon, they
come from a selected vertex depending on how the polygon was generated.
Table 2.9 summarizes the possibilities.

Flatshading is controlled by

void ShadeModel(enum mode);

mode value must be either of the symbolic constants SMOOTH or FLAT. If mode
is SMOOTH (the initial state), vertex colors are treated individually. If mode is
FLAT, atshading is turned on. ShadeModel thus requires one bit of state.

Version 1.2.1 - April 1, 1999

2.13. COLORS AND COLORING 55

Primitive type of polygon i Vertex

single polygon (i � 1) 1

triangle strip i+ 2

triangle fan i+ 2

independent triangle 3i

quad strip 2i+ 2

independent quad 4i

Table 2.9: Polygon atshading color selection. The colors used for atshad-
ing the ith polygon generated by the indicatedBegin/End type are derived
from the current color (if lighting is disabled) in e�ect when the indicated
vertex is speci�ed. If lighting is enabled, the colors are produced by lighting
the indicated vertex. Vertices are numbered 1 through n, where n is the
number of vertices between the Begin/End pair.

2.13.8 Color and Texture Coordinate Clipping

After lighting, clamping or masking and possible atshading, colors are
clipped. Those colors associated with a vertex that lies within the clip
volume are una�ected by clipping. If a primitive is clipped, however, the
colors assigned to vertices produced by clipping are clipped colors.

Let the colors assigned to the two vertices P1 and P2 of an unclipped
edge be c1 and c2. The value of t (section 2.11) for a clipped point P is
used to obtain the color associated with P as

c = tc1 + (1� t)c2:

(For a color index color, multiplying a color by a scalar means multiplying
the index by the scalar. For an RGBA color, it means multiplying each of R,
G, B, and A by the scalar. Both primary and secondary colors are treated
in the same fashion.) Polygon clipping may create a clipped vertex along an
edge of the clip volume's boundary. This situation is handled by noting that
polygon clipping proceeds by clipping against one plane of the clip volume's
boundary at a time. Color clipping is done in the same way, so that clipped
points always occur at the intersection of polygon edges (possibly already
clipped) with the clip volume's boundary.

Texture coordinates must also be clipped when a primitive is clipped.
The method is exactly analogous to that used for color clipping.

Version 1.2.1 - April 1, 1999

56 CHAPTER 2. OPENGL OPERATION

2.13.9 Final Color Processing

For an RGBA color, each color component (which lies in [0; 1]) is converted
(by rounding to nearest) to a �xed-point value with m bits. We assume
that the �xed-point representation used represents each value k=(2m � 1),
where k 2 f0; 1; : : : ; 2m � 1g, as k (e.g. 1.0 is represented in binary as a
string of all ones). m must be at least as large as the number of bits in the
corresponding component of the framebu�er. m must be at least 2 for A if
the framebu�er does not contain an A component, or if there is only 1 bit
of A in the framebu�er. A color index is converted (by rounding to nearest)
to a �xed-point value with at least as many bits as there are in the color
index portion of the framebu�er.

Because a number of the form k=(2m�1) may not be represented exactly
as a limited-precision oating-point quantity, we place a further requirement
on the �xed-point conversion of RGBA components. Suppose that lighting
is disabled, the color associated with a vertex has not been clipped, and one
of Colorub, Colorus, or Colorui was used to specify that color. When
these conditions are satis�ed, an RGBA component must convert to a value
that matches the component as speci�ed in the Color command: ifm is less
than the number of bits b with which the component was speci�ed, then the
converted value must equal the most signi�cantm bits of the speci�ed value;
otherwise, the most signi�cant b bits of the converted value must equal the
speci�ed value.

Version 1.2.1 - April 1, 1999

Chapter 3

Rasterization

Rasterization is the process by which a primitive is converted to a two-
dimensional image. Each point of this image contains such information as
color and depth. Thus, rasterizing a primitive consists of two parts. The
�rst is to determine which squares of an integer grid in window coordinates
are occupied by the primitive. The second is assigning a color and a depth
value to each such square. The results of this process are passed on to the
next stage of the GL (per-fragment operations), which uses the information
to update the appropriate locations in the framebu�er. Figure 3.1 diagrams
the rasterization process.

A grid square along with its parameters of assigned color, z (depth),
and texture coordinates is called a fragment; the parameters are collectively
dubbed the fragment's associated data. A fragment is located by its lower-
left corner, which lies on integer grid coordinates. Rasterization operations
also refer to a fragment's center, which is o�set by (1=2; 1=2) from its lower-
left corner (and so lies on half-integer coordinates).

Grid squares need not actually be square in the GL. Rasterization rules
are not a�ected by the actual aspect ratio of the grid squares. Display of
non-square grids, however, will cause rasterized points and line segments to
appear fatter in one direction than the other. We assume that fragments
are square, since it simpli�es antialiasing and texturing.

Several factors a�ect rasterization. Lines and polygons may be stippled.
Points may be given di�ering diameters and line segments di�ering widths.
A point, line segment, or polygon may be antialiased.

57

Version 1.2.1 - April 1, 1999

58 CHAPTER 3. RASTERIZATION

Point
Rasterization

Line
Rasterization

Polygon
Rasterization

From
Primitive
Assembly

Pixel
Rectangle

Rasterization

Bitmap
RasterizationBitmap

DrawPixels

Texturing

Color Sum

Fog

Fragments

Figure 3.1. Rasterization.

Version 1.2.1 - April 1, 1999

3.1. INVARIANCE 59

3.1 Invariance

Consider a primitive p0 obtained by translating a primitive p through an
o�set (x; y) in window coordinates, where x and y are integers. As long
as neither p0 nor p is clipped, it must be the case that each fragment f 0

produced from p0 is identical to a corresponding fragment f from p except
that the center of f 0 is o�set by (x; y) from the center of f .

3.2 Antialiasing

Antialiasing of a point, line, or polygon is e�ected in one of two ways de-
pending on whether the GL is in RGBA or color index mode.

In RGBA mode, the R, G, and B values of the rasterized fragment are
left una�ected, but the A value is multiplied by a oating-point value in
the range [0; 1] that describes a fragment's screen pixel coverage. The
per-fragment stage of the GL can be set up to use the A value to blend
the incoming fragment with the corresponding pixel already present in the
framebu�er.

In color index mode, the least signi�cant b bits (to the left of the binary
point) of the color index are used for antialiasing; b = minf4;mg, where
m is the number of bits in the color index portion of the framebu�er. The
antialiasing process sets these b bits based on the fragment's coverage value:
the bits are set to zero for no coverage and to all ones for complete coverage.

The details of how antialiased fragment coverage values are computed
are di�cult to specify in general. The reason is that high-quality antialias-
ing may take into account perceptual issues as well as characteristics of the
monitor on which the contents of the framebu�er are displayed. Such de-
tails cannot be addressed within the scope of this document. Further, the
coverage value computed for a fragment of some primitive may depend on
the primitive's relationship to a number of grid squares neighboring the one
corresponding to the fragment, and not just on the fragment's grid square.
Another consideration is that accurate calculation of coverage values may
be computationally expensive; consequently we allow a given GL implemen-
tation to approximate true coverage values by using a fast but not entirely
accurate coverage computation.

In light of these considerations, we chose to specify the behavior of exact
antialiasing in the prototypical case that each displayed pixel is a perfect
square of uniform intensity. The square is called a fragment square and has
lower left corner (x; y) and upper right corner (x + 1; y + 1). We recognize

Version 1.2.1 - April 1, 1999

60 CHAPTER 3. RASTERIZATION

that this simple box �lter may not produce the most favorable antialiasing
results, but it provides a simple, well-de�ned model.

A GL implementation may use other methods to perform antialiasing,
subject to the following conditions:

1. If f1 and f2 are two fragments, and the portion of f1 covered by some
primitive is a subset of the corresponding portion of f2 covered by
the primitive, then the coverage computed for f1 must be less than or
equal to that computed for f2.

2. The coverage computation for a fragment f must be local: it may
depend only on f 's relationship to the boundary of the primitive being
rasterized. It may not depend on f 's x and y coordinates.

Another property that is desirable, but not required, is:

3. The sum of the coverage values for all fragments produced by rasteriz-
ing a particular primitive must be constant, independent of any rigid
motions in window coordinates, as long as none of those fragments lies
along window edges.

In some implementations, varying degrees of antialiasing quality may be
obtained by providing GL hints (section 5.6), allowing a user to make an
image quality versus speed tradeo�.

3.3 Points

The rasterization of points is controlled with

void PointSize(float size);

size speci�es the width or diameter of a point. The default value is 1.0. A
value less than or equal to zero results in the error INVALID VALUE.

Point antialiasing is enabled or disabled by calling Enable or Disable
with the symbolic constant POINT SMOOTH. The default state is for point an-
tialiasing to be disabled.

In the default state, a point is rasterized by truncating its xw and yw
coordinates (recall that the subscripts indicate that these are x and y window
coordinates) to integers. This (x; y) address, along with data derived from
the data associated with the vertex corresponding to the point, is sent as a
single fragment to the per-fragment stage of the GL.

Version 1.2.1 - April 1, 1999

3.3. POINTS 61

The e�ect of a point width other than 1:0 depends on the state of point
antialiasing. If antialiasing is disabled, the actual width is determined by
rounding the supplied width to the nearest integer, then clamping it to
the implementation-dependent maximum non-antialiased point width. This
implementation-dependent value must be no less than the implementation-
dependent maximum antialiased point width, rounded to the nearest integer
value, and in any event no less than 1. If rounding the speci�ed width results
in the value 0, then it is as if the value were 1. If the resulting width is odd,
then the point

(x; y) = (bxwc+ 1

2
; bywc+ 1

2
)

is computed from the vertex's xw and yw, and a square grid of the odd width
centered at (x; y) de�nes the centers of the rasterized fragments (recall that
fragment centers lie at half-integer window coordinate values). If the width
is even, then the center point is

(x; y) = (bxw +
1

2
c; byw +

1

2
c);

the rasterized fragment centers are the half-integer window coordinate values
within the square of the even width centered on (x; y). See �gure 3.2.

All fragments produced in rasterizing a non-antialiased point are as-
signed the same associated data, which are those of the vertex corresponding
to the point, with texture coordinates s, t, and r replaced with s=q, t=q, and
r=q, respectively. If q is less than or equal to zero, the results are unde�ned.

If antialiasing is enabled, then point rasterization produces a fragment
for each fragment square that intersects the region lying within the circle
having diameter equal to the current point width and centered at the point's
(xw; yw) (�gure 3.3). The coverage value for each fragment is the window
coordinate area of the intersection of the circular region with the corre-
sponding fragment square (but see section 3.2). This value is saved and
used in the �nal step of rasterization (section 3.11). The data associated
with each fragment are otherwise the data associated with the point being
rasterized, with texture coordinates s, t, and r replaced with s=q, t=q, and
r=q, respectively. If q is less than or equal to zero, the results are unde�ned.

Not all widths need be supported when point antialiasing is on, but
the width 1:0 must be provided. If an unsupported width is requested, the
nearest supported width is used instead. The range of supported widths and
the width of evenly-spaced gradations within that range are implementation
dependent. The range and gradations may be obtained using the query

Version 1.2.1 - April 1, 1999

62 CHAPTER 3. RASTERIZATION

000
000
000

000
000
000

Odd Width Even Width

3.5 4.5 5.52.51.5 3.5 4.5 5.52.51.5

1.5

2.5

3.5

4.5

0.50.5

0.5

5.5

Figure 3.2. Rasterization of non-antialiased wide points. The crosses show
fragment centers produced by rasterization for any point that lies within the
shaded region. The dotted grid lines lie on half-integer coordinates.

mechanism described in Chapter 6. If, for instance, the width range is from
0.1 to 2.0 and the gradation width is 0.1, then the widths 0:1; 0:2; : : : ; 1:9; 2:0
are supported.

3.3.1 Point Rasterization State

The state required to control point rasterization consists of the oating-point
point width and a bit indicating whether or not antialiasing is enabled.

3.4 Line Segments

A line segment results from a line strip Begin/End object, a line loop, or
a series of separate line segments. Line segment rasterization is controlled
by several variables. Line width, which may be set by calling

void LineWidth(float width);

with an appropriate positive oating-point width, controls the width of ras-
terized line segments. The default width is 1:0. Values less than or equal

Version 1.2.1 - April 1, 1999

3.4. LINE SEGMENTS 63

333333333333333
333333333333333
333333333333333
333333333333333
333333333333333
333333333333333
333333333333333
333333333333333
333333333333333
333333333333333
333333333333333
333333333333333
333333333333333
333333333333333
333333333333333
333333333333333

1.00.0 3.02.0 5.04.0 6.0
0.0

1.0

2.0

3.0

4.0

5.0

6.0

Figure 3.3. Rasterization of antialiased wide points. The black dot indi-
cates the point to be rasterized. The shaded region has the speci�ed width.
The X marks indicate those fragment centers produced by rasterization. A
fragment's computed coverage value is based on the portion of the shaded re-
gion that covers the corresponding fragment square. Solid lines lie on integer
coordinates.

Version 1.2.1 - April 1, 1999

64 CHAPTER 3. RASTERIZATION

to 0:0 generate the error INVALID VALUE. Antialiasing is controlled with En-
able and Disable using the symbolic constant LINE SMOOTH. Finally, line
segments may be stippled. Stippling is controlled by a GL command that
sets a stipple pattern (see below).

3.4.1 Basic Line Segment Rasterization

Line segment rasterization begins by characterizing the segment as either
x-major or y-major. x-major line segments have slope in the closed inter-
val [�1; 1]; all other line segments are y-major (slope is determined by the
segment's endpoints). We shall specify rasterization only for x-major seg-
ments except in cases where the modi�cations for y-major segments are not
self-evident.

Ideally, the GL uses a \diamond-exit" rule to determine those fragments
that are produced by rasterizing a line segment. For each fragment f with
center at window coordinates xf and yf , de�ne a diamond-shaped region
that is the intersection of four half planes:

Rf = f (x; y) j jx� xf j+ jy � yf j < 1=2:g
Essentially, a line segment starting at pa and ending at pb produces those

fragments f for which the segment intersects Rf , except if pb is contained
in Rf . See �gure 3.4.

To avoid di�culties when an endpoint lies on a boundary of Rf we (in
principle) perturb the supplied endpoints by a tiny amount. Let pa and
pb have window coordinates (xa; ya) and (xb; yb), respectively. Obtain the
perturbed endpoints p0a given by (xa; ya)� (�; �2) and p0b given by (xb; yb)�
(�; �2). Rasterizing the line segment starting at pa and ending at pb produces
those fragments f for which the segment starting at p0a and ending on p0b
intersects Rf , except if p

0
b is contained in Rf . � is chosen to be so small

that rasterizing the line segment produces the same fragments when � is
substituted for � for any 0 < � � �.

When pa and pb lie on fragment centers, this characterization of frag-
ments reduces to Bresenham's algorithm with one modi�cation: lines pro-
duced in this description are \half-open," meaning that the �nal fragment
(corresponding to pb) is not drawn. This means that when rasterizing a
series of connected line segments, shared endpoints will be produced only
once rather than twice (as would occur with Bresenham's algorithm).

Because the initial and �nal conditions of the diamond-exit rule may
be di�cult to implement, other line segment rasterization algorithms are
allowed, subject to the following rules:

Version 1.2.1 - April 1, 1999

3.4. LINE SEGMENTS 65

00

00000
00000
00000
00000
0000000000

00000
00000
00000
00000

00000
00000
00000
00000
00000

00000
00000
00000
00000
00000

00000
00000
00000
00000
00000

00000
00000
00000
00000
0000000000
00000
00000
00000
0000000000
00000
00000
00000
0000000000
00000
00000
00000
0000000000
00000
00000
00000
00000

00000
00000
00000
00000
0000000000
00000
00000
00000
0000000000
00000
00000
00000
00000

00000
00000
00000
00000
0000000000
00000
00000
00000
00000

00000
00000
00000
00000
0000000000
00000
00000
00000
0000000000
00000
00000
00000
0000000000
00000
00000
00000
0000000000
00000
00000
00000
00000

00000
00000
00000
00000
0000000000
00000
00000
00000
0000000000
00000
00000
00000
0000000000
00000
00000
00000
0000000000
00000
00000
00000
00000

Figure 3.4. Visualization of Bresenham's algorithm. A portion of a line
segment is shown. A diamond shaped region of height 1 is placed around each
fragment center; those regions that the line segment exits cause rasterization
to produce corresponding fragments.

1. The coordinates of a fragment produced by the algorithm may not
deviate by more than one unit in either x or y window coordinates
from a corresponding fragment produced by the diamond-exit rule.

2. The total number of fragments produced by the algorithm may di�er
from that produced by the diamond-exit rule by no more than one.

3. For an x-major line, no two fragments may be produced that lie in the
same window-coordinate column (for a y-major line, no two fragments
may appear in the same row).

4. If two line segments share a common endpoint, and both segments
are either x-major (both left-to-right or both right-to-left) or y-major
(both bottom-to-top or both top-to-bottom), then rasterizing both
segments may not produce duplicate fragments, nor may any frag-
ments be omitted so as to interrupt continuity of the connected seg-
ments.

Next we must specify how the data associated with each rasterized frag-
ment are obtained. Let the window coordinates of a produced fragment
center be given by pr = (xd; yd) and let pa = (xa; ya) and pb = (xb; yb). Set

Version 1.2.1 - April 1, 1999

66 CHAPTER 3. RASTERIZATION

t =
(pr � pa) � (pb � pa)

kpb � pak2
: (3.1)

(Note that t = 0 at pa and t = 1 at pb.) The value of an associated datum
f for the fragment, whether it be R, G, B, or A (in RGBA mode) or a color
index (in color index mode), or the s, t, or r texture coordinate (the depth
value, window z, must be found using equation 3.3, below), is found as

f =
(1� t)fa=wa + tfb=wb

(1� t)�a=wa + t�b=wb

(3.2)

where fa and fb are the data associated with the starting and ending end-
points of the segment, respectively; wa and wb are the clip w coordinates of
the starting and ending endpoints of the segments, respectively. �a = �b = 1
for all data except texture coordinates, in which case �a = qa and �b = qb
(qa and qb are the homogeneous texture coordinates at the starting and end-
ing endpoints of the segment; results are unde�ned if either of these is less
than or equal to 0). Note that linear interpolation would use

f = (1� t)fa=�a + tfb=�b: (3.3)

The reason that this formula is incorrect (except for the depth value) is
that it interpolates a datum in window space, which may be distorted by
perspective. What is actually desired is to �nd the corresponding value when
interpolated in clip space, which equation 3.2 does. A GL implementation
may choose to approximate equation 3.2 with 3.3, but this will normally lead
to unacceptable distortion e�ects when interpolating texture coordinates.

3.4.2 Other Line Segment Features

We have just described the rasterization of non-antialiased line segments
of width one using the default line stipple of FFFF16. We now describe
the rasterization of line segments for general values of the line segment
rasterization parameters.

Line Stipple

The command

void LineStipple(int factor, ushort pattern);

Version 1.2.1 - April 1, 1999

3.4. LINE SEGMENTS 67

de�nes a line stipple. pattern is an unsigned short integer. The line stipple is
taken from the lowest order 16 bits of pattern. It determines those fragments
that are to be drawn when the line is rasterized. factor is a count that is
used to modify the e�ective line stipple by causing each bit in line stipple to
be used factor times. factor is clamped to the range [1; 256]. Line stippling
may be enabled or disabled using Enable or Disable with the constant
LINE STIPPLE. When disabled, it is as if the line stipple has its default value.

Line stippling masks certain fragments that are produced by rasteriza-
tion so that they are not sent to the per-fragment stage of the GL. The
masking is achieved using three parameters: the 16-bit line stipple p, the
line repeat count r, and an integer stipple counter s. Let

b = bs=rc mod 16;
Then a fragment is produced if the bth bit of p is 1, and not produced
otherwise. The bits of p are numbered with 0 being the least signi�cant and
15 being the most signi�cant. The initial value of s is zero; s is incremented
after production of each fragment of a line segment (fragments are produced
in order, beginning at the starting point and working towards the ending
point). s is reset to 0 whenever a Begin occurs, and before every line
segment in a group of independent segments (as speci�ed when Begin is
invoked with LINES).

If the line segment has been clipped, then the value of s at the beginning
of the line segment is indeterminate.

Wide Lines

The actual width of non-antialiased lines is determined by rounding the sup-
plied width to the nearest integer, then clamping it to the implementation-
dependent maximum non-antialiased line width. This implementation-
dependent value must be no less than the implementation-dependent max-
imum antialiased line width, rounded to the nearest integer value, and in
any event no less than 1. If rounding the speci�ed width results in the value
0, then it is as if the value were 1.

Non-antialiased line segments of width other than one are rasterized
by o�setting them in the minor direction (for an x-major line, the minor
direction is y, and for a y-major line, the minor direction is x) and replicating
fragments in the minor direction (see �gure 3.5). Let w be the width rounded
to the nearest integer (if w = 0, then it is as if w = 1). If the line segment has
endpoints given by (x0; y0) and (x1; y1) in window coordinates, the segment
with endpoints (x0; y0� (w�1)=2) and (x1; y1� (w�1)=2) is rasterized, but

Version 1.2.1 - April 1, 1999

68 CHAPTER 3. RASTERIZATION

width = 2 width = 3

Figure 3.5. Rasterization of non-antialiasedwide lines. x-major line segments
are shown. The heavy line segment is the one speci�ed to be rasterized; the
light segment is the o�set segment used for rasterization. x marks indicate
the fragment centers produced by rasterization.

instead of a single fragment, a column of fragments of height w (a row of
fragments of length w for a y-major segment) is produced at each x (y for
y-major) location. The lowest fragment of this column is the fragment that
would be produced by rasterizing the segment of width 1 with the modi�ed
coordinates. The whole column is not produced if the stipple bit for the
column's x location is zero; otherwise, the whole column is produced.

Antialiasing

Rasterized antialiased line segments produce fragments whose fragment
squares intersect a rectangle centered on the line segment. Two of the edges
are parallel to the speci�ed line segment; each is at a distance of one-half the
current width from that segment: one above the segment and one below it.
The other two edges pass through the line endpoints and are perpendicular
to the direction of the speci�ed line segment. Coverage values are computed
for each fragment by computing the area of the intersection of the rectangle
with the fragment square (see �gure 3.6; see also section 3.2). Equation 3.2
is used to compute associated data values just as with non-antialiased lines;
equation 3.1 is used to �nd the value of t for each fragment whose square
is intersected by the line segment's rectangle. Not all widths need be sup-

Version 1.2.1 - April 1, 1999

3.4. LINE SEGMENTS 69

00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000

Figure 3.6. The region used in rasterizing and �nding corresponding coverage
values for an antialiased line segment (an x-major line segment is shown).

ported for line segment antialiasing, but width 1:0 antialiased segments must
be provided. As with the point width, a GL implementation may be queried
for the range and number of gradations of available antialiased line widths.

For purposes of antialiasing, a stippled line is considered to be a sequence
of contiguous rectangles centered on the line segment. Each rectangle has
width equal to the current line width and length equal to 1 pixel (except the
last, which may be shorter). These rectangles are numbered from 0 to n,
starting with the rectangle incident on the starting endpoint of the segment.
Each of these rectangles is either eliminated or produced according to the
procedure given under Line Stipple, above, where \fragment" is replaced
with \rectangle." Each rectangle so produced is rasterized as if it were an
antialiased polygon, described below (but culling, non-default settings of
PolygonMode, and polygon stippling are not applied).

3.4.3 Line Rasterization State

The state required for line rasterization consists of the oating-point line
width, a 16-bit line stipple, the line stipple repeat count, a bit indicating
whether stippling is enabled or disabled, and a bit indicating whether line
antialiasing is on or o�. In addition, during rasterization, an integer stipple
counter must be maintained to implement line stippling. The initial value
of the line width is 1:0. The initial value of the line stipple is FFFF16 (a
stipple of all ones). The initial value of the line stipple repeat count is one.

Version 1.2.1 - April 1, 1999

70 CHAPTER 3. RASTERIZATION

The initial state of line stippling is disabled. The initial state of line segment
antialiasing is disabled.

3.5 Polygons

A polygon results from a polygon Begin/End object, a triangle resulting
from a triangle strip, triangle fan, or series of separate triangles, or a quadri-
lateral arising from a quadrilateral strip, series of separate quadrilaterals, or
a Rect command. Like points and line segments, polygon rasterization is
controlled by several variables. Polygon antialiasing is controlled with En-
able and Disable with the symbolic constant POLYGON SMOOTH. The analog
to line segment stippling for polygons is polygon stippling, described below.

3.5.1 Basic Polygon Rasterization

The �rst step of polygon rasterization is to determine if the polygon is
back facing or front facing. This determination is made by examining the
sign of the area computed by equation 2.7 of section 2.13.1 (including the
possible reversal of this sign as indicated by the last call to FrontFace). If
this sign is positive, the polygon is frontfacing; otherwise, it is back facing.
This determination is used in conjunction with the CullFace enable bit and
mode value to decide whether or not a particular polygon is rasterized. The
CullFace mode is set by calling

void CullFace(enum mode);

mode is a symbolic constant: one of FRONT, BACK or FRONT AND BACK. Culling
is enabled or disabled with Enable or Disable using the symbolic constant
CULL FACE. Front facing polygons are rasterized if either culling is disabled or
the CullFace mode is BACK while back facing polygons are rasterized only if
either culling is disabled or the CullFace mode is FRONT. The initial setting
of the CullFace mode is BACK. Initially, culling is disabled.

The rule for determining which fragments are produced by polygon ras-
terization is called point sampling. The two-dimensional projection obtained
by taking the x and y window coordinates of the polygon's vertices is formed.
Fragment centers that lie inside of this polygon are produced by rasteriza-
tion. Special treatment is given to a fragment whose center lies on a polygon
boundary edge. In such a case we require that if two polygons lie on either
side of a common edge (with identical endpoints) on which a fragment cen-
ter lies, then exactly one of the polygons results in the production of the
fragment during rasterization.

Version 1.2.1 - April 1, 1999

3.5. POLYGONS 71

As for the data associated with each fragment produced by rasterizing a
polygon, we begin by specifying how these values are produced for fragments
in a triangle. De�ne barycentric coordinates for a triangle. Barycentric
coordinates are a set of three numbers, a, b, and c, each in the range [0; 1],
with a + b + c = 1. These coordinates uniquely specify any point p within
the triangle or on the triangle's boundary as

p = apa + bpb + cpc;

where pa, pb, and pc are the vertices of the triangle. a, b, and c can be found
as

a =
A(ppbpc)

A(papbpc)
; b =

A(ppapc)

A(papbpc)
; c =

A(ppapb)

A(papbpc)
;

where A(lmn) denotes the area in window coordinates of the triangle with
vertices l, m, and n.

Denote a datum at pa, pb, or pc as fa, fb, or fc, respectively. Then the
value f of a datum at a fragment produced by rasterizing a triangle is given
by

f =
afa=wa + bfb=wb + cfc=wc

a�a=wa + b�b=wb + c�c=wc
(3.4)

where wa, wb and wc are the clip w coordinates of pa, pb, and pc, respectively.
a, b, and c are the barycentric coordinates of the fragment for which the data
are produced. �a = �b = �c = 1 except for texture s, t, and r coordinates,
for which �a = qa, �b = qb, and �c = qc (if any of qa, qb, or qc are less
than or equal to zero, results are unde�ned). a, b, and c must correspond
precisely to the exact coordinates of the center of the fragment. Another way
of saying this is that the data associated with a fragment must be sampled
at the fragment's center.

Just as with line segment rasterization, equation 3.4 may be approxi-
mated by

f = afa=�a + bfb=�b + cfc=�c;

this may yield acceptable results for color values (it must be used for depth
values), but will normally lead to unacceptable distortion e�ects if used for
texture coordinates.

For a polygon with more than three edges, we require only that a convex
combination of the values of the datum at the polygon's vertices can be used
to obtain the value assigned to each fragment produced by the rasterization

Version 1.2.1 - April 1, 1999

72 CHAPTER 3. RASTERIZATION

algorithm. That is, it must be the case that at every fragment

f =
nX
i=1

aifi

where n is the number of vertices in the polygon, fi is the value of the f at
vertex i; for each i 0 � ai � 1 and

Pn
i=1 ai = 1. The values of the ai may

di�er from fragment to fragment, but at vertex i, aj = 0; j 6= i and ai = 1.
One algorithm that achieves the required behavior is to triangulate a

polygon (without adding any vertices) and then treat each triangle individ-
ually as already discussed. A scan-line rasterizer that linearly interpolates
data along each edge and then linearly interpolates data across each hor-
izontal span from edge to edge also satis�es the restrictions (in this case,
the numerator and denominator of equation 3.4 should be iterated indepen-
dently and a division performed for each fragment).

3.5.2 Stippling

Polygon stippling works much the same way as line stippling, masking out
certain fragments produced by rasterization so that they are not sent to the
next stage of the GL. This is the case regardless of the state of polygon
antialiasing. Stippling is controlled with

void PolygonStipple(ubyte *pattern);

pattern is a pointer to memory into which a 32 � 32 pattern is packed.
The pattern is unpacked from memory according to the procedure given
in section 3.6.4 for DrawPixels; it is as if the height and width passed to
that command were both equal to 32, the type were BITMAP, and the format
were COLOR INDEX. The unpacked values (before any conversion or arithmetic
would have been performed) form a stipple pattern of zeros and ones.

If xw and yw are the window coordinates of a rasterized polygon frag-
ment, then that fragment is sent to the next stage of the GL if and only if
the bit of the pattern (xw mod 32; yw mod 32) is 1.

Polygon stippling may be enabled or disabled with Enable or Disable
using the constant POLYGON STIPPLE. When disabled, it is as if the stipple
pattern were all ones.

3.5.3 Antialiasing

Polygon antialiasing rasterizes a polygon by producing a fragment wherever
the interior of the polygon intersects that fragment's square. A coverage

Version 1.2.1 - April 1, 1999

3.5. POLYGONS 73

value is computed at each such fragment, and this value is saved to be applied
as described in section 3.11. An associated datum is assigned to a fragment
by integrating the datum's value over the region of the intersection of the
fragment square with the polygon's interior and dividing this integrated
value by the area of the intersection. For a fragment square lying entirely
within the polygon, the value of a datum at the fragment's center may be
used instead of integrating the value across the fragment.

Polygon stippling operates in the same way whether polygon antialiasing
is enabled or not. The polygon point sampling rule de�ned in section 3.5.1,
however, is not enforced for antialiased polygons.

3.5.4 Options Controlling Polygon Rasterization

The interpretation of polygons for rasterization is controlled using

void PolygonMode(enum face, enum mode);

face is one of FRONT, BACK, or FRONT AND BACK, indicating that the rasterizing
method described by mode replaces the rasterizing method for front facing
polygons, back facing polygons, or both front and back facing polygons,
respectively. mode is one of the symbolic constants POINT, LINE, or FILL.
Calling PolygonMode with POINT causes certain vertices of a polygon to
be treated, for rasterization purposes, just as if they were enclosed within
a Begin(POINT) and End pair. The vertices selected for this treatment are
those that have been tagged as having a polygon boundary edge beginning
on them (see section 2.6.2). LINE causes edges that are tagged as boundary
to be rasterized as line segments. (The line stipple counter is reset at the
beginning of the �rst rasterized edge of the polygon, but not for subsequent
edges.) FILL is the default mode of polygon rasterization, corresponding to
the description in sections 3.5.1, 3.5.2, and 3.5.3. Note that these modes
a�ect only the �nal rasterization of polygons: in particular, a polygon's
vertices are lit, and the polygon is clipped and possibly culled before these
modes are applied.

Polygon antialiasing applies only to the FILL state of PolygonMode.
For POINT or LINE, point antialiasing or line segment antialiasing, respec-
tively, apply.

3.5.5 Depth O�set

The depth values of all fragments generated by the rasterization of a polygon
may be o�set by a single value that is computed for that polygon. The

Version 1.2.1 - April 1, 1999

74 CHAPTER 3. RASTERIZATION

function that determines this value is speci�ed by calling

void PolygonO�set(float factor, float units);

factor scales the maximum depth slope of the polygon, and units scales an
implementation dependent constant that relates to the usable resolution of
the depth bu�er. The resulting values are summed to produce the polygon
o�set value. Both factor and units may be either positive or negative.

The maximum depth slope m of a triangle is

m =

s�
@zw
@xw

�2
+

�
@zw
@yw

�2
(3.5)

where (xw; yw; zw) is a point on the triangle. m may be approximated as

m = max

�����@zw@xw

���� ;
����@zw@yw

����
�
: (3.6)

If the polygon has more than three vertices, one or more values of m may be
used during rasterization. Each may take any value in the range [min,max],
wheremin andmax are the smallest and largest values obtained by evaluat-
ing Equation 3.5 or Equation 3.6 for the triangles formed by all three-vertex
combinations.

The minimum resolvable di�erence r is an implementation constant. It
is the smallest di�erence in window coordinate z values that is guaranteed
to remain distinct throughout polygon rasterization and in the depth bu�er.
All pairs of fragments generated by the rasterization of two polygons with
otherwise identical vertices, but zw values that di�er by r, will have distinct
depth values.

The o�set value o for a polygon is

o = m � factor + r � units: (3.7)

m is computed as described above, as a function of depth values in the range
[0,1], and o is applied to depth values in the same range.

Boolean state values POLYGON OFFSET POINT, POLYGON OFFSET LINE, and
POLYGON OFFSET FILL determine whether o is applied during the rasteriza-
tion of polygons in POINT, LINE, and FILL modes. These boolean state val-
ues are enabled and disabled as argument values to the commands Enable
and Disable. If POLYGON OFFSET POINT is enabled, o is added to the depth
value of each fragment produced by the rasterization of a polygon in POINT

mode. Likewise, if POLYGON OFFSET LINE or POLYGON OFFSET FILL is enabled, o

Version 1.2.1 - April 1, 1999

3.6. PIXEL RECTANGLES 75

is added to the depth value of each fragment produced by the rasterization
of a polygon in LINE or FILL modes, respectively.

Fragment depth values are always limited to the range [0,1], either by
clamping after o�set addition is performed (preferred), or by clamping the
vertex values used in the rasterization of the polygon.

3.5.6 Polygon Rasterization State

The state required for polygon rasterization consists of a polygon stipple pat-
tern, whether stippling is enabled or disabled, the current state of polygon
antialiasing (enabled or disabled), the current values of the PolygonMode
setting for each of front and back facing polygons, whether point, line, and
�ll mode polygon o�sets are enabled or disabled, and the factor and bias
values of the polygon o�set equation. The initial stipple pattern is all ones;
initially stippling is disabled. The initial setting of polygon antialiasing is
disabled. The initial state for PolygonMode is FILL for both front and
back facing polygons. The initial polygon o�set factor and bias values are
both 0; initially polygon o�set is disabled for all modes.

3.6 Pixel Rectangles

Rectangles of color, depth, and certain other values may be converted to
fragments using the DrawPixels command (described in section 3.6.4).
Some of the parameters and operations governing the operation of Draw-
Pixels are shared by ReadPixels (used to obtain pixel values from the
framebu�er) and CopyPixels (used to copy pixels from one framebu�er
location to another); the discussion of ReadPixels and CopyPixels, how-
ever, is deferred until Chapter 4 after the framebu�er has been discussed
in detail. Nevertheless, we note in this section when parameters and state
pertaining to DrawPixels also pertain to ReadPixels or CopyPixels.

A number of parameters control the encoding of pixels in client mem-
ory (for reading and writing) and how pixels are processed before being
placed in or after being read from the framebu�er (for reading, writing, and
copying). These parameters are set with three commands: PixelStore,
PixelTransfer, and PixelMap.

3.6.1 Pixel Storage Modes

Pixel storage modes a�ect the operation of DrawPixels and ReadPixels
(as well as other commands; see sections 3.5.2, 3.7, and 3.8) when one of

Version 1.2.1 - April 1, 1999

76 CHAPTER 3. RASTERIZATION

Parameter Name Type Initial Value Valid Range

UNPACK SWAP BYTES boolean FALSE TRUE/FALSE

UNPACK LSB FIRST boolean FALSE TRUE/FALSE

UNPACK ROW LENGTH integer 0 [0;1)

UNPACK SKIP ROWS integer 0 [0;1)

UNPACK SKIP PIXELS integer 0 [0;1)

UNPACK ALIGNMENT integer 4 1,2,4,8

UNPACK IMAGE HEIGHT integer 0 [0;1)

UNPACK SKIP IMAGES integer 0 [0;1)

Table 3.1: PixelStore parameters pertaining to one or more of DrawPix-
els, TexImage1D, TexImage2D, and TexImage3D.

these commands is issued. This may di�er from the time that the command
is executed if the command is placed in a display list (see section 5.4). Pixel
storage modes are set with

void PixelStorefifg(enum pname, T param);

pname is a symbolic constant indicating a parameter to be set, and param
is the value to set it to. Table 3.1 summarizes the pixel storage parameters,
their types, their initial values, and their allowable ranges. Setting a param-
eter to a value outside the given range results in the error INVALID VALUE.

The version of PixelStore that takes a oating-point value may be
used to set any type of parameter; if the parameter is boolean, then it
is set to FALSE if the passed value is 0:0 and TRUE otherwise, while if the
parameter is an integer, then the passed value is rounded to the nearest
integer. The integer version of the command may also be used to set any
type of parameter; if the parameter is boolean, then it is set to FALSE if the
passed value is 0 and TRUE otherwise, while if the parameter is a oating-
point value, then the passed value is converted to oating-point.

3.6.2 The Imaging Subset

Some pixel transfer and per-fragment operations are only made available in
GL implementations which incorporate the optional imaging subset. The
imaging subset includes both new commands, and new enumerants allowed
as parameters to existing commands. If the subset is supported, all of these

Version 1.2.1 - April 1, 1999

3.6. PIXEL RECTANGLES 77

calls and enumerants must be implemented as described later in the GL spec-
i�cation. If the subset is not supported, calling any of the new commands
generates the error INVALID OPERATION, and using any of the new enumerants
generates the error INVALID ENUM.

The individual operations available only in the imaging subset are de-
scribed in section 3.6.3, except for blending features, which are described in
chapter 4. Imaging subset operations include:

1. Color tables, including all commands and enumerants described in
subsections Color Table Speci�cation, Alternate Color Table
Speci�cation Commands, Color Table State and Proxy State,
Color Table Lookup, Post Convolution Color Table Lookup,
and Post Color Matrix Color Table Lookup, as well as the query
commands described in section 6.1.7.

2. Convolution, including all commands and enumerants described in
subsections Convolution Filter Speci�cation, Alternate Con-
volution Filter Speci�cation Commands, and Convolution, as
well as the query commands described in section 6.1.8.

3. Color matrix, including all commands and enumerants described in
subsectionsColor Matrix Speci�cation andColor Matrix Trans-
formation, as well as the simple query commands described in sec-
tion 6.1.6.

4. Histogram and minmax, including all commands and enumerants de-
scribed in subsectionsHistogram Table Speci�cation, Histogram
State and Proxy State, Histogram, Minmax Table Speci�ca-
tion, and Minmax, as well as the query commands described in sec-
tion 6.1.9 and section 6.1.10.

5. The subset of blending features described by Blend-
Equation, BlendColor, and the BlendFunc modes
CONSTANT COLOR, ONE MINUS CONSTANT COLOR, CONSTANT ALPHA, and
ONE MINUS CONSTANT ALPHA. These are described separately in sec-
tion 4.1.6.

The imaging subset is supported only if the EXTENSIONS string includes
the substring "ARB imaging". Querying EXTENSIONS is described in sec-
tion 6.1.11.

If the imaging subset is not supported, the related pixel transfer opera-
tions are not performed; pixels are passed unchanged to the next operation.

Version 1.2.1 - April 1, 1999

78 CHAPTER 3. RASTERIZATION

Parameter Name Type Initial Value Valid Range

MAP COLOR boolean FALSE TRUE/FALSE

MAP STENCIL boolean FALSE TRUE/FALSE

INDEX SHIFT integer 0 (�1;1)

INDEX OFFSET integer 0 (�1;1)

x SCALE oat 1.0 (�1;1)

DEPTH SCALE oat 1.0 (�1;1)

x BIAS oat 0.0 (�1;1)

DEPTH BIAS oat 0.0 (�1;1)

POST CONVOLUTION x SCALE oat 1.0 (�1;1)

POST CONVOLUTION x BIAS oat 0.0 (�1;1)

POST COLOR MATRIX x SCALE oat 1.0 (�1;1)

POST COLOR MATRIX x BIAS oat 0.0 (�1;1)

Table 3.2: PixelTransfer parameters. x is RED, GREEN, BLUE, or ALPHA.

3.6.3 Pixel Transfer Modes

Pixel transfer modes a�ect the operation of DrawPixels (section 3.6.4),
ReadPixels (section 4.3.2), and CopyPixels (section 4.3.3) at the time
when one of these commands is executed (which may di�er from the time
the command is issued). Some pixel transfer modes are set with

void PixelTransferfifg(enum param, T value);

param is a symbolic constant indicating a parameter to be set, and value is
the value to set it to. Table 3.2 summarizes the pixel transfer parameters
that are set with PixelTransfer, their types, their initial values, and their
allowable ranges. Setting a parameter to a value outside the given range
results in the error INVALID VALUE. The same versions of the command exist
as for PixelStore, and the same rules apply to accepting and converting
passed values to set parameters.

The pixel map lookup tables are set with

void PixelMapfui us fgv(enum map, sizei size, T values);

map is a symbolic map name, indicating the map to set, size indicates the
size of the map, and values is a pointer to an array of size map values.

Version 1.2.1 - April 1, 1999

3.6. PIXEL RECTANGLES 79

Map Name Address Value Init. Size Init. Value

PIXEL MAP I TO I color idx color idx 1 0.0

PIXEL MAP S TO S stencil idx stencil idx 1 0

PIXEL MAP I TO R color idx R 1 0.0

PIXEL MAP I TO G color idx G 1 0.0

PIXEL MAP I TO B color idx B 1 0.0

PIXEL MAP I TO A color idx A 1 0.0

PIXEL MAP R TO R R R 1 0.0

PIXEL MAP G TO G G G 1 0.0

PIXEL MAP B TO B B B 1 0.0

PIXEL MAP A TO A A A 1 0.0

Table 3.3: PixelMap parameters.

The entries of a table may be speci�ed using one of three types: single-
precision oating-point, unsigned short integer, or unsigned integer, depend-
ing on which of the three versions of PixelMap is called. A table entry is
converted to the appropriate type when it is speci�ed. An entry giving a
color component value is converted according to table 2.6. An entry giving
a color index value is converted from an unsigned short integer or unsigned
integer to oating-point. An entry giving a stencil index is converted from
single-precision oating-point to an integer by rounding to nearest. The
various tables and their initial sizes and entries are summarized in table 3.3.
A table that takes an index as an address must have size = 2n or the error
INVALID VALUE results. The maximum allowable size of each table is speci�ed
by the implementation dependent value MAX PIXEL MAP TABLE, but must be at
least 32 (a single maximum applies to all tables). The error INVALID VALUE

is generated if a size larger than the implemented maximum, or less than
one, is given to PixelMap.

Color Table Speci�cation

Color lookup tables are speci�ed with

void ColorTable(enum target, enum internalformat,
sizei width, enum format, enum type, void *data);

target must be one of the regular color table names listed in table 3.4 to
de�ne the table. A proxy table name is a special case discussed later in

Version 1.2.1 - April 1, 1999

80 CHAPTER 3. RASTERIZATION

Table Name Type

COLOR TABLE regular
POST CONVOLUTION COLOR TABLE

POST COLOR MATRIX COLOR TABLE

PROXY COLOR TABLE proxy
PROXY POST CONVOLUTION COLOR TABLE

PROXY POST COLOR MATRIX COLOR TABLE

Table 3.4: Color table names. Regular tables have associated image data.
Proxy tables have no image data, and are used only to determine if an image
can be loaded into the corresponding regular table.

this section. width, format, type, and data specify an image in memory with
the same meaning and allowed values as the corresponding arguments to
DrawPixels (see section 3.6.4), with height taken to be 1. The maximum
allowable width of a table is implementation-dependent, but must be at least
32. The formats COLOR INDEX, DEPTH COMPONENT, and STENCIL INDEX and the
type BITMAP are not allowed.

The speci�ed image is taken from memory and processed just as if
DrawPixels were called, stopping after the �nal expansion to RGBA.
The R, G, B, and A components of each pixel are then scaled by the
four COLOR TABLE SCALE parameters, biased by the four COLOR TABLE BIAS pa-
rameters, and clamped to [0; 1]. These parameters are set by calling Col-
orTableParameterfv as described below.

Components are then selected from the resulting R, G, B, and A values
to obtain a table with the base internal format speci�ed by (or derived
from) internalformat, in the same manner as for textures (section 3.8.1).
internalformat must be one of the formats in table 3.15 or table 3.16.

The color lookup table is rede�ned to have width entries, each with the
speci�ed internal format. The table is formed with indices 0 through width�
1. Table location i is speci�ed by the ith image pixel, counting from zero.

The error INVALID VALUE is generated if width is not zero or a non-negative
power of two. The error TABLE TOO LARGE is generated if the speci�ed color
lookup table is too large for the implementation.

The scale and bias parameters for a table are speci�ed by calling

void ColorTableParameterfifgv(enum target,
enum pname, T params);

Version 1.2.1 - April 1, 1999

3.6. PIXEL RECTANGLES 81

target must be a regular color table name. pname is one of COLOR TABLE SCALE

or COLOR TABLE BIAS. params points to an array of four values: red, green,
blue, and alpha, in that order.

A GL implementation may vary its allocation of internal component
resolution based on any ColorTable parameter, but the allocation must
not be a function of any other factor, and cannot be changed once it is
established. Allocations must be invariant; the same allocation must be
made each time a color table is speci�ed with the same parameter values.
These allocation rules also apply to proxy color tables, which are described
later in this section.

Alternate Color Table Speci�cation Commands

Color tables may also be speci�ed using image data taken directly from the
framebu�er, and portions of existing tables may be respeci�ed.

The command

void CopyColorTable(enum target, enum internalformat,
int x, int y, sizei width);

de�nes a color table in exactly the manner of ColorTable, except that table
data are taken from the framebu�er, rather than from client memory. target
must be a regular color table name. x, y, and width correspond precisely to
the corresponding arguments of CopyPixels (refer to section 4.3.3); they
specify the image's width and the lower left (x; y) coordinates of the frame-
bu�er region to be copied. The image is taken from the framebu�er exactly
as if these arguments were passed to CopyPixels with argument type set
to COLOR and height set to 1, stopping after the �nal expansion to RGBA.

Subsequent processing is identical to that described for ColorTable, be-
ginning with scaling by COLOR TABLE SCALE. Parameters target, internalfor-
mat and width are speci�ed using the same values, with the same meanings,
as the equivalent arguments of ColorTable. format is taken to be RGBA.

Two additional commands,

void ColorSubTable(enum target, sizei start,
sizei count, enum format, enum type, void *data);

void CopyColorSubTable(enum target, sizei start,
int x, int y, sizei count);

respecify only a portion of an existing color table. No change is made to the
internalformat or width parameters of the speci�ed color table, nor is any

Version 1.2.1 - April 1, 1999

82 CHAPTER 3. RASTERIZATION

change made to table entries outside the speci�ed portion. target must be a
regular color table name.

ColorSubTable arguments format, type, and data match the corre-
sponding arguments to ColorTable, meaning that they are speci�ed using
the same values, and have the same meanings. Likewise, CopyColorSub-
Table arguments x, y, and count match the x, y, and width arguments of
CopyColorTable. Both of the ColorSubTable commands interpret and
process pixel groups in exactly the manner of their ColorTable counter-
parts, except that the assignment of R, G, B, and A pixel group values to
the color table components is controlled by the internalformat of the table,
not by an argument to the command.

Arguments start and count of ColorSubTable and CopyColorSub-
Table specify a subregion of the color table starting at index start and
ending at index start+ count� 1. Counting from zero, the nth pixel group
is assigned to the table entry with index count+n. The error INVALID VALUE

is generated if start+ count > width.

Color Table State and Proxy State

The state necessary for color tables can be divided into two categories. For
each of the three tables, there is an array of values. Each array has associated
with it a width, an integer describing the internal format of the table, six
integer values describing the resolutions of each of the red, green, blue, alpha,
luminance, and intensity components of the table, and two groups of four
oating-point numbers to store the table scale and bias. Each initial array
is null (zero width, internal format RGBA, with zero-sized components). The
initial value of the scale parameters is (1,1,1,1) and the initial value of the
bias parameters is (0,0,0,0).

In addition to the color lookup tables, partially instantiated proxy color
lookup tables are maintained. Each proxy table includes width and internal
format state values, as well as state for the red, green, blue, alpha, lumi-
nance, and intensity component resolutions. Proxy tables do not include
image data, nor do they include scale and bias parameters. When Col-
orTable is executed with target speci�ed as one of the proxy color table
names listed in table 3.4, the proxy state values of the table are recomputed
and updated. If the table is too large, no error is generated, but the proxy
format, width and component resolutions are set to zero. If the color table
would be accommodated by ColorTable called with target set to the corre-
sponding regular table name (COLOR TABLE is the regular name corresponding
to PROXY COLOR TABLE, for example), the proxy state values are set exactly as

Version 1.2.1 - April 1, 1999

3.6. PIXEL RECTANGLES 83

though the regular table were being speci�ed. Calling ColorTable with a
proxy target has no e�ect on the image or state of any actual color table.

There is no image associated with any of the proxy targets. They can-
not be used as color tables, and they must never be queried using GetCol-
orTable. The error INVALID ENUM is generated if this is attempted.

Convolution Filter Speci�cation

A two-dimensional convolution �lter image is speci�ed by calling

void ConvolutionFilter2D(enum target,
enum internalformat, sizei width, sizei height,
enum format, enum type, void *data);

target must be CONVOLUTION 2D. width, height, format, type, and data spec-
ify an image in memory with the same meaning and allowed values as
the corresponding parameters to DrawPixels. The formats COLOR INDEX,
DEPTH COMPONENT, and STENCIL INDEX and the type BITMAP are not allowed.

The speci�ed image is extracted from memory and processed just as
if DrawPixels were called, stopping after the �nal expansion to RGBA.
The R, G, B, and A components of each pixel are then scaled by the four
two-dimensional CONVOLUTION FILTER SCALE parameters and biased by the
four two-dimensional CONVOLUTION FILTER BIAS parameters. These parame-
ters are set by calling ConvolutionParameterfv as described below. No
clamping takes place at any time during this process.

Components are then selected from the resulting R, G, B, and A values
to obtain a table with the base internal format speci�ed by (or derived
from) internalformat, in the same manner as for textures (section 3.8.1).
internalformat must be one of the formats in table 3.15 or table 3.16.

The red, green, blue, alpha, luminance, and/or intensity components of
the pixels are stored in oating point, rather than integer format. They form
a two-dimensional image indexed with coordinates i; j such that i increases
from left to right, starting at zero, and j increases from bottom to top, also
starting at zero. Image location i; j is speci�ed by the Nth pixel, counting
from zero, where

N = i+ j � width
The error INVALID VALUE is generated if width or height is greater than

the maximum supported value. These values are queried with GetCon-
volutionParameteriv, setting target to CONVOLUTION 2D and pname to
MAX CONVOLUTION WIDTH or MAX CONVOLUTION HEIGHT, respectively.

Version 1.2.1 - April 1, 1999

84 CHAPTER 3. RASTERIZATION

The scale and bias parameters for a two-dimensional �lter are speci�ed
by calling

void ConvolutionParameterfifgv(enum target,
enum pname, T params);

with target CONVOLUTION 2D. pname is one of CONVOLUTION FILTER SCALE or
CONVOLUTION FILTER BIAS. params points to an array of four values: red,
green, blue, and alpha, in that order.

A one-dimensional convolution �lter is de�ned using

void ConvolutionFilter1D(enum target,
enum internalformat, sizei width, enum format,
enum type, void *data);

target must be CONVOLUTION 1D. internalformat, width, format, and type have
identical semantics and accept the same values as do their two-dimensional
counterparts. data must point to a one-dimensional image, however.

The image is extracted from memory and processed as if Con-
volutionFilter2D were called with a height of 1, except that it is
scaled and biased by the one-dimensional CONVOLUTION FILTER SCALE and
CONVOLUTION FILTER BIAS parameters. These parameters are speci�ed ex-
actly as the two-dimensional parameters, except that ConvolutionParam-
eterfv is called with target CONVOLUTION 1D.

The image is formed with coordinates i such that i increases from left to
right, starting at zero. Image location i is speci�ed by the ith pixel, counting
from zero.

The error INVALID VALUE is generated if width is greater than the
maximum supported value. This value is queried using GetConvo-
lutionParameteriv, setting target to CONVOLUTION 1D and pname to
MAX CONVOLUTION WIDTH.

Special facilities are provided for the de�nition of two-dimensional sep-
arable �lters { �lters whose image can be represented as the product of
two one-dimensional images, rather than as full two-dimensional images. A
two-dimensional separable convolution �lter is speci�ed with

void SeparableFilter2D(enum target, enum internalformat,
sizei width, sizei height, enum format, enum type,
void *row, void *column);

Version 1.2.1 - April 1, 1999

3.6. PIXEL RECTANGLES 85

target must be SEPARABLE 2D. internalformat speci�es the formats of the table
entries of the two one-dimensional images that will be retained. row points
to a width pixel wide image of the speci�ed format and type. column points
to a height pixel high image, also of the speci�ed format and type.

The two images are extracted from memory and processed as if
ConvolutionFilter1D were called separately for each, except that
each image is scaled and biased by the two-dimensional separable
CONVOLUTION FILTER SCALE and CONVOLUTION FILTER BIAS parameters. These
parameters are speci�ed exactly as the one-dimensional and two-dimensional
parameters, except that ConvolutionParameteriv is called with target
SEPARABLE 2D.

Alternate Convolution Filter Speci�cation Commands

One and two-dimensional �lters may also be speci�ed using image data taken
directly from the framebu�er.

The command

void CopyConvolutionFilter2D(enum target,
enum internalformat, int x, int y, sizei width,
sizei height);

de�nes a two-dimensional �lter in exactly the manner of ConvolutionFil-
ter2D, except that image data are taken from the framebu�er, rather than
from client memory. target must be CONVOLUTION 2D. x, y, width, and height
correspond precisely to the corresponding arguments of CopyPixels (refer
to section 4.3.3); they specify the image's width and height, and the lower left
(x; y) coordinates of the framebu�er region to be copied. The image is taken
from the framebu�er exactly as if these arguments were passed to CopyP-
ixels with argument type set to COLOR, stopping after the �nal expansion to
RGBA.

Subsequent processing is identical to that described for Convolution-
Filter2D, beginning with scaling by CONVOLUTION FILTER SCALE. Parameters
target, internalformat, width, and height are speci�ed using the same values,
with the same meanings, as the equivalent arguments of ConvolutionFil-
ter2D. format is taken to be RGBA.

The command

void CopyConvolutionFilter1D(enum target,
enum internalformat, int x, int y, sizei width);

Version 1.2.1 - April 1, 1999

86 CHAPTER 3. RASTERIZATION

de�nes a one-dimensional �lter in exactly the manner of ConvolutionFil-
ter1D, except that image data are taken from the framebu�er, rather than
from client memory. target must be CONVOLUTION 1D. x, y, and width cor-
respond precisely to the corresponding arguments of CopyPixels (refer to
section 4.3.3); they specify the image's width and the lower left (x; y) co-
ordinates of the framebu�er region to be copied. The image is taken from
the framebu�er exactly as if these arguments were passed to CopyPixels
with argument type set to COLOR and height set to 1, stopping after the �nal
expansion to RGBA.

Subsequent processing is identical to that described for Convolution-
Filter1D, beginning with scaling by CONVOLUTION FILTER SCALE. Parameters
target, internalformat, and width are speci�ed using the same values, with
the same meanings, as the equivalent arguments of ConvolutionFilter2D.
format is taken to be RGBA.

Convolution Filter State

The required state for convolution �lters includes a one-dimensional image
array, two one-dimensional image arrays for the separable �lter, and a two-
dimensional image array. The two-dimensional array has associated with
it a height. Each array has associated with it a width, an integer describ-
ing the internal format of the table, and six integer values describing the
resolutions of each of the red, green, blue, alpha, luminance, and intensity
components of the table. Each �lter (one-dimensional, two-dimensional,
and two-dimensional separable) also has associated with it two groups of
four oating-point numbers to store the �lter scale and bias.

Each initial convolution �lter is null (zero width and height, internal
format RGBA, with zero-sized components). The initial value of all scale
parameters is (1,1,1,1) and the initial value of all bias parameters is (0,0,0,0).

Color Matrix Speci�cation

Setting the matrix mode to COLOR causes the matrix operations described
in section 2.10.2 to apply to the top matrix on the color matrix stack. All
matrix operations have the same e�ect on the color matrix as they do on
the other matrices.

Histogram Table Speci�cation

The histogram table is speci�ed with

Version 1.2.1 - April 1, 1999

3.6. PIXEL RECTANGLES 87

void Histogram(enum target, sizei width,
enum internalformat, boolean sink);

target must be HISTOGRAM if a histogram table is to be speci�ed. target
value PROXY HISTOGRAM is a special case discussed later in this section. width
speci�es the number of entries in the histogram table, and internalformat
speci�es the format of each table entry. The maximum allowable width of the
histogram table is implementation-dependent, but must be at least 32. sink
speci�es whether pixel groups will be consumed by the histogram operation
(TRUE) or passed on to the minmax operation (FALSE).

If no error results from the execution of Histogram, the speci�ed his-
togram table is rede�ned to have width entries, each with the speci�ed inter-
nal format. The entries are indexed 0 through width � 1. Each component
in each entry is set to zero. The values in the previous histogram table, if
any, are lost.

The error INVALID VALUE is generated if width is not zero or a non-negative
power of 2. The error TABLE TOO LARGE is generated if the speci�ed histogram
table is too large for the implementation. The error INVALID ENUM is gener-
ated if internalformat is not one of the values accepted by the correspond-
ing parameter of TexImage2D, or is 1, 2, 3, 4, INTENSITY, INTENSITY4,
INTENSITY8, INTENSITY12, or INTENSITY16.

A GL implementation may vary its allocation of internal component
resolution based on any Histogram parameter, but the allocation must
not be a function of any other factor, and cannot be changed once it is
established. In particular, allocations must be invariant; the same allocation
must be made each time a histogram is speci�ed with the same parameter
values. These allocation rules also apply to the proxy histogram, which is
described later in this section.

Histogram State and Proxy State

The state necessary for histogram operation is an array of values, with which
is associated a width, an integer describing the internal format of the his-
togram, �ve integer values describing the resolutions of each of the red,
green, blue, alpha, and luminance components of the table, and a ag in-
dicating whether or not pixel groups are consumed by the operation. The
initial array is null (zero width, internal format RGBA, with zero-sized com-
ponents). The initial value of the ag is false.

In addition to the histogram table, a partially instantiated proxy his-
togram table is maintained. It includes width, internal format, and red,

Version 1.2.1 - April 1, 1999

88 CHAPTER 3. RASTERIZATION

green, blue, alpha, and luminance component resolutions. The proxy table
does not include image data or the ag. When Histogram is executed
with target set to PROXY HISTOGRAM, the proxy state values are recomputed
and updated. If the histogram array is too large, no error is generated, but
the proxy format, width, and component resolutions are set to zero. If the
histogram table would be accomodated by Histogram called with target
set to HISTOGRAM, the proxy state values are set exactly as though the ac-
tual histogram table were being speci�ed. Calling Histogram with target
PROXY HISTOGRAM has no e�ect on the actual histogram table.

There is no image associated with PROXY HISTOGRAM. It cannot be used as
a histogram, and its image must never queried using GetHistogram. The
error INVALID ENUM results if this is attempted.

Minmax Table Speci�cation

The minmax table is speci�ed with

void Minmax(enum target, enum internalformat,
boolean sink);

target must be MINMAX. internalformat speci�es the format of the table en-
tries. sink speci�es whether pixel groups will be consumed by the minmax
operation (TRUE) or passed on to �nal conversion (FALSE).

The error INVALID ENUM is generated if internalformat is not one of the
values accepted by the corresponding parameter of TexImage2D, or is 1, 2,
3, 4, INTENSITY, INTENSITY4, INTENSITY8, INTENSITY12, or INTENSITY16. The
resulting table always has 2 entries, each with values corresponding only to
the components of the internal format.

The state necessary for minmax operation is a table containing two el-
ements (the �rst element stores the minimum values, the second stores the
maximum values), an integer describing the internal format of the table, and
a ag indicating whether or not pixel groups are consumed by the operation.
The initial state is a minimum table entry set to the maximum representable
value and a maximum table entry set to the minimum representable value.
Internal format is set to RGBA and the initial value of the ag is false.

3.6.4 Rasterization of Pixel Rectangles

The process of drawing pixels encoded in host memory is diagrammed in
�gure 3.7. We describe the stages of this process in the order in which they
occur.

Version 1.2.1 - April 1, 1999

3.6. PIXEL RECTANGLES 89

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB

unpack

convert
to float

convert
L to RGB

RGBA, L

Pixel Storage
Operations

byte, short, int, or float pixel
data stream (index or component)

color
index

post
convolution

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB

scale
and bias

Pixel Transfer
Operations

color table
lookup

convolution
scale and bias

histogram

minmax

color table
lookup

RGBA to RGBA
lookup

shift
and offset

index to index
lookup

index to RGBA
lookup

color table
lookup

color matrix
scale and bias

post
color matrix

color index pixel
data out

RGBA pixel
data out

clamp
to [0,1]

mask to
(2n − 1)

final
conversion

Figure 3.7. Operation of DrawPixels. Output is RGBA pixels if the GL
is in RGBA mode, color index pixels otherwise. Operations in dashed boxes
may be enabled or disabled. RGBA and color index pixel paths are shown;
depth and stencil pixel paths are not shown.

Version 1.2.1 - April 1, 1999

90 CHAPTER 3. RASTERIZATION

Pixels are drawn using

void DrawPixels(sizei width, sizei height, enum format,
enum type, void *data);

format is a symbolic constant indicating what the values in memory repre-
sent. width and height are the width and height, respectively, of the pixel
rectangle to be drawn. data is a pointer to the data to be drawn. These
data are represented with one of seven GL data types, speci�ed by type.
The correspondence between the twenty type token values and the GL data
types they indicate is given in table 3.5. If the GL is in color index mode
and format is not one of COLOR INDEX, STENCIL INDEX, or DEPTH COMPONENT,
then the error INVALID OPERATION occurs. If type is BITMAP and format is
not COLOR INDEX or STENCIL INDEX then the error INVALID ENUM occurs. Some
additional constraints on the combinations of format and type values that
are accepted is discussed below.

Unpacking

Data are taken from host memory as a sequence of signed or unsigned bytes
(GL data types byte and ubyte), signed or unsigned short integers (GL data
types short and ushort), signed or unsigned integers (GL data types int
and uint), or oating point values (GL data type float). These elements
are grouped into sets of one, two, three, or four values, depending on the
format, to form a group. Table 3.6 summarizes the format of groups obtained
from memory; it also indicates those formats that yield indices and those
that yield components.

By default the values of each GL data type are interpreted as they would
be speci�ed in the language of the client's GL binding. If UNPACK SWAP BYTES

is enabled, however, then the values are interpreted with the bit orderings
modi�ed as per table 3.7. The modi�ed bit orderings are de�ned only if the
GL data type ubyte has eight bits, and then for each speci�c GL data type
only if that type is represented with 8, 16, or 32 bits.

The groups in memory are treated as being arranged in a rectangle. This
rectangle consists of a series of rows, with the �rst element of the �rst group
of the �rst row pointed to by the pointer passed to DrawPixels. If the
value of UNPACK ROW LENGTH is not positive, then the number of groups in
a row is width; otherwise the number of groups is UNPACK ROW LENGTH. If p
indicates the location in memory of the �rst element of the �rst row, then
the �rst element of the Nth row is indicated by

Version 1.2.1 - April 1, 1999

3.6. PIXEL RECTANGLES 91

type Parameter Corresponding Special
Token Name GL Data Type Interpretation

UNSIGNED BYTE ubyte No

BITMAP ubyte Yes

BYTE byte No

UNSIGNED SHORT ushort No

SHORT short No

UNSIGNED INT uint No

INT int No

FLOAT float No

UNSIGNED BYTE 3 3 2 ubyte Yes

UNSIGNED BYTE 2 3 3 REV ubyte Yes

UNSIGNED SHORT 5 6 5 ushort Yes

UNSIGNED SHORT 5 6 5 REV ushort Yes

UNSIGNED SHORT 4 4 4 4 ushort Yes

UNSIGNED SHORT 4 4 4 4 REV ushort Yes

UNSIGNED SHORT 5 5 5 1 ushort Yes

UNSIGNED SHORT 1 5 5 5 REV ushort Yes

UNSIGNED INT 8 8 8 8 uint Yes

UNSIGNED INT 8 8 8 8 REV uint Yes

UNSIGNED INT 10 10 10 2 uint Yes

UNSIGNED INT 2 10 10 10 REV uint Yes

Table 3.5: DrawPixels and ReadPixels type parameter values and the
corresponding GL data types. Refer to table 2.2 for de�nitions of GL data
types. Special interpretations are described near the end of section 3.6.4.

Version 1.2.1 - April 1, 1999

92 CHAPTER 3. RASTERIZATION

Format Name Element Meaning and Order Target Bu�er

COLOR INDEX Color Index Color

STENCIL INDEX Stencil Index Stencil

DEPTH COMPONENT Depth Depth

RED R Color

GREEN G Color

BLUE B Color

ALPHA A Color

RGB R, G, B Color

RGBA R, G, B, A Color

BGR B, G, R Color

BGRA B, G, R, A Color

LUMINANCE Luminance Color

LUMINANCE ALPHA Luminance, A Color

Table 3.6: DrawPixels andReadPixels formats. The second column gives
a description of and the number and order of elements in a group. Unless
speci�ed as an index, formats yield components.

Element Size Default Bit Ordering Modi�ed Bit Ordering

8 bit [7::0] [7::0]

16 bit [15::0] [7::0][15::8]

32 bit [31::0] [7::0][15::8][23::16][31::24]

Table 3.7: Bit ordering modi�cation of elements when UNPACK SWAP BYTES is
enabled. These reorderings are de�ned only when GL data type ubyte has
8 bits, and then only for GL data types with 8, 16, or 32 bits. Bit 0 is the
least signi�cant.

Version 1.2.1 - April 1, 1999

3.6. PIXEL RECTANGLES 93

BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB

SKIP_ROWS

SKIP_PIXELS

ROW_LENGTH

subimage

Figure 3.8. Selecting a subimage from an image. The indicated parameter
names are pre�xed by UNPACK for DrawPixels and by PACK for ReadPix-
els.

p+Nk (3.8)

where N is the row number (counting from zero) and k is de�ned as

k =

(
nl s � a;
a=s dsnl=ae s < a

(3.9)

where n is the number of elements in a group, l is the number of groups
in the row, a is the value of UNPACK ALIGNMENT, and s is the size, in units of
GL ubytes, of an element. If the number of bits per element is not 1, 2, 4,
or 8 times the number of bits in a GL ubyte, then k = nl for all values of a.

There is a mechanism for selecting a sub-rectangle of groups from a
larger containing rectangle. This mechanism relies on three integer param-
eters: UNPACK ROW LENGTH, UNPACK SKIP ROWS, and UNPACK SKIP PIXELS. Before
obtaining the �rst group from memory, the pointer supplied to DrawPixels
is e�ectively advanced by (UNPACK SKIP PIXELS)n+ (UNPACK SKIP ROWS)k ele-
ments. Then width groups are obtained from contiguous elements in memory
(without advancing the pointer), after which the pointer is advanced by k
elements. height sets of width groups of values are obtained this way. See
�gure 3.8.

Calling DrawPixels with a type of UNSIGNED BYTE 3 3 2,
UNSIGNED BYTE 2 3 3 REV, UNSIGNED SHORT 5 6 5, UNSIGNED SHORT 5 6 5 REV,

Version 1.2.1 - April 1, 1999

94 CHAPTER 3. RASTERIZATION

type Parameter GL Data Number of Matching
Token Name Type Components Pixel Formats

UNSIGNED BYTE 3 3 2 ubyte 3 RGB

UNSIGNED BYTE 2 3 3 REV ubyte 3 RGB

UNSIGNED SHORT 5 6 5 ushort 3 RGB

UNSIGNED SHORT 5 6 5 REV ushort 3 RGB

UNSIGNED SHORT 4 4 4 4 ushort 4 RGBA,BGRA

UNSIGNED SHORT 4 4 4 4 REV ushort 4 RGBA,BGRA

UNSIGNED SHORT 5 5 5 1 ushort 4 RGBA,BGRA

UNSIGNED SHORT 1 5 5 5 REV ushort 4 RGBA,BGRA

UNSIGNED INT 8 8 8 8 uint 4 RGBA,BGRA

UNSIGNED INT 8 8 8 8 REV uint 4 RGBA,BGRA

UNSIGNED INT 10 10 10 2 uint 4 RGBA,BGRA

UNSIGNED INT 2 10 10 10 REV uint 4 RGBA,BGRA

Table 3.8: Packed pixel formats.

UNSIGNED SHORT 4 4 4 4, UNSIGNED SHORT 4 4 4 4 REV, UNSIGNED SHORT 5 5 5 1,
UNSIGNED SHORT 1 5 5 5 REV, UNSIGNED INT 8 8 8 8, UNSIGNED INT 8 8 8 8 REV,
UNSIGNED INT 10 10 10 2, or UNSIGNED INT 2 10 10 10 REV is a special case in
which all the components of each group are packed into a single unsigned
byte, unsigned short, or unsigned int, depending on the type. The number of
components per packed pixel is �xed by the type, and must match the num-
ber of components per group indicated by the format parameter, as listed in
table 3.8. The error INVALID OPERATION is generated if a mismatch occurs.
This constraint also holds for all other functions that accept or return pixel
data using type and format parameters to de�ne the type and format of that
data.

Bit�eld locations of the �rst, second, third, and fourth components of
each packed pixel type are illustrated in tables 3.9, 3.10, and 3.11. Each
bit�eld is interpreted as an unsigned integer value. If the base GL type is
supported with more than the minimum precision (e.g. a 9-bit byte) the
packed components are right-justi�ed in the pixel.

Components are normally packed with the �rst component in the most
signi�cant bits of the bit�eld, and successive component occupying progres-
sively less signi�cant locations. Types whose token names end with REV

reverse the component packing order from least to most signi�cant loca-
tions. In all cases, the most signi�cant bit of each component is packed in

Version 1.2.1 - April 1, 1999

3.6. PIXEL RECTANGLES 95

the most signi�cant bit location of its location in the bit�eld.

UNSIGNED BYTE 3 3 2:

7 6 5 4 3 2 1 0

1st Component 2nd 3rd

UNSIGNED BYTE 2 3 3 REV:

7 6 5 4 3 2 1 0

3rd 2nd 1st Component

Table 3.9: UNSIGNED BYTE formats. Bit numbers are indicated for each com-
ponent.

Version 1.2.1 - April 1, 1999

96 CHAPTER 3. RASTERIZATION

UNSIGNED SHORT 5 6 5:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1st Component 2nd 3rd

UNSIGNED SHORT 5 6 5 REV:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

3rd 2nd 1st Component

UNSIGNED SHORT 4 4 4 4:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1st Component 2nd 3rd 4th

UNSIGNED SHORT 4 4 4 4 REV:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

4th 3rd 2nd 1st Component

UNSIGNED SHORT 5 5 5 1:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1st Component 2nd 3rd 4th

UNSIGNED SHORT 1 5 5 5 REV:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

4th 3rd 2nd 1st Component

Table 3.10: UNSIGNED SHORT formats

Version 1.2.1 - April 1, 1999

3.6. PIXEL RECTANGLES 97

UNSIGNED INT 8 8 8 8:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1st Component 2nd 3rd 4th

UNSIGNED INT 8 8 8 8 REV:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

4th 3rd 2nd 1st Component

UNSIGNED INT 10 10 10 2:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1st Component 2nd 3rd 4th

UNSIGNED INT 2 10 10 10 REV:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

4th 3rd 2nd 1st Component

Table 3.11: UNSIGNED INT formats

Version 1.2.1 - April 1, 1999

98 CHAPTER 3. RASTERIZATION

Format First Second Third Fourth
Component Component Component Component

RGB red green blue

RGBA red green blue alpha

BGRA blue green red alpha

Table 3.12: Packed pixel �eld assignments

The assignment of component to �elds in the packed pixel is as described
in table 3.12

Byte swapping, if enabled, is performed before the component are ex-
tracted from each pixel. The above discussions of row length and image
extraction are valid for packed pixels, if \group" is substituted for \compo-
nent" and the number of components per group is understood to be one.

Calling DrawPixels with a type of BITMAP is a special case in which the
data are a series of GL ubyte values. Each ubyte value speci�es 8 1-bit ele-
ments with its 8 least-signi�cant bits. The 8 single-bit elements are ordered
from most signi�cant to least signi�cant if the value of UNPACK LSB FIRST is
FALSE; otherwise, the ordering is from least signi�cant to most signi�cant.
The values of bits other than the 8 least signi�cant in each ubyte are not
signi�cant.

The �rst element of the �rst row is the �rst bit (as de�ned above) of the
ubyte pointed to by the pointer passed to DrawPixels. The �rst element
of the second row is the �rst bit (again as de�ned above) of the ubyte at
location p+ k, where k is computed as

k = a

�
l

8a

�
(3.10)

There is a mechanism for selecting a sub-rectangle of elements from
a BITMAP image as well. Before obtaining the �rst element from mem-
ory, the pointer supplied to DrawPixels is e�ectively advanced by
UNPACK SKIP ROWS � k ubytes. Then UNPACK SKIP PIXELS 1-bit elements are
ignored, and the subsequent width 1-bit elements are obtained, without ad-
vancing the ubyte pointer, after which the pointer is advanced by k ubytes.
height sets of width elements are obtained this way.

Version 1.2.1 - April 1, 1999

3.6. PIXEL RECTANGLES 99

Conversion to oating-point

This step applies only to groups of components. It is not performed on in-
dices. Each element in a group is converted to a oating-point value accord-
ing to the appropriate formula in table 2.6 (section 2.13). For packed pixel
types, each element in the group is converted by computing c = (2N � 1),
where c is the unsigned integer value of the bit�eld containing the element
and N is the number of bits in the bit�eld.

Conversion to RGB

This step is applied only if the format is LUMINANCE or LUMINANCE ALPHA. If
the format is LUMINANCE, then each group of one element is converted to a
group of R, G, and B (three) elements by copying the original single element
into each of the three new elements. If the format is LUMINANCE ALPHA, then
each group of two elements is converted to a group of R, G, B, and A (four)
elements by copying the �rst original element into each of the �rst three
new elements and copying the second original element to the A (fourth)
new element.

Final Expansion to RGBA

This step is performed only for non-depth component groups. Each group
is converted to a group of 4 elements as follows: if a group does not contain
an A element, then A is added and set to 1.0. If any of R, G, or B is missing
from the group, each missing element is added and assigned a value of 0.0.

Pixel Transfer Operations

This step is actually a sequence of steps. Because the pixel transfer opera-
tions are performed equivalently during the drawing, copying, and reading of
pixels, and during the speci�cation of texture images (either from memory or
from the framebu�er), they are described separately in section 3.6.5. After
the processing described in that section is completed, groups are processed
as described in the following sections.

Final Conversion

For a color index, �nal conversion consists of masking the bits of the index
to the left of the binary point by 2n� 1, where n is the number of bits in an
index bu�er. For RGBA components, each element is clamped to [0; 1]. The

Version 1.2.1 - April 1, 1999

100 CHAPTER 3. RASTERIZATION

resulting values are converted to �xed-point according to the rules given in
section 2.13.9 (Final Color Processing).

For a depth component, an element is �rst clamped to [0; 1] and then
converted to �xed-point as if it were a window z value (see section 2.10.1,
Controlling the Viewport).

Stencil indices are masked by 2n � 1, where n is the number of bits in
the stencil bu�er.

Conversion to Fragments

The conversion of a group to fragments is controlled with

void PixelZoom(float zx, float zy);

Let (xrp; yrp) be the current raster position (section 2.12). (If the current
raster position is invalid, then DrawPixels is ignored; pixel transfer opera-
tions do not update the histogram or minmax tables, and no fragments are
generated. However, the histogram and minmax tables are updated even if
the corresponding fragments are later rejected by the pixel ownership (sec-
tion 4.1.1) or scissor (section 4.1.2) tests.) If a particular group (index or
components) is the nth in a row and belongs to the mth row, consider the
region in window coordinates bounded by the rectangle with corners

(xrp + zxn; yrp + zym) and (xrp + zx(n+ 1); yrp + zy(m+ 1))

(either zx or zy may be negative). Any fragments whose centers lie inside
of this rectangle (or on its bottom or left boundaries) are produced in cor-
respondence with this particular group of elements.

A fragment arising from a group consisting of color data takes on the
color index or color components of the group; the depth and texture coordi-
nates are taken from the current raster position's associated data. A frag-
ment arising from a depth component takes the component's depth value;
the color and texture coordinates are given by those associated with the
current raster position. In both cases texture coordinates s, t, and r are re-
placed with s=q, t=q, and r=q, respectively. If q is less than or equal to zero,
the results are unde�ned. Groups arising from DrawPixels with a format
of STENCIL INDEX are treated specially and are described in section 4.3.1.

3.6.5 Pixel Transfer Operations

The GL de�nes four kinds of pixel groups:

Version 1.2.1 - April 1, 1999

3.6. PIXEL RECTANGLES 101

1. RGBA component: Each group comprises four color components: red,
green, blue, and alpha.

2. Depth component: Each group comprises a single depth component.

3. Color index: Each group comprises a single color index.

4. Stencil index: Each group comprises a single stencil index.

Each operation described in this section is applied sequentially to each pixel
group in an image. Many operations are applied only to pixel groups of
certain kinds; if an operation is not applicable to a given group, it is skipped.

Arithmetic on Components

This step applies only to RGBA component and depth component groups.
Each component is multiplied by an appropriate signed scale factor:
RED SCALE for an R component, GREEN SCALE for a G component, BLUE SCALE

for a B component, and ALPHA SCALE for an A component, or DEPTH SCALE

for a depth component. Then the result is added to the appropriate signed
bias: RED BIAS, GREEN BIAS, BLUE BIAS, ALPHA BIAS, or DEPTH BIAS.

Arithmetic on Indices

This step applies only to color index and stencil index groups. If the in-
dex is a oating-point value, it is converted to �xed-point, with an un-
speci�ed number of bits to the right of the binary point and at least
dlog2(MAX PIXEL MAP TABLE)e bits to the left of the binary point. Indices that
are already integers remain so; any fraction bits in the resulting �xed-point
value are zero.

The �xed-point index is then shifted by jINDEX SHIFTj bits, left if
INDEX SHIFT > 0 and right otherwise. In either case the shift is zero-�lled.
Then, the signed integer o�set INDEX OFFSET is added to the index.

RGBA to RGBA Lookup

This step applies only to RGBA component groups, and is skipped if
MAP COLOR is FALSE. First, each component is clamped to the range [0; 1].
There is a table associated with each of the R, G, B, and A component
elements: PIXEL MAP R TO R for R, PIXEL MAP G TO G for G, PIXEL MAP B TO B

for B, and PIXEL MAP A TO A for A. Each element is multiplied by an integer
one less than the size of the corresponding table, and, for each element, an

Version 1.2.1 - April 1, 1999

102 CHAPTER 3. RASTERIZATION

address is found by rounding this value to the nearest integer. For each ele-
ment, the addressed value in the corresponding table replaces the element.

Color Index Lookup

This step applies only to color index groups. If the GL command that
invokes the pixel transfer operation requires that RGBA component pixel
groups be generated, then a conversion is performed at this step. RGBA
component pixel groups are required if

1. The groups will be rasterized, and the GL is in RGBA mode, or

2. The groups will be loaded as an image into texture memory, or

3. The groups will be returned to client memory with a format other than
COLOR INDEX.

If RGBA component groups are required, then the integer part of the in-
dex is used to reference 4 tables of color components: PIXEL MAP I TO R,
PIXEL MAP I TO G, PIXEL MAP I TO B, and PIXEL MAP I TO A. Each of these ta-
bles must have 2n entries for some integer value of n (n may be di�erent
for each table). For each table, the index is �rst rounded to the nearest
integer; the result is ANDed with 2n� 1, and the resulting value used as an
address into the table. The indexed value becomes an R, G, B, or A value,
as appropriate. The group of four elements so obtained replaces the index,
changing the group's type to RGBA component.

If RGBA component groups are not required, and if MAP COLOR is enabled,
then the index is looked up in the PIXEL MAP I TO I table (otherwise, the
index is not looked up). Again, the table must have 2n entries for some
integer n. The index is �rst rounded to the nearest integer; the result is
ANDed with 2n � 1, and the resulting value used as an address into the
table. The value in the table replaces the index. The oating-point table
value is �rst rounded to a �xed-point value with unspeci�ed precision. The
group's type remains color index.

Stencil Index Lookup

This step applies only to stencil index groups. If MAP STENCIL is enabled,
then the index is looked up in the PIXEL MAP S TO S table (otherwise, the
index is not looked up). The table must have 2n entries for some integer n.
The integer index is ANDed with 2n� 1, and the resulting value used as an
address into the table. The integer value in the table replaces the index.

Version 1.2.1 - April 1, 1999

3.6. PIXEL RECTANGLES 103

Base Internal Format R G B A

ALPHA At

LUMINANCE Lt Lt Lt

LUMINANCE ALPHA Lt Lt Lt At

INTENSITY It It It It
RGB Rt Gt Bt

RGBA Rt Gt Bt At

Table 3.13: Color table lookup. Rt, Gt, Bt, At, Lt, and It are color table
values that are assigned to pixel components R, G, B, and A depending on
the table format. When there is no assignment, the component value is left
unchanged by lookup.

Color Table Lookup

This step applies only to RGBA component groups. Color table lookup is
only done if COLOR TABLE is enabled. If a zero-width table is enabled, no
lookup is performed.

The internal format of the table determines which components of the
group will be replaced (see table 3.13). The components to be replaced
are converted to indices by clamping to [0; 1], multiplying by an integer
one less than the width of the table, and rounding to the nearest integer.
Components are replaced by the table entry at the index.

The required state is one bit indicating whether color table lookup is
enabled or disabled. In the initial state, lookup is disabled.

Convolution

This step applies only to RGBA component groups. If CONVOLUTION 1D is
enabled, the one-dimensional convolution �lter is applied only to the one-
dimensional texture images passed to TexImage1D, TexSubImage1D,
CopyTexImage1D, and CopyTexSubImage1D, and returned by Get-
TexImage (see section 6.1.4) with target TEXTURE 1D. If CONVOLUTION 2D

is enabled, the two-dimensional convolution �lter is applied only to the
two-dimensional images passed to DrawPixels, CopyPixels, ReadPix-
els, TexImage2D, TexSubImage2D, CopyTexImage2D, CopyTex-
SubImage2D, and CopyTexSubImage3D, and returned byGetTexIm-
age with target TEXTURE 2D. If SEPARABLE 2D is enabled, and CONVOLUTION 2D

is disabled, the separable two-dimensional convolution �lter is instead ap-

Version 1.2.1 - April 1, 1999

104 CHAPTER 3. RASTERIZATION

Base Filter Format R G B A

ALPHA Rs Gs Bs As �Af

LUMINANCE Rs � Lf Gs � Lf Bs � Lf As

LUMINANCE ALPHA Rs � Lf Gs � Lf Bs � Lf As �Af

INTENSITY Rs � If Gs � If Bs � If As � If
RGB Rs �Rf Gs �Gf Bs � Bf As

RGBA Rs �Rf Gs �Gf Bs � Bf As �Af

Table 3.14: Computation of �ltered color components depending on �lter
image format. C � F indicates the convolution of image component C with
�lter F .

plied these images.

The convolution operation is a sum of products of source image pixels and
convolution �lter pixels. Source image pixels always have four components:
red, green, blue, and alpha, denoted in the equations below as Rs, Gs, Bs,
and As. Filter pixels may be stored in one of �ve formats, with 1, 2, 3, or
4 components. These components are denoted as Rf , Gf , Bf , Af , Lf , and
If in the equations below. The result of the convolution operation is the
4-tuple R,G,B,A. Depending on the internal format of the �lter, individual
color components of each source image pixel are convolved with one �lter
component, or are passed unmodi�ed. The rules for this are de�ned in
table 3.14.

The convolution operation is de�ned di�erently for each of the three
convolution �lters. The variables Wf and Hf refer to the dimensions of the
convolution �lter. The variables Ws and Hs refer to the dimensions of the
source pixel image.

The convolution equations are de�ned as follows, where C refers to the
�ltered result, Cf refers to the one- or two-dimensional convolution �lter,
and Crow and Ccolumn refer to the two one-dimensional �lters comprising
the two-dimensional separable �lter. C 0

s depends on the source image color
Cs and the convolution border mode as described below. Cr, the �ltered
output image, depends on all of these variables and is described separately
for each border mode. The pixel indexing nomenclature is decribed in the
Convolution Filter Speci�cation subsection of section 3.6.3.

One-dimensional �lter:

C[i0] =

Wf�1X
n=0

C 0
s[i
0 + n] � Cf [n]

Version 1.2.1 - April 1, 1999

3.6. PIXEL RECTANGLES 105

Two-dimensional �lter:

C[i0; j0] =

Wf�1X
n=0

Hf�1X
m=0

C 0
s[i
0 + n; j0 +m] � Cf [n;m]

Two-dimensional separable �lter:

C[i0; j0] =

Wf�1X
n=0

Hf�1X
m=0

C 0
s[i
0 + n; j0 +m] � Crow[n] � Ccolumn[m]

If Wf of a one-dimensional �lter is zero, then C[i] is always set to zero.
Likewise, if either Wf or Hf of a two-dimensional �lter is zero, then C[i; j]
is always set to zero.

The convolution border mode for a speci�c convolution �lter is speci�ed
by calling

void ConvolutionParameterfifg(enum target,
enum pname, T param);

where target is the name of the �lter, pname is CONVOLUTION BORDER MODE,
and param is one of REDUCE, CONSTANT BORDER or REPLICATE BORDER.

Border Mode REDUCE

The width and height of source images convolved with border mode REDUCE

are reduced by Wf � 1 and Hf � 1, respectively. If this reduction would
generate a resulting image with zero or negative width and/or height, the
output is simply null, with no error generated. The coordinates of the
image that results from a convolution with border mode REDUCE are zero
through Ws �Wf in width, and zero through Hs �Hf in height. In cases
where errors can result from the speci�cation of invalid image dimensions,
it is these resulting dimensions that are tested, not the dimensions of the
source image. (A speci�c example is TexImage1D and TexImage2D,
which specify constraints for image dimensions. Even if TexImage1D or
TexImage2D is called with a null pixel pointer, the dimensions of the
resulting texture image are those that would result from the convolution of
the speci�ed image).

When the border mode is REDUCE, C 0
s equals the source image color Cs

and Cr equals the �ltered result C.
For the remaining border modes, de�ne Cw = bWf=2c and Ch = bHf=2c.

The coordinates (Cw; Ch) de�ne the center of the convolution �lter.

Version 1.2.1 - April 1, 1999

106 CHAPTER 3. RASTERIZATION

Border Mode CONSTANT BORDER

If the convolution border mode is CONSTANT BORDER, the output image has
the same dimensions as the source image. The result of the convolution is
the same as if the source image were surrounded by pixels with the same
color as the current convolution border color. Whenever the convolution �l-
ter extends beyond one of the edges of the source image, the constant-color
border pixels are used as input to the �lter. The current convolution border
color is set by calling ConvolutionParameterfv or ConvolutionParam-
eteriv with pname set to CONVOLUTION BORDER COLOR and params containing
four values that comprise the RGBA color to be used as the image border.
Integer color components are interpreted linearly such that the most positive
integer maps to 1.0, and the most negative integer maps to -1.0. Floating
point color components are not clamped when they are speci�ed.

For a one-dimensional �lter, the result color is de�ned by

Cr[i] = C[i� Cw]

where C[i0] is computed using the following equation for C 0
s[i
0]:

C 0
s[i
0] =

(
Cs[i

0]; 0 � i0 < Ws

Cc; otherwise

and Cc is the convolution border color.

For a two-dimensional or two-dimensional separable �lter, the result
color is de�ned by

Cr[i; j] = C[i� Cw; j � Ch]

where C[i0; j0] is computed using the following equation for C 0
s[i
0; j0]:

C 0
s[i
0; j0] =

(
Cs[i

0; j0]; 0 � i0 < Ws; 0 � j0 < Hs

Cc; otherwise

Border Mode REPLICATE BORDER

The convolution border mode REPLICATE BORDER also produces an output
image with the same dimensions as the source image. The behavior of
this mode is identical to that of the CONSTANT BORDER mode except for the
treatment of pixel locations where the convolution �lter extends beyond the
edge of the source image. For these locations, it is as if the outermost one-
pixel border of the source image was replicated. Conceptually, each pixel in

Version 1.2.1 - April 1, 1999

3.6. PIXEL RECTANGLES 107

the leftmost one-pixel column of the source image is replicated Cw times to
provide additional image data along the left edge, each pixel in the rightmost
one-pixel column is replicated Cw times to provide additional image data
along the right edge, and each pixel value in the top and bottom one-pixel
rows is replicated to create Ch rows of image data along the top and bottom
edges. The pixel value at each corner is also replicated in order to provide
data for the convolution operation at each corner of the source image.

For a one-dimensional �lter, the result color is de�ned by

Cr[i] = C[i� Cw]

where C[i0] is computed using the following equation for C 0
s[i
0]:

C 0
s[i
0] = Cs[clamp(i

0;Ws)]

and the clamping function clamp(val;max) is de�ned as

clamp(val;max) =

8><
>:

0; val < 0
val; 0 � val < max
max� 1; val >= max

For a two-dimensional or two-dimensional separable �lter, the result
color is de�ned by

Cr[i; j] = C[i� Cw; j � Ch]

where C[i0; j0] is computed using the following equation for C 0
s[i
0; j0]:

C 0
s[i
0; j0] = Cs[clamp(i

0;Ws); clamp(j
0;Hs)]

After convolution, each component of the resulting image is scaled by
the corresponding PixelTransfer parameters: POST CONVOLUTION RED SCALE

for an R component, POST CONVOLUTION GREEN SCALE for a G com-
ponent, POST CONVOLUTION BLUE SCALE for a B component, and
POST CONVOLUTION ALPHA SCALE for an A component. The result
is added to the corresponding bias: POST CONVOLUTION RED BIAS,
POST CONVOLUTION GREEN BIAS, POST CONVOLUTION BLUE BIAS, or
POST CONVOLUTION ALPHA BIAS.

The required state is three bits indicating whether each of one-
dimensional, two-dimensional, or separable two-dimensional convolution is
enabled or disabled, an integer describing the current convolution border
mode, and four oating-point values specifying the convolution border color.
In the initial state, all convolution operations are disabled, the border mode
is REDUCE, and the border color is (0; 0; 0; 0).

Version 1.2.1 - April 1, 1999

108 CHAPTER 3. RASTERIZATION

Post Convolution Color Table Lookup

This step applies only to RGBA component groups. Post convolution
color table lookup is enabled or disabled by calling Enable or Disable
with the symbolic constant POST CONVOLUTION COLOR TABLE. The post convo-
lution table is de�ned by calling ColorTable with a target argument of
POST CONVOLUTION COLOR TABLE. In all other respects, operation is identical
to color table lookup, as de�ned earlier in section 3.6.5.

The required state is one bit indicating whether post convolution table
lookup is enabled or disabled. In the initial state, lookup is disabled.

Color Matrix Transformation

This step applies only to RGBA component groups. The components are
transformed by the color matrix. Each transformed component is multi-
plied by an appropriate signed scale factor: POST COLOR MATRIX RED SCALE

for an R component, POST COLOR MATRIX GREEN SCALE for a G com-
ponent, POST COLOR MATRIX BLUE SCALE for a B component, and
POST COLOR MATRIX ALPHA SCALE for an A component. The result is added to
a signed bias: POST COLOR MATRIX RED BIAS, POST COLOR MATRIX GREEN BIAS,
POST COLOR MATRIX BLUE BIAS, or POST COLOR MATRIX ALPHA BIAS. The result-
ing components replace each component of the original group.

That is, if Mc is the color matrix, a subscript of s represents the scale
term for a component, and a subscript of b represents the bias term, then
the components

0
BB@
R
G
B
A

1
CCA

are transformed to

0
BB@
R0

G0

B0

A0

1
CCA =

0
BB@
Rs 0 0 0
0 Gs 0 0
0 0 Bs 0
0 0 0 As

1
CCAMc

0
BB@
R
G
B
A

1
CCA+

0
BB@
Rb

Gb

Bb

Ab

1
CCA :

Post Color Matrix Color Table Lookup

This step applies only to RGBA component groups. Post color matrix
color table lookup is enabled or disabled by calling Enable or Disable

Version 1.2.1 - April 1, 1999

3.6. PIXEL RECTANGLES 109

with the symbolic constant POST COLOR MATRIX COLOR TABLE. The post color
matrix table is de�ned by calling ColorTable with a target argument of
POST COLOR MATRIX COLOR TABLE. In all other respects, operation is identical
to color table lookup, as de�ned in section 3.6.5.

The required state is one bit indicating whether post color matrix lookup
is enabled or disabled. In the initial state, lookup is disabled.

Histogram

This step applies only to RGBA component groups. Histogram operation
is enabled or disabled by calling Enable or Disable with the symbolic
constant HISTOGRAM.

If the width of the table is non-zero, then indices Ri, Gi, Bi, and Ai

are derived from the red, green, blue, and alpha components of each pixel
group (without modifying these components) by clamping each component
to [0; 1] , multiplying by one less than the width of the histogram table, and
rounding to the nearest integer. If the format of the HISTOGRAM table includes
red or luminance, the red or luminance component of histogram entry Ri

is incremented by one. If the format of the HISTOGRAM table includes green,
the green component of histogram entry Gi is incremented by one. The blue
and alpha components of histogram entries Bi and Ai are incremented in
the same way. If a histogram entry component is incremented beyond its
maximum value, its value becomes unde�ned; this is not an error.

If the Histogram sink parameter is FALSE, histogram operation has no
e�ect on the stream of pixel groups being processed. Otherwise, all RGBA
pixel groups are discarded immediately after the histogram operation is
completed. Because histogram precedes minmax, no minmax operation is
performed. No pixel fragments are generated, no change is made to texture
memory contents, and no pixel values are returned. However, texture object
state is modi�ed whether or not pixel groups are discarded.

Minmax

This step applies only to RGBA component groups. Minmax operation
is enabled or disabled by calling Enable or Disable with the symbolic
constant MINMAX.

If the format of the minmax table includes red or luminance, the red
component value replaces the red or luminance value in the minimum table
element if and only if it is less than that component. Likewise, if the format
includes red or luminance and the red component of the group is greater

Version 1.2.1 - April 1, 1999

110 CHAPTER 3. RASTERIZATION

than the red or luminance value in the maximum element, the red group
component replaces the red or luminance maximum component. If the for-
mat of the table includes green, the green group component conditionally
replaces the green minimum and/or maximum if it is smaller or larger, re-
spectively. The blue and alpha group components are similarly tested and
replaced, if the table format includes blue and/or alpha. The internal type
of the minimum and maximum component values is oating point, with at
least the same representable range as a oating point number used to repre-
sent colors (section 2.1.1). There are no semantics de�ned for the treatment
of group component values that are outside the representable range.

If theMinmax sink parameter is FALSE, minmax operation has no e�ect
on the stream of pixel groups being processed. Otherwise, all RGBA pixel
groups are discarded immediately after the minmax operation is completed.
No pixel fragments are generated, no change is made to texture memory
contents, and no pixel values are returned. However, texture object state is
modi�ed whether or not pixel groups are discarded.

3.7 Bitmaps

Bitmaps are rectangles of zeros and ones specifying a particular pattern of
fragments to be produced. Each of these fragments has the same associated
data. These data are those associated with the current raster position.

Bitmaps are sent using

void Bitmap(sizei w, sizei h, float xbo, float ybo,
float xbi, float ybi, ubyte *data);

w and h comprise the integer width and height of the rectangular bitmap,
respectively. (xbo; ybo) gives the oating-point x and y values of the bitmap's
origin. (xbi; ybi) gives the oating-point x and y increments that are added
to the raster position after the bitmap is rasterized. data is a pointer to a
bitmap.

Like a polygon pattern, a bitmap is unpacked from memory according
to the procedure given in section 3.6.4 for DrawPixels; it is as if the width
and height passed to that command were equal to w and h, respectively, the
type were BITMAP, and the format were COLOR INDEX. The unpacked values
(before any conversion or arithmetic would have been performed) form a
stipple pattern of zeros and ones. See �gure 3.9.

A bitmap sent using Bitmap is rasterized as follows. First, if the cur-
rent raster position is invalid (the valid bit is reset), the bitmap is ignored.

Version 1.2.1 - April 1, 1999

3.8. TEXTURING 111

333
333
333

333
333
333333

333
333

333
333
333

333
333
333

333
333
333333

333
333

333
333
333333

333
333

333
333
333

333
333
333

333
333
333333

333
333

333
333
333

333
333
333

333
333
333333
333
333

333
333
333

333
333
333333
333
333

333
333
333333

333
333

333
333
333333
333
333

333
333
333

333
333
333

333
333
333

333
333
333

333
333
333 333

333
333

333
333
333

333
333
333

333
333
333

333
333
333

333
333
333

333
333
333

333
333
333

333
333
333

333
333
333

333
333
333

h = 12

w = 8

ybo = 1.0

xbo = 2.5

Figure 3.9. A bitmap and its associated parameters. xbi and ybi are not
shown.

Otherwise, a rectangular array of fragments is constructed, with lower left
corner at

(xll; yll) = (bxrp � xboc; byrp � yboc)
and upper right corner at (xll+w; yll+h) where w and h are the width and
height of the bitmap, respectively. Fragments in the array are produced if
the corresponding bit in the bitmap is 1 and not produced otherwise. The
associated data for each fragment are those associated with the current raster
position, with texture coordinates s, t, and r replaced with s=q, t=q, and r=q,
respectively. If q is less than or equal to zero, the results are unde�ned. Once
the fragments have been produced, the current raster position is updated:

(xrp; yrp) (xrp + xbi; yrp + ybi):

The z and w values of the current raster position remain unchanged.

3.8 Texturing

Texturing maps a portion of a speci�ed image onto each primitive for which
texturing is enabled. This mapping is accomplished by using the color of

Version 1.2.1 - April 1, 1999

112 CHAPTER 3. RASTERIZATION

an image at the location indicated by a fragment's (s; t; r) coordinates to
modify the fragment's primary RGBA color. Texturing does not a�ect the
secondary color.

Texturing is speci�ed only for RGBA mode; its use in color index mode
is unde�ned.

The GL provides a means to specify the details of how texturing of a
primitive is e�ected. These details include speci�cation of the image to be
texture mapped, the means by which the image is �ltered when applied
to the primitive, and the function that determines what RGBA value is
produced given a fragment color and an image value.

3.8.1 Texture Image Speci�cation

The command

void TexImage3D(enum target, int level,
int internalformat, sizei width, sizei height,
sizei depth, int border, enum format, enum type,
void *data);

is used to specify a three-dimensional texture image. target must be either
TEXTURE 3D, or PROXY TEXTURE 3D in the special case discussed in section 3.8.7.
format, type, and data match the corresponding arguments to DrawPixels
(refer to section 3.6.4); they specify the format of the image data, the type
of those data, and a pointer to the image data in host memory. The formats
STENCIL INDEX and DEPTH COMPONENT are not allowed.

The groups in memory are treated as being arranged in a sequence of ad-
jacent rectangles. Each rectangle is a two-dimensional image, whose size and
organization are speci�ed by the width and height parameters to TexIm-
age3D. The values of UNPACK ROW LENGTH and UNPACK ALIGNMENT control the
row-to-row spacing in these images in the same manner as DrawPixels. If
the value of the integer parameter UNPACK IMAGE HEIGHT is not positive, then
the number of rows in each two-dimensional image is height; otherwise the
number of rows is UNPACK IMAGE HEIGHT. Each two-dimensional image com-
prises an integral number of rows, and is exactly adjacent to its neighbor
images.

The mechanism for selecting a sub-volume of a three-dimensional image
relies on the integer parameter UNPACK SKIP IMAGES. If UNPACK SKIP IMAGES is
positive, the pointer is advanced by UNPACK SKIP IMAGES times the number of
elements in one two-dimensional image before obtaining the �rst group from

Version 1.2.1 - April 1, 1999

3.8. TEXTURING 113

memory. Then depth two-dimensional images are processed, each having a
subimage extracted in the same manner as DrawPixels.

The selected groups are processed exactly as for DrawPixels, stopping
just before �nal conversion. Each R, G, B, and A value so generated is
clamped to [0; 1].

Components are then selected from the resulting R, G, B, and A values
to obtain a texture with the base internal format speci�ed by (or derived
from) internalformat. Table 3.15 summarizes the mapping of R, G, B, and
A values to texture components, as a function of the base internal format
of the texture image. internalformat may be speci�ed as one of the six base
internal format symbolic constants listed in table 3.15, or as one of the sized
internal format symbolic constants listed in table 3.16. internalformat may
(for backwards compatibility with the 1.0 version of the GL) also take on
the integer values 1, 2, 3, and 4, which are equivalent to symbolic constants
LUMINANCE, LUMINANCE ALPHA, RGB, and RGBA respectively. Specifying a value
for internalformat that is not one of the above values generates the error
INVALID VALUE.

The internal component resolution is the number of bits allocated to
each value in a texture image. If internalformat is speci�ed as a base in-
ternal format, the GL stores the resulting texture with internal component
resolutions of its own choosing. If a sized internal format is speci�ed, the
mapping of the R, G, B, and A values to texture components is equivalent
to the mapping of the corresponding base internal format's components, as
speci�ed in table 3.15, and the memory allocation per texture component is
assigned by the GL to match the allocations listed in table 3.16 as closely
as possible. (The de�nition of closely is left up to the implementation. Im-
plementations are not required to support more than one resolution for each
base internal format.)

A GL implementation may vary its allocation of internal component res-
olution based on any TexImage3D, TexImage2D (see below), or TexIm-
age1D (see below) parameter (except target), but the allocation must not be
a function of any other state, and cannot be changed once it is established.
Allocations must be invariant; the same allocation must be made each time a
texture image is speci�ed with the same parameter values. These allocation
rules also apply to proxy textures, which are described in section 3.8.7.

The image itself (pointed to by data) is a sequence of groups of values.
The �rst group is the lower left back corner of the texture image. Subse-
quent groups �ll out rows of width width from left to right; height rows are
stacked from bottom to top forming a single two-dimensional image slice;
and depth slices are stacked from back to front. When the �nal R, G, B,

Version 1.2.1 - April 1, 1999

114 CHAPTER 3. RASTERIZATION

Base Internal Format RGBA Values Internal Components

ALPHA A A

LUMINANCE R L

LUMINANCE ALPHA R,A L,A

INTENSITY R I

RGB R,G,B R,G,B

RGBA R,G,B,A R,G,B,A

Table 3.15: Conversion from RGBA pixel components to internal texture,
table, or �lter components. See section 3.8.9 for a description of the texture
components R, G, B, A, L, and I.

and A components have been computed for a group, they are assigned to
components of a texel as described by table 3.15. Counting from zero, each
resulting Nth texel is assigned internal integer coordinates (i; j; k), where

i = (N mod width)� bs

j = (b N

width
c mod height) � bs

k = (b N

width � height
c mod depth) � bs

and bs is the speci�ed border width. Thus the last two-dimensional image
slice of the three-dimensional image is indexed with the highest value of k.

Each color component is converted (by rounding to nearest) to a �xed-
point value with n bits, where n is the number of bits of storage allocated to
that component in the image array. We assume that the �xed-point repre-
sentation used represents each value k=(2n�1), where k 2 f0; 1; : : : ; 2n�1g,
as k (e.g. 1.0 is represented in binary as a string of all ones).

The level argument to TexImage3D is an integer level-of-detail number.
Levels of detail are discussed below, underMipmapping. The main texture
image has a level of detail number of 0. If a level-of-detail less than zero is
speci�ed, the error INVALID VALUE is generated.

The border argument to TexImage3D is a border width. The signi�-
cance of borders is described below. The border width a�ects the required
dimensions of the texture image: it must be the case that

ws = 2n + 2bs (3.11)

Version 1.2.1 - April 1, 1999

3.8. TEXTURING 115

Sized Base R G B A L I
Internal Format Internal Format bits bits bits bits bits bits

ALPHA4 ALPHA 4

ALPHA8 ALPHA 8

ALPHA12 ALPHA 12

ALPHA16 ALPHA 16

LUMINANCE4 LUMINANCE 4

LUMINANCE8 LUMINANCE 8

LUMINANCE12 LUMINANCE 12

LUMINANCE16 LUMINANCE 16

LUMINANCE4 ALPHA4 LUMINANCE ALPHA 4 4

LUMINANCE6 ALPHA2 LUMINANCE ALPHA 2 6

LUMINANCE8 ALPHA8 LUMINANCE ALPHA 8 8

LUMINANCE12 ALPHA4 LUMINANCE ALPHA 4 12

LUMINANCE12 ALPHA12 LUMINANCE ALPHA 12 12

LUMINANCE16 ALPHA16 LUMINANCE ALPHA 16 16

INTENSITY4 INTENSITY 4

INTENSITY8 INTENSITY 8

INTENSITY12 INTENSITY 12

INTENSITY16 INTENSITY 16

R3 G3 B2 RGB 3 3 2

RGB4 RGB 4 4 4

RGB5 RGB 5 5 5

RGB8 RGB 8 8 8

RGB10 RGB 10 10 10

RGB12 RGB 12 12 12

RGB16 RGB 16 16 16

RGBA2 RGBA 2 2 2 2

RGBA4 RGBA 4 4 4 4

RGB5 A1 RGBA 5 5 5 1

RGBA8 RGBA 8 8 8 8

RGB10 A2 RGBA 10 10 10 2

RGBA12 RGBA 12 12 12 12

RGBA16 RGBA 16 16 16 16

Table 3.16: Correspondence of sized internal formats to base internal for-
mats, and desired component resolutions for each sized internal format.

Version 1.2.1 - April 1, 1999

116 CHAPTER 3. RASTERIZATION

hs = 2m + 2bs (3.12)

ds = 2l + 2bs (3.13)

for some integers n, m, and l, where ws, hs, and ds are the speci�ed image
width, height, and depth. If any one of these relationships cannot be satis�ed,
then the error INVALID VALUE is generated.

Currently, the maximum border width bt is 1. If bs is less than zero, or
greater than bt, then the error INVALID VALUE is generated.

The maximum allowable width, height, or depth of a three-dimensional
texture image is an implementation dependent function of the level-of-detail
and internal format of the resulting image array. It must be at least 2k�lod+
2bt for image arrays of level-of-detail 0 through k, where k is the log base
2 of MAX 3D TEXTURE SIZE, lod is the level-of-detail of the image array, and
bt is the maximum border width. It may be zero for image arrays of any
level-of-detail greater than k. The error INVALID VALUE is generated if the
speci�ed image is too large to be stored under any conditions.

In a similar fashion, the maximum allowable width of a one- or two-
dimensional texture image, and the maximum allowable height of a two-
dimensional texture image, must be at least 2k�lod+2bt for image arrays of
level 0 through k, where k is the log base 2 of MAX TEXTURE SIZE.

Furthermore, an implementation may allow a one-, two-, or three-
dimensional image array of level 1 or greater to be created only if a complete1

set of image arrays consistent with the requested array can be supported.
Likewise, an implementation may allow an image array of level 0 to be cre-
ated only if that single image array can be supported.

The command

void TexImage2D(enum target, int level,
int internalformat, sizei width, sizei height,
int border, enum format, enum type, void *data);

is used to specify a two-dimensional texture image. target must be ei-
ther TEXTURE 2D, or PROXY TEXTURE 2D in the special case discussed in sec-
tion 3.8.7. The other parameters match the corresponding parameters of
TexImage3D.

1For this purpose the de�nition of \complete", as provided underMipmapping, is aug-
mented as follows: 1) it is as though TEXTURE BASE LEVEL is 0 and TEXTURE MAX LEVEL

is 1000. 2) Excluding borders, the dimensions of the next lower numbered array are all
understood to be twice the corresponding dimensions of the speci�ed array.

Version 1.2.1 - April 1, 1999

3.8. TEXTURING 117

For the purposes of decoding the texture image, TexImage2D is equiv-
alent to calling TexImage3D with corresponding arguments and depth of
1, except that

� The depth of the image is always 1 regardless of the value of border.

� Convolution will be performed on the image (possibly changing its
width and height) if SEPARABLE 2D or CONVOLUTION 2D is enabled.

� UNPACK SKIP IMAGES is ignored.

Finally, the command

void TexImage1D(enum target, int level,
int internalformat, sizei width, int border,
enum format, enum type, void *data);

is used to specify a one-dimensional texture image. target must be ei-
ther TEXTURE 1D, or PROXY TEXTURE 1D in the special case discussed in sec-
tion 3.8.7.)

For the purposes of decoding the texture image, TexImage1D is equiv-
alent to calling TexImage2D with corresponding arguments and height of
1, except that

� The height of the image is always 1 regardless of the value of border.

� Convolution will be performed on the image (possibly changing its
width) only if CONVOLUTION 1D is enabled.

An image with zero width, height (TexImage2D and TexImage3D
only), or depth (TexImage3D only) indicates the null texture. If the null
texture is speci�ed for the level-of-detail speci�ed by TEXTURE BASE LEVEL, it
is as if texturing were disabled.

The image indicated to the GL by the image pointer is decoded and
copied into the GL's internal memory. This copying e�ectively places the
decoded image inside a border of the maximum allowable width bt whether
or not a border has been speci�ed (see �gure 3.10) 2. If no border or a
border smaller than the maximum allowable width has been speci�ed, then
the image is still stored as if it were surrounded by a border of the maximum
possible width. Any excess border (which surrounds the speci�ed image,

2Figure 3.10 needs to show a three-dimensional texture image.

Version 1.2.1 - April 1, 1999

118 CHAPTER 3. RASTERIZATION

including any border) is assigned unspeci�ed values. A two-dimensional
texture has a border only at its left, right, top, and bottom ends, and a
one-dimensional texture has a border only at its left and right ends.

We shall refer to the (possibly border augmented) decoded image as the
texture array. A three-dimensional texture array has width, height, and
depth

wt = 2n + 2bt

ht = 2m + 2bt

dt = 2l + 2bt

where bt is the maximum allowable border width and n, m, and l are de�ned
in equations 3.11, 3.12, and 3.13. A two-dimensional texture array has depth
dt = 1, with height ht and width wt as above, and a one-dimensional texture
array has depth dt = 1, height ht = 1, and width wt as above.

An element (i; j; k) of the texture array is called a texel (for a two-
dimensional texture, k is irrelevant; for a one-dimensional texture, j and
k are both irrelevant). The texture value used in texturing a fragment is
determined by that fragment's associated (s; t; r) coordinates, but may not
correspond to any actual texel. See �gure 3.10.

If the data argument of TexImage1D, TexImage2D, or TexImage3D
is a null pointer (a zero-valued pointer in the C implementation), a one-,
two-, or three-dimensional texture array is created with the speci�ed target,
level, internalformat, width, height, and depth, but with unspeci�ed image
contents. In this case no pixel values are accessed in client memory, and
no pixel processing is performed. Errors are generated, however, exactly as
though the data pointer were valid.

3.8.2 Alternate Texture Image Speci�cation Commands

Two-dimensional and one-dimensional texture images may also be speci-
�ed using image data taken directly from the framebu�er, and rectangular
subregions of existing texture images may be respeci�ed.

The command

void CopyTexImage2D(enum target, int level,
enum internalformat, int x, int y, sizei width,
sizei height, int border);

Version 1.2.1 - April 1, 1999

3.8. TEXTURING 119

i−1 0 1 2 3 4 5 6 7 8

u−1.0 9.0

0.0 1.0s

−1

0

2

1

3

4

j

−1.0

5.0

vt

0.0

1.0

α

β

Figure 3.10. A texture image and the coordinates used to access it. This is a
two-dimensional texture with n = 3 and m = 2. A one-dimensional texture
would consist of a single horizontal strip. � and �, values used in blending
adjacent texels to obtain a texture value, are also shown.

Version 1.2.1 - April 1, 1999

120 CHAPTER 3. RASTERIZATION

de�nes a two-dimensional texture array in exactly the manner of TexIm-
age2D, except that the image data are taken from the framebu�er rather
than from client memory. Currently, target must be TEXTURE 2D. x, y, width,
and height correspond precisely to the corresponding arguments to Copy-
Pixels (refer to section 4.3.3); they specify the image's width and height,
and the lower left (x; y) coordinates of the framebu�er region to be copied.
The image is taken from the framebu�er exactly as if these arguments were
passed to CopyPixels, with argument type set to COLOR, stopping after pixel
transfer processing is complete. Subsequent processing is identical to that
described for TexImage2D, beginning with clamping of the R, G, B, and
A values from the resulting pixel groups. Parameters level, internalformat,
and border are speci�ed using the same values, with the same meanings, as
the equivalent arguments of TexImage2D, except that internalformat may
not be speci�ed as 1, 2, 3, or 4. An invalid value speci�ed for internalfor-
mat generates the error INVALID ENUM. The constraints on width, height, and
border are exactly those for the equivalent arguments of TexImage2D.

The command

void CopyTexImage1D(enum target, int level,
enum internalformat, int x, int y, sizei width,
int border);

de�nes a one-dimensional texture array in exactly the manner of TexIm-
age1D, except that the image data are taken from the framebu�er, rather
than from client memory. Currently, target must be TEXTURE 1D. For the
purposes of decoding the texture image, CopyTexImage1D is equivalent
to calling CopyTexImage2D with corresponding arguments and height of
1, except that the height of the image is always 1, regardless of the value
of border. level, internalformat, and border are speci�ed using the same val-
ues, with the same meanings, as the equivalent arguments of TexImage1D,
except that internalformat may not be speci�ed as 1, 2, 3, or 4. The con-
straints on width and border are exactly those of the equivalent arguments
of TexImage1D.

Six additional commands,

void TexSubImage3D(enum target, int level, int xo�set,
int yo�set, int zo�set, sizei width, sizei height,
sizei depth, enum format, enum type, void *data);

void TexSubImage2D(enum target, int level, int xo�set,
int yo�set, sizei width, sizei height, enum format,
enum type, void *data);

Version 1.2.1 - April 1, 1999

3.8. TEXTURING 121

void TexSubImage1D(enum target, int level, int xo�set,
sizei width, enum format, enum type, void *data);

void CopyTexSubImage3D(enum target, int level,
int xo�set, int yo�set, int zo�set, int x, int y,
sizei width, sizei height);

void CopyTexSubImage2D(enum target, int level,
int xo�set, int yo�set, int x, int y, sizei width,
sizei height);

void CopyTexSubImage1D(enum target, int level,
int xo�set, int x, int y, sizei width);

respecify only a rectangular subregion of an existing texture array. No
change is made to the internalformat, width, height, depth, or border pa-
rameters of the speci�ed texture array, nor is any change made to texel
values outside the speci�ed subregion. Currently the target arguments of
TexSubImage1D and CopyTexSubImage1D must be TEXTURE 1D, the
target arguments of TexSubImage2D and CopyTexSubImage2D must
be TEXTURE 2D, and the target arguments of TexSubImage3D and Copy-
TexSubImage3D must be TEXTURE 3D. The level parameter of each com-
mand speci�es the level of the texture array that is modi�ed. If level is
less than zero or greater than the base 2 logarithm of the maximum texture
width or height, the error INVALID VALUE is generated.

TexSubImage3D arguments width, height, depth, format, type, and
data match the corresponding arguments to TexImage3D, meaning that
they are speci�ed using the same values, and have the same meanings. Like-
wise, TexSubImage2D arguments width, height, format, type, and data
match the corresponding arguments to TexImage2D, and TexSubIm-
age1D arguments width, format, type, and data match the corresponding
arguments to TexImage1D.

CopyTexSubImage3D and CopyTexSubImage2D arguments x, y,
width, and height match the corresponding arguments to CopyTexIm-
age2D3. CopyTexSubImage1D arguments x, y, and width match the cor-
responding arguments to CopyTexImage1D. Each of the TexSubImage
commands interprets and processes pixel groups in exactly the manner of its
TexImage counterpart, except that the assignment of R, G, B, and A pixel
group values to the texture components is controlled by the internalformat
of the texture array, not by an argument to the command.

3Because the framebu�er is inherently two-dimensional, there is no CopyTexIm-

age3D command.

Version 1.2.1 - April 1, 1999

122 CHAPTER 3. RASTERIZATION

Arguments xo�set, yo�set, and zo�set of TexSubImage3D and Copy-
TexSubImage3D specify the lower left texel coordinates of a width-wide by
height-high by depth-deep rectangular subregion of the texture array. The
depth argument associated with CopyTexSubImage3D is always 1, be-
cause framebu�er memory is two-dimensional - only a portion of a single s; t
slice of a three-dimensional texture is replaced by CopyTexSubImage3D.

Negative values of xo�set, yo�set, and zo�set correspond to the coor-
dinates of border texels, addressed as in �gure 3.10. Taking ws, hs, ds,
and bs to be the speci�ed width, height, depth, and border width of the
texture array, (not the actual array dimensions wt, ht, dt, and bt), and tak-
ing x, y, z, w, h, and d to be the xo�set, yo�set, zo�set, width, height, and
depth argument values, any of the following relationships generates the error
INVALID VALUE:

x < �bs
x+ w > ws � bs

y < �bs
y + h > hs � bs

z < �bs
z + d > ds � bs

(Recall that ds, ws, and hs include twice the speci�ed border width bs.)
Counting from zero, the nth pixel group is assigned to the texel with internal
integer coordinates [i; j; k], where

i = x+ (n mod w)

j = y + (b n
w
c mod h)

k = z + (b n

width � height c mod d

Arguments xo�set and yo�set of TexSubImage2D and CopyTex-
SubImage2D specify the lower left texel coordinates of a width-wide by
height-high rectangular subregion of the texture array. Negative values of
xo�set and yo�set correspond to the coordinates of border texels, addressed
as in �gure 3.10. Taking ws, hs, and bs to be the speci�ed width, height,
and border width of the texture array, (not the actual array dimensions wt,
ht, and bt), and taking x, y, w, and h to be the xo�set, yo�set, width, and

Version 1.2.1 - April 1, 1999

3.8. TEXTURING 123

height argument values, any of the following relationships generates the error
INVALID VALUE:

x < �bs
x+ w > ws � bs

y < �bs
y + h > hs � bs

(Recall that ws and hs include twice the speci�ed border width bs.) Counting
from zero, the nth pixel group is assigned to the texel with internal integer
coordinates [i; j], where

i = x+ (n mod w)

j = y + (b n
w
c mod h)

The xo�set argument of TexSubImage1D and CopyTexSubIm-
age1D speci�es the left texel coordinate of a width-wide subregion of the
texture array. Negative values of xo�set correspond to the coordinates of
border texels. Taking ws and bs to be the speci�ed width and border width
of the texture array, and x and w to be the xo�set and width argument val-
ues, either of the following relationships generates the error INVALID VALUE:

x < �bs
x+ w > ws � bs

Counting from zero, the nth pixel group is assigned to the texel with internal
integer coordinates [i], where

i = x+ (n mod w)

3.8.3 Texture Parameters

Various parameters control how the texture array is treated when applied
to a fragment. Each parameter is set by calling

void TexParameterfifg(enum target, enum pname,
T param);

void TexParameterfifgv(enum target, enum pname,
T params);

Version 1.2.1 - April 1, 1999

124 CHAPTER 3. RASTERIZATION

Name Type Legal Values

TEXTURE WRAP S integer CLAMP, CLAMP TO EDGE, REPEAT

TEXTURE WRAP T integer CLAMP, CLAMP TO EDGE, REPEAT

TEXTURE WRAP R integer CLAMP, CLAMP TO EDGE, REPEAT

TEXTURE MIN FILTER integer NEAREST,
LINEAR,
NEAREST MIPMAP NEAREST,
NEAREST MIPMAP LINEAR,
LINEAR MIPMAP NEAREST,
LINEAR MIPMAP LINEAR,

TEXTURE MAG FILTER integer NEAREST,
LINEAR

TEXTURE BORDER COLOR 4 oats any 4 values in [0; 1]

TEXTURE PRIORITY oat any value in [0; 1]

TEXTURE MIN LOD oat any value

TEXTURE MAX LOD oat any value

TEXTURE BASE LEVEL integer any non-negative integer

TEXTURE MAX LEVEL integer any non-negative integer

Table 3.17: Texture parameters and their values.

target is the target, either TEXTURE 1D, TEXTURE 2D, or TEXTURE 3D. pname is
a symbolic constant indicating the parameter to be set; the possible con-
stants and corresponding parameters are summarized in table 3.17. In the
�rst form of the command, param is a value to which to set a single-valued
parameter; in the second form of the command, params is an array of pa-
rameters whose type depends on the parameter being set. If the values for
TEXTURE BORDER COLOR are speci�ed as integers, the conversion for signed in-
tegers from table 2.6 is applied to convert the values to oating-point. Each
of the four values set by TEXTURE BORDER COLOR is clamped to lie in [0; 1].

3.8.4 Texture Wrap Modes

If TEXTURE WRAP S, TEXTURE WRAP T, or TEXTURE WRAP R is set to REPEAT, then
the GL ignores the integer part of s, t, or r coordinates, respectively, using
only the fractional part. (For a number f , the fractional part is f � bfc,
regardless of the sign of f ; recall that the oor function truncates towards
�1.) CLAMP causes s, t, or r coordinates to be clamped to the range [0; 1].

Version 1.2.1 - April 1, 1999

3.8. TEXTURING 125

The initial state is for all of s, t, and r behavior to be that given by REPEAT.

CLAMP TO EDGE clamps texture coordinates at all mipmap levels such that
the texture �lter never samples a border texel. The color returned when
clamping is derived only from texels at the edge of the texture image.

Texture coordinates are clamped to the range [min;max]. The mini-
mum value is de�ned as

min =
1

2N

where N is the size of the one-, two-, or three-dimensional texture image in
the direction of clamping. The maximum value is de�ned as

max = 1�min

so that clamping is always symmetric about the [0; 1] mapped range of a
texture coordinate.

3.8.5 Texture Mini�cation

Applying a texture to a primitive implies a mapping from texture image
space to framebu�er image space. In general, this mapping involves a recon-
struction of the sampled texture image, followed by a homogeneous warping
implied by the mapping to framebu�er space, then a �ltering, followed �-
nally by a resampling of the �ltered, warped, reconstructed image before
applying it to a fragment. In the GL this mapping is approximated by one
of two simple �ltering schemes. One of these schemes is selected based on
whether the mapping from texture space to framebu�er space is deemed to
magnify or minify the texture image.

Scale Factor and Level of Detail

The choice is governed by a scale factor �(x; y) and the level of detail pa-
rameter �(x; y), de�ned as

�0(x; y) = log2[�(x; y)]

� =

8>>><
>>>:

TEXTURE MAX LOD; �0 > TEXTURE MAX LOD

�0; TEXTURE MIN LOD � �0 � TEXTURE MAX LOD

TEXTURE MIN LOD; �0 < TEXTURE MIN LOD

undefined; TEXTURE MIN LOD > TEXTURE MAX LOD

(3.14)

Version 1.2.1 - April 1, 1999

126 CHAPTER 3. RASTERIZATION

If �(x; y) is less than or equal to the constant c (described below in
section 3.8.6) the texture is said to be magni�ed; if it is greater, the texture
is mini�ed.

The initial values of TEXTURE MIN LOD and TEXTURE MAX LOD are chosen so
as to never clamp the normal range of �. They may be respeci�ed for a
speci�c texture by calling TexParameter[if].

Let s(x; y) be the function that associates an s texture coordinate with
each set of window coordinates (x; y) that lie within a primitive; de�ne
t(x; y) and r(x; y) analogously. Let u(x; y) = 2ns(x; y), v(x; y) = 2mt(x; y),
and w(x; y) = 2lr(x; y), where n, m, and l are as de�ned by equations 3.11,
3.12, and 3.13 with ws, hs, and ds equal to the width, height, and depth
of the image array whose level is TEXTURE BASE LEVEL. For a one-dimensional
texture, de�ne v(x; y) � 0 and w(x; y) � 0; for a two-dimensional texture,
de�ne w(x; y) � 0. For a polygon, � is given at a fragment with window
coordinates (x; y) by

� = max

8<
:
s�

@u

@x

�2
+

�
@v

@x

�2
+

�
@w

@x

�2
;

s�
@u

@y

�2
+

�
@v

@y

�2
+

�
@w

@y

�29=
;

(3.15)
where @u=@x indicates the derivative of u with respect to window x, and
similarly for the other derivatives.

For a line, the formula is

� =

s�
@u

@x
�x+

@u

@y
�y

�2
+

�
@v

@x
�x+

@v

@y
�y

�2
+

�
@w

@x
�x+

@w

@y
�y

�2�
l;

(3.16)
where �x = x2 � x1 and �y = y2 � y1 with (x1; y1) and (x2; y2) being the
segment's window coordinate endpoints and l =

p
�x2 +�y2. For a point,

pixel rectangle, or bitmap, � � 1.
While it is generally agreed that equations 3.15 and 3.16 give the best

results when texturing, they are often impractical to implement. Therefore,
an implementation may approximate the ideal � with a function f(x; y)
subject to these conditions:

1. f(x; y) is continuous and monotonically increasing in each of j@u=@xj,
j@u=@yj, j@v=@xj, j@v=@yj, j@w=@xj, and j@w=@yj

2. Let

mu = max

�����@u@x
���� ;
����@u@y

����
�

Version 1.2.1 - April 1, 1999

3.8. TEXTURING 127

mv = max

�����@v@x
���� ;
����@v@y

����
�

mw = max

�����@w@x
���� ;
����@w@y

����
�
:

Then maxfmu;mv;mwg � f(x; y) � mu +mv +mw.

When � indicates mini�cation, the value assigned to TEXTURE MIN FILTER

is used to determine how the texture value for a fragment is selected.
When TEXTURE MIN FILTER is NEAREST, the texel in the image array of level
TEXTURE BASE LEVEL that is nearest (in Manhattan distance) to that speci�ed
by (s; t; r) is obtained. This means the texel at location (i; j; k) becomes the
texture value, with i given by

i =

(
buc; s < 1
2n � 1; s = 1

(3.17)

(Recall that if TEXTURE WRAP S is REPEAT, then 0 � s < 1.) Similarly, j is
found as

j =

(
bvc; t < 1
2m � 1; t = 1

(3.18)

and k is found as

k =

(
bwc; r < 1
2l � 1; r = 1

(3.19)

For a one-dimensional texture, j and k are irrelevant; the texel at location
i becomes the texture value. For a two-dimensional texture, k is irrelevant;
the texel at location (i; j) becomes the texture value.

When TEXTURE MIN FILTER is LINEAR, a 2 � 2 � 2 cube of texels in the
image array of level TEXTURE BASE LEVEL is selected. This cube is obtained by
�rst clamping texture coordinates as described above under Texture Wrap
Modes (if the wrap mode for a coordinate is CLAMP or CLAMP TO EDGE) and
computing

i0 =

(
bu� 1=2c mod 2n; TEXTURE WRAP S is REPEAT
bu� 1=2c; otherwise

Version 1.2.1 - April 1, 1999

128 CHAPTER 3. RASTERIZATION

j0 =

(
bv � 1=2c mod 2m; TEXTURE WRAP T is REPEAT
bv � 1=2c; otherwise

and

k0 =

(
bw � 1=2c mod 2l; TEXTURE WRAP R is REPEAT
bw � 1=2c; otherwise

Then

i1 =

(
(i0 + 1) mod 2n; TEXTURE WRAP S is REPEAT
i0 + 1; otherwise

j1 =

(
(j0 + 1) mod 2m; TEXTURE WRAP T is REPEAT
j0 + 1; otherwise

and

k1 =

(
(k0 + 1) mod 2l; TEXTURE WRAP R is REPEAT
k0 + 1; otherwise

Let

� = frac(u� 1=2)

� = frac(v � 1=2)

 = frac(w � 1=2)

where frac(x) denotes the fractional part of x.

For a three-dimensional texture, the texture value � is found as

� = (1� �)(1 � �)(1 �)�i0j0k0 + �(1 � �)(1�)�i1j0k0
+ (1� �)�(1 �)�i0j1k0 + ��(1 �)�i1j1k0

+ (1� �)(1 � �)�i0j0k1 + �(1� �)�i1j0k1

+ (1� �)��i0j1k1 + ���i1j1k1

where �ijk is the texel at location (i; j; k) in the three-dimensional texture
image.

For a two-dimensional texture,

Version 1.2.1 - April 1, 1999

3.8. TEXTURING 129

� = (1� �)(1� �)�i0j0 + �(1� �)�i1j0 + (1� �)��i0j1 + ���i1j1 (3.20)

where �ij is the texel at location (i; j) in the two-dimensional texture image.
And for a one-dimensional texture,

� = (1� �)�i0 + ��i1

where �i is the texel at location i in the one-dimensional texture.
If any of the selected �ijk, �ij , or �i in the above equations refer to a

border texel with i < �bs, j < �bs, k < �bs, i � ws � bs, j � hs � bs,
or j � ds � bs, then the border color given by the current setting of
TEXTURE BORDER COLOR is used instead of the unspeci�ed value or values. The
RGBA values of the TEXTURE BORDER COLOR are interpreted to match the tex-
ture's internal format in a manner consistent with table 3.15.

Mipmapping

TEXTURE MIN FILTER values NEAREST MIPMAP NEAREST, NEAREST MIPMAP LINEAR,
LINEAR MIPMAP NEAREST, and LINEAR MIPMAP LINEAR each require the use of a
mipmap. A mipmap is an ordered set of arrays representing the same image;
each array has a resolution lower than the previous one. If the image array of
level TEXTURE BASE LEVEL, excluding its border, has dimensions 2n� 2m� 2l,
then there are maxfn;m; lg + 1 image arrays in the mipmap. Each array
subsequent to the array of level TEXTURE BASE LEVEL has dimensions

�(i� 1)� �(j � 1)� �(k � 1)

where the dimensions of the previous array are

�(i) � �(j) � �(k)

and

�(x) =

(
2x x > 0
1 x � 0

until the last array is reached with dimension 1� 1� 1.
Each array in a mipmap is de�ned using TexImage3D, TexImage2D,

CopyTexImage2D, TexImage1D, or CopyTexImage1D; the array be-
ing set is indicated with the level-of-detail argument level. Level-of-detail
numbers proceed from TEXTURE BASE LEVEL for the original texture array

Version 1.2.1 - April 1, 1999

130 CHAPTER 3. RASTERIZATION

through p = maxfn;m; lg + TEXTURE BASE LEVEL with each unit increase
indicating an array of half the dimensions of the previous one as already
described. If texturing is enabled (and TEXTURE MIN FILTER is one that re-
quires a mipmap) at the time a primitive is rasterized and if the set of
arrays TEXTURE BASE LEVEL through q = minfp; TEXTURE MAX LEVELg is incom-
plete, then it is as if texture mapping were disabled. The set of arrays
TEXTURE BASE LEVEL through q is incomplete if the internal formats of all
the mipmap arrays were not speci�ed with the same symbolic constant, if
the border widths of the mipmap arrays are not the same, if the dimen-
sions of the mipmap arrays do not follow the sequence described above,
if TEXTURE MAX LEVEL < TEXTURE BASE LEVEL, or if TEXTURE BASE LEVEL > p.
Array levels k where k < TEXTURE BASE LEVEL or k > q are insigni�cant.

The values of TEXTURE BASE LEVEL and TEXTURE MAX LEVEL may be re-
speci�ed for a speci�c texture by calling TexParameter[if]. The error
INVALID VALUE is generated if either value is negative.

The mipmap is used in conjunction with the level of detail to approxi-
mate the application of an appropriately �ltered texture to a fragment. Let
c be the value of � at which the transition from mini�cation to magni�cation
occurs (since this discussion pertains to mini�cation, we are concerned only
with values of � where � > c). In the following equations, let

b = TEXTURE BASE LEVEL

For mipmap �lters NEAREST MIPMAP NEAREST and LINEAR MIPMAP NEAREST,
the dth mipmap array is selected, where

d =

8><
>:

b; � � 1
2

db+ �+ 1
2e � 1; � > 1

2 ; b+ � � q + 1
2

q; � > 1
2 ; b+ � > q + 1

2

(3.21)

The rules for NEAREST or LINEAR �ltering are then applied to the selected
array.

For mipmap �lters NEAREST MIPMAP LINEAR and LINEAR MIPMAP LINEAR, the
level d1 and d2 mipmap arrays are selected, where

d1 =

(
q; b+ � � q
bb+ �c; otherwise

(3.22)

d2 =

(
q; b+ � � q
d1 + 1; otherwise

(3.23)

The rules for NEAREST or LINEAR �ltering are then applied to each of the
selected arrays, yielding two corresponding texture values �1 and �2. The
�nal texture value is then found as

Version 1.2.1 - April 1, 1999

3.8. TEXTURING 131

� = [1� frac(�)]�1 + frac(�)�2:

3.8.6 Texture Magni�cation

When � indicates magni�cation, the value assigned to TEXTURE MAG FILTER

determines how the texture value is obtained. There are two possible val-
ues for TEXTURE MAG FILTER: NEAREST and LINEAR. NEAREST behaves exactly as
NEAREST for TEXTURE MIN FILTER (equations 3.17, 3.18, and 3.19 are used);
LINEAR behaves exactly as LINEAR for TEXTURE MIN FILTER (equation 3.20 is
used). The level-of-detail TEXTURE BASE LEVEL texture array is always used
for magni�cation.

Finally, there is the choice of c, the mini�cation vs. magni�cation switch-
over point. If the magni�cation �lter is given by LINEAR and the mini�cation
�lter is given by NEAREST MIPMAP NEAREST or NEAREST MIPMAP LINEAR, then c =
0:5. This is done to ensure that a mini�ed texture does not appear \sharper"
than a magni�ed texture. Otherwise c = 0.

3.8.7 Texture State and Proxy State

The state necessary for texture can be divided into two categories. First,
there are the three sets of mipmap arrays (one-, two-, and three-dimensional)
and their number. Each array has associated with it a width, height (two-
or three-dimensional only), and depth (three-dimensional only), a border
width, an integer describing the internal format of the image, and six inte-
ger values describing the resolutions of each of the red, green, blue, alpha,
luminance, and intensity components of the image. Each initial texture
array is null (zero width, height, and depth, zero border width, internal
format 1, with zero-sized components). Next, there are the two sets of
texture properties; each consists of the selected mini�cation and magni�-
cation �lters, the wrap modes for s, t (two- and three-dimensional only),
and r (three-dimensional only), the TEXTURE BORDER COLOR, two integers de-
scribing the minimum and maximum level of detail, two integers describing
the base and maximum mipmap array, a boolean ag indicating whether
the texture is resident and the priority associated with each set of prop-
erties. The value of the resident ag is determined by the GL and may
change as a result of other GL operations. The ag may only be queried,
not set, by applications. See section 3.8.8). In the initial state, the value
assigned to TEXTURE MIN FILTER is NEAREST MIPMAP LINEAR, and the value for
TEXTURE MAG FILTER is LINEAR. s, t, and r wrap modes are all set to REPEAT.

Version 1.2.1 - April 1, 1999

132 CHAPTER 3. RASTERIZATION

The values of TEXTURE MIN LOD and TEXTURE MAX LOD are -1000 and 1000 re-
spectively. The values of TEXTURE BASE LEVEL and TEXTURE MAX LEVEL are 0
and 1000 respectively. TEXTURE PRIORITY is 1.0, and TEXTURE BORDER COLOR is
(0,0,0,0). The initial value of TEXTURE RESIDENT is determined by the GL.

In addition to the one-, two-, and three-dimensional sets of image ar-
rays, partially instantiated one-, two-, and three-dimensional sets of proxy
image arrays are maintained. Each proxy array includes width, height (two-
and three-dimensional arrays only), depth (three-dimensional arrays only),
border width, and internal format state values, as well as state for the red,
green, blue, alpha, luminance, and intensity component resolutions. Proxy
arrays do not include image data, nor do they include texture properties.
When TexImage3D is executed with target speci�ed as PROXY TEXTURE 3D,
the three-dimensional proxy state values of the speci�ed level-of-detail are
recomputed and updated. If the image array would not be supported by
TexImage3D called with target set to TEXTURE 3D, no error is generated,
but the proxy width, height, depth, border width, and component resolu-
tions are set to zero. If the image array would be supported by such a call to
TexImage3D, the proxy state values are set exactly as though the actual
image array were being speci�ed. No pixel data are transferred or processed
in either case.

One- and two-dimensional proxy arrays are operated on in the same way
when TexImage1D is executed with target speci�ed as PROXY TEXTURE 1D,
or TexImage2D is executed with target speci�ed as PROXY TEXTURE 2D.

There is no image associated with any of the proxy textures. Therefore
PROXY TEXTURE 1D, PROXY TEXTURE 2D, and PROXY TEXTURE 3D cannot be used
as textures, and their images must never be queried using GetTexImage.
The error INVALID ENUM is generated if this is attempted. Likewise, there
is no nonlevel-related state associated with a proxy texture, and GetTex-
Parameteriv or GetTexParameterfv may not be called with a proxy
texture target. The error INVALID ENUM is generated if this is attempted.

3.8.8 Texture Objects

In addition to the default textures TEXTURE 1D, TEXTURE 2D, and TEXTURE 3D

named one-, two-, and three-dimensional texture objects can be created and
operated upon. The name space for texture objects is the unsigned integers,
with zero reserved by the GL.

A texture object is created by binding an unused name to TEXTURE 1D,
TEXTURE 2D, or TEXTURE 3D. The binding is e�ected by calling

Version 1.2.1 - April 1, 1999

3.8. TEXTURING 133

void BindTexture(enum target, uint texture);

with target set to the desired texture target and texture set to the unused
name. The resulting texture object is a new state vector, comprising all
the state values listed in section 3.8.7, set to the same initial values. If
the new texture object is bound to TEXTURE 1D, TEXTURE 2D, or TEXTURE 3D

respectively, it is and remains a one-, two-, or three-dimensional texture
until it is deleted.

BindTexture may also be used to bind an existing texture object to
either TEXTURE 1D, TEXTURE 2D, or TEXTURE 3D. The error INVALID OPERATION

is generated if an attempt is made to bind a texture object of di�erent
dimensionality than the speci�ed target. If the bind is successful no change
is made to the state of the bound texture object, and any previous binding
to target is broken.

While a texture object is bound, GL operations on the target to which
it is bound a�ect the bound object, and queries of the target to which it
is bound return state from the bound object. If texture mapping of the
dimensionality of the target to which a texture object is bound is enabled,
the state of the bound texture object directs the texturing operation.

In the initial state, TEXTURE 1D, TEXTURE 2D, and TEXTURE 3D have one-,
two-, and three-dimensional texture state vectors associated with them. In
order that access to these initial textures not be lost, they are treated as
texture objects all of whose names are 0. The initial one-, two-, or three-
dimensional texture is therefore operated upon, queried, and applied as
TEXTURE 1D, TEXTURE 2D, or TEXTURE 3D respectively while 0 is bound to the
corresponding targets.

Texture objects are deleted by calling

void DeleteTextures(sizei n, uint *textures);

textures contains n names of texture objects to be deleted. After a texture
object is deleted, it has no contents or dimensionality, and its name is again
unused. If a texture that is currently bound to one of the targets TEXTURE 1D,
TEXTURE 2D, or TEXTURE 3D is deleted, it is as though BindTexture had been
executed with the same target and texture zero. Unused names in textures
are silently ignored, as is the value zero.

The command

void GenTextures(sizei n, uint *textures);

Version 1.2.1 - April 1, 1999

134 CHAPTER 3. RASTERIZATION

returns n previously unused texture object names in textures. These names
are marked as used, for the purposes ofGenTextures only, but they acquire
texture state and a dimensionality only when they are �rst bound, just as
if they were unused.

An implementation may choose to establish a working set of texture
objects on which binding operations are performed with higher performance.
A texture object that is currently part of the working set is said to be
resident. The command

boolean AreTexturesResident(sizei n, uint *textures,
boolean *residences);

returns TRUE if all of the n texture objects named in textures are resident,
or if the implementation does not distinguish a working set. If at least one
of the texture objects named in textures is not resident, then FALSE is re-
turned, and the residence of each texture object is returned in residences.
Otherwise the contents of residences are not changed. If any of the names in
textures are unused or are zero, FALSE is returned, the error INVALID VALUE is
generated, and the contents of residences are indeterminate. The residence
status of a single bound texture object can also be queried by calling Get-
TexParameteriv or GetTexParameterfv with target set to the target
to which the texture object is bound, and pname set to TEXTURE RESIDENT.

AreTexturesResident indicates only whether a texture object is cur-
rently resident, not whether it could not be made resident. An implemen-
tation may choose to make a texture object resident only on �rst use, for
example. The client may guide the GL implementation in determining which
texture objects should be resident by specifying a priority for each texture
object. The command

void PrioritizeTextures(sizei n, uint *textures,
clampf *priorities);

sets the priorities of the n texture objects named in textures to the values
in priorities. Each priority value is clamped to the range [0,1] before it is
assigned. Zero indicates the lowest priority, with the least likelihood of being
resident. One indicates the highest priority, with the greatest likelihood of
being resident. The priority of a single bound texture object may also be
changed by calling TexParameteri, TexParameterf, TexParameteriv,
or TexParameterfv with target set to the target to which the texture
object is bound, pname set to TEXTURE PRIORITY, and param or params

Version 1.2.1 - April 1, 1999

3.8. TEXTURING 135

specifying the new priority value (which is clamped to the range [0,1] before
being assigned). PrioritizeTextures silently ignores attempts to prioritize
unused texture object names or zero (default textures).

3.8.9 Texture Environments and Texture Functions

The command

void TexEnvfifg(enum target, enum pname, T param);
void TexEnvfifgv(enum target, enum pname, T params);

sets parameters of the texture environment that speci�es how texture values
are interpreted when texturing a fragment. target must currently be the
symbolic constant TEXTURE ENV. pname is a symbolic constant indicating the
parameter to be set. In the �rst form of the command, param is a value
to which to set a single-valued parameter; in the second form, params is a
pointer to an array of parameters: either a single symbolic constant or a
value or group of values to which the parameter should be set. The pos-
sible environment parameters are TEXTURE ENV MODE and TEXTURE ENV COLOR.
TEXTURE ENV MODE may be set to one of REPLACE, MODULATE, DECAL, or BLEND;
TEXTURE ENV COLOR is set to an RGBA color by providing four single-precision
oating-point values in the range [0; 1] (values outside this range are clamped
to it). If integers are provided for TEXTURE ENV COLOR, then they are converted
to oating-point as speci�ed in table 2.6 for signed integers.

The value of TEXTURE ENV MODE speci�es a texture function. The result
of this function depends on the fragment and the texture array value. The
precise form of the function depends on the base internal formats of the
texture arrays that were last speci�ed. In the following two tables, Rf , Gf ,
Bf , and Af are the primary color components of the incoming fragment;
Rt, Gt, Bt, At, Lt, and It are the �ltered texture values; Rc, Gc, Bc, and Ac

are the texture environment color values; and Rv, Gv, Bv, and Av are the
primary color components computed by the texture function. All of these
color values are in the range [0; 1]. The REPLACE and MODULATE texture func-
tions are speci�ed in table 3.18, and the DECAL and BLEND texture functions
are speci�ed in table 3.19.

The state required for the current texture environment consists of the
four-valued integer indicating the texture function and four oating-point
TEXTURE ENV COLOR values. In the initial state, the texture function is given
by MODULATE and TEXTURE ENV COLOR is (0; 0; 0; 0).

Version 1.2.1 - April 1, 1999

136 CHAPTER 3. RASTERIZATION

Base REPLACE MODULATE

Internal Format Texture Function Texture Function

ALPHA Rv = Rf Rv = Rf

Gv = Gf Gv = Gf

Bv = Bf Bv = Bf

Av = At Av = AfAt

LUMINANCE Rv = Lt Rv = RfLt

(or 1) Gv = Lt Gv = GfLt

Bv = Lt Bv = BfLt

Av = Af Av = Af

LUMINANCE ALPHA Rv = Lt Rv = RfLt

(or 2) Gv = Lt Gv = GfLt

Bv = Lt Bv = BfLt

Av = At Av = AfAt

INTENSITY Rv = It Rv = RfIt
Gv = It Gv = GfIt
Bv = It Bv = BfIt
Av = It Av = AfIt

RGB Rv = Rt Rv = RfRt

(or 3) Gv = Gt Gv = GfGt

Bv = Bt Bv = BfBt

Av = Af Av = Af

RGBA Rv = Rt Rv = RfRt

(or 4) Gv = Gt Gv = GfGt

Bv = Bt Bv = BfBt

Av = At Av = AfAt

Table 3.18: Replace and modulate texture functions.

Version 1.2.1 - April 1, 1999

3.8. TEXTURING 137

Base DECAL BLEND

Internal Format Texture Function Texture Function

ALPHA unde�ned Rv = Rf

Gv = Gf

Bv = Bf

Av = AfAt

LUMINANCE unde�ned Rv = Rf (1� Lt) +RcLt

(or 1) Gv = Gf (1� Lt) +GcLt

Bv = Bf (1� Lt) +BcLt

Av = Af

LUMINANCE ALPHA unde�ned Rv = Rf (1� Lt) +RcLt

(or 2) Gv = Gf (1� Lt) +GcLt

Bv = Bf (1� Lt) +BcLt

Av = AfAt

INTENSITY unde�ned Rv = Rf (1� It) +RcIt
Gv = Gf (1� It) +GcIt
Bv = Bf (1� It) +BcIt
Av = Af (1� It) +AcIt

RGB Rv = Rt Rv = Rf (1�Rt) +RcRt

(or 3) Gv = Gt Gv = Gf (1�Gt) +GcGt

Bv = Bt Bv = Bf (1�Bt) +BcBt

Av = Af Av = Af

RGBA Rv = Rf (1�At) +RtAt Rv = Rf (1�Rt) +RcRt

(or 4) Gv = Gf (1�At) +GtAt Gv = Gf (1�Gt) +GcGt

Bv = Bf (1�At) +BtAt Bv = Bf (1�Bt) +BcBt

Av = Af Av = AfAt

Table 3.19: Decal and blend texture functions.

Version 1.2.1 - April 1, 1999

138 CHAPTER 3. RASTERIZATION

3.8.10 Texture Application

Texturing is enabled or disabled using the generic Enable andDisable com-
mands, respectively, with the symbolic constants TEXTURE 1D, TEXTURE 2D, or
TEXTURE 3D to enable the one-, two-, or three-dimensional texture, respec-
tively. If both two- and one-dimensional textures are enabled, the two-
dimensional texture is used. If the three-dimensional and either of the
two- or one-dimensional textures is enabled, the three-dimensional texture
is used. If all texturing is disabled, a rasterized fragment is passed on unal-
tered to the next stage of the GL (although its texture coordinates may be
discarded). Otherwise, a texture value is found according to the parameter
values of the currently bound texture image of the appropriate dimension-
ality using the rules given in sections 3.8.5 and 3.8.6. This texture value is
used along with the incoming fragment in computing the texture function
indicated by the currently bound texture environment. The result of this
function replaces the incoming fragment's primary R, G, B, and A values.
These are the color values passed to subsequent operations. Other data
associated with the incoming fragment remain unchanged, except that the
texture coordinates may be discarded.

The required state is three bits indicating whether each of one-, two-, or
three-dimensional texturing is enabled or disabled. In the initial state, all
texturing is disabled.

3.9 Color Sum

At the beginning of color sum, a fragment has two RGBA colors: a primary
color cpri (which texturing, if enabled, may have modi�ed) and a secondary
color csec. The components of these two colors are summed to produce a
single post-texturing RGBA color c. The components of c are then clamped
to the range [0; 1].

Color sum has no e�ect in color index mode.

3.10 Fog

If enabled, fog blends a fog color with a rasterized fragment's post-texturing
color using a blending factor f . Fog is enabled and disabled with the Enable
and Disable commands using the symbolic constant FOG.

This factor f is computed according to one of three equations:

f = exp(�d � z); (3.24)

Version 1.2.1 - April 1, 1999

3.10. FOG 139

f = exp(�(d � z)2); or (3.25)

f =
e� z

e� s
(3.26)

(z is the eye-coordinate distance from the eye, (0; 0; 0; 1) in eye coordinates,
to the fragment center). The equation, along with either d or e and s, is
speci�ed with

void Fogfifg(enum pname, T param);
void Fogfifgv(enum pname, T params);

If pname is FOG MODE, then param must be, or params must point to an integer
that is one of the symbolic constants EXP, EXP2, or LINEAR, in which case
equation 3.24, 3.25, or 3.26, respectively, is selected for the fog calculation (if,
when 3.26 is selected, e = s, results are unde�ned). If pname is FOG DENSITY,
FOG START, or FOG END, then param is or params points to a value that is d,
s, or e, respectively. If d is speci�ed less than zero, the error INVALID VALUE

results.
An implementation may choose to approximate the eye-coordinate dis-

tance from the eye to each fragment center by jzej. Further, f need not
be computed at each fragment, but may be computed at each vertex and
interpolated as other data are.

No matter which equation and approximation is used to compute f , the
result is clamped to [0; 1] to obtain the �nal f .

f is used di�erently depending on whether the GL is in RGBA or color
index mode. In RGBA mode, if Cr represents a rasterized fragment's R, G,
or B value, then the corresponding value produced by fog is

C = fCr + (1� f)Cf :

(The rasterized fragment's A value is not changed by fog blending.) The R,
G, B, and A values of Cf are speci�ed by calling Fog with pname equal to
FOG COLOR; in this case params points to four values comprising Cf . If these
are not oating-point values, then they are converted to oating-point using
the conversion given in table 2.6 for signed integers. Each component of Cf

is clamped to [0; 1] when speci�ed.
In color index mode, the formula for fog blending is

I = ir + (1� f)if

where ir is the rasterized fragment's color index and if is a single-precision
oating-point value. (1 � f)if is rounded to the nearest �xed-point value

Version 1.2.1 - April 1, 1999

140 CHAPTER 3. RASTERIZATION

with the same number of bits to the right of the binary point as ir, and the
integer portion of I is masked (bitwise ANDed) with 2n � 1, where n is the
number of bits in a color in the color index bu�er (bu�ers are discussed in
chapter 4). The value of if is set by calling Fog with pname set to FOG INDEX

and param being or params pointing to a single value for the fog index. The
integer part of if is masked with 2n � 1.

The state required for fog consists of a three valued integer to select the
fog equation, three oating-point values d, e, and s, an RGBA fog color and
a fog color index, and a single bit to indicate whether or not fog is enabled.
In the initial state, fog is disabled, FOG MODE is EXP, d = 1:0, e = 1:0, and
s = 0:0; Cf = (0; 0; 0; 0) and if = 0.

3.11 Antialiasing Application

Finally, if antialiasing is enabled for the primitive from which a rasterized
fragment was produced, then the computed coverage value is applied to the
fragment. In RGBA mode, the value is multiplied by the fragment's alpha
(A) value to yield a �nal alpha value. In color index mode, the value is used
to set the low order bits of the color index value as described in section 3.2.

Version 1.2.1 - April 1, 1999

Chapter 4

Per-Fragment Operations

and the Framebu�er

The framebu�er consists of a set of pixels arranged as a two-dimensional
array. The height and width of this array may vary from one GL imple-
mentation to another. For purposes of this discussion, each pixel in the
framebu�er is simply a set of some number of bits. The number of bits
per pixel may also vary depending on the particular GL implementation or
context.

Corresponding bits from each pixel in the framebu�er are grouped to-
gether into a bitplane; each bitplane contains a single bit from each pixel.
These bitplanes are grouped into several logical bu�ers. These are the color,
depth, stencil, and accumulation bu�ers. The color bu�er actually consists
of a number of bu�ers: the front left bu�er, the front right bu�er, the back
left bu�er, the back right bu�er, and some number of auxiliary bu�ers. Typ-
ically the contents of the front bu�ers are displayed on a color monitor while
the contents of the back bu�ers are invisible. (Monoscopic contexts display
only the front left bu�er; stereoscopic contexts display both the front left
and the front right bu�ers.) The contents of the auxiliary bu�ers are never
visible. All color bu�ers must have the same number of bitplanes, although
an implementation or context may choose not to provide right bu�ers, back
bu�ers, or auxiliary bu�ers at all. Further, an implementation or context
may not provide depth, stencil, or accumulation bu�ers.

Color bu�ers consist of either unsigned integer color indices or R, G, B,
and, optionally, A unsigned integer values. The number of bitplanes in each
of the color bu�ers, the depth bu�er, the stencil bu�er, and the accumulation
bu�er is �xed and window dependent. If an accumulation bu�er is provided,

141

Version 1.2.1 - April 1, 1999

142CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE FRAMEBUFFER

Fragment
+

Associated
Data

Pixel
Ownership

Test

Scissor
Test

Stencil
Test

Framebuffer

Alpha
Test

Depth buffer
Test

Blending
(RGBA Only)

Dithering

Framebuffer

Framebuffer

Logicop To
Framebuffer

Framebuffer

(RGBA Only)

Figure 4.1. Per-fragment operations.

it must have at least as many bitplanes per R, G, and B color component
as do the color bu�ers.

The initial state of all provided bitplanes is unde�ned.

4.1 Per-Fragment Operations

A fragment produced by rasterization with window coordinates of (xw; yw)
modi�es the pixel in the framebu�er at that location based on a number of
parameters and conditions. We describe these modi�cations and tests, dia-
grammed in Figure 4.1, in the order in which they are performed. Figure 4.1
diagrams these modi�cations and tests.

4.1.1 Pixel Ownership Test

The �rst test is to determine if the pixel at location (xw; yw) in the frame-
bu�er is currently owned by the GL (more precisely, by this GL context). If
it is not, the window system decides the fate the incoming fragment. Pos-
sible results are that the fragment is discarded or that some subset of the
subsequent per-fragment operations are applied to the fragment. This test

Version 1.2.1 - April 1, 1999

4.1. PER-FRAGMENT OPERATIONS 143

allows the window system to control the GL's behavior, for instance, when
a GL window is obscured.

4.1.2 Scissor test

The scissor test determines if (xw; yw) lies within the scissor rectangle de�ned
by four values. These values are set with

void Scissor(int left, int bottom, sizei width,
sizei height);

If left � xw < left + width and bottom � yw < bottom + height, then the
scissor test passes. Otherwise, the test fails and the fragment is discarded.
The test is enabled or disabled using Enable or Disable using the con-
stant SCISSOR TEST. When disabled, it is as if the scissor test always passes.
If either width or height is less than zero, then the error INVALID VALUE is
generated. The state required consists of four integer values and a bit
indicating whether the test is enabled or disabled. In the initial state
left = bottom = 0; width and height are determined by the size of the
GL window. Initially, the scissor test is disabled.

4.1.3 Alpha test

This step applies only in RGBA mode. In color index mode, proceed to the
next step. The alpha test discards a fragment conditional on the outcome of
a comparison between the incoming fragment's alpha value and a constant
value. The comparison is enabled or disabled with the generic Enable and
Disable commands using the symbolic constant ALPHA TEST. When disabled,
it is as if the comparison always passes. The test is controlled with

void AlphaFunc(enum func, clampf ref);

func is a symbolic constant indicating the alpha test function; ref is a refer-
ence value. ref is clamped to lie in [0; 1], and then converted to a �xed-point
value according to the rules given for an A component in section 2.13.9. For
purposes of the alpha test, the fragment's alpha value is also rounded to
the nearest integer. The possible constants specifying the test function are
NEVER, ALWAYS, LESS, LEQUAL, EQUAL, GEQUAL, GREATER, or NOTEQUAL, meaning
pass the fragment never, always, if the fragment's alpha value is less than,
less than or equal to, equal to, greater than or equal to, greater than, or not
equal to the reference value, respectively.

Version 1.2.1 - April 1, 1999

144CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE FRAMEBUFFER

The required state consists of the oating-point reference value, an eight-
valued integer indicating the comparison function, and a bit indicating if the
comparison is enabled or disabled. The initial state is for the reference value
to be 0 and the function to be ALWAYS. Initially, the alpha test is disabled.

4.1.4 Stencil test

The stencil test conditionally discards a fragment based on the outcome of a
comparison between the value in the stencil bu�er at location (xw; yw) and
a reference value. The test is controlled with

void StencilFunc(enum func, int ref, uint mask);
void StencilOp(enum sfail, enum dpfail, enum dppass);

The test is enabled or disabled with the Enable andDisable commands, us-
ing the symbolic constant STENCIL TEST. When disabled, the stencil test and
associated modi�cations are not made, and the fragment is always passed.

ref is an integer reference value that is used in the unsigned stencil com-
parison. It is clamped to the range [0; 2s � 1], where s is the number of bits
in the stencil bu�er. func is a symbolic constant that determines the stencil
comparison function; the eight symbolic constants are NEVER, ALWAYS, LESS,
LEQUAL, EQUAL, GEQUAL, GREATER, or NOTEQUAL. Accordingly, the stencil test
passes never, always, if the reference value is less than, less than or equal to,
equal to, greater than or equal to, greater than, or not equal to the masked
stored value in the stencil bu�er. The s least signi�cant bits of mask are
bitwise ANDed with both the reference and the stored stencil value. The
ANDed values are those that participate in the comparison.

StencilOp takes three arguments that indicate what happens to the
stored stencil value if this or certain subsequent tests fail or pass. sfail
indicates what action is taken if the stencil test fails. The symbolic constants
are KEEP, ZERO, REPLACE, INCR, DECR, and INVERT. These correspond to keeping
the current value, setting it to zero, replacing it with the reference value,
incrementing it, decrementing it, or bitwise inverting it. For purposes of
increment and decrement, the stencil bits are considered as an unsigned
integer; values clamp at 0 and the maximum representable value. The same
symbolic values are given to indicate the stencil action if the depth bu�er
test (below) fails (dpfail), or if it passes (dppass).

If the stencil test fails, the incoming fragment is discarded. The state
required consists of the most recent values passed to StencilFunc and Sten-
cilOp, and a bit indicating whether stencil testing is enabled or disabled.

Version 1.2.1 - April 1, 1999

4.1. PER-FRAGMENT OPERATIONS 145

In the initial state, stenciling is disabled, the stencil reference value is zero,
the stencil comparison function is ALWAYS, and the stencil mask is all ones.
Initially, all three stencil operations are KEEP. If there is no stencil bu�er, no
stencil modi�cation can occur, and it is as if the stencil tests always pass,
regardless of any calls to StencilOp.

4.1.5 Depth bu�er test

The depth bu�er test discards the incoming fragment if a depth comparison
fails. The comparison is enabled or disabled with the generic Enable and
Disable commands using the symbolic constant DEPTH TEST. When disabled,
the depth comparison and subsequent possible updates to the depth bu�er
value are bypassed and the fragment is passed to the next operation. The
stencil value, however, is modi�ed as indicated below as if the depth bu�er
test passed. If enabled, the comparison takes place and the depth bu�er and
stencil value may subsequently be modi�ed.

The comparison is speci�ed with

void DepthFunc(enum func);

This command takes a single symbolic constant: one of NEVER, ALWAYS, LESS,
LEQUAL, EQUAL, GREATER, GEQUAL, NOTEQUAL. Accordingly, the depth bu�er test
passes never, always, if the incoming fragment's zw value is less than, less
than or equal to, equal to, greater than, greater than or equal to, or not equal
to the depth value stored at the location given by the incoming fragment's
(xw; yw) coordinates.

If the depth bu�er test fails, the incoming fragment is discarded. The
stencil value at the fragment's (xw; yw) coordinates is updated according to
the function currently in e�ect for depth bu�er test failure. Otherwise, the
fragment continues to the next operation and the value of the depth bu�er
at the fragment's (xw; yw) location is set to the fragment's zw value. In this
case the stencil value is updated according to the function currently in e�ect
for depth bu�er test success.

The necessary state is an eight-valued integer and a single bit indicating
whether depth bu�ering is enabled or disabled. In the initial state the
function is LESS and the test is disabled.

If there is no depth bu�er, it is as if the depth bu�er test always passes.

Version 1.2.1 - April 1, 1999

146CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE FRAMEBUFFER

4.1.6 Blending

Blending combines the incoming fragment's R, G, B, and A values with the
R, G, B, and A values stored in the framebu�er at the incoming fragment's
(xw; yw) location.

This blending is dependent on the incoming fragment's alpha value and
that of the corresponding currently stored pixel. Blending applies only in
RGBA mode; in color index mode it is bypassed. Blending is enabled or
disabled using Enable or Disable with the symbolic constant BLEND. If it
is disabled, or if logical operation on color values is enabled (section 4.1.8),
proceed to the next stage.

In the following discussion, Cs refers to the source color for an incoming
fragment, Cd refers to the destination color at the corresponding framebu�er
location, and Cc refers to a constant color in the GL state. Individual
RGBA components of these colors are denoted by subscripts of s, d, and c
respectively.

Destination (framebu�er) components are taken to be �xed-point values
represented according to the scheme given in section 2.13.9 (Final Color Pro-
cessing), as are source (fragment) components. Constant color components
are taken to be oating point values.

Prior to blending, each �xed-point color component undergoes an implied
conversion to oating point. This conversion must leave the values 0 and
1 invariant. Blending computations are treated as if carried out in oating
point.

The commands that control blending are

void BlendColor(clampf red, clampf green, clampf blue,
clampf alpha);

void BlendEquation(enum mode);

void BlendFunc(enum src, enum dst);

Using BlendColor

The constant color Cc to be used in blending is speci�ed with BlendColor.
The four parameters are clamped to the range [0; 1] before being stored.
The constant color can be used in both the source and destination blending
factors.

BlendColor is an imaging subset feature (see section 3.6.2), and is only
allowed when the imaging subset is supported.

Version 1.2.1 - April 1, 1999

4.1. PER-FRAGMENT OPERATIONS 147

Using BlendEquation

Blending capability is de�ned by the blend equation. BlendEquation mode
FUNC ADD de�nes the blending equation as

C = CsS + CdD

where Cs and Cd are the source and destination colors, and S and D are
quadruplets of weighting factors as speci�ed by BlendFunc.

If mode is FUNC SUBTRACT, the blending equation is de�ned as

C = CsS � CdD

If mode is FUNC REVERSE SUBTRACT, the blending equation is de�ned as

C = CdD � CsS

If mode is MIN, the blending equation is de�ned as

C =min(Cs; Cd)

Finally, if mode is MAX, the blending equation is de�ned as

C = max(Cs; Cd)

The blending equation is evaluated separately for each color component
and the corresponding weighting factors.

BlendEquation is an imaging subset feature (see section 3.6.2). If
the imaging subset is not available, then blending always uses the blending
equation FUNC ADD.

Using BlendFunc

BlendFunc src indicates how to compute a source blending factor, while
dst indicates how to compute a destination factor. The possible arguments
and their corresponding computed source and destination factors are sum-
marized in Tables 4.1 and 4.2. Addition or subtraction of quadruplets means
adding or subtracting them component-wise.

The computed source and destination blending quadruplets are applied
to the source and destination R, G, B, and A values to obtain a new set of
values that are sent to the next operation. Let the source and destination
blending quadruplets be S and D, respectively. Then a quadruplet of values
is computed using the blend equation speci�ed by BlendEquation. Each

Version 1.2.1 - April 1, 1999

148CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE FRAMEBUFFER

Value Blend Factors

ZERO (0; 0; 0; 0)

ONE (1; 1; 1; 1)

DST COLOR (Rd; Gd; Bd; Ad)

ONE MINUS DST COLOR (1; 1; 1; 1) � (Rd; Gd; Bd; Ad)

SRC ALPHA (As; As; As; As)

ONE MINUS SRC ALPHA (1; 1; 1; 1) � (As; As; As; As)

DST ALPHA (Ad; Ad; Ad; Ad)

ONE MINUS DST ALPHA (1; 1; 1; 1) � (Ad; Ad; Ad; Ad)

CONSTANT COLOR (Rc; Gc; Bc; Ac)

ONE MINUS CONSTANT COLOR (1; 1; 1; 1) � (Rc; Gc; Bc; Ac)

CONSTANT ALPHA (Ac; Ac; Ac; Ac)

ONE MINUS CONSTANT ALPHA (1; 1; 1; 1) � (Ac; Ac; Ac; Ac)

SRC ALPHA SATURATE (f; f; f; 1)

Table 4.1: Values controlling the source blending function and the source
blending values they compute. f = min(As; 1 �Ad).

Value Blend factors

ZERO (0; 0; 0; 0)

ONE (1; 1; 1; 1)

SRC COLOR (Rs; Gs; Bs; As)

ONE MINUS SRC COLOR (1; 1; 1; 1) � (Rs; Gs; Bs; As)

SRC ALPHA (As; As; As; As)

ONE MINUS SRC ALPHA (1; 1; 1; 1) � (As; As; As; As)

DST ALPHA (Ad; Ad; Ad; Ad)

ONE MINUS DST ALPHA (1; 1; 1; 1) � (Ad; Ad; Ad; Ad)

CONSTANT COLOR (Rc; Gc; Bc; Ac)

ONE MINUS CONSTANT COLOR (1; 1; 1; 1) � (Rc; Gc; Bc; Ac)

CONSTANT ALPHA (Ac; Ac; Ac; Ac)

ONE MINUS CONSTANT ALPHA (1; 1; 1; 1) � (Ac; Ac; Ac; Ac)

Table 4.2: Values controlling the destination blending function and the des-
tination blending values they compute.

Version 1.2.1 - April 1, 1999

4.1. PER-FRAGMENT OPERATIONS 149

oating-point value in this quadruplet is clamped to [0; 1] and converted
back to a �xed-point value in the manner described in section 2.13.9. The
resulting four values are sent to the next operation.

BlendFunc arguments CONSTANT COLOR, ONE MINUS CONSTANT COLOR,
CONSTANT ALPHA, and ONE MINUS CONSTANT ALPHA are imaging subset features
(see section 3.6.2), and are only allowed when the imaging subset is provided.

Blending State

The state required for blending is an integer indicating the blending equa-
tion, two integers indicating the source and destination blending functions,
four oating-point values to store the RGBA constant blend color, and a
bit indicating whether blending is enabled or disabled. The initial blending
equation is FUNC ADD. The initial blending functions are ONE for the source
function and ZERO for the destination function. The initial constant blend
color is (R;G;B;A) = (0; 0; 0; 0). Initially, blending is disabled.

Blending occurs once for each color bu�er currently enabled for writing
(section 4.2.1) using each bu�er's color for Cd. If a color bu�er has no A
value, then Ad is taken to be 1.

4.1.7 Dithering

Dithering selects between two color values or indices. In RGBA mode, con-
sider the value of any of the color components as a �xed-point value with m
bits to the left of the binary point, where m is the number of bits allocated
to that component in the framebu�er; call each such value c. For each c,
dithering selects a value c1 such that c1 2 fmaxf0; dce � 1g; dceg (after this
selection, treat c1 as a �xed point value in [0,1] with m bits). This selec-
tion may depend on the xw and yw coordinates of the pixel. In color index
mode, the same rule applies with c being a single color index. c must not be
larger than the maximum value representable in the framebu�er for either
the component or the index, as appropriate.

Many dithering algorithms are possible, but a dithered value produced
by any algorithm must depend only the incoming value and the fragment's x
and y window coordinates. If dithering is disabled, then each color compo-
nent is truncated to a �xed-point value with as many bits as there are in the
corresponding component in the framebu�er; a color index is rounded to the
nearest integer representable in the color index portion of the framebu�er.

Dithering is enabled with Enable and disabled with Disable using the

Version 1.2.1 - April 1, 1999

150CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE FRAMEBUFFER

symbolic constant DITHER. The state required is thus a single bit. Initially,
dithering is enabled.

4.1.8 Logical Operation

Finally, a logical operation is applied between the incoming fragment's color
or index values and the color or index values stored at the corresponding
location in the framebu�er. The result replaces the values in the framebu�er
at the fragment's (x; y) coordinates. The logical operation on color indices
is enabled or disabled with Enable or Disable using the symbolic constant
INDEX LOGIC OP. (For compatibility with GL version 1.0, the symbolic con-
stant LOGIC OP may also be used.) The logical operation on color values is
enabled or disabled with Enable or Disable using the symbolic constant
COLOR LOGIC OP. If the logical operation is enabled for color values, it is as if
blending were disabled, regardless of the value of BLEND.

The logical operation is selected by

void LogicOp(enum op);

op is a symbolic constant; the possible constants and corresponding opera-
tions are enumerated in Table 4.3. In this table, s is the value of the incoming
fragment and d is the value stored in the framebu�er. The numeric values
assigned to the symbolic constants are the same as those assigned to the
corresponding symbolic values in the X window system.

Logical operations are performed independently for each color index
bu�er that is selected for writing, or for each red, green, blue, and alpha
value of each color bu�er that is selected for writing. The required state is
an integer indicating the logical operation, and two bits indicating whether
the logical operation is enabled or disabled. The initial state is for the logic
operation to be given by COPY, and to be disabled.

4.2 Whole Framebu�er Operations

The preceding sections described the operations that occur as individual
fragments are sent to the framebu�er. This section describes operations
that control or a�ect the whole framebu�er.

4.2.1 Selecting a Bu�er for Writing

The �rst such operation is controlling the bu�er into which color values are
written. This is accomplished with

Version 1.2.1 - April 1, 1999

4.2. WHOLE FRAMEBUFFER OPERATIONS 151

Argument value Operation

CLEAR 0
AND s ^ d
AND REVERSE s ^ :d
COPY s
AND INVERTED :s ^ d
NOOP d
XOR s xor d
OR s _ d
NOR :(s _ d)
EQUIV :(s xor d)
INVERT :d
OR REVERSE s _ :d
COPY INVERTED :s
OR INVERTED :s _ d
NAND :(s ^ d)
SET all 1's

Table 4.3: Arguments to LogicOp and their corresponding operations.

void DrawBu�er(enum buf);

buf is a symbolic constant specifying zero, one, two, or four bu�ers for writ-
ing. The constants are NONE, FRONT LEFT, FRONT RIGHT, BACK LEFT, BACK RIGHT,
FRONT, BACK, LEFT, RIGHT, FRONT AND BACK, and AUX0 through AUXn, where n+1
is the number of available auxiliary bu�ers.

The constants refer to the four potentially visible bu�ers front left,
front right, back left, and back right, and to the auxiliary bu�ers. Argu-
ments other than AUXi that omit reference to LEFT or RIGHT refer to both left
and right bu�ers. Arguments other than AUXi that omit reference to FRONT

or BACK refer to both front and back bu�ers. AUXi enables drawing only to
auxiliary bu�er i. Each AUXi adheres to AUXi = AUX0+ i. The constants and
the bu�ers they indicate are summarized in Table 4.4. If DrawBu�er is
is supplied with a constant (other than NONE) that does not indicate any of
the color bu�ers allocated to the GL context, the error INVALID OPERATION

results.

Indicating a bu�er or bu�ers usingDrawBu�er causes subsequent pixel
color value writes to a�ect the indicated bu�ers. If more than one color
bu�er is selected for drawing, blending and logical operations are computed

Version 1.2.1 - April 1, 1999

152CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE FRAMEBUFFER

symbolic front front back back aux
constant left right left right i

NONE

FRONT LEFT �
FRONT RIGHT �
BACK LEFT �
BACK RIGHT �
FRONT � �
BACK � �
LEFT � �
RIGHT � �
FRONT AND BACK � � � �
AUXi �

Table 4.4: Arguments to DrawBu�er and the bu�ers that they indicate.

and applied independently for each bu�er. Calling DrawBu�er with a
value of NONE inhibits the writing of color values to any bu�er.

Monoscopic contexts include only left bu�ers, while stereoscopic contexts
include both left and right bu�ers. Likewise, single bu�ered contexts include
only front bu�ers, while double bu�ered contexts include both front and back
bu�ers. The type of context is selected at GL initialization.

The state required to handle bu�er selection is a set of up to 4 + n bits.
4 bits indicate if the front left bu�er, the front right bu�er, the back left
bu�er, or the back right bu�er, are enabled for color writing. The other n
bits indicate which of the auxiliary bu�ers is enabled for color writing. In
the initial state, the front bu�er or bu�ers are enabled if there are no back
bu�ers; otherwise, only the back bu�er or bu�ers are enabled.

4.2.2 Fine Control of Bu�er Updates

Four commands are used to mask the writing of bits to each of the logical
framebu�ers after all per-fragment operations have been performed. The
commands

void IndexMask(uint mask);
void ColorMask(boolean r, boolean g, boolean b,

boolean a);

Version 1.2.1 - April 1, 1999

4.2. WHOLE FRAMEBUFFER OPERATIONS 153

control the color bu�er or bu�ers (depending on which bu�ers are currently
indicated for writing). The least signi�cant n bits of mask, where n is the
number of bits in a color index bu�er, specify a mask. Where a 1 appears
in this mask, the corresponding bit in the color index bu�er (or bu�ers) is
written; where a 0 appears, the bit is not written. This mask applies only in
color index mode. In RGBA mode, ColorMask is used to mask the writing
of R, G, B and A values to the color bu�er or bu�ers. r, g, b, and a indicate
whether R, G, B, or A values, respectively, are written or not (a value of
TRUE means that the corresponding value is written). In the initial state, all
bits (in color index mode) and all color values (in RGBA mode) are enabled
for writing.

The depth bu�er can be enabled or disabled for writing zw values using

void DepthMask(boolean mask);

If mask is non-zero, the depth bu�er is enabled for writing; otherwise, it is
disabled. In the initial state, the depth bu�er is enabled for writing.

The command

void StencilMask(uint mask);

controls the writing of particular bits into the stencil planes. The least
signi�cant s bits of mask comprise an integer mask (s is the number of bits
in the stencil bu�er), just as for IndexMask. The initial state is for the
stencil plane mask to be all ones.

The state required for the various masking operations is two integers and
a bit: an integer for color indices, an integer for stencil values, and a bit
for depth values. A set of four bits is also required indicating which color
components of an RGBA value should be written. In the initial state, the
integer masks are all ones as are the bits controlling depth value and RGBA
component writing.

4.2.3 Clearing the Bu�ers

The GL provides a means for setting portions of every pixel in a particular
bu�er to the same value. The argument to

void Clear(bitfield buf);

is the bitwise OR of a number of values indicating which bu�ers
are to be cleared. The values are COLOR BUFFER BIT, DEPTH BUFFER BIT,

Version 1.2.1 - April 1, 1999

154CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE FRAMEBUFFER

STENCIL BUFFER BIT, and ACCUM BUFFER BIT, indicating the bu�ers currently
enabled for color writing, the depth bu�er, the stencil bu�er, and the accu-
mulation bu�er (see below), respectively. The value to which each bu�er is
cleared depends on the setting of the clear value for that bu�er. If the mask
is not a bitwise OR of the speci�ed values, then the error INVALID VALUE is
generated.

void ClearColor(clampf r, clampf g, clampf b,
clampf a);

sets the clear value for the color bu�ers in RGBA mode. Each of the speci�ed
components is clamped to [0; 1] and converted to �xed-point according to
the rules of section 2.13.9.

void ClearIndex(float index);

sets the clear color index. index is converted to a �xed-point value with
unspeci�ed precision to the left of the binary point; the integer part of this
value is then masked with 2m � 1, where m is the number of bits in a color
index value stored in the framebu�er.

void ClearDepth(clampd d);

takes a oating-point value that is clamped to the range [0; 1] and con-
verted to �xed-point according to the rules for a window z value given in
section 2.10.1. Similarly,

void ClearStencil(int s);

takes a single integer argument that is the value to which to clear the stencil
bu�er. s is masked to the number of bitplanes in the stencil bu�er.

void ClearAccum(float r, float g, float b, float a);

takes four oating-point arguments that are the values, in order, to which
to set the R, G, B, and A values of the accumulation bu�er (see the next
section). These values are clamped to the range [�1; 1] when they are spec-
i�ed.

When Clear is called, the only per-fragment operations that are applied
(if enabled) are the pixel ownership test, the scissor test, and dithering. The
masking operations described in the last section (4.2.2) are also e�ective. If
a bu�er is not present, then a Clear directed at that bu�er has no e�ect.

Version 1.2.1 - April 1, 1999

4.2. WHOLE FRAMEBUFFER OPERATIONS 155

The state required for clearing is a clear value for each of the color bu�er,
the depth bu�er, the stencil bu�er, and the accumulation bu�er. Initially,
the RGBA color clear value is (0,0,0,0), the clear color index is 0, and the
stencil bu�er and accumulation bu�er clear values are all 0. The depth
bu�er clear value is initially 1.0.

4.2.4 The Accumulation Bu�er

Each portion of a pixel in the accumulation bu�er consists of four values: one
for each of R, G, B, and A. The accumulation bu�er is controlled exclusively
through the use of

void Accum(enum op, float value);

(except for clearing it). op is a symbolic constant indicating an accumula-
tion bu�er operation, and value is a oating-point value to be used in that
operation. The possible operations are ACCUM, LOAD, RETURN, MULT, and ADD.

When the scissor test is enabled (section 4.1.2), then only those pix-
els within the current scissor box are updated by any Accum operation;
otherwise, all pixels in the window are updated. The accumulation bu�er
operations apply identically to every a�ected pixel, so we describe the e�ect
of each operation on an individual pixel. Accumulation bu�er values are
taken to be signed values in the range [�1; 1]. Using ACCUM obtains R, G,
B, and A components from the bu�er currently selected for reading (sec-
tion 4.3.2). Each component, considered as a �xed-point value in [0; 1]. (see
section 2.13.9), is converted to oating-point. Each result is then multiplied
by value. The results of this multiplication are then added to the corre-
sponding color component currently in the accumulation bu�er, and the
resulting color value replaces the current accumulation bu�er color value.

The LOAD operation has the same e�ect as ACCUM, but the computed values
replace the corresponding accumulation bu�er components rather than being
added to them.

The RETURN operation takes each color value from the accumulation
bu�er, multiplies each of the R, G, B, and A components by value, and
clamps the results to the range [0; 1] The resulting color value is placed
in the bu�ers currently enabled for color writing as if it were a fragment
produced from rasterization, except that the only per-fragment operations
that are applied (if enabled) are the pixel ownership test, the scissor test
(section 4.1.2), and dithering (section 4.1.7). Color masking (section 4.2.2)
is also applied.

Version 1.2.1 - April 1, 1999

156CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE FRAMEBUFFER

The MULT operation multiplies each R, G, B, and A in the accumulation
bu�er by value and then returns the scaled color components to their corre-
sponding accumulation bu�er locations. ADD is the same as MULT except that
value is added to each of the color components.

The color components operated on by Accum must be clamped only if
the operation is RETURN. In this case, a value sent to the enabled color bu�ers
is �rst clamped to [0; 1]. Otherwise, results are unde�ned if the result of an
operation on a color component is out of the range [�1; 1]. If there is no
accumulation bu�er, or if the GL is in color index mode, Accum generates
the error INVALID OPERATION.

No state (beyond the accumulation bu�er itself) is required for accumu-
lation bu�ering.

4.3 Drawing, Reading, and Copying Pixels

Pixels may be written to and read from the framebu�er using the Draw-
Pixels and ReadPixels commands. CopyPixels can be used to copy a
block of pixels from one portion of the framebu�er to another.

4.3.1 Writing to the Stencil Bu�er

The operation of DrawPixels was described in section 3.6.4, except if the
format argument was STENCIL INDEX. In this case, all operations described for
DrawPixels take place, but window (x; y) coordinates, each with the corre-
sponding stencil index, are produced in lieu of fragments. Each coordinate-
stencil index pair is sent directly to the per-fragment operations, bypassing
the texture, fog, and antialiasing application stages of rasterization. Each
pair is then treated as a fragment for purposes of the pixel ownership and
scissor tests; all other per-fragment operations are bypassed. Finally, each
stencil index is written to its indicated location in the framebu�er, subject
to the current setting of StencilMask.

The error INVALID OPERATION results if there is no stencil bu�er.

4.3.2 Reading Pixels

The method for reading pixels from the framebu�er and placing them in
client memory is diagrammed in Figure 4.2. We describe the stages of the
pixel reading process in the order in which they occur.

Pixels are read using

Version 1.2.1 - April 1, 1999

4.3. DRAWING, READING, AND COPYING PIXELS 157

post
convolution

convert
to float

RGBA pixel
data in

color index pixel
data in

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB

scale
and bias

Pixel Transfer
Operations

color table
lookup

convolution
scale and bias

histogram

minmax

color table
lookup

RGBA to RGBA
lookup

shift
and offset

index to index
lookup

index to RGBA
lookup

color table
lookup

color matrix
scale and bias

post
color matrix

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB

pack

convert
RGB to L

clamp
to [0,1]

mask to
(2n − 1)

byte, short, int, or float pixel
data stream (index or component)

Pixel Storage
Operations

Figure 4.2. Operation of ReadPixels. Operations in dashed boxes may be
enabled or disabled. RGBA and color index pixel paths are shown; depth
and stencil pixel paths are not shown.

Version 1.2.1 - April 1, 1999

158CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE FRAMEBUFFER

Parameter Name Type Initial Value Valid Range

PACK SWAP BYTES boolean FALSE TRUE/FALSE

PACK LSB FIRST boolean FALSE TRUE/FALSE

PACK ROW LENGTH integer 0 [0;1)

PACK SKIP ROWS integer 0 [0;1)

PACK SKIP PIXELS integer 0 [0;1)

PACK ALIGNMENT integer 4 1,2,4,8

PACK IMAGE HEIGHT integer 0 [0;1)

PACK SKIP IMAGES integer 0 [0;1)

Table 4.5: PixelStore parameters pertaining to ReadPixels, GetTex-
Image1D, GetTexImage2D, GetTexImage3D, GetColorTable, Get-
ConvolutionFilter, GetSeparableFilter, GetHistogram, and Get-
Minmax.

void ReadPixels(int x, int y, sizei width, sizei height,
enum format, enum type, void *data);

The arguments after x and y to ReadPixels correspond to those of Draw-
Pixels. The pixel storage modes that apply to ReadPixels and other
commands that query images (see section 6.1) are summarized in Table 4.5.

Obtaining Pixels from the Framebu�er

If the format is DEPTH COMPONENT, then values are obtained from the depth
bu�er. If there is no depth bu�er, the error INVALID OPERATION occurs.

If the format is STENCIL INDEX, then values are taken from the stencil
bu�er; again, if there is no stencil bu�er, the error INVALID OPERATION occurs.

For all other formats, the bu�er from which values are obtained is one of
the color bu�ers; the selection of color bu�er is controlled withReadBu�er.

The command

void ReadBu�er(enum src);

takes a symbolic constant as argument. The possible values are FRONT LEFT,
FRONT RIGHT, BACK LEFT, BACK RIGHT, FRONT, BACK, LEFT, RIGHT, and AUX0

through AUXn. FRONT and LEFT refer to the front left bu�er, BACK refers
to the back left bu�er, and RIGHT refers to the front right bu�er. The other
constants correspond directly to the bu�ers that they name. If the requested

Version 1.2.1 - April 1, 1999

4.3. DRAWING, READING, AND COPYING PIXELS 159

bu�er is missing, then the error INVALID OPERATION is generated. The ini-
tial setting for ReadBu�er is FRONT if there is no back bu�er and BACK

otherwise.

ReadPixels obtains values from the selected bu�er from each pixel with
lower left hand corner at (x + i; y + j) for 0 � i < width and 0 � j <
height; this pixel is said to be the ith pixel in the jth row. If any of these
pixels lies outside of the window allocated to the current GL context, the
values obtained for those pixels are unde�ned. Results are also unde�ned
for individual pixels that are not owned by the current context. Otherwise,
ReadPixels obtains values from the selected bu�er, regardless of how those
values were placed there.

If the GL is in RGBA mode, and format is one of RED, GREEN, BLUE, ALPHA,
RGB, RGBA, BGR, BGRA, LUMINANCE, or LUMINANCE ALPHA, then red, green, blue,
and alpha values are obtained from the selected bu�er at each pixel location.
If the framebu�er does not support alpha values then the A that is obtained
is 1.0. If format is COLOR INDEX and the GL is in RGBA mode then the error
INVALID OPERATION occurs. If the GL is in color index mode, and format is
not DEPTH COMPONENT or STENCIL INDEX, then the color index is obtained at
each pixel location.

Conversion of RGBA values

This step applies only if the GL is in RGBA mode, and then only if format
is neither STENCIL INDEX nor DEPTH COMPONENT. The R, G, B, and A values
form a group of elements. Each element is taken to be a �xed-point value in
[0; 1] with m bits, where m is the number of bits in the corresponding color
component of the selected bu�er (see section 2.13.9).

Conversion of Depth values

This step applies only if format is DEPTH COMPONENT. An element is taken to
be a �xed-point value in [0,1] with m bits, where m is the number of bits in
the depth bu�er (see section 2.10.1).

Pixel Transfer Operations

This step is actually the sequence of steps that was described separately in
section 3.6.5. After the processing described in that section is completed,
groups are processed as described in the following sections.

Version 1.2.1 - April 1, 1999

160CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE FRAMEBUFFER

type Parameter Index Mask

UNSIGNED BYTE 28 � 1

BITMAP 1

BYTE 27 � 1

UNSIGNED SHORT 216 � 1

SHORT 215 � 1

UNSIGNED INT 232 � 1

INT 231 � 1

Table 4.6: Index masks used by ReadPixels. Floating point data are not
masked.

Conversion to L

This step applies only to RGBA component groups, and only if the format
is either LUMINANCE or LUMINANCE ALPHA. A value L is computed as

L = R+G+B

where R, G, and B are the values of the R, G, and B components. The
single computed L component replaces the R, G, and B components in the
group.

Final Conversion

For an index, if the type is not FLOAT, �nal conversion consists of masking
the index with the value given in Table 4.6; if the type is FLOAT, then the
integer index is converted to a GL oat data value.

For an RGBA color, each component is �rst clamped to [0; 1]. Then the
appropriate conversion formula from table 4.7 is applied to the component.

Placement in Client Memory

Groups of elements are placed in memory just as they are taken from mem-
ory for DrawPixels. That is, the ith group of the jth row (corresponding
to the ith pixel in the jth row) is placed in memory just where the ith group
of the jth row would be taken from for DrawPixels. See Unpacking un-
der section 3.6.4. The only di�erence is that the storage mode parameters
whose names begin with PACK are used instead of those whose names be-
gin with UNPACK . If the format is RED, GREEN, BLUE, ALPHA, or LUMINANCE,

Version 1.2.1 - April 1, 1999

4.3. DRAWING, READING, AND COPYING PIXELS 161

type Parameter GL Data Type Component
Conversion Formula

UNSIGNED BYTE ubyte c = (28 � 1)f

BYTE byte c = [(28 � 1)f � 1]=2

UNSIGNED SHORT ushort c = (216 � 1)f

SHORT short c = [(216 � 1)f � 1]=2

UNSIGNED INT uint c = (232 � 1)f

INT int c = [(232 � 1)f � 1]=2

FLOAT float c = f

UNSIGNED BYTE 3 3 2 ubyte c = (2N � 1)f

UNSIGNED BYTE 2 3 3 REV ubyte c = (2N � 1)f

UNSIGNED SHORT 5 6 5 ushort c = (2N � 1)f

UNSIGNED SHORT 5 6 5 REV ushort c = (2N � 1)f

UNSIGNED SHORT 4 4 4 4 ushort c = (2N � 1)f

UNSIGNED SHORT 4 4 4 4 REV ushort c = (2N � 1)f

UNSIGNED SHORT 5 5 5 1 ushort c = (2N � 1)f

UNSIGNED SHORT 1 5 5 5 REV ushort c = (2N � 1)f

UNSIGNED INT 8 8 8 8 uint c = (2N � 1)f

UNSIGNED INT 8 8 8 8 REV uint c = (2N � 1)f

UNSIGNED INT 10 10 10 2 uint c = (2N � 1)f

UNSIGNED INT 2 10 10 10 REV uint c = (2N � 1)f

Table 4.7: Reversed component conversions - used when component data
are being returned to client memory. Color, normal, and depth components
are converted from the internal oating-point representation (f) to a datum
of the speci�ed GL data type (c) using the equations in this table. All arith-
metic is done in the internal oating point format. These conversions apply
to component data returned by GL query commands and to components of
pixel data returned to client memory. The equations remain the same even
if the implemented ranges of the GL data types are greater than the mini-
mum required ranges. (See Table 2.2.) Equations with N as the exponent
are performed for each bit�eld of the packed data type, with N set to the
number of bits in the bit�eld.

Version 1.2.1 - April 1, 1999

162CHAPTER 4. PER-FRAGMENT OPERATIONS AND THE FRAMEBUFFER

only the corresponding single element is written. Likewise if the format is
LUMINANCE ALPHA, RGB, or BGR, only the corresponding two or three elements
are written. Otherwise all the elements of each group are written.

4.3.3 Copying Pixels

CopyPixels transfers a rectangle of pixel values from one region of the
framebu�er to another. Pixel copying is diagrammed in Figure 4.3.

void CopyPixels(int x, int y, sizei width, sizei height,
enum type);

type is a symbolic constant that must be one of COLOR, STENCIL, or DEPTH,
indicating that the values to be transferred are colors, stencil values, or depth
values, respectively. The �rst four arguments have the same interpretation
as the corresponding arguments to ReadPixels.

Values are obtained from the framebu�er, converted (if appropriate),
then subjected to the pixel transfer operations described in section 3.6.5,
just as if ReadPixels were called with the corresponding arguments. If the
type is STENCIL or DEPTH, then it is as if the format for ReadPixels were
STENCIL INDEX or DEPTH COMPONENT, respectively. If the type is COLOR, then if
the GL is in RGBA mode, it is as if the format were RGBA, while if the GL
is in color index mode, it is as if the format were COLOR INDEX.

The groups of elements so obtained are then written to the framebu�er
just as if DrawPixels had been given width and height, beginning with
�nal conversion of elements. The e�ective format is the same as that already
described.

4.3.4 Pixel Draw/Read state

The state required for pixel operations consists of the parameters that are
set with PixelStore, PixelTransfer, and PixelMap. This state has been
summarized in Tables 3.1, 3.2, and 3.3. The current setting of ReadBu�er,
an integer, is also required, along with the current raster position (sec-
tion 2.12). State set with PixelStore is GL client state.

Version 1.2.1 - April 1, 1999

4.3. DRAWING, READING, AND COPYING PIXELS 163

post
convolution

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB

scale
and bias

Pixel Transfer
Operations

color table
lookup

convolution
scale and bias

histogram

minmax

color table
lookup

RGBA to RGBA
lookup

shift
and offset

index to index
lookup

index to RGBA
lookup

color table
lookup

color matrix
scale and bias

post
color matrix

convert
to float

RGBA pixel
data from framebuffer

color index pixel
data from framebuffer

color index pixel
data out

RGBA pixel
data out

clamp
to [0,1]

mask to
(2n − 1)

final
conversion

Figure 4.3. Operation of CopyPixels. Operations in dashed boxes may be
enabled or disabled. Index-to-RGBA lookup is currently never performed.
RGBA and color index pixel paths are shown; depth and stencil pixel paths
are not shown.

Version 1.2.1 - April 1, 1999

Chapter 5

Special Functions

This chapter describes additional GL functionality that does not �t easily
into any of the preceding chapters. This functionality consists of evalua-
tors (used to model curves and surfaces), selection (used to locate rendered
primitives on the screen), feedback (which returns GL results before raster-
ization), display lists (used to designate a group of GL commands for later
execution by the GL), ushing and �nishing (used to synchronize the GL
command stream), and hints.

5.1 Evaluators

Evaluators provide a means to use a polynomial or rational polynomial map-
ping to produce vertex, normal, and texture coordinates, and colors. The
values so produced are sent on to further stages of the GL as if they had
been provided directly by the client. Transformations, lighting, primitive
assembly, rasterization, and per-pixel operations are not a�ected by the use
of evaluators.

Consider the Rk-valued polynomial p(u) de�ned by

p(u) =
nX
i=0

Bn
i (u)Ri (5.1)

with Ri 2 Rk and

Bn
i (u) =

n

i

!
ui(1� u)n�i;

the ith Bernstein polynomial of degree n (recall that 00 � 1 and
�n
0

� � 1).
Each Ri is a control point. The relevant command is

164

Version 1.2.1 - April 1, 1999

5.1. EVALUATORS 165

target k Values

MAP1 VERTEX 3 3 x, y, z vertex coordinates

MAP1 VERTEX 4 4 x, y, z, w vertex coordinates

MAP1 INDEX 1 color index

MAP1 COLOR 4 4 R, G, B, A

MAP1 NORMAL 3 x, y, z normal coordinates

MAP1 TEXTURE COORD 1 1 s texture coordinate

MAP1 TEXTURE COORD 2 2 s, t texture coordinates

MAP1 TEXTURE COORD 3 3 s, t, r texture coordinates

MAP1 TEXTURE COORD 4 4 s, t, r, q texture coordinates

Table 5.1: Values speci�ed by the target to Map1. Values are given in the
order in which they are taken.

void Map1ffdg(enum type, T u1, T u2, int stride,
int order, T points);

type is a symbolic constant indicating the range of the de�ned polynomial.
Its possible values, along with the evaluations that each indicates, are given
in Table 5.1. order is equal to n+ 1; The error INVALID VALUE is generated
if order is less than one or greater than MAX EVAL ORDER. points is a pointer
to a set of n+1 blocks of storage. Each block begins with k single-precision
oating-point or double-precision oating-point values, respectively. The
rest of the block may be �lled with arbitrary data. Table 5.1 indicates how
k depends on type and what the k values represent in each case.

stride is the number of single- or double-precision values (as appropriate)
in each block of storage. The error INVALID VALUE results if stride is less than
k. The order of the polynomial, order, is also the number of blocks of storage
containing control points.

u1 and u2 give two oating-point values that de�ne the endpoints of the
pre-image of the map. When a value u0 is presented for evaluation, the
formula used is

p0(u0) = p(
u0 � u1
u2 � u1

):

The error INVALID VALUE results if u1 = u2.

Map2 is analogous to Map1, except that it describes bivariate polyno-

Version 1.2.1 - April 1, 1999

166 CHAPTER 5. SPECIAL FUNCTIONS

EvalMesh
EvalPoint

MapGrid Map
EvalCoord

k

l

[u1,u2]

[v1,v2]

[0,1]

[0,1]
ΣBiRiAx+b

Vertices

Normals

Texture Coordinates

Colors

Integers Reals

Figure 5.1. Map Evaluation.

mials of the form

p(u; v) =
nX
i=0

mX
j=0

Bn
i (u)B

m
j (v)Rij :

The form of the Map2 command is

void Map2ffdg(enum target, T u1, T u2, int ustride,
int uorder, T v1, T v2, int vstride, int vorder, T points);

target is a range type selected from the same group as is used for Map1,
except that the string MAP1 is replaced with MAP2. points is a pointer to
(n+ 1)(m + 1) blocks of storage (uorder = n+ 1 and vorder = m+ 1; the
error INVALID VALUE is generated if either uorder or vorder is less than one
or greater than MAX EVAL ORDER). The values comprising Rij are located

(ustride)i+ (vstride)j

values (either single- or double-precision oating-point, as appropriate) past
the �rst value pointed to by points. u1, u2, v1, and v2 de�ne the pre-image
rectangle of the map; a domain point (u0; v0) is evaluated as

p0(u0; v0) = p(
u0 � u1
u2 � u1

;
v0 � v1
v2 � v1

):

The evaluation of a de�ned map is enabled or disabled with Enable and
Disable using the constant corresponding to the map as described above.
The error INVALID VALUE results if either ustride or vstride is less than k, or
if u1 is equal to u2, or if v1 is equal to v2.

Figure 5.1 describes map evaluation schematically; an evaluation of en-
abled maps is e�ected in one of two ways. The �rst way is to use

Version 1.2.1 - April 1, 1999

5.1. EVALUATORS 167

void EvalCoordf12gffdg(T arg);
void EvalCoordf12gffdgv(T arg);

EvalCoord1 causes evaluation of the enabled one-dimensional maps. The
argument is the value (or a pointer to the value) that is the domain coor-
dinate, u0. EvalCoord2 causes evaluation of the enabled two-dimensional
maps. The two values specify the two domain coordinates, u0 and v0, in that
order.

When one of the EvalCoord commands is issued, all currently enabled
maps of the indicated dimension are evaluated. Then, for each enabled map,
it is as if a corresponding GL command were issued with the resulting co-
ordinates, with one important di�erence. The di�erence is that when an
evaluation is performed, the GL uses evaluated values instead of current
values for those evaluations that are enabled (otherwise, the current values
are used). The order of the e�ective commands is immaterial, except that
Vertex (for vertex coordinate evaluation) must be issued last. Use of eval-
uators has no e�ect on the current color, normal, or texture coordinates. If
ColorMaterial is enabled, evaluated color values a�ect the result of the
lighting equation as if the current color was being modi�ed, but no change
is made to the tracking lighting parameters or to the current color.

No command is e�ectively issued if the corresponding map (of the indi-
cated dimension) is not enabled. If more than one evaluation is enabled for a
particular dimension (e.g. MAP1 TEXTURE COORD 1 and MAP1 TEXTURE COORD 2),
then only the result of the evaluation of the map with the highest number
of coordinates is used.

Finally, if either MAP2 VERTEX 3 or MAP2 VERTEX 4 is enabled, then the
normal to the surface is computed. Analytic computation, which sometimes
yields normals of length zero, is one method which may be used. If auto-
matic normal generation is enabled, then this computed normal is used as
the normal associated with a generated vertex. Automatic normal gener-
ation is controlled with Enable and Disable with symbolic the constant
AUTO NORMAL. If automatic normal generation is disabled, then a correspond-
ing normal map, if enabled, is used to produce a normal. If neither automatic
normal generation nor a normal map are enabled, then no normal is sent
with a vertex resulting from an evaluation (the e�ect is that the current
normal is used).

For MAP VERTEX 3, let q = p. For MAP VERTEX 4, let q = (x=w; y=w; z=w),
where (x; y; z; w) = p. Then let

m =
@q

@u
� @q

@v
:

Version 1.2.1 - April 1, 1999

168 CHAPTER 5. SPECIAL FUNCTIONS

Then the generated analytic normal, n, is given by n =m=kmk.
The second way to carry out evaluations is to use a set of commands

that provide for e�cient speci�cation of a series of evenly spaced values to
be mapped. This method proceeds in two steps. The �rst step is to de�ne
a grid in the domain. This is done using

void MapGrid1ffdg(int n, T u01, T u02);

for a one-dimensional map or

void MapGrid2ffdg(int nu, T u01, T u02, int nv, T v01,
T v02);

for a two-dimensional map. In the case of MapGrid1 u01 and u02 describe
an interval, while n describes the number of partitions of the interval. The
error INVALID VALUE results if n � 0. For MapGrid2, (u01; v

0
1) speci�es one

two-dimensional point and (u02; v
0
2) speci�es another. nu gives the number of

partitions between u01 and u
0
2, and nv gives the number of partitions between

v01 and v02. If either nu � 0 or nv � 0, then the error INVALID VALUE occurs.

Once a grid is de�ned, an evaluation on a rectangular subset of that grid
may be carried out by calling

void EvalMesh1(enum mode, int p1, int p2);

mode is either POINT or LINE. The e�ect is the same as performing the fol-
lowing code fragment, with �u0 = (u02 � u01)=n:

Begin(type);
for i = p1 to p2 step 1:0

EvalCoord1(i * �u0 + u01);
End();

where EvalCoord1f or EvalCoord1d is substituted for EvalCoord1 as
appropriate. If mode is POINT, then type is POINTS; if mode is LINE, then type
is LINE STRIP. The one requirement is that if either i = 0 or i = n, then the
value computed from i ��u0 + u01 is precisely u

0
1 or u

0
2, respectively.

The corresponding commands for two-dimensional maps are

void EvalMesh2(enum mode, int p1, int p2, int q1,
int q2);

Version 1.2.1 - April 1, 1999

5.1. EVALUATORS 169

modemust be FILL, LINE, or POINT. Whenmode is FILL, then these commands
are equivalent to the following, with �u0 = (u02 � u01)=n and �v0 = (v02 �
v01)=m:

for i = q1 to q2 � 1 step 1:0
Begin(QUAD STRIP);

for j = p1 to p2 step 1:0
EvalCoord2(j * �u0 + u01 , i * �v0 + v01);
EvalCoord2(j * �u0 + u01 , (i+ 1) * �v0 + v01);

End();

If mode is LINE, then a call to EvalMesh2 is equivalent to

for i = q1 to q2 step 1:0
Begin(LINE STRIP);

for j = p1 to p2 step 1:0
EvalCoord2(j * �u0 + u01 , i * �v0 + v01);

End();;
for i = p1 to p2 step 1:0

Begin(LINE STRIP);

for j = q1 to q2 step 1:0
EvalCoord2(i * �u0 + u01 , j * �v0 + v01);

End();

If mode is POINT, then a call to EvalMesh2 is equivalent to

Begin(POINTS);
for i = q1 to q2 step 1:0

for j = p1 to p2 step 1:0
EvalCoord2(j * �u0 + u01 , i * �v0 + v01);

End();

Again, in all three cases, there is the requirement that 0 � �u0 + u01 = u01,
n ��u0 + u01 = u02, 0 ��v0 + v01 = v01, and m ��v0 + v01 = v02.

An evaluation of a single point on the grid may also be carried out:

void EvalPoint1(int p);

Calling it is equivalent to the command

EvalCoord1(p * �u0 + u01);

with �u0 and u01 de�ned as above.

Version 1.2.1 - April 1, 1999

170 CHAPTER 5. SPECIAL FUNCTIONS

void EvalPoint2(int p, int q);

is equivalent to the command

EvalCoord2(p * �u0 + u01 , q * �v0 + v01);

The state required for evaluators potentially consists of 9 one-
dimensional map speci�cations and 9 two-dimensional map speci�cations,
as well as corresponding ags for each speci�cation indicating which are en-
abled. Each map speci�cation consists of one or two orders, an appropriately
sized array of control points, and a set of two values (for a one-dimensional
map) or four values (for a two-dimensional map) to describe the domain.
The maximum possible order, for either u or v, is implementation dependent
(one maximum applies to both u and v), but must be at least 8. Each con-
trol point consists of between one and four oating-point values (depending
on the type of the map). Initially, all maps have order 1 (making them con-
stant maps). All vertex coordinate maps produce the coordinates (0; 0; 0; 1)
(or the appropriate subset); all normal coordinate maps produce (0; 0; 1);
RGBA maps produce (1; 1; 1; 1); color index maps produce 1.0; texture co-
ordinate maps produce (0; 0; 0; 1); In the initial state, all maps are disabled.
A ag indicates whether or not automatic normal generation is enabled for
two-dimensional maps. In the initial state, automatic normal generation is
disabled. Also required are two oating-point values and an integer number
of grid divisions for the one-dimensional grid speci�cation and four oating-
point values and two integer grid divisions for the two-dimensional grid
speci�cation. In the initial state, the bounds of the domain interval for 1-D
is 0 and 1:0, respectively; for 2-D, they are (0; 0) and (1:0; 1:0), respectively.
The number of grid divisions is 1 for 1-D and 1 in both directions for 2-D. If
any evaluation command is issued when no vertex map is enabled, nothing
happens.

5.2 Selection

Selection is used by a programmer to determine which primitives are drawn
into some region of a window. The region is de�ned by the current model-
view and perspective matrices.

Selection works by returning an array of integer-valued names. This
array represents the current contents of the name stack. This stack is con-
trolled with the commands

Version 1.2.1 - April 1, 1999

5.2. SELECTION 171

void InitNames(void);
void PopName(void);
void PushName(uint name);
void LoadName(uint name);

InitNames empties (clears) the name stack. PopName pops one name
o� the top of the name stack. PushName causes name to be pushed
onto the name stack. LoadName replaces the value on the top of the
stack with name. Loading a name onto an empty stack generates the er-
ror INVALID OPERATION. Popping a name o� of an empty stack generates
STACK UNDERFLOW; pushing a name onto a full stack generates STACK OVERFLOW.
The maximum allowable depth of the name stack is implementation depen-
dent but must be at least 64.

In selection mode, no fragments are rendered into the framebu�er. The
GL is placed in selection mode with

int RenderMode(enum mode);

mode is a symbolic constant: one of RENDER, SELECT, or FEEDBACK. RENDER
is the default, corresponding to rendering as described until now. SELECT

speci�es selection mode, and FEEDBACK speci�es feedback mode (described
below). Use of any of the name stack manipulation commands while the GL
is not in selection mode has no e�ect.

Selection is controlled using

void SelectBu�er(sizei n, uint *bu�er);

bu�er is a pointer to an array of unsigned integers (called the selection
array) to be potentially �lled with names, and n is an integer indicating the
maximum number of values that can be stored in that array. Placing the GL
in selection mode before SelectBu�er has been called results in an error of
INVALID OPERATION as does calling SelectBu�er while in selection mode.

In selection mode, if a point, line, polygon, or the valid coordinates pro-
duced by a RasterPos command intersects the clip volume (section 2.11)
then this primitive (or RasterPos command) causes a selection hit. In the
case of polygons, no hit occurs if the polygon would have been culled, but
selection is based on the polygon itself, regardless of the setting of Poly-
gonMode. When in selection mode, whenever a name stack manipulation
command is executed or RenderMode is called and there has been a hit
since the last time the stack was manipulated or RenderMode was called,
then a hit record is written into the selection array.

Version 1.2.1 - April 1, 1999

172 CHAPTER 5. SPECIAL FUNCTIONS

A hit record consists of the following items in order: a non-negative
integer giving the number of elements on the name stack at the time of the
hit, a minimum depth value, a maximum depth value, and the name stack
with the bottommost element �rst. The minimum and maximum depth
values are the minimum and maximum taken over all the window coordinate
z values of each (post-clipping) vertex of each primitive that intersects the
clipping volume since the last hit record was written. The minimum and
maximum (each of which lies in the range [0; 1]) are each multiplied by
232 � 1 and rounded to the nearest unsigned integer to obtain the values
that are placed in the hit record. No depth o�set arithmetic (section 3.5.5)
is performed on these values.

Hit records are placed in the selection array by maintaining a pointer
into that array. When selection mode is entered, the pointer is initialized to
the beginning of the array. Each time a hit record is copied, the pointer is
updated to point at the array element after the one into which the topmost
element of the name stack was stored. If copying the hit record into the
selection array would cause the total number of values to exceed n, then as
much of the record as �ts in the array is written and an overow ag is set.

Selection mode is exited by calling RenderMode with an argument
value other than SELECT. Whenever RenderMode is called in selection
mode, it returns the number of hit records copied into the selection array
and resets the SelectBu�er pointer to its last speci�ed value. Values are
not guaranteed to be written into the selection array until RenderMode
is called. If the selection array overow ag was set, then RenderMode
returns �1 and clears the overow ag. The name stack is cleared and the
stack pointer reset whenever RenderMode is called.

The state required for selection consists of the address of the selection
array and its maximum size, the name stack and its associated pointer, a
minimum and maximum depth value, and several ags. One ag indicates
the currentRenderMode value. In the initial state, the GL is in the RENDER
mode. Another ag is used to indicate whether or not a hit has occurred
since the last name stack manipulation. This ag is reset upon entering
selection mode and whenever a name stack manipulation takes place. One
�nal ag is required to indicate whether the maximum number of copied
names would have been exceeded. This ag is reset upon entering selection
mode. This ag, the address of the selection array, and its maximum size
are GL client state.

Version 1.2.1 - April 1, 1999

5.3. FEEDBACK 173

5.3 Feedback

Feedback, like selection, is a GL mode. The mode is selected by calling
RenderMode with FEEDBACK. When the GL is in feedback mode, no frag-
ments are written to the framebu�er. Instead, information about primitives
that would have been rasterized is fed back to the application using the GL.

Feedback is controlled using

void FeedbackBu�er(sizei n, enum type, float *bu�er);

bu�er is a pointer to an array of oating-point values into which feedback in-
formation will be placed, and n is a number indicating the maximum number
of values that can be written to that array. type is a symbolic constant de-
scribing the information to be fed back for each vertex (see Figure 5.2). The
error INVALID OPERATION results if the GL is placed in feedback mode before
a call to FeedbackBu�er has been made, or if a call to FeedbackBu�er
is made while in feedback mode.

While in feedback mode, each primitive that would be rasterized (or
bitmap or call to DrawPixels or CopyPixels, if the raster position is
valid) generates a block of values that get copied into the feedback array.
If doing so would cause the number of entries to exceed the maximum, the
block is partially written so as to �ll the array (if there is any room left at
all). The �rst block of values generated after the GL enters feedback mode
is placed at the beginning of the feedback array, with subsequent blocks
following. Each block begins with a code indicating the primitive type, fol-
lowed by values that describe the primitive's vertices and associated data.
Entries are also written for bitmaps and pixel rectangles. Feedback occurs
after polygon culling (section 3.5.1) and PolygonMode interpretation of
polygons (section 3.5.4) has taken place. It may also occur after polygons
with more than three edges are broken up into triangles (if the GL imple-
mentation renders polygons by performing this decomposition). x, y, and z
coordinates returned by feedback are window coordinates; if w is returned,
it is in clip coordinates. No depth o�set arithmetic (section 3.5.5) is per-
formed on the z values. In the case of bitmaps and pixel rectangles, the
coordinates returned are those of the current raster position.

The texture coordinates and colors returned are these resulting from the
clipping operations described in Section 2.13.8. The colors returned are
the primary colors.

The ordering rules for GL command interpretation also apply in feedback
mode. Each command must be fully interpreted and its e�ects on both GL

Version 1.2.1 - April 1, 1999

174 CHAPTER 5. SPECIAL FUNCTIONS

Type coordinates color texture total values

2D x, y { { 2

3D x, y, z { { 3

3D COLOR x, y, z k { 3 + k

3D COLOR TEXTURE x, y, z k 4 7 + k

4D COLOR TEXTURE x, y, z, w k 4 8 + k

Table 5.2: Correspondence of feedback type to number of values per vertex.
k is 1 in color index mode and 4 in RGBA mode.

state and the values to be written to the feedback bu�er completed before
a subsequent command may be executed.

The GL is taken out of feedback mode by calling RenderMode with an
argument value other than FEEDBACK. When called while in feedback mode,
RenderMode returns the number of values placed in the feedback array
and resets the feedback array pointer to be bu�er. The return value never
exceeds the maximum number of values passed to FeedbackBu�er.

If writing a value to the feedback bu�er would cause more values to be
written than the speci�ed maximum number of values, then the value is not
written and an overow ag is set. In this case, RenderMode returns �1
when it is called, after which the overow ag is reset. While in feedback
mode, values are not guaranteed to be written into the feedback bu�er before
RenderMode is called.

Figure 5.2 gives a grammar for the array produced by feedback. Each
primitive is indicated with a unique identifying value followed by some num-
ber of vertices. A vertex is fed back as some number of oating-point values
determined by the feedback type. Table 5.2 gives the correspondence be-
tween feedback bu�er and the number of values returned for each vertex.

The command

void PassThrough(float token);

may be used as a marker in feedback mode. token is returned as if it were a
primitive; it is indicated with its own unique identifying value. The ordering
of any PassThrough commands with respect to primitive speci�cation is
maintained by feedback. PassThrough may not occur between Begin and
End. It has no e�ect when the GL is not in feedback mode.

The state required for feedback is the pointer to the feedback array, the
maximum number of values that may be placed there, and the feedback type.

Version 1.2.1 - April 1, 1999

5.4. DISPLAY LISTS 175

An overow ag is required to indicate whether the maximum allowable
number of feedback values has been written; initially this ag is cleared.
These state variables are GL client state. Feedback also relies on the same
mode ag as selection to indicate whether the GL is in feedback, selection,
or normal rendering mode.

5.4 Display Lists

A display list is simply a group of GL commands and arguments that has
been stored for subsequent execution. The GL may be instructed to process
a particular display list (possibly repeatedly) by providing a number that
uniquely speci�es it. Doing so causes the commands within the list to be
executed just as if they were given normally. The only exception pertains
to commands that rely upon client state. When such a command is accu-
mulated into the display list (that is, when issued, not when executed), the
client state in e�ect at that time applies to the command. Only server state
is a�ected when the command is executed. As always, pointers which are
passed as arguments to commands are dereferenced when the command is
issued. (Vertex array pointers are dereferenced when the commands Ar-
rayElement, DrawArrays, or DrawElements are accumulated into a
display list.)

A display list is begun by calling

void NewList(uint n, enum mode);

n is a positive integer to which the display list that follows is assigned, and
mode is a symbolic constant that controls the behavior of the GL during
display list creation. If mode is COMPILE, then commands are not executed
as they are placed in the display list. If mode is COMPILE AND EXECUTE then
commands are executed as they are encountered, then placed in the display
list. If n = 0, then the error INVALID VALUE is generated.

After calling NewList all subsequent GL commands are placed in the
display list (in the order the commands are issued) until a call to

void EndList(void);

occurs, after which the GL returns to its normal command execution state.
It is only whenEndList occurs that the speci�ed display list is actually asso-
ciated with the index indicated withNewList. The error INVALID OPERATION

is generated if EndList is called without a previous matching NewList,

Version 1.2.1 - April 1, 1999

176 CHAPTER 5. SPECIAL FUNCTIONS

feedback-list:
feedback-item feedback-list
feedback-item

feedback-item:
point
line-segment
polygon
bitmap
pixel-rectangle
passthrough

point:
POINT TOKEN vertex

line-segment:
LINE TOKEN vertex vertex
LINE RESET TOKEN vertex vertex

polygon:
POLYGON TOKEN n polygon-spec

polygon-spec:
polygon-spec vertex
vertex vertex vertex

bitmap:
BITMAP TOKEN vertex

pixel-rectangle:
DRAW PIXEL TOKEN vertex
COPY PIXEL TOKEN vertex

passthrough:
PASS THROUGH TOKEN f

vertex:
2D:

f f
3D:

f f f
3D COLOR:

f f f color
3D COLOR TEXTURE:

f f f color tex
4D COLOR TEXTURE:

f f f f color tex

color:
f f f f
f

tex:
f f f f

Figure 5.2: Feedback syntax. f is a oating-point number. n is a oating-
point integer giving the number of vertices in a polygon. The symbols
ending with TOKEN are symbolic oating-point constants. The labels under
the \vertex" rule show the di�erent data returned for vertices depending
on the feedback type. LINE TOKEN and LINE RESET TOKEN are identical except
that the latter is returned only when the line stipple is reset for that line
segment.

Version 1.2.1 - April 1, 1999

5.4. DISPLAY LISTS 177

or if NewList is called a second time before calling EndList. The error
OUT OF MEMORY is generated if EndList is called and the speci�ed display list
cannot be stored because insu�cient memory is available. In this case GL
implementations of revision 1.1 or greater insure that no change is made to
the previous contents of the display list, if any, and that no other change
is made to the GL state, except for the state changed by execution of GL
commands when the display list mode is COMPILE AND EXECUTE.

Once de�ned, a display list is executed by calling

void CallList(uint n);

n gives the index of the display list to be called. This causes the commands
saved in the display list to be executed, in order, just as if they were issued
without using a display list. If n = 0, then the error INVALID VALUE is
generated.

The command

void CallLists(sizei n, enum type, void *lists);

provides an e�cient means for executing a number of display lists. n is
an integer indicating the number of display lists to be called, and lists is
a pointer that points to an array of o�sets. Each o�set is constructed as
determined by lists as follows. First, type may be one of the constants BYTE,
UNSIGNED BYTE, SHORT, UNSIGNED SHORT, INT, UNSIGNED INT, or FLOAT indicating
that the array pointed to by lists is an array of bytes, unsigned bytes, shorts,
unsigned shorts, integers, unsigned integers, or oats, respectively. In this
case each o�set is found by simply converting each array element to an
integer (oating point values are truncated). Further, type may be one of
2 BYTES, 3 BYTES, or 4 BYTES, indicating that the array contains sequences of
2, 3, or 4 unsigned bytes, in which case each integer o�set is constructed
according to the following algorithm:

offset 0
for i = 1 to b

offset offset shifted left 8 bits
offset offset+ byte
advance to next byte in the array

b is 2, 3, or 4, as indicated by type. If n = 0, CallLists does nothing.
Each of the n constructed o�sets is taken in order and added to a display

list base to obtain a display list number. For each number, the indicated
display list is executed. The base is set by calling

Version 1.2.1 - April 1, 1999

178 CHAPTER 5. SPECIAL FUNCTIONS

void ListBase(uint base);

to specify the o�set.
Indicating a display list index that does not correspond to any display

list has no e�ect. CallList or CallLists may appear inside a display list. (If
the mode supplied to NewList is COMPILE AND EXECUTE, then the appropriate
lists are executed, but the CallList or CallLists, rather than those lists'
constituent commands, is placed in the list under construction.) To avoid
the possibility of in�nite recursion resulting from display lists calling one
another, an implementation dependent limit is placed on the nesting level
of display lists during display list execution. This limit must be at least 64.

Two commands are provided to manage display list indices.

uint GenLists(sizei s);

returns an integer n such that the indices n; : : : ; n + s � 1 are previously
unused (i.e. there are s previously unused display list indices starting at n).
GenLists also has the e�ect of creating an empty display list for each of
the indices n; : : : ; n+s�1, so that these indices all become used. GenLists
returns 0 if there is no group of s contiguous previously unused display list
indices, or if s = 0.

boolean IsList(uint list);

returns TRUE if list is the index of some display list.
A contiguous group of display lists may be deleted by calling

void DeleteLists(uint list, sizei range);

where list is the index of the �rst display list to be deleted and range is
the number of display lists to be deleted. All information about the display
lists is lost, and the indices become unused. Indices to which no display list
corresponds are ignored. If range = 0, nothing happens.

Certain commands, when called while compiling a display list, are not
compiled into the display list but are executed immediately. These are:
IsList, GenLists, DeleteLists, FeedbackBu�er, SelectBu�er, Ren-
derMode, VertexPointer, NormalPointer, ColorPointer, Index-
Pointer, TexCoordPointer, EdgeFlagPointer, InterleavedArrays,
EnableClientState, DisableClientState, PushClientAttrib, Pop-
ClientAttrib, ReadPixels, PixelStore, GenTextures, DeleteTex-
tures, AreTexturesResident, IsTexture, Flush, Finish, as well as
IsEnabled and all of the Get commands (see Chapter 6).

Version 1.2.1 - April 1, 1999

5.5. FLUSH AND FINISH 179

TexImage3D, TexImage2D, TexImage1D, Histogram,
and ColorTable are executed immediately when called
with the corresponding proxy arguments PROXY TEXTURE 3D,
PROXY TEXTURE 2D, PROXY TEXTURE 1D, PROXY HISTOGRAM, and
PROXY COLOR TABLE, PROXY POST CONVOLUTION COLOR TABLE, or
PROXY POST COLOR MATRIX COLOR TABLE.

Display lists require one bit of state to indicate whether a GL command
should be executed immediately or placed in a display list. In the initial
state, commands are executed immediately. If the bit indicates display
list creation, an index is required to indicate the current display list being
de�ned. Another bit indicates, during display list creation, whether or not
commands should be executed as they are compiled into the display list.
One integer is required for the current ListBase setting; its initial value
is zero. Finally, state must be maintained to indicate which integers are
currently in use as display list indices. In the initial state, no indices are in
use.

5.5 Flush and Finish

The command

void Flush(void);

indicates that all commands that have previously been sent to the GL must
complete in �nite time.

The command

void Finish(void);

forces all previous GL commands to complete. Finish does not return until
all e�ects from previously issued commands on GL client and server state
and the framebu�er are fully realized.

5.6 Hints

Certain aspects of GL behavior, when there is room for variation, may be
controlled with hints. A hint is speci�ed using

void Hint(enum target, enum hint);

Version 1.2.1 - April 1, 1999

180 CHAPTER 5. SPECIAL FUNCTIONS

target is a symbolic constant indicating the behavior to be controlled, and
hint is a symbolic constant indicating what type of behavior is desired.
target may be one of PERSPECTIVE CORRECTION HINT, indicating the desired
quality of parameter interpolation; POINT SMOOTH HINT, indicating the desired
sampling quality of points; LINE SMOOTH HINT, indicating the desired sampling
quality of lines; POLYGON SMOOTH HINT, indicating the desired sampling quality
of polygons; and FOG HINT, indicating whether fog calculations are done per
pixel or per vertex. hint must be one of FASTEST, indicating that the most
e�cient option should be chosen; NICEST, indicating that the highest quality
option should be chosen; and DONT CARE, indicating no preference in the
matter.

The interpretation of hints is implementation dependent. An implemen-
tation may ignore them entirely.

The initial value of all hints is DONT CARE.

Version 1.2.1 - April 1, 1999

Chapter 6

State and State Requests

The state required to describe the GL machine is enumerated in section 6.2.
Most state is set through the calls described in previous chapters, and can
be queried using the calls described in section 6.1.

6.1 Querying GL State

6.1.1 Simple Queries

Much of the GL state is completely identi�ed by symbolic constants. The
values of these state variables can be obtained using a set ofGet commands.
There are four commands for obtaining simple state variables:

void GetBooleanv(enum value, boolean *data);
void GetIntegerv(enum value, int *data);
void GetFloatv(enum value, float *data);
void GetDoublev(enum value, double *data);

The commands obtain boolean, integer, oating-point, or double-precision
state variables. value is a symbolic constant indicating the state variable to
return. data is a pointer to a scalar or array of the indicated type in which
to place the returned data. In addition

boolean IsEnabled(enum value);

can be used to determine if value is currently enabled (as with Enable) or
disabled.

181

Version 1.2.1 - April 1, 1999

182 CHAPTER 6. STATE AND STATE REQUESTS

6.1.2 Data Conversions

If a Get command is issued that returns value types di�erent from the
type of the value being obtained, a type conversion is performed. If Get-
Booleanv is called, a oating-point or integer value converts to FALSE if
and only if it is zero (otherwise it converts to TRUE). If GetIntegerv (or
any of the Get commands below) is called, a boolean value is interpreted
as either 1 or 0, and a oating-point value is rounded to the nearest integer,
unless the value is an RGBA color component, a DepthRange value, a
depth bu�er clear value, or a normal coordinate. In these cases, the Get
command converts the oating-point value to an integer according the INT
entry of Table 4.7; a value not in [�1; 1] converts to an unde�ned value.
If GetFloatv is called, a boolean value is interpreted as either 1:0 or 0:0,
an integer is coerced to oating-point, and a double-precision oating-point
value is converted to single-precision. Analogous conversions are carried
out in the case of GetDoublev. If a value is so large in magnitude that
it cannot be represented with the requested type, then the nearest value
representable using the requested type is returned.

Unless otherwise indicated, multi-valued state variables return their mul-
tiple values in the same order as they are given as arguments to the com-
mands that set them. For instance, the two DepthRange parameters are
returned in the order n followed by f. Similarly, points for evaluator maps
are returned in the order that they appeared when passed toMap1. Map2
returns Rij in the [(uorder)i + j]th block of values (see page 166 for i, j,
uorder, and Rij).

6.1.3 Enumerated Queries

Other commands exist to obtain state variables that are identi�ed by a
category (clip plane, light, material, etc.) as well as a symbolic constant.
These are

void GetClipPlane(enum plane, double eqn[4]);
void GetLightfifgv(enum light, enum value, T data);
void GetMaterialfifgv(enum face, enum value, T data);
void GetTexEnvfifgv(enum env, enum value, T data);
void GetTexGenfifgv(enum coord, enum value, T data);
void GetTexParameterfifgv(enum target, enum value,

T data);
void GetTexLevelParameterfifgv(enum target, int lod,

enum value, T data);

Version 1.2.1 - April 1, 1999

6.1. QUERYING GL STATE 183

void GetPixelMapfui us fgv(enum map, T data);
void GetMapfifdgv(enum map, enum value, T data);

GetClipPlane always returns four double-precision values in eqn; these
are the coe�cients of the plane equation of plane in eye coordinates (these
coordinates are those that were computed when the plane was speci�ed).

GetLight places information about value (a symbolic constant) for light
(also a symbolic constant) in data. POSITION or SPOT DIRECTION returns val-
ues in eye coordinates (again, these are the coordinates that were computed
when the position or direction was speci�ed).

GetMaterial, GetTexGen, GetTexEnv, and GetTexParameter
are similar toGetLight, placing information about value for the target indi-
cated by their �rst argument into data. The face argument to GetMaterial
must be either FRONT or BACK, indicating the front or back material, respec-
tively. The env argument to GetTexEnv must currently be TEXTURE ENV.
The coord argument to GetTexGen must be one of S, T, R, or Q. For Get-
TexGen, EYE LINEAR coe�cients are returned in the eye coordinates that
were computed when the plane was speci�ed; OBJECT LINEAR coe�cients are
returned in object coordinates.

GetTexParameter and GetTexLevelParameter parameter target
may be one of TEXTURE 1D, TEXTURE 2D, or TEXTURE 3D, indicating the
currently bound one-, two-, or three-dimensional texture object. For
GetTexLevelParameter, target may also be one of PROXY TEXTURE 1D,
PROXY TEXTURE 2D, or PROXY TEXTURE 3D, indicating the one-, two-, or three-
dimensional proxy state vector. value is a symbolic value indicat-
ing which texture parameter is to be obtained. The lod argument to
GetTexLevelParameter determines which level-of-detail's state is re-
turned. If the lod argument is less than zero or if it is larger than
the maximum allowable level-of-detail then the error INVALID VALUE oc-
curs. Queries of TEXTURE RED SIZE, TEXTURE GREEN SIZE, TEXTURE BLUE SIZE,
TEXTURE ALPHA SIZE, TEXTURE LUMINANCE SIZE, and TEXTURE INTENSITY SIZE

return the actual resolutions of the stored image array components, not
the resolutions speci�ed when the image array was de�ned. Queries of
TEXTURE WIDTH, TEXTURE HEIGHT, TEXTURE DEPTH, and TEXTURE BORDER return
the width, height, depth, and border as speci�ed when the image ar-
ray was created. The internal format of the image array is queried as
TEXTURE INTERNAL FORMAT, or as TEXTURE COMPONENTS for compatibility with
GL version 1.0.

For GetPixelMap, the map must be a map name from Table 3.3. For
GetMap, map must be one of the map types described in section 5.1, and

Version 1.2.1 - April 1, 1999

184 CHAPTER 6. STATE AND STATE REQUESTS

value must be one of ORDER, COEFF, or DOMAIN.

6.1.4 Texture Queries

The command

void GetTexImage(enum tex, int lod, enum format,
enum type, void *img);

is used to obtain texture images. It is somewhat di�erent from the other get
commands; tex is a symbolic value indicating which texture is to be obtained.
TEXTURE 1D indicates a one-dimensional texture, TEXTURE 2D indicates a two-
dimensional texture, and TEXTURE 3D indicates a three-dimensional texture.
lod is a level-of-detail number, format is a pixel format from Table 3.6, type
is a pixel type from Table 3.5, and img is a pointer to a block of memory.

GetTexImage obtains component groups from a texture image with
the indicated level-of-detail. The components are assigned among R, G, B,
and A according to Table 6.1, starting with the �rst group in the �rst row,
and continuing by obtaining groups in order from each row and proceeding
from the �rst row to the last, and from the �rst image to the last for three-
dimensional textures. These groups are then packed and placed in client
memory. No pixel transfer operations are performed on this image, but
pixel storage modes that are applicable to ReadPixels are applied.

For three-dimensional textures, pixel storage operations are applied as
if the image were two-dimensional, except that the additional pixel storage
state values PACK IMAGE HEIGHT and PACK SKIP IMAGES are applied. The cor-
respondence of texels to memory locations is as de�ned for TexImage3D
in section 3.8.1.

The row length, number of rows, image depth, and number of images
are determined by the size of the texture image (including any borders).
Calling GetTexImage with lod less than zero or larger than the maxi-
mum allowable causes the error INVALID VALUE . CallingGetTexImage with
format of COLOR INDEX, STENCIL INDEX, or DEPTH COMPONENT causes the error
INVALID ENUM.

The command

boolean IsTexture(uint texture);

returns TRUE if texture is the name of a texture object. If texture is zero, or is
a non-zero value that is not the name of a texture object, or if an error condi-
tion occurs, IsTexture returns FALSE. A name returned by GenTextures,
but not yet bound, is not the name of a texture object.

Version 1.2.1 - April 1, 1999

6.1. QUERYING GL STATE 185

Base Internal Format R G B A

ALPHA 0 0 0 Ai

LUMINANCE (or 1) Li 0 0 1

LUMINANCE ALPHA (or 2) Li 0 0 Ai

INTENSITY Ii 0 0 1

RGB (or 3) Ri Gi Bi 1

RGBA (or 4) Ri Gi Bi Ai

Table 6.1: Texture, table, and �lter return values. Ri, Gi, Bi, Ai, Li, and Ii
are components of the internal format that are assigned to pixel values R,
G, B, and A. If a requested pixel value is not present in the internal format,
the speci�ed constant value is used.

6.1.5 Stipple Query

The command

void GetPolygonStipple(void *pattern);

obtains the polygon stipple. The pattern is packed into memory according
to the procedure given in section 4.3.2 for ReadPixels; it is as if the height
and width passed to that command were both equal to 32, the type were
BITMAP, and the format were COLOR INDEX.

6.1.6 Color Matrix Query

The scale and bias variables are queried usingGetFloatv with pname set to
the appropriate variable name. The top matrix on the color matrix stack is
returned by GetFloatv called with pname set to COLOR MATRIX. The depth
of the color matrix stack, and the maximum depth of the color matrix stack,
are queried with GetIntegerv, setting pname to COLOR MATRIX STACK DEPTH

and MAX COLOR MATRIX STACK DEPTH respectively.

6.1.7 Color Table Query

The current contents of a color table are queried using

void GetColorTable(enum target, enum format, enum type,
void *table);

Version 1.2.1 - April 1, 1999

186 CHAPTER 6. STATE AND STATE REQUESTS

target must be one of the regular color table names listed in table 3.4. format
and type accept the same values as do the corresponding parameters of
GetTexImage. The one-dimensional color table image is returned to client
memory starting at table. No pixel transfer operations are performed on
this image, but pixel storage modes that are applicable to ReadPixels are
performed. Color components that are requested in the speci�ed format,
but which are not included in the internal format of the color lookup table,
are returned as zero. The assignments of internal color components to the
components requested by format are described in Table 6.1.

The functions

void GetColorTableParameterfifgv(enum target,
enum pname, T params);

are used for integer and oating point query.

target must be one of the regular or proxy color table names listed
in table 3.4. pname is one of COLOR TABLE SCALE, COLOR TABLE BIAS,
COLOR TABLE FORMAT, COLOR TABLE WIDTH, COLOR TABLE RED SIZE,
COLOR TABLE GREEN SIZE, COLOR TABLE BLUE SIZE, COLOR TABLE ALPHA SIZE,
COLOR TABLE LUMINANCE SIZE, or COLOR TABLE INTENSITY SIZE. The value of
the speci�ed parameter is returned in params.

6.1.8 Convolution Query

The current contents of a convolution �lter image are queried with the com-
mand

void GetConvolutionFilter(enum target, enum format,
enum type, void *image);

target must be CONVOLUTION 1D or CONVOLUTION 2D. format and type accept the
same values as do the corresponding parameters of GetTexImage. The
one-dimensional or two-dimensional images is returned to client memory
starting at image. Pixel processing and component mapping are identical
to those of GetTexImage.

The current contents of a separable �lter image are queried using

void GetSeparableFilter(enum target, enum format,
enum type, void *row, void *column, void *span);

Version 1.2.1 - April 1, 1999

6.1. QUERYING GL STATE 187

target must be SEPARABLE 2D. format and type accept the same values as
do the corresponding parameters of GetTexImage. The row and column
images are returned to client memory starting at row and column respec-
tively. span is currently unused. Pixel processing and component mapping
are identical to those of GetTexImage.

The functions

void GetConvolutionParameterfifgv(enum target,
enum pname, T params);

are used for integer and oating point query. target must
be CONVOLUTION 1D, CONVOLUTION 2D, or SEPARABLE 2D. pname
is one of CONVOLUTION BORDER COLOR, CONVOLUTION BORDER MODE,
CONVOLUTION FILTER SCALE, CONVOLUTION FILTER BIAS, CONVOLUTION FORMAT,
CONVOLUTION WIDTH, CONVOLUTION HEIGHT, MAX CONVOLUTION WIDTH, or
MAX CONVOLUTION HEIGHT. The value of the speci�ed parameter is returned in
params.

6.1.9 Histogram Query

The current contents of the histogram table are queried using

void GetHistogram(enum target, boolean reset,
enum format, enum type, void* values);

target must be HISTOGRAM. type and format accept the same values as do
the corresponding parameters of GetTexImage. The one-dimensional his-
togram table image is returned to values. Pixel processing and component
mapping are identical to those of GetTexImage.

If reset is TRUE, then all counters of all elements of the histogram are
reset to zero. Counters are reset whether returned or not.

No counters are modi�ed if reset is FALSE.
Calling

void ResetHistogram(enum target);

resets all counters of all elements of the histogram table to zero. target must
be HISTOGRAM.

It is not an error to reset or query the contents of a histogram table with
zero entries.

The functions

Version 1.2.1 - April 1, 1999

188 CHAPTER 6. STATE AND STATE REQUESTS

void GetHistogramParameterfifgv(enum target,
enum pname, T params);

are used for integer and oating point query. target must be HISTOGRAM or
PROXY HISTOGRAM. pname is one of HISTOGRAM FORMAT, HISTOGRAM WIDTH,
HISTOGRAM RED SIZE, HISTOGRAM GREEN SIZE, HISTOGRAM BLUE SIZE,
HISTOGRAM ALPHA SIZE, or HISTOGRAM LUMINANCE SIZE. pname may be
HISTOGRAM SINK only for target HISTOGRAM. The value of the speci�ed
parameter is returned in params.

6.1.10 Minmax Query

The current contents of the minmax table are queried using

void GetMinmax(enum target, boolean reset,
enum format, enum type, void* values);

target must be MINMAX. type and format accept the same values as do the
corresponding parameters of GetTexImage. A one-dimensional image of
width 2 is returned to values. Pixel processing and component mapping are
identical to those of GetTexImage.

If reset is TRUE, then each minimum value is reset to the maximum rep-
resentable value, and each maximum value is reset to the minimum repre-
sentable value. All values are reset, whether returned or not.

No values are modi�ed if reset is FALSE.

Calling

void ResetMinmax(enum target);

resets all minimum and maximum values of target to to their maximum and
minimum representable values, respectively, target must be MINMAX.

The functions

void GetMinmaxParameterfifgv(enum target,
enum pname, T params);

are used for integer and oating point query. target must be MINMAX. pname
is MINMAX FORMAT or MINMAX SINK. The value of the speci�ed parameter is
returned in params.

Version 1.2.1 - April 1, 1999

6.1. QUERYING GL STATE 189

6.1.11 Pointer and String Queries

The command

void GetPointerv(enum pname, void **params);

obtains the pointer or pointers named pname in the array
params. The possible values for pname are SELECTION BUFFER POINTER,
FEEDBACK BUFFER POINTER, VERTEX ARRAY POINTER, NORMAL ARRAY POINTER,
COLOR ARRAY POINTER, INDEX ARRAY POINTER, TEXTURE COORD ARRAY POINTER,
and EDGE FLAG ARRAY POINTER. Each returns a single pointer value.

Finally,

ubyte *GetString(enum name);

returns a pointer to a static string describing some aspect of the current
GL connection. The possible values for name are VENDOR, RENDERER, VERSION,
and EXTENSIONS. The format of the RENDERER and VERSION strings is imple-
mentation dependent. The EXTENSIONS string contains a space separated list
of extension names (The extension names themselves do not contain any
spaces); the VERSION string is laid out as follows:

<version number><space><vendor-speci�c information>

The version number is either of the form major number.minor number or
major number.minor number.release number, where the numbers all have
one or more digits. The vendor speci�c information is optional. However, if
it is present then it pertains to the server and the format and contents are
implementation dependent.

GetString returns the version number (returned in the VERSION string)
and the extension names (returned in the EXTENSIONS string) that can be
supported on the connection. Thus, if the client and server support di�erent
versions and/or extensions, a compatible version and list of extensions is
returned.

6.1.12 Saving and Restoring State

Besides providing a means to obtain the values of state variables, the GL also
provides a means to save and restore groups of state variables. ThePushAt-
trib, PushClientAttrib, PopAttrib and PopClientAttrib commands
are used for this purpose. The commands

Version 1.2.1 - April 1, 1999

190 CHAPTER 6. STATE AND STATE REQUESTS

void PushAttrib(bitfield mask);
void PushClientAttrib(bitfield mask);

take a bitwise OR of symbolic constants indicating which groups of state
variables to push onto an attribute stack. PushAttrib uses a server at-
tribute stack while PushClientAttrib uses a client attribute stack. Each
constant refers to a group of state variables. The classi�cation of each vari-
able into a group is indicated in the following tables of state variables. The
error STACK OVERFLOW is generated if PushAttrib or PushClientAttrib is
executed while the corresponding stack depth is MAX ATTRIB STACK DEPTH or
MAX CLIENT ATTRIB STACK DEPTH respectively. The commands

void PopAttrib(void);
void PopClientAttrib(void);

reset the values of those state variables that were saved with the last cor-
responding PushAttrib or PopClientAttrib. Those not saved remain
unchanged. The error STACK UNDERFLOW is generated if PopAttrib or Pop-
ClientAttrib is executed while the respective stack is empty.

Table 6.2 shows the attribute groups with their corresponding symbolic
constant names and stacks.

When PushAttrib is called with TEXTURE BIT set, the priorities, border
colors, �lter modes, and wrap modes of the currently bound texture objects,
as well as the current texture bindings and enables, are pushed onto the
attribute stack. (Unbound texture objects are not pushed or restored.)
When an attribute set that includes texture information is popped, the
bindings and enables are �rst restored to their pushed values, then the bound
texture objects' priorities, border colors, �lter modes, and wrap modes are
restored to their pushed values.

The depth of each attribute stack is implementation dependent but must
be at least 16. The state required for each attribute stack is potentially 16
copies of each state variable, 16 masks indicating which groups of variables
are stored in each stack entry, and an attribute stack pointer. In the initial
state, both attribute stacks are empty.

In the tables that follow, a type is indicated for each variable. Table 6.3
explains these types. The type actually identi�es all state associated with
the indicated description; in certain cases only a portion of this state is
returned. This is the case with all matrices, where only the top entry on
the stack is returned; with clip planes, where only the selected clip plane is
returned, with parameters describing lights, where only the value pertaining

Version 1.2.1 - April 1, 1999

6.1. QUERYING GL STATE 191

Stack Attribute Constant

server accum-bu�er ACCUM BUFFER BIT

server color-bu�er COLOR BUFFER BIT

server current CURRENT BIT

server depth-bu�er DEPTH BUFFER BIT

server enable ENABLE BIT

server eval EVAL BIT

server fog FOG BIT

server hint HINT BIT

server lighting LIGHTING BIT

server line LINE BIT

server list LIST BIT

server pixel PIXEL MODE BIT

server point POINT BIT

server polygon POLYGON BIT

server polygon-stipple POLYGON STIPPLE BIT

server scissor SCISSOR BIT

server stencil-bu�er STENCIL BUFFER BIT

server texture TEXTURE BIT

server transform TRANSFORM BIT

server viewport VIEWPORT BIT

server ALL ATTRIB BITS

client vertex-array CLIENT VERTEX ARRAY BIT

client pixel-store CLIENT PIXEL STORE BIT

client select can't be pushed or pop'd

client feedback can't be pushed or pop'd

client ALL CLIENT ATTRIB BITS

Table 6.2: Attribute groups

Version 1.2.1 - April 1, 1999

192 CHAPTER 6. STATE AND STATE REQUESTS

Type code Explanation

B Boolean

C Color (oating-point R, G, B, and A values)

CI Color index (oating-point index value)

T Texture coordinates (oating-point s, t, r, q
values)

N Normal coordinates (oating-point x, y, z val-
ues)

V Vertex, including associated data

Z Integer

Z+ Non-negative integer

Zk, Zk� k-valued integer (k� indicates k is minimum)

R Floating-point number

R+ Non-negative oating-point number

R[a;b] Floating-point number in the range [a; b]

Rk k-tuple of oating-point numbers

P Position (x, y, z, w oating-point coordinates)

D Direction (x, y, z oating-point coordinates)

M4 4� 4 oating-point matrix

I Image

A Attribute stack entry, including mask

Y Pointer (data type unspeci�ed)

n� type n copies of type type (n� indicates n is mini-
mum)

Table 6.3: State variable types

to the selected light is returned; with textures, where only the selected
texture or texture parameter is returned; and with evaluator maps, where
only the selected map is returned. Finally, a \{" in the attribute column
indicates that the indicated value is not included in any attribute group (and
thus can not be pushed or popped with PushAttrib, PushClientAttrib,
PopAttrib, or PopClientAttrib).

The M and m entries for initial minmax table values represent the max-
imum and minimum possible representable values, respectively.

Version 1.2.1 - April 1, 1999

6.2. STATE TABLES 193

6.2 State Tables

The tables on the following pages indicate which state variables are ob-
tained with what commands. State variables that can be obtained using any
of GetBooleanv, GetIntegerv, GetFloatv, or GetDoublev are listed
with just one of these commands { the one that is most appropriate given
the type of the data to be returned. These state variables cannot be ob-
tained using IsEnabled. However, state variables for which IsEnabled is
listed as the query command can also be obtained using GetBooleanv,
GetIntegerv, GetFloatv, and GetDoublev. State variables for which
any other command is listed as the query command can be obtained only
by using that command.

State table entries which are required only by the imaging subset (see
section 3.6.2) are typeset against a gray background .

Version 1.2.1 - April 1, 1999

194 CHAPTER 6. STATE AND STATE REQUESTS

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

{

Z
1
1

{

0

W
h
en
6=
0
,
in
d
ic
a
te
s

b
e
g
in
/
e
n
d
o
b
je
ct

2
.6
.1

{

{

V

{

{

P
re
v
io
u
s
v
er
te
x
in

B
e
g
in
/
E
n
d
li
n
e

2
.6
.1

{

{

B

{

{

In
d
ic
a
te
s
if
li
n
e-
ve
rt
ex

is
th
e
�
rs
t

2
.6
.1

{

{

V

{

{

F
ir
st
v
er
te
x
o
f
a

B
e
g
in
/
E
n
d
li
n
e
lo
o
p

2
.6
.1

{

{

Z
+

{

{

L
in
e
st
ip
p
le
co
u
n
te
r

3
.4

{

{

n
�
V

{

{

V
er
ti
ce
s
in
si
d
e
o
f

B
e
g
in
/
E
n
d
p
o
ly
g
o
n

2
.6
.1

{

{

Z
+

{

{

N
u
m
b
er
o
f

po
ly
go
n
-v
er
ti
ce
s

2
.6
.1

{

{

2
�
V

{

{

P
re
v
io
u
s
tw
o
v
er
ti
ce
s

in
a
B
e
g
in
/
E
n
d

tr
ia
n
g
le
st
ri
p

2
.6
.1

{

{

Z
3

{

{

N
u
m
b
er
o
f
v
er
ti
ce
s
so

fa
r
in
tr
ia
n
g
le
st
ri
p
:
0
,

1
,
o
r
m
o
re

2
.6
.1

{

{

Z
2

{

{

T
ri
a
n
g
le
st
ri
p
A
/
B

v
er
te
x
p
o
in
te
r

2
.6
.1

{

{

3
�
V

{

{

V
er
ti
ce
s
o
f
th
e
q
u
a
d

u
n
d
er
co
n
st
ru
ct
io
n

2
.6
.1

{

{

Z
4

{

{

N
u
m
b
er
o
f
v
er
ti
ce
s
so

fa
r
in
q
u
a
d
st
ri
p
:
0
,
1
,

2
,
o
r
m
o
re

2
.6
.1

{

Table 6.4. GL Internal begin-end state variables (inaccessible)

Version 1.2.1 - April 1, 1999

6.2. STATE TABLES 195

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

C
U
R
R
E
N
T

C
O
L
O
R

C

G
e
tI
n
te
g
e
rv
,

G
e
tF
lo
a
tv

1
,1
,1
,1

C
u
rr
en
t
co
lo
r

2
.7

cu
rr
en
t

C
U
R
R
E
N
T

IN
D
E
X

C
I

G
e
tI
n
te
g
e
rv
,

G
e
tF
lo
a
tv

1

C
u
rr
en
t
co
lo
r
in
d
ex

2
.7

cu
rr
en
t

C
U
R
R
E
N
T

T
E
X
T
U
R
E

C
O
O
R
D
S

T

G
e
tF
lo
a
tv

0
,0
,0
,1

C
u
rr
en
t
te
x
tu
re

co
o
rd
in
a
te
s

2
.7

cu
rr
en
t

C
U
R
R
E
N
T

N
O
R
M
A
L

N

G
e
tF
lo
a
tv

0
,0
,1

C
u
rr
en
t
n
o
rm
a
l

2
.7

cu
rr
en
t

{

C

{

-

C
o
lo
r
a
ss
o
ci
a
te
d
w
it
h

la
st
v
er
te
x

2
.6

{

{

C
I

{

-

C
o
lo
r
in
d
ex
a
ss
o
ci
a
te
d

w
it
h
la
st
v
er
te
x

2
.6

{

{

T

{

-

T
ex
tu
re
co
o
rd
in
a
te
s

a
ss
o
ci
a
te
d
w
it
h
la
st

v
er
te
x

2
.6

{

C
U
R
R
E
N
T

R
A
S
T
E
R

P
O
S
IT
IO
N

R
4

G
e
tF
lo
a
tv

0
,0
,0
,1

C
u
rr
en
t
ra
st
er
p
o
si
ti
o
n

2
.1
2

cu
rr
en
t

C
U
R
R
E
N
T

R
A
S
T
E
R

D
IS
T
A
N
C
E

R
+

G
e
tF
lo
a
tv

0

C
u
rr
en
t
ra
st
er
d
is
ta
n
ce

2
.1
2

cu
rr
en
t

C
U
R
R
E
N
T

R
A
S
T
E
R

C
O
L
O
R

C

G
e
tI
n
te
g
e
rv
,

G
e
tF
lo
a
tv

1
,1
,1
,1

C
o
lo
r
a
ss
o
ci
a
te
d
w
it
h

ra
st
er
p
o
si
ti
o
n

2
.1
2

cu
rr
en
t

C
U
R
R
E
N
T

R
A
S
T
E
R

IN
D
E
X

C
I

G
e
tI
n
te
g
e
rv
,

G
e
tF
lo
a
tv

1

C
o
lo
r
in
d
ex
a
ss
o
ci
a
te
d

w
it
h
ra
st
er
p
o
si
ti
o
n

2
.1
2

cu
rr
en
t

C
U
R
R
E
N
T

R
A
S
T
E
R

T
E
X
T
U
R
E

C
O
O
R
D
S

T

G
e
tF
lo
a
tv

0
,0
,0
,1

T
ex
tu
re
co
o
rd
in
a
te
s

a
ss
o
ci
a
te
d
w
it
h
ra
st
er

p
o
si
ti
o
n

2
.1
2

cu
rr
en
t

C
U
R
R
E
N
T

R
A
S
T
E
R

P
O
S
IT
IO
N

V
A
L
ID

B

G
e
tB
o
o
le
a
n
v

T
ru
e

R
a
st
er
p
o
si
ti
o
n
va
li
d

b
it

2
.1
2

cu
rr
en
t

E
D
G
E

F
L
A
G

B

G
e
tB
o
o
le
a
n
v

T
ru
e

E
d
g
e

a
g

2
.6
.2

cu
rr
en
t

Table 6.5. Current Values and Associated Data

Version 1.2.1 - April 1, 1999

196 CHAPTER 6. STATE AND STATE REQUESTS

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

V
E
R
T
E
X

A
R
R
A
Y

B

Is
E
n
a
b
le
d

F
a
ls
e

V
er
te
x
a
rr
ay
en
a
b
le

2
.8

v
er
te
x
-a
rr
ay

V
E
R
T
E
X

A
R
R
A
Y

S
IZ
E

Z
+

G
e
tI
n
te
g
e
rv

4

C
o
o
rd
in
a
te
s
p
er
v
er
te
x

2
.8

v
er
te
x
-a
rr
ay

V
E
R
T
E
X

A
R
R
A
Y

T
Y
P
E

Z
4

G
e
tI
n
te
g
e
rv

F
L
O
A
T

T
y
p
e
o
f
v
er
te
x
co
o
rd
in
a
te
s

2
.8

v
er
te
x
-a
rr
ay

V
E
R
T
E
X

A
R
R
A
Y

S
T
R
ID
E

Z
+

G
e
tI
n
te
g
e
rv

0

S
tr
id
e
b
et
w
ee
n
v
er
ti
ce
s

2
.8

v
er
te
x
-a
rr
ay

V
E
R
T
E
X

A
R
R
A
Y

P
O
IN
T
E
R

Y

G
e
tP
o
in
te
rv

0

P
o
in
te
r
to
th
e
v
er
te
x
a
rr
ay

2
.8

v
er
te
x
-a
rr
ay

N
O
R
M
A
L
A
R
R
A
Y

B

Is
E
n
a
b
le
d

F
a
ls
e

N
o
rm
a
l
a
rr
ay
en
a
b
le

2
.8

v
er
te
x
-a
rr
ay

N
O
R
M
A
L
A
R
R
A
Y

T
Y
P
E

Z
5

G
e
tI
n
te
g
e
rv

F
L
O
A
T

T
y
p
e
o
f
n
o
rm
a
l
co
o
rd
in
a
te
s

2
.8

v
er
te
x
-a
rr
ay

N
O
R
M
A
L
A
R
R
A
Y

S
T
R
ID
E

Z
+

G
e
tI
n
te
g
e
rv

0

S
tr
id
e
b
et
w
ee
n
n
o
rm
a
ls

2
.8

v
er
te
x
-a
rr
ay

N
O
R
M
A
L
A
R
R
A
Y

P
O
IN
T
E
R

Y

G
e
tP
o
in
te
rv

0

P
o
in
te
r
to
th
e
n
o
rm
a
l
a
rr
ay

2
.8

v
er
te
x
-a
rr
ay

C
O
L
O
R

A
R
R
A
Y

B

Is
E
n
a
b
le
d

F
a
ls
e

C
o
lo
r
a
rr
ay
en
a
b
le

2
.8

v
er
te
x
-a
rr
ay

C
O
L
O
R

A
R
R
A
Y

S
IZ
E

Z
+

G
e
tI
n
te
g
e
rv

4

C
o
lo
rs
p
er
v
er
te
x

2
.8

v
er
te
x
-a
rr
ay

C
O
L
O
R

A
R
R
A
Y

T
Y
P
E

Z
8

G
e
tI
n
te
g
e
rv

F
L
O
A
T

T
y
p
e
o
f
co
lo
r
co
m
p
o
n
en
ts

2
.8

v
er
te
x
-a
rr
ay

C
O
L
O
R

A
R
R
A
Y

S
T
R
ID
E

Z
+

G
e
tI
n
te
g
e
rv

0

S
tr
id
e
b
et
w
ee
n
co
lo
rs

2
.8

v
er
te
x
-a
rr
ay

C
O
L
O
R

A
R
R
A
Y

P
O
IN
T
E
R

Y

G
e
tP
o
in
te
rv

0

P
o
in
te
r
to
th
e
co
lo
r
a
rr
ay

2
.8

v
er
te
x
-a
rr
ay

IN
D
E
X

A
R
R
A
Y

B

Is
E
n
a
b
le
d

F
a
ls
e

In
d
ex
a
rr
ay
en
a
b
le

2
.8

v
er
te
x
-a
rr
ay

IN
D
E
X

A
R
R
A
Y

T
Y
P
E

Z
4

G
e
tI
n
te
g
e
rv

F
L
O
A
T

T
y
p
e
o
f
in
d
ic
es

2
.8

v
er
te
x
-a
rr
ay

IN
D
E
X

A
R
R
A
Y

S
T
R
ID
E

Z
+

G
e
tI
n
te
g
e
rv

0

S
tr
id
e
b
et
w
ee
n
in
d
ic
es

2
.8

v
er
te
x
-a
rr
ay

IN
D
E
X

A
R
R
A
Y

P
O
IN
T
E
R

Y

G
e
tP
o
in
te
rv

0

P
o
in
te
r
to
th
e
in
d
ex
a
rr
ay

2
.8

v
er
te
x
-a
rr
ay

T
E
X
T
U
R
E

C
O
O
R
D

A
R
R
A
Y

B

Is
E
n
a
b
le
d

F
a
ls
e

T
ex
tu
re
co
o
rd
in
a
te
a
rr
ay
en
a
b
le

2
.8

v
er
te
x
-a
rr
ay

T
E
X
T
U
R
E

C
O
O
R
D

A
R
R
A
Y

S
IZ
E

Z
+

G
e
tI
n
te
g
e
rv

4

C
o
o
rd
in
a
te
s
p
er
el
em
en
t

2
.8

v
er
te
x
-a
rr
ay

T
E
X
T
U
R
E

C
O
O
R
D

A
R
R
A
Y

T
Y
P
E

Z
4

G
e
tI
n
te
g
e
rv

F
L
O
A
T

T
y
p
e
o
f
te
x
tu
re
co
o
rd
in
a
te
s

2
.8

v
er
te
x
-a
rr
ay

T
E
X
T
U
R
E

C
O
O
R
D

A
R
R
A
Y

S
T
R
ID
E

Z
+

G
e
tI
n
te
g
e
rv

0

S
tr
id
e
b
et
w
ee
n
te
x
tu
re
co
o
rd
in
a
te
s

2
.8

v
er
te
x
-a
rr
ay

T
E
X
T
U
R
E

C
O
O
R
D

A
R
R
A
Y

P
O
IN
T
E
R

Y

G
e
tP
o
in
te
rv

0

P
o
in
te
r
to
th
e
te
x
tu
re
co
o
rd
in
a
te

a
rr
ay

2
.8

v
er
te
x
-a
rr
ay

E
D
G
E

F
L
A
G

A
R
R
A
Y

B

Is
E
n
a
b
le
d

F
a
ls
e

E
d
g
e

a
g
a
rr
ay
en
a
b
le

2
.8

v
er
te
x
-a
rr
ay

E
D
G
E

F
L
A
G

A
R
R
A
Y

S
T
R
ID
E

Z
+

G
e
tI
n
te
g
e
rv

0

S
tr
id
e
b
et
w
ee
n
ed
g
e

a
g
s

2
.8

v
er
te
x
-a
rr
ay

E
D
G
E

F
L
A
G

A
R
R
A
Y

P
O
IN
T
E
R

Y

G
e
tP
o
in
te
rv

0

P
o
in
te
r
to
th
e
ed
g
e

a
g
a
rr
ay

2
.8

v
er
te
x
-a
rr
ay

Table 6.6. Vertex Array Data

Version 1.2.1 - April 1, 1999

6.2. STATE TABLES 197

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

C
O
L
O
R

M
A
T
R
IX

2
�
�
M
4

G
e
tF
lo
a
tv

Id
en
ti
ty

C
o
lo
r
m
a
tr
ix
st
a
ck

3
.6
.3

{

M
O
D
E
L
V
IE
W

M
A
T
R
IX

3
2
�
�
M
4

G
e
tF
lo
a
tv

Id
en
ti
ty

M
o
d
el
-v
ie
w
m
a
tr
ix

st
a
ck

2
.1
0
.2

{

P
R
O
J
E
C
T
IO
N

M
A
T
R
IX

2
�
�
M
4

G
e
tF
lo
a
tv

Id
en
ti
ty

P
ro
je
ct
io
n
m
a
tr
ix

st
a
ck

2
.1
0
.2

{

T
E
X
T
U
R
E

M
A
T
R
IX

2
�
�
M
4

G
e
tF
lo
a
tv

Id
en
ti
ty

T
ex
tu
re
m
a
tr
ix
st
a
ck

2
.1
0
.2

{

V
IE
W
P
O
R
T

4
�
Z

G
e
tI
n
te
g
e
rv

se
e
2
.1
0
.1

V
ie
w
p
o
rt
o
ri
g
in
&

ex
te
n
t

2
.1
0
.1

v
ie
w
p
o
rt

D
E
P
T
H

R
A
N
G
E

2
�
R
+

G
e
tF
lo
a
tv

0
,1

D
ep
th
ra
n
g
e
n
ea
r
&

fa
r

2
.1
0
.1

v
ie
w
p
o
rt

C
O
L
O
R

M
A
T
R
IX

S
T
A
C
K

D
E
P
T
H

Z
+

G
e
tI
n
te
g
e
rv

1

C
o
lo
r
m
a
tr
ix
st
a
ck

p
o
in
te
r

3
.6
.3

{

M
O
D
E
L
V
IE
W

S
T
A
C
K

D
E
P
T
H

Z
+

G
e
tI
n
te
g
e
rv

1

M
o
d
el
-v
ie
w
m
a
tr
ix

st
a
ck
p
o
in
te
r

2
.1
0
.2

{

P
R
O
J
E
C
T
IO
N

S
T
A
C
K

D
E
P
T
H

Z
+

G
e
tI
n
te
g
e
rv

1

P
ro
je
ct
io
n
m
a
tr
ix

st
a
ck
p
o
in
te
r

2
.1
0
.2

{

T
E
X
T
U
R
E

S
T
A
C
K

D
E
P
T
H

Z
+

G
e
tI
n
te
g
e
rv

1

T
ex
tu
re
m
a
tr
ix
st
a
ck

p
o
in
te
r

2
.1
0
.2

{

M
A
T
R
IX

M
O
D
E

Z
4

G
e
tI
n
te
g
e
rv

M
O
D
E
L
V
I
E
W

C
u
rr
en
t
m
a
tr
ix
m
o
d
e

2
.1
0
.2

tr
a
n
sf
o
rm

N
O
R
M
A
L
IZ
E

B

Is
E
n
a
b
le
d

F
a
ls
e

C
u
rr
en
t
n
o
rm
a
l

n
o
rm
a
li
za
ti
o
n
o
n
/
o
�

2
.1
0
.3

tr
a
n
sf
o
rm
/
en
a
b
le

R
E
S
C
A
L
E

N
O
R
M
A
L

B

Is
E
n
a
b
le
d

F
a
ls
e

C
u
rr
en
t
n
o
rm
a
l

re
sc
a
li
n
g
o
n
/
o
�

2
.1
0
.3

tr
a
n
sf
o
rm
/
en
a
b
le

C
L
IP

P
L
A
N
E
i

6
�
�
R
4

G
e
tC
li
p
P
la
n
e

0
,0
,0
,0

U
se
r
cl
ip
p
in
g
p
la
n
e

co
e�
ci
en
ts

2
.1
1

tr
a
n
sf
o
rm

C
L
IP

P
L
A
N
E
i

6
�
�
B

Is
E
n
a
b
le
d

F
a
ls
e

it
h
u
se
r
cl
ip
p
in
g
p
la
n
e

en
a
b
le
d

2
.1
1

tr
a
n
sf
o
rm
/
en
a
b
le

Table 6.7. Transformation state

Version 1.2.1 - April 1, 1999

198 CHAPTER 6. STATE AND STATE REQUESTS

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

F
O
G

C
O
L
O
R

C

G
e
tF
lo
a
tv

0
,0
,0
,0

F
o
g
co
lo
r

3
.1
0

fo
g

F
O
G

IN
D
E
X

C
I

G
e
tF
lo
a
tv

0

F
o
g
in
d
ex

3
.1
0

fo
g

F
O
G

D
E
N
S
IT
Y

R

G
e
tF
lo
a
tv

1
.0

E
x
p
o
n
en
ti
a
l
fo
g

d
en
si
ty

3
.1
0

fo
g

F
O
G

S
T
A
R
T

R

G
e
tF
lo
a
tv

0
.0

L
in
ea
r
fo
g
st
a
rt

3
.1
0

fo
g

F
O
G

E
N
D

R

G
e
tF
lo
a
tv

1
.0

L
in
ea
r
fo
g
en
d

3
.1
0

fo
g

F
O
G

M
O
D
E

Z
3

G
e
tI
n
te
g
e
rv

E
X
P

F
o
g
m
o
d
e

3
.1
0

fo
g

F
O
G

B

Is
E
n
a
b
le
d

F
a
ls
e

T
ru
e
if
fo
g
en
a
b
le
d

3
.1
0

fo
g
/
en
a
b
le

S
H
A
D
E
M
O
D
E
L

Z
+

G
e
tI
n
te
g
e
rv

S
M
O
O
T
H

S
h
a
d
e
M
o
d
e
l
se
tt
in
g

2
.1
3
.7

li
g
h
ti
n
g

Table 6.8. Coloring

Version 1.2.1 - April 1, 1999

6.2. STATE TABLES 199

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

L
IG
H
T
IN
G

B

Is
E
n
a
b
le
d

F
a
ls
e

T
ru
e
if
li
g
h
ti
n
g

is
en
a
b
le
d

2
.1
3
.1

li
g
h
ti
n
g
/
en
a
b
le

C
O
L
O
R

M
A
T
E
R
IA
L

B

Is
E
n
a
b
le
d

F
a
ls
e

T
ru
e
if
co
lo
r

tr
a
ck
in
g
is

en
a
b
le
d

2
.1
3
.3

li
g
h
ti
n
g
/
en
a
b
le

C
O
L
O
R

M
A
T
E
R
IA
L
P
A
R
A
M
E
T
E
R

Z
5

G
e
tI
n
te
g
e
rv

A
M
B
I
E
N
T
A
N
D
D
I
F
F
U
S
E

M
a
te
ri
a
l

p
ro
p
er
ti
es

tr
a
ck
in
g
cu
rr
en
t

co
lo
r

2
.1
3
.3

li
g
h
ti
n
g

C
O
L
O
R

M
A
T
E
R
IA
L
F
A
C
E

Z
3

G
e
tI
n
te
g
e
rv

F
R
O
N
T
A
N
D
B
A
C
K

F
a
ce
(s
)
a
�
ec
te
d

b
y
co
lo
r

tr
a
ck
in
g

2
.1
3
.3

li
g
h
ti
n
g

A
M
B
IE
N
T

2
�
C

G
e
tM
a
te
ri
a
lf
v

(0
.2
,0
.2
,0
.2
,1
.0
)

A
m
b
ie
n
t

m
a
te
ri
a
l
co
lo
r

2
.1
3
.1

li
g
h
ti
n
g

D
IF
F
U
S
E

2
�
C

G
e
tM
a
te
ri
a
lf
v

(0
.8
,0
.8
,0
.8
,1
.0
)

D
i�
u
se
m
a
te
ri
a
l

co
lo
r

2
.1
3
.1

li
g
h
ti
n
g

S
P
E
C
U
L
A
R

2
�
C

G
e
tM
a
te
ri
a
lf
v

(0
.0
,0
.0
,0
.0
,1
.0
)

S
p
ec
u
la
r

m
a
te
ri
a
l
co
lo
r

2
.1
3
.1

li
g
h
ti
n
g

E
M
IS
S
IO
N

2
�
C

G
e
tM
a
te
ri
a
lf
v

(0
.0
,0
.0
,0
.0
,1
.0
)

E
m
is
si
v
e
m
a
t.

co
lo
r

2
.1
3
.1

li
g
h
ti
n
g

S
H
IN
IN
E
S
S

2
�
R

G
e
tM
a
te
ri
a
lf
v

0
.0

S
p
ec
u
la
r

ex
p
o
n
en
t
o
f

m
a
te
ri
a
l

2
.1
3
.1

li
g
h
ti
n
g

L
IG
H
T

M
O
D
E
L
A
M
B
IE
N
T

C

G
e
tF
lo
a
tv

(0
.2
,0
.2
,0
.2
,1
.0
)

A
m
b
ie
n
t
sc
en
e

co
lo
r

2
.1
3
.1

li
g
h
ti
n
g

L
IG
H
T

M
O
D
E
L
L
O
C
A
L
V
IE
W
E
R

B

G
e
tB
o
o
le
a
n
v

F
a
ls
e

V
ie
w
er
is
lo
ca
l

2
.1
3
.1

li
g
h
ti
n
g

L
IG
H
T

M
O
D
E
L
T
W
O

S
ID
E

B

G
e
tB
o
o
le
a
n
v

F
a
ls
e

U
se
tw
o
-s
id
ed

li
g
h
ti
n
g

2
.1
3
.1

li
g
h
ti
n
g

L
IG
H
T

M
O
D
E
L
C
O
L
O
R

C
O
N
T
R
O
L

Z
2

G
e
tI
n
te
g
e
rv

S
I
N
G
L
E
C
O
L
O
R

C
o
lo
r
co
n
tr
o
l

2
.1
3
.1

li
g
h
ti
n
g

Table 6.9. Lighting (see also Table 2.7 for defaults)

Version 1.2.1 - April 1, 1999

200 CHAPTER 6. STATE AND STATE REQUESTS

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

A
M
B
IE
N
T

8
�
�
C

G
e
tL
ig
h
tf
v

(0
.0
,0
.0
,0
.0
,1
.0
)

A
m
b
ie
n
t
in
te
n
si
ty
o
f

li
g
h
t
i

2
.1
3
.1

li
g
h
ti
n
g

D
IF
F
U
S
E

8
�
�
C

G
e
tL
ig
h
tf
v

se
e
2
.5

D
i�
u
se
in
te
n
si
ty
o
f

li
g
h
t
i

2
.1
3
.1

li
g
h
ti
n
g

S
P
E
C
U
L
A
R

8
�
�
C

G
e
tL
ig
h
tf
v

se
e
2
.5

S
p
ec
u
la
r
in
te
n
si
ty
o
f

li
g
h
t
i

2
.1
3
.1

li
g
h
ti
n
g

P
O
S
IT
IO
N

8
�
�
P

G
e
tL
ig
h
tf
v

(0
.0
,0
.0
,1
.0
,0
.0
)

P
o
si
ti
o
n
o
f
li
g
h
t
i

2
.1
3
.1

li
g
h
ti
n
g

C
O
N
S
T
A
N
T

A
T
T
E
N
U
A
T
IO
N

8
�
�
R
+

G
e
tL
ig
h
tf
v

1
.0

C
o
n
st
a
n
t
a
tt
en
.
fa
ct
o
r

2
.1
3
.1

li
g
h
ti
n
g

L
IN
E
A
R

A
T
T
E
N
U
A
T
IO
N

8
�
�
R
+

G
e
tL
ig
h
tf
v

0
.0

L
in
ea
r
a
tt
en
.
fa
ct
o
r

2
.1
3
.1

li
g
h
ti
n
g

Q
U
A
D
R
A
T
IC

A
T
T
E
N
U
A
T
IO
N

8
�
�
R
+

G
e
tL
ig
h
tf
v

0
.0

Q
u
a
d
ra
ti
c
a
tt
en
.

fa
ct
o
r

2
.1
3
.1

li
g
h
ti
n
g

S
P
O
T

D
IR
E
C
T
IO
N

8
�
�
D

G
e
tL
ig
h
tf
v

(0
.0
,0
.0
,-
1
.0
)

S
p
o
tl
ig
h
t
d
ir
ec
ti
o
n
o
f

li
g
h
t
i

2
.1
3
.1

li
g
h
ti
n
g

S
P
O
T

E
X
P
O
N
E
N
T

8
�
�
R
+

G
e
tL
ig
h
tf
v

0
.0

S
p
o
tl
ig
h
t
ex
p
o
n
en
t
o
f

li
g
h
t
i

2
.1
3
.1

li
g
h
ti
n
g

S
P
O
T

C
U
T
O
F
F

8
�
�
R
+

G
e
tL
ig
h
tf
v

1
8
0
.0

S
p
o
t.
a
n
g
le
o
f
li
g
h
t
i

2
.1
3
.1

li
g
h
ti
n
g

L
IG
H
T
i

8
�
�
B

Is
E
n
a
b
le
d

F
a
ls
e

T
ru
e
if
li
g
h
t
i
en
a
b
le
d

2
.1
3
.1

li
g
h
ti
n
g
/
en
a
b
le

C
O
L
O
R

IN
D
E
X
E
S

2
�
3
�
R

G
e
tM
a
te
ri
a
lf
v

0
,1
,1

a
m
,
d
m

,
a
n
d
s
m

fo
r

co
lo
r
in
d
ex
li
g
h
ti
n
g

2
.1
3
.1

li
g
h
ti
n
g

Table 6.10. Lighting (cont.)

Version 1.2.1 - April 1, 1999

6.2. STATE TABLES 201

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

P
O
IN
T

S
IZ
E

R
+

G
e
tF
lo
a
tv

1
.0

P
o
in
t
si
ze

3
.3

p
o
in
t

P
O
IN
T

S
M
O
O
T
H

B

Is
E
n
a
b
le
d

F
a
ls
e

P
o
in
t
a
n
ti
a
li
a
si
n
g
o
n

3
.3

p
o
in
t/
en
a
b
le

L
IN
E

W
ID
T
H

R
+

G
e
tF
lo
a
tv

1
.0

L
in
e
w
id
th

3
.4

li
n
e

L
IN
E

S
M
O
O
T
H

B

Is
E
n
a
b
le
d

F
a
ls
e

L
in
e
a
n
ti
a
li
a
si
n
g
o
n

3
.4

li
n
e/
en
a
b
le

L
IN
E
S
T
IP
P
L
E

P
A
T
T
E
R
N

Z
+

G
e
tI
n
te
g
e
rv

1
's

L
in
e
st
ip
p
le

3
.4
.2

li
n
e

L
IN
E

S
T
IP
P
L
E
R
E
P
E
A
T

Z
+

G
e
tI
n
te
g
e
rv

1

L
in
e
st
ip
p
le
re
p
ea
t

3
.4
.2

li
n
e

L
IN
E

S
T
IP
P
L
E

B

Is
E
n
a
b
le
d

F
a
ls
e

L
in
e
st
ip
p
le
en
a
b
le

3
.4
.2

li
n
e/
en
a
b
le

C
U
L
L
F
A
C
E

B

Is
E
n
a
b
le
d

F
a
ls
e

P
o
ly
g
o
n
cu
ll
in
g

en
a
b
le
d

3
.5
.1

p
o
ly
g
o
n
/
en
a
b
le

C
U
L
L
F
A
C
E

M
O
D
E

Z
3

G
e
tI
n
te
g
e
rv

B
A
C
K

C
u
ll
fr
o
n
t/
b
a
ck
fa
ci
n
g

p
o
ly
g
o
n
s

3
.5
.1

p
o
ly
g
o
n

F
R
O
N
T

F
A
C
E

Z
2

G
e
tI
n
te
g
e
rv

C
C
W

P
o
ly
g
o
n
fr
o
n
tf
a
ce

C
W
/
C
C
W

in
d
ic
a
to
r

3
.5
.1

p
o
ly
g
o
n

P
O
L
Y
G
O
N

S
M
O
O
T
H

B

Is
E
n
a
b
le
d

F
a
ls
e

P
o
ly
g
o
n
a
n
ti
a
li
a
si
n
g

o
n

3
.5

p
o
ly
g
o
n
/
en
a
b
le

P
O
L
Y
G
O
N

M
O
D
E

2
�
Z
3

G
e
tI
n
te
g
e
rv

F
I
L
L

P
o
ly
g
o
n
ra
st
er
iz
a
ti
o
n

m
o
d
e
(f
ro
n
t
&
b
a
ck
)

3
.5
.4

p
o
ly
g
o
n

P
O
L
Y
G
O
N

O
F
F
S
E
T

F
A
C
T
O
R

R

G
e
tF
lo
a
tv

0

P
o
ly
g
o
n
o
�
se
t
fa
ct
o
r

3
.5
.5

p
o
ly
g
o
n

P
O
L
Y
G
O
N

O
F
F
S
E
T

U
N
IT
S

R

G
e
tF
lo
a
tv

0

P
o
ly
g
o
n
o
�
se
t
b
ia
s

3
.5
.5

p
o
ly
g
o
n

P
O
L
Y
G
O
N

O
F
F
S
E
T

P
O
IN
T

B

Is
E
n
a
b
le
d

F
a
ls
e

P
o
ly
g
o
n
o
�
se
t
en
a
b
le

fo
r
P
O
I
N
T
m
o
d
e

ra
st
er
iz
a
ti
o
n

3
.5
.5

p
o
ly
g
o
n
/
en
a
b
le

P
O
L
Y
G
O
N

O
F
F
S
E
T

L
IN
E

B

Is
E
n
a
b
le
d

F
a
ls
e

P
o
ly
g
o
n
o
�
se
t
en
a
b
le

fo
r
L
I
N
E
m
o
d
e

ra
st
er
iz
a
ti
o
n

3
.5
.5

p
o
ly
g
o
n
/
en
a
b
le

P
O
L
Y
G
O
N

O
F
F
S
E
T

F
IL
L

B

Is
E
n
a
b
le
d

F
a
ls
e

P
o
ly
g
o
n
o
�
se
t
en
a
b
le

fo
r
F
I
L
L
m
o
d
e

ra
st
er
iz
a
ti
o
n

3
.5
.5

p
o
ly
g
o
n
/
en
a
b
le

{

I

G
e
tP
o
ly
g
o
n
S
ti
p
p
le

1
's

P
o
ly
g
o
n
st
ip
p
le

3
.5

p
o
ly
g
o
n
-s
ti
p
p
le

P
O
L
Y
G
O
N

S
T
IP
P
L
E

B

Is
E
n
a
b
le
d

F
a
ls
e

P
o
ly
g
o
n
st
ip
p
le
en
a
b
le

3
.5
.2

p
o
ly
g
o
n
/
en
a
b
le

Table 6.11. Rasterization

Version 1.2.1 - April 1, 1999

202 CHAPTER 6. STATE AND STATE REQUESTS

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

T
E
X
T
U
R
E

x
D

3
�
B

Is
E
n
a
b
le
d

F
a
ls
e

T
ru
e
if
x
D
te
x
tu
ri
n
g
is

en
a
b
le
d
;
x
is
1
,
2
,
o
r
3

3
.8
.1
0

te
x
tu
re
/
en
a
b
le

T
E
X
T
U
R
E

B
IN
D
IN
G

x
D

3
�
Z
+

G
e
tI
n
te
g
e
rv

0

T
ex
tu
re
o
b
je
ct
b
o
u
n
d

to
T
E
X
T
U
R
E
x
D

3
.8
.8

te
x
tu
re

T
E
X
T
U
R
E

x
D

n
�
I

G
e
tT
e
x
Im
a
g
e

se
e
3
.8

x
D
te
x
tu
re
im
a
g
e
a
t

l.
o
.d
.
i

3
.8

{

T
E
X
T
U
R
E

W
ID
T
H

n
�
Z
+

G
e
tT
e
x
L
e
v
e
lP
a
ra
m
e
te
r

0

x
D
te
x
tu
re
im
a
g
e
i'
s

sp
ec
i�
ed
w
id
th

3
.8

{

T
E
X
T
U
R
E

H
E
IG
H
T

n
�
Z
+

G
e
tT
e
x
L
e
v
e
lP
a
ra
m
e
te
r

0

2
D
te
x
tu
re
im
a
g
e
i'
s

sp
ec
i�
ed
h
ei
g
h
t

3
.8

{

T
E
X
T
U
R
E

D
E
P
T
H

n
�
Z
+

G
e
tT
e
x
L
e
v
e
lP
a
ra
m
e
te
r

0

3
D
te
x
tu
re
im
a
g
e
i'
s

sp
ec
i�
ed
d
ep
th

3
.8

{

T
E
X
T
U
R
E

B
O
R
D
E
R

n
�
Z
+

G
e
tT
e
x
L
e
v
e
lP
a
ra
m
e
te
r

0

x
D
te
x
tu
re
im
a
g
e
i'
s

sp
ec
i�
ed
b
o
rd
er
w
id
th

3
.8

{

T
E
X
T
U
R
E

IN
T
E
R
N
A
L
F
O
R
M
A
T

(T
E
X
T
U
R
E

C
O
M
P
O
N
E
N
T
S
)

n
�
Z
4
2

G
e
tT
e
x
L
e
v
e
lP
a
ra
m
e
te
r

1

x
D
te
x
tu
re
im
a
g
e
i'
s

in
te
rn
a
l
im
a
g
e
fo
rm
a
t

3
.8

{

T
E
X
T
U
R
E

R
E
D

S
IZ
E

n
�
Z
+

G
e
tT
e
x
L
e
v
e
lP
a
ra
m
e
te
r

0

x
D
te
x
tu
re
im
a
g
e
i'
s

re
d
re
so
lu
ti
o
n

3
.8

{

T
E
X
T
U
R
E

G
R
E
E
N

S
IZ
E

n
�
Z
+

G
e
tT
e
x
L
e
v
e
lP
a
ra
m
e
te
r

0

x
D
te
x
tu
re
im
a
g
e
i'
s

g
re
en
re
so
lu
ti
o
n

3
.8

{

T
E
X
T
U
R
E

B
L
U
E

S
IZ
E

n
�
Z
+

G
e
tT
e
x
L
e
v
e
lP
a
ra
m
e
te
r

0

x
D
te
x
tu
re
im
a
g
e
i'
s

b
lu
e
re
so
lu
ti
o
n

3
.8

{

T
E
X
T
U
R
E

A
L
P
H
A

S
IZ
E

n
�
Z
+

G
e
tT
e
x
L
e
v
e
lP
a
ra
m
e
te
r

0

x
D
te
x
tu
re
im
a
g
e
i'
s

a
lp
h
a
re
so
lu
ti
o
n

3
.8

{

T
E
X
T
U
R
E

L
U
M
IN
A
N
C
E

S
IZ
E

n
�
Z
+

G
e
tT
e
x
L
e
v
e
lP
a
ra
m
e
te
r

0

x
D
te
x
tu
re
im
a
g
e
i'
s

lu
m
in
a
n
ce
re
so
lu
ti
o
n

3
.8

{

T
E
X
T
U
R
E

IN
T
E
N
S
IT
Y

S
IZ
E

n
�
Z
+

G
e
tT
e
x
L
e
v
e
lP
a
ra
m
e
te
r

0

x
D
te
x
tu
re
im
a
g
e
i'
s

in
te
n
si
ty
re
so
lu
ti
o
n

3
.8

{

Table 6.12. Texture Objects

Version 1.2.1 - April 1, 1999

6.2. STATE TABLES 203

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

T
E
X
T
U
R
E

B
O
R
D
E
R

C
O
L
O
R

2
+
�
C

G
e
tT
e
x
P
a
ra
m
e
te
r

0
,0
,0
,0

T
ex
tu
re
b
o
rd
er
co
lo
r

3
.8

te
x
tu
re

T
E
X
T
U
R
E

M
IN

F
IL
T
E
R

2
+
�
Z
6

G
e
tT
e
x
P
a
ra
m
e
te
r

se
e
3
.8

T
ex
tu
re
m
in
i�
ca
ti
o
n

fu
n
ct
io
n

3
.8
.5

te
x
tu
re

T
E
X
T
U
R
E

M
A
G

F
IL
T
E
R

2
+
�
Z
2

G
e
tT
e
x
P
a
ra
m
e
te
r

se
e
3
.8

T
ex
tu
re
m
a
g
n
i�
ca
ti
o
n

fu
n
ct
io
n

3
.8
.6

te
x
tu
re

T
E
X
T
U
R
E

W
R
A
P

S

3
+
�
Z
3

G
e
tT
e
x
P
a
ra
m
e
te
r

R
E
P
E
A
T

T
ex
tu
re
w
ra
p
m
o
d
e
S

3
.8

te
x
tu
re

T
E
X
T
U
R
E

W
R
A
P

T

2
+
�
Z
3

G
e
tT
e
x
P
a
ra
m
e
te
r

R
E
P
E
A
T

T
ex
tu
re
w
ra
p
m
o
d
e
T

3
.8

te
x
tu
re

T
E
X
T
U
R
E

W
R
A
P

R

1
+
�
Z
3

G
e
tT
e
x
P
a
ra
m
e
te
r

R
E
P
E
A
T

T
ex
tu
re
w
ra
p
m
o
d
e
R

3
.8

te
x
tu
re

T
E
X
T
U
R
E

P
R
IO
R
IT
Y

2
+
�
R
[0
;1
]

G
e
tT
e
x
P
a
ra
m
e
te
rf
v

1

T
ex
tu
re
o
b
je
ct
p
ri
o
ri
ty

3
.8
.8

te
x
tu
re

T
E
X
T
U
R
E

R
E
S
ID
E
N
T

2
+
�
B

G
e
tT
e
x
P
a
ra
m
e
te
ri
v

se
e
3
.8
.8

T
ex
tu
re
re
si
d
en
cy

3
.8
.8

te
x
tu
re

T
E
X
T
U
R
E

M
IN

L
O
D

n
�
R

G
e
tT
e
x
P
a
ra
m
e
te
rf
v

-1
0
0
0

M
in
im
u
m
le
v
el
o
f

d
et
a
il

3
.8

te
x
tu
re

T
E
X
T
U
R
E

M
A
X

L
O
D

n
�
R

G
e
tT
e
x
P
a
ra
m
e
te
rf
v

1
0
0
0

M
a
x
im
u
m
le
v
el
o
f

d
et
a
il

3
.8

te
x
tu
re

T
E
X
T
U
R
E

B
A
S
E

L
E
V
E
L

n
�
R

G
e
tT
e
x
P
a
ra
m
e
te
rf
v

0

B
a
se
te
x
tu
re
a
rr
ay

3
.8

te
x
tu
re

T
E
X
T
U
R
E

M
A
X

L
E
V
E
L

n
�
R

G
e
tT
e
x
P
a
ra
m
e
te
rf
v

1
0
0
0

M
a
x
im
u
m
te
x
tu
re

a
rr
ay
le
v
el

3
.8

te
x
tu
re

Table 6.13. Texture Objects (cont.)

Version 1.2.1 - April 1, 1999

204 CHAPTER 6. STATE AND STATE REQUESTS

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

T
E
X
T
U
R
E

E
N
V

M
O
D
E

Z
4

G
e
tT
e
x
E
n
v
iv

M
O
D
U
L
A
T
E

T
ex
tu
re
a
p
p
li
ca
ti
o
n

fu
n
ct
io
n

3
.8
.9

te
x
tu
re

T
E
X
T
U
R
E

E
N
V

C
O
L
O
R

C

G
e
tT
e
x
E
n
v
fv

0
,0
,0
,0

T
ex
tu
re
en
v
ir
o
n
m
en
t

co
lo
r

3
.8
.9

te
x
tu
re

T
E
X
T
U
R
E

G
E
N

x

4
�
B

Is
E
n
a
b
le
d

F
a
ls
e

T
ex
g
en
en
a
b
le
d
(x
is

S
,
T
,
R
,
o
r
Q
)

2
.1
0
.4

te
x
tu
re
/
en
a
b
le

E
Y
E

P
L
A
N
E

4
�
R
4

G
e
tT
e
x
G
e
n
fv

se
e
2
.1
0
.4

T
ex
g
en
p
la
n
e
eq
u
a
ti
o
n

co
e�
ci
en
ts
(f
o
r
S
,
T
,

R
,
a
n
d
Q
)

2
.1
0
.4

te
x
tu
re

O
B
J
E
C
T

P
L
A
N
E

4
�
R
4

G
e
tT
e
x
G
e
n
fv

se
e
2
.1
0
.4

T
ex
g
en
o
b
je
ct
li
n
ea
r

co
e�
ci
en
ts
(f
o
r
S
,
T
,

R
,
a
n
d
Q
)

2
.1
0
.4

te
x
tu
re

T
E
X
T
U
R
E

G
E
N

M
O
D
E

4
�
Z
3

G
e
tT
e
x
G
e
n
iv

E
Y
E
L
I
N
E
A
R

F
u
n
ct
io
n
u
se
d
fo
r

te
x
g
en
(f
o
r
S
,
T
,
R
,

a
n
d
Q

2
.1
0
.4

te
x
tu
re

Table 6.14. Texture Environment and Generation

Version 1.2.1 - April 1, 1999

6.2. STATE TABLES 205

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

S
C
IS
S
O
R

T
E
S
T

B

Is
E
n
a
b
le
d

F
a
ls
e

S
ci
ss
o
ri
n
g
en
a
b
le
d

4
.1
.2

sc
is
so
r/
en
a
b
le

S
C
IS
S
O
R

B
O
X

4
�
Z

G
e
tI
n
te
g
e
rv

se
e
4
.1
.2

S
ci
ss
o
r
b
ox

4
.1
.2

sc
is
so
r

A
L
P
H
A

T
E
S
T

B

Is
E
n
a
b
le
d

F
a
ls
e

A
lp
h
a
te
st
en
a
b
le
d

4
.1
.3

co
lo
r-
b
u
�
er
/
en
a
b
le

A
L
P
H
A

T
E
S
T

F
U
N
C

Z
8

G
e
tI
n
te
g
e
rv

A
L
W
A
Y
S

A
lp
h
a
te
st
fu
n
ct
io
n

4
.1
.3

co
lo
r-
b
u
�
er

A
L
P
H
A

T
E
S
T

R
E
F

R
+

G
e
tI
n
te
g
e
rv

0

A
lp
h
a
te
st
re
fe
re
n
ce

va
lu
e

4
.1
.3

co
lo
r-
b
u
�
er

S
T
E
N
C
IL
T
E
S
T

B

Is
E
n
a
b
le
d

F
a
ls
e

S
te
n
ci
li
n
g
en
a
b
le
d

4
.1
.4

st
en
ci
l-
b
u
�
er
/
en
a
b
le

S
T
E
N
C
IL
F
U
N
C

Z
8

G
e
tI
n
te
g
e
rv

A
L
W
A
Y
S

S
te
n
ci
l
fu
n
ct
io
n

4
.1
.4

st
en
ci
l-
b
u
�
er

S
T
E
N
C
IL
V
A
L
U
E
M
A
S
K

Z
+

G
e
tI
n
te
g
e
rv

1
's

S
te
n
ci
l
m
a
sk

4
.1
.4

st
en
ci
l-
b
u
�
er

S
T
E
N
C
IL
R
E
F

Z
+

G
e
tI
n
te
g
e
rv

0

S
te
n
ci
l
re
fe
re
n
ce
va
lu
e

4
.1
.4

st
en
ci
l-
b
u
�
er

S
T
E
N
C
IL
F
A
IL

Z
6

G
e
tI
n
te
g
e
rv

K
E
E
P

S
te
n
ci
l
fa
il
a
ct
io
n

4
.1
.4

st
en
ci
l-
b
u
�
er

S
T
E
N
C
IL
P
A
S
S
D
E
P
T
H

F
A
IL

Z
6

G
e
tI
n
te
g
e
rv

K
E
E
P

S
te
n
ci
l
d
ep
th
b
u
�
er

fa
il
a
ct
io
n

4
.1
.4

st
en
ci
l-
b
u
�
er

S
T
E
N
C
IL
P
A
S
S
D
E
P
T
H

P
A
S
S

Z
6

G
e
tI
n
te
g
e
rv

K
E
E
P

S
te
n
ci
l
d
ep
th
b
u
�
er

p
a
ss
a
ct
io
n

4
.1
.4

st
en
ci
l-
b
u
�
er

D
E
P
T
H

T
E
S
T

B

Is
E
n
a
b
le
d

F
a
ls
e

D
ep
th
b
u
�
er
en
a
b
le
d

4
.1
.5

d
ep
th
-b
u
�
er
/
en
a
b
le

D
E
P
T
H

F
U
N
C

Z
8

G
e
tI
n
te
g
e
rv

L
E
S
S

D
ep
th
b
u
�
er
te
st

fu
n
ct
io
n

4
.1
.5

d
ep
th
-b
u
�
er

B
L
E
N
D

B

Is
E
n
a
b
le
d

F
a
ls
e

B
le
n
d
in
g
en
a
b
le
d

4
.1
.6

co
lo
r-
b
u
�
er
/
en
a
b
le

B
L
E
N
D

S
R
C

Z
1
3

G
e
tI
n
te
g
e
rv

O
N
E

B
le
n
d
in
g
so
u
rc
e

fu
n
ct
io
n

4
.1
.6

co
lo
r-
b
u
�
er

B
L
E
N
D

D
S
T

Z
1
2

G
e
tI
n
te
g
e
rv

Z
E
R
O

B
le
n
d
in
g
d
es
ti
n
a
ti
o
n

fu
n
ct
io
n

4
.1
.6

co
lo
r-
b
u
�
er

B
L
E
N
D

E
Q
U
A
T
IO
N

Z
5

G
e
tI
n
te
g
e
rv

F
U
N
C
A
D
D

B
le
n
d
in
g
eq
u
a
ti
o
n

4
.1
.6

co
lo
r-
b
u
�
er

B
L
E
N
D

C
O
L
O
R

C

G
e
tF
lo
a
tv

0
,0
,0
,0

C
o
n
st
a
n
t
b
le
n
d
co
lo
r

4
.1
.6

co
lo
r-
b
u
�
er

D
IT
H
E
R

B

Is
E
n
a
b
le
d

T
ru
e

D
it
h
er
in
g
en
a
b
le
d

4
.1
.7

co
lo
r-
b
u
�
er
/
en
a
b
le

IN
D
E
X

L
O
G
IC

O
P
(v
1
.0
:
G
L
L
O
G
IC

O
P
)

B

Is
E
n
a
b
le
d

F
a
ls
e

In
d
ex
lo
g
ic
o
p
en
a
b
le
d

4
.1
.8

co
lo
r-
b
u
�
er
/
en
a
b
le

C
O
L
O
R

L
O
G
IC

O
P

B

Is
E
n
a
b
le
d

F
a
ls
e

C
o
lo
r
lo
g
ic
o
p
en
a
b
le
d

4
.1
.8

co
lo
r-
b
u
�
er
/
en
a
b
le

L
O
G
IC

O
P

M
O
D
E

Z
1
6

G
e
tI
n
te
g
e
rv

C
O
P
Y

L
o
g
ic
o
p
fu
n
ct
io
n

4
.1
.8

co
lo
r-
b
u
�
er

Table 6.15. Pixel Operations

Version 1.2.1 - April 1, 1999

206 CHAPTER 6. STATE AND STATE REQUESTS

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

D
R
A
W

B
U
F
F
E
R

Z
1
0
�

G
e
tI
n
te
g
e
rv

se
e
4
.2
.1

B
u
�
er
s
se
le
ct
ed
fo
r

d
ra
w
in
g

4
.2
.1

co
lo
r-
b
u
�
er

IN
D
E
X

W
R
IT
E
M
A
S
K

Z
+

G
e
tI
n
te
g
e
rv

1
's

C
o
lo
r
in
d
ex
w
ri
te
m
a
sk

4
.2
.2

co
lo
r-
b
u
�
er

C
O
L
O
R

W
R
IT
E
M
A
S
K

4
�
B

G
e
tB
o
o
le
a
n
v

T
ru
e

C
o
lo
r
w
ri
te
en
a
b
le
s;
R
,

G
,
B
,
o
r
A

4
.2
.2

co
lo
r-
b
u
�
er

D
E
P
T
H

W
R
IT
E
M
A
S
K

B

G
e
tB
o
o
le
a
n
v

T
ru
e

D
ep
th
b
u
�
er
en
a
b
le
d

fo
r
w
ri
ti
n
g

4
.2
.2

d
ep
th
-b
u
�
er

S
T
E
N
C
IL
W
R
IT
E
M
A
S
K

Z
+

G
e
tI
n
te
g
e
rv

1
's

S
te
n
ci
l
b
u
�
er

w
ri
te
m
a
sk

4
.2
.2

st
en
ci
l-
b
u
�
er

C
O
L
O
R

C
L
E
A
R

V
A
L
U
E

C

G
e
tF
lo
a
tv

0
,0
,0
,0

C
o
lo
r
b
u
�
er
cl
ea
r

va
lu
e
(R
G
B
A
m
o
d
e)

4
.2
.3

co
lo
r-
b
u
�
er

IN
D
E
X

C
L
E
A
R

V
A
L
U
E

C
I

G
e
tF
lo
a
tv

0

C
o
lo
r
b
u
�
er
cl
ea
r
va
lu
e

(c
o
lo
r
in
d
ex
m
o
d
e)

4
.2
.3

co
lo
r-
b
u
�
er

D
E
P
T
H

C
L
E
A
R

V
A
L
U
E

R
+

G
e
tI
n
te
g
e
rv

1

D
ep
th
b
u
�
er
cl
ea
r

va
lu
e

4
.2
.3

d
ep
th
-b
u
�
er

S
T
E
N
C
IL
C
L
E
A
R

V
A
L
U
E

Z
+

G
e
tI
n
te
g
e
rv

0

S
te
n
ci
l
cl
ea
r
va
lu
e

4
.2
.3

st
en
ci
l-
b
u
�
er

A
C
C
U
M

C
L
E
A
R

V
A
L
U
E

4
�
R
+

G
e
tF
lo
a
tv

0

A
cc
u
m
u
la
ti
o
n
b
u
�
er

cl
ea
r
va
lu
e

4
.2
.3

a
cc
u
m
-b
u
�
er

Table 6.16. Framebu�er Control

Version 1.2.1 - April 1, 1999

6.2. STATE TABLES 207

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

U
N
P
A
C
K

S
W
A
P
B
Y
T
E
S

B

G
e
tB
o
o
le
a
n
v

F
a
ls
e

V
a
lu
e
o
f

U
N
P
A
C
K
S
W
A
P
B
Y
T
E
S

4
.3

p
ix
el
-s
to
re

U
N
P
A
C
K

L
S
B

F
IR
S
T

B

G
e
tB
o
o
le
a
n
v

F
a
ls
e

V
a
lu
e
o
f

U
N
P
A
C
K
L
S
B
F
I
R
S
T

4
.3

p
ix
el
-s
to
re

U
N
P
A
C
K

IM
A
G
E

H
E
IG
H
T

Z
+

G
e
tI
n
te
g
e
rv

0

V
a
lu
e
o
f

U
N
P
A
C
K
I
M
A
G
E
H
E
I
G
H
T

4
.3

p
ix
el
-s
to
re

U
N
P
A
C
K

S
K
IP

IM
A
G
E
S

Z
+

G
e
tI
n
te
g
e
rv

0

V
a
lu
e
o
f

U
N
P
A
C
K
S
K
I
P
I
M
A
G
E
S

4
.3

p
ix
el
-s
to
re

U
N
P
A
C
K

R
O
W

L
E
N
G
T
H

Z
+

G
e
tI
n
te
g
e
rv

0

V
a
lu
e
o
f

U
N
P
A
C
K
R
O
W
L
E
N
G
T
H

4
.3

p
ix
el
-s
to
re

U
N
P
A
C
K

S
K
IP

R
O
W
S

Z
+

G
e
tI
n
te
g
e
rv

0

V
a
lu
e
o
f

U
N
P
A
C
K
S
K
I
P
R
O
W
S

4
.3

p
ix
el
-s
to
re

U
N
P
A
C
K

S
K
IP

P
IX
E
L
S

Z
+

G
e
tI
n
te
g
e
rv

0

V
a
lu
e
o
f

U
N
P
A
C
K
S
K
I
P
P
I
X
E
L
S

4
.3

p
ix
el
-s
to
re

U
N
P
A
C
K

A
L
IG
N
M
E
N
T

Z
+

G
e
tI
n
te
g
e
rv

4

V
a
lu
e
o
f

U
N
P
A
C
K
A
L
I
G
N
M
E
N
T

4
.3

p
ix
el
-s
to
re

P
A
C
K

S
W
A
P

B
Y
T
E
S

B

G
e
tB
o
o
le
a
n
v

F
a
ls
e

V
a
lu
e
o
f

P
A
C
K
S
W
A
P
B
Y
T
E
S

4
.3

p
ix
el
-s
to
re

P
A
C
K

L
S
B

F
IR
S
T

B

G
e
tB
o
o
le
a
n
v

F
a
ls
e

V
a
lu
e
o
f

P
A
C
K
L
S
B
F
I
R
S
T

4
.3

p
ix
el
-s
to
re

P
A
C
K

IM
A
G
E

H
E
IG
H
T

Z
+

G
e
tI
n
te
g
e
rv

0

V
a
lu
e
o
f

P
A
C
K
I
M
A
G
E
H
E
I
G
H
T

4
.3

p
ix
el
-s
to
re

P
A
C
K

S
K
IP

IM
A
G
E
S

Z
+

G
e
tI
n
te
g
e
rv

0

V
a
lu
e
o
f

P
A
C
K
S
K
I
P
I
M
A
G
E
S

4
.3

p
ix
el
-s
to
re

P
A
C
K

R
O
W

L
E
N
G
T
H

Z
+

G
e
tI
n
te
g
e
rv

0

V
a
lu
e
o
f

P
A
C
K
R
O
W
L
E
N
G
T
H

4
.3

p
ix
el
-s
to
re

P
A
C
K

S
K
IP

R
O
W
S

Z
+

G
e
tI
n
te
g
e
rv

0

V
a
lu
e
o
f

P
A
C
K
S
K
I
P
R
O
W
S

4
.3

p
ix
el
-s
to
re

P
A
C
K

S
K
IP

P
IX
E
L
S

Z
+

G
e
tI
n
te
g
e
rv

0

V
a
lu
e
o
f

P
A
C
K
S
K
I
P
P
I
X
E
L
S

4
.3

p
ix
el
-s
to
re

P
A
C
K

A
L
IG
N
M
E
N
T

Z
+

G
e
tI
n
te
g
e
rv

4

V
a
lu
e
o
f

P
A
C
K
A
L
I
G
N
M
E
N
T

4
.3

p
ix
el
-s
to
re

Table 6.17. Pixels

Version 1.2.1 - April 1, 1999

208 CHAPTER 6. STATE AND STATE REQUESTS

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

M
A
P

C
O
L
O
R

B

G
e
tB
o
o
le
a
n
v

F
a
ls
e

T
ru
e
if
co
lo
rs
a
re

m
a
p
p
ed

4
.3

p
ix
el

M
A
P

S
T
E
N
C
IL

B

G
e
tB
o
o
le
a
n
v

F
a
ls
e

T
ru
e
if
st
en
ci
l
va
lu
es

a
re
m
a
p
p
ed

4
.3

p
ix
el

IN
D
E
X

S
H
IF
T

Z

G
e
tI
n
te
g
e
rv

0

V
a
lu
e
o
f
I
N
D
E
X
S
H
I
F
T

4
.3

p
ix
el

IN
D
E
X

O
F
F
S
E
T

Z

G
e
tI
n
te
g
e
rv

0

V
a
lu
e
o
f
I
N
D
E
X
O
F
F
S
E
T

4
.3

p
ix
el

x
S
C
A
L
E

R

G
e
tF
lo
a
tv

1

V
a
lu
e
o
f
x
S
C
A
L
E
;
x
is

R
E
D
,
G
R
E
E
N
,
B
L
U
E
,

A
L
P
H
A
,
o
r
D
E
P
T
H

4
.3

p
ix
el

x
B
IA
S

R

G
e
tF
lo
a
tv

0

V
a
lu
e
o
f
x
B
I
A
S
;
x
is

o
n
e
o
f
R
E
D
,
G
R
E
E
N
,

B
L
U
E
,
A
L
P
H
A
,
o
r
D
E
P
T
H

4
.3

p
ix
el

C
O
L
O
R

T
A
B
L
E

B

Is
E
n
a
b
le
d

F
a
ls
e

T
ru
e
if
co
lo
r
ta
b
le

lo
o
k
u
p
is
d
o
n
e

3
.6
.3

p
ix
el
/
en
a
b
le

P
O
S
T

C
O
N
V
O
L
U
T
IO
N

C
O
L
O
R

T
A
B
L
E

B

Is
E
n
a
b
le
d

F
a
ls
e

T
ru
e
if
p
o
st

co
n
v
o
lu
ti
o
n
co
lo
r
ta
b
le

lo
o
k
u
p
is
d
o
n
e

3
.6
.3

p
ix
el
/
en
a
b
le

P
O
S
T

C
O
L
O
R

M
A
T
R
IX

C
O
L
O
R

T
A
B
L
E

B

Is
E
n
a
b
le
d

F
a
ls
e

T
ru
e
if
p
o
st
co
lo
r

m
a
tr
ix
co
lo
r
ta
b
le

lo
o
k
u
p
is
d
o
n
e

3
.6
.3

p
ix
el
/
en
a
b
le

C
O
L
O
R

T
A
B
L
E

3
�
I

G
e
tC
o
lo
rT
a
b
le

em
p
ty

C
o
lo
r
ta
b
le
s

3
.6
.3

{

C
O
L
O
R

T
A
B
L
E

F
O
R
M
A
T

2
�
3
�
Z
4
2

G
e
tC
o
lo
rT
a
b
le
-

P
a
ra
m
e
te
ri
v

R
G
B
A

C
o
lo
r
ta
b
le
s'
in
te
rn
a
l

im
a
g
e
fo
rm
a
t

3
.6
.3

{

C
O
L
O
R

T
A
B
L
E

W
ID
T
H

2
�
3
�
Z
+

G
e
tC
o
lo
rT
a
b
le
-

P
a
ra
m
e
te
ri
v

0

C
o
lo
r
ta
b
le
s'
sp
ec
i�
ed

w
id
th

3
.6
.3

{

C
O
L
O
R

T
A
B
L
E

x
S
IZ
E

6
�
2
�
3
�
Z
+

G
e
tC
o
lo
rT
a
b
le
-

P
a
ra
m
e
te
ri
v

0

C
o
lo
r
ta
b
le
co
m
p
o
n
en
t

re
so
lu
ti
o
n
;
x
is
R
E
D
,

G
R
E
E
N
,
B
L
U
E
,
A
L
P
H
A
,

L
U
M
I
N
A
N
C
E
,
o
r

I
N
T
E
N
S
I
T
Y

3
.6
.3

{

C
O
L
O
R

T
A
B
L
E

S
C
A
L
E

3
�
R
4

G
e
tC
o
lo
rT
a
b
le
-

P
a
ra
m
e
te
rf
v

1
,1
,1
,1

S
ca
le
fa
ct
o
rs
a
p
p
li
ed

to
co
lo
r
ta
b
le
en
tr
ie
s

3
.6
.3

p
ix
el

C
O
L
O
R

T
A
B
L
E

B
IA
S

3
�
R
4

G
e
tC
o
lo
rT
a
b
le
-

P
a
ra
m
e
te
rf
v

0
,0
,0
,0

B
ia
s
fa
ct
o
rs
a
p
p
li
ed
to

co
lo
r
ta
b
le
en
tr
ie
s

3
.6
.3

p
ix
el

Table 6.18. Pixels (cont.)

Version 1.2.1 - April 1, 1999

6.2. STATE TABLES 209

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

C
O
N
V
O
L
U
T
IO
N

1
D

B

Is
E
n
a
b
le
d

F
a
ls
e

T
ru
e
if
1
D
co
n
v
o
lu
ti
o
n

is
d
o
n
e

3
.6
.3

p
ix
el
/
en
a
b
le

C
O
N
V
O
L
U
T
IO
N

2
D

B

Is
E
n
a
b
le
d

F
a
ls
e

T
ru
e
if
2
D
co
n
v
o
lu
ti
o
n

is
d
o
n
e

3
.6
.3

p
ix
el
/
en
a
b
le

S
E
P
A
R
A
B
L
E
2
D

B

Is
E
n
a
b
le
d

F
a
ls
e

T
ru
e
if
se
p
a
ra
b
le
2
D

co
n
v
o
lu
ti
o
n
is
d
o
n
e

3
.6
.3

p
ix
el
/
en
a
b
le

C
O
N
V
O
L
U
T
IO
N

2
�
I

G
e
tC
o
n
v
o
lu
ti
o
n
-

F
il
te
r

em
p
ty

C
o
n
v
o
lu
ti
o
n
�
lt
er
s

3
.6
.3

{

C
O
N
V
O
L
U
T
IO
N

2
�
I

G
e
tS
e
p
a
ra
b
le
-

F
il
te
r

em
p
ty

S
ep
a
ra
b
le
co
n
v
o
lu
ti
o
n

�
lt
er

3
.6
.3

{

C
O
N
V
O
L
U
T
IO
N

B
O
R
D
E
R

C
O
L
O
R

3
�
C

G
e
tC
o
n
v
o
lu
ti
o
n
-

P
a
ra
m
e
te
rf
v

0
,0
,0
,0

C
o
n
v
o
lu
ti
o
n
b
o
rd
er

co
lo
r

4
.3

p
ix
el

C
O
N
V
O
L
U
T
IO
N

B
O
R
D
E
R

M
O
D
E

3
�
Z
4

G
e
tC
o
n
v
o
lu
ti
o
n
-

P
a
ra
m
e
te
ri
v

R
E
D
U
C
E

C
o
n
v
o
lu
ti
o
n
b
o
rd
er

m
o
d
e

4
.3

p
ix
el

C
O
N
V
O
L
U
T
IO
N

F
IL
T
E
R

S
C
A
L
E

3
�
R
4

G
e
tC
o
n
v
o
lu
ti
o
n
-

P
a
ra
m
e
te
rf
v

1
,1
,1
,1

S
ca
le
fa
ct
o
rs
a
p
p
li
ed

to
co
n
v
o
lu
ti
o
n
�
lt
er

en
tr
ie
s

3
.6
.3

p
ix
el

C
O
N
V
O
L
U
T
IO
N

F
IL
T
E
R

B
IA
S

3
�
R
4

G
e
tC
o
n
v
o
lu
ti
o
n
-

P
a
ra
m
e
te
rf
v

0
,0
,0
,0

B
ia
s
fa
ct
o
rs
a
p
p
li
ed
to

co
n
v
o
lu
ti
o
n
�
lt
er

en
tr
ie
s

3
.6
.3

p
ix
el

C
O
N
V
O
L
U
T
IO
N

F
O
R
M
A
T

3
�
Z
4
2

G
e
tC
o
n
v
o
lu
ti
o
n
-

P
a
ra
m
e
te
ri
v

R
G
B
A

C
o
n
v
o
lu
ti
o
n
�
lt
er

in
te
rn
a
l
fo
rm
a
t

4
.3

{

C
O
N
V
O
L
U
T
IO
N

W
ID
T
H

3
�
Z
+

G
e
tC
o
n
v
o
lu
ti
o
n
-

P
a
ra
m
e
te
ri
v

0

C
o
n
v
o
lu
ti
o
n
�
lt
er

w
id
th

4
.3

{

C
O
N
V
O
L
U
T
IO
N

H
E
IG
H
T

2
�
Z
+

G
e
tC
o
n
v
o
lu
ti
o
n
-

P
a
ra
m
e
te
ri
v

0

C
o
n
v
o
lu
ti
o
n
�
lt
er

h
ei
g
h
t

4
.3

{

Table 6.19. Pixels (cont.)

Version 1.2.1 - April 1, 1999

210 CHAPTER 6. STATE AND STATE REQUESTS

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

P
O
S
T

C
O
N
V
O
L
U
T
IO
N

x
S
C
A
L
E

R

G
e
tF
lo
a
tv

1

C
o
m
p
o
n
en
t
sc
a
le

fa
ct
o
rs
a
ft
er

co
n
v
o
lu
ti
o
n
:
x
is
R
E
D
,

G
R
E
E
N
,
B
L
U
E
,
o
r
A
L
P
H
A

3
.6
.3

p
ix
el

P
O
S
T

C
O
N
V
O
L
U
T
IO
N

x
B
IA
S

R

G
e
tF
lo
a
tv

0

C
o
m
p
o
n
en
t
b
ia
s

fa
ct
o
rs
a
ft
er

co
n
v
o
lu
ti
o
n
:
x
is
R
E
D
,

G
R
E
E
N
,
B
L
U
E
,
o
r
A
L
P
H
A

3
.6
.3

p
ix
el

P
O
S
T

C
O
L
O
R

M
A
T
R
IX

x
S
C
A
L
E

R

G
e
tF
lo
a
tv

1

C
o
m
p
o
n
en
t
sc
a
le

fa
ct
o
rs
a
ft
er
co
lo
r

m
a
tr
ix
;
x
is
R
E
D
,

G
R
E
E
N
,
B
L
U
E
,
o
r
A
L
P
H
A

3
.6
.3

p
ix
el

P
O
S
T

C
O
L
O
R

M
A
T
R
IX

x
B
IA
S

R

G
e
tF
lo
a
tv

0

C
o
m
p
o
n
en
t
b
ia
s

fa
ct
o
rs
a
ft
er
co
lo
r

m
a
tr
ix
;
x
is
R
E
D
,

G
R
E
E
N
,
B
L
U
E
,
o
r
A
L
P
H
A

3
.6
.3

p
ix
el

H
IS
T
O
G
R
A
M

B

Is
E
n
a
b
le
d

F
a
ls
e

T
ru
e
if
h
is
to
g
ra
m
m
in
g

is
en
a
b
le
d

3
.6
.3

p
ix
el
/
en
a
b
le

H
IS
T
O
G
R
A
M

I

G
e
tH
is
to
g
ra
m

em
p
ty

H
is
to
g
ra
m
ta
b
le

3
.6
.3

{

H
IS
T
O
G
R
A
M

W
ID
T
H

2
�
Z
+

G
e
tH
is
to
g
ra
m
-

P
a
ra
m
e
te
ri
v

0

H
is
to
g
ra
m
ta
b
le
w
id
th

3
.6
.3

{

H
IS
T
O
G
R
A
M

F
O
R
M
A
T

2
�
Z
4
2

G
e
tH
is
to
g
ra
m
-

P
a
ra
m
e
te
ri
v

R
G
B
A

H
is
to
g
ra
m
ta
b
le

in
te
rn
a
l
fo
rm
a
t

3
.6
.3

{

H
IS
T
O
G
R
A
M

x
S
IZ
E

5
�
2
�
Z
+

G
e
tH
is
to
g
ra
m
-

P
a
ra
m
e
te
ri
v

0

H
is
to
g
ra
m
ta
b
le

co
m
p
o
n
en
t
re
so
lu
ti
o
n
;

x
is
R
E
D
,
G
R
E
E
N
,
B
L
U
E
,

A
L
P
H
A
,
o
r
L
U
M
I
N
A
N
C
E

3
.6
.3

{

H
IS
T
O
G
R
A
M

S
IN
K

B

G
e
tH
is
to
g
ra
m
-

P
a
ra
m
e
te
ri
v

F
a
ls
e

T
ru
e
if
h
is
to
g
ra
m
m
in
g

co
n
su
m
es
p
ix
el
g
ro
u
p
s

3
.6
.3

{

Table 6.20. Pixels (cont.)

Version 1.2.1 - April 1, 1999

6.2. STATE TABLES 211

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

M
IN
M
A
X

B

Is
E
n
a
b
le
d

F
a
ls
e

T
ru
e
if
m
in
m
a
x
is

en
a
b
le
d

3
.6
.3

p
ix
el
/
en
a
b
le

M
IN
M
A
X

R
n

G
e
tM
in
m
a
x

(M
,M
,M
,M
),
(m
,m
,m
,m
)

M
in
m
a
x
ta
b
le

3
.6
.3

{

M
IN
M
A
X

F
O
R
M
A
T

Z
4
2

G
e
tM
in
m
a
x
-

P
a
ra
m
e
te
ri
v

R
G
B
A

M
in
m
a
x
ta
b
le
in
te
rn
a
l

fo
rm
a
t

3
.6
.3

{

M
IN
M
A
X

S
IN
K

B

G
e
tM
in
m
a
x
-

P
a
ra
m
e
te
ri
v

F
a
ls
e

T
ru
e
if
m
in
m
a
x

co
n
su
m
es
p
ix
el
g
ro
u
p
s

3
.6
.3

{

Z
O
O
M

X

R

G
e
tF
lo
a
tv

1
.0

x
zo
o
m
fa
ct
o
r

4
.3

p
ix
el

Z
O
O
M

Y

R

G
e
tF
lo
a
tv

1
.0

y
zo
o
m
fa
ct
o
r

4
.3

p
ix
el

x

8
�
3
2
�
�
R

G
e
tP
ix
e
lM
a
p

0
's

R
G
B
A
P
ix
e
lM
a
p

tr
a
n
sl
a
ti
o
n
ta
b
le
s;
x
is

a
m
a
p
n
a
m
e
fr
o
m

T
a
b
le
3
.3

4
.3

{

x

2
�
3
2
�
�
Z

G
e
tP
ix
e
lM
a
p

0
's

In
d
ex
P
ix
e
lM
a
p

tr
a
n
sl
a
ti
o
n
ta
b
le
s;
x
is

a
m
a
p
n
a
m
e
fr
o
m

T
a
b
le
3
.3

4
.3

{

x
S
IZ
E

Z
+

G
e
tI
n
te
g
e
rv

1

S
iz
e
o
f
ta
b
le
x

4
.3

{

R
E
A
D

B
U
F
F
E
R

Z
3

G
e
tI
n
te
g
e
rv

se
e
4
.3
.2

R
ea
d
so
u
rc
e
b
u
�
er

4
.3

p
ix
el

Table 6.21. Pixels (cont.)

Version 1.2.1 - April 1, 1999

212 CHAPTER 6. STATE AND STATE REQUESTS

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

O
R
D
E
R

9
�
Z
8
�

G
e
tM
a
p
iv

1

1
d
m
a
p
o
rd
er

5
.1

{

O
R
D
E
R

9
�
2
�
Z
8
�

G
e
tM
a
p
iv

1
,1

2
d
m
a
p
o
rd
er
s

5
.1

{

C
O
E
F
F

9
�
8
�
�
R
n

G
e
tM
a
p
fv

se
e
5
.1

1
d
co
n
tr
o
l
p
o
in
ts

5
.1

{

C
O
E
F
F

9
�
8
�
�
8
�
�
R
n

G
e
tM
a
p
fv

se
e
5
.1

2
d
co
n
tr
o
l
p
o
in
ts

5
.1

{

D
O
M
A
IN

9
�
2
�
R

G
e
tM
a
p
fv

se
e
5
.1

1
d
d
o
m
a
in
en
d
p
o
in
ts

5
.1

{

D
O
M
A
IN

9
�
4
�
R

G
e
tM
a
p
fv

se
e
5
.1

2
d
d
o
m
a
in
en
d
p
o
in
ts

5
.1

{

M
A
P
1
x

9
�
B

Is
E
n
a
b
le
d

F
a
ls
e

1
d
m
a
p
en
a
b
le
s:
x
is

m
a
p
ty
p
e

5
.1

ev
a
l/
en
a
b
le

M
A
P
2
x

9
�
B

Is
E
n
a
b
le
d

F
a
ls
e

2
d
m
a
p
en
a
b
le
s:
x
is

m
a
p
ty
p
e

5
.1

ev
a
l/
en
a
b
le

M
A
P
1
G
R
ID

D
O
M
A
IN

2
�
R

G
e
tF
lo
a
tv

0
,1

1
d
g
ri
d
en
d
p
o
in
ts

5
.1

ev
a
l

M
A
P
2
G
R
ID

D
O
M
A
IN

4
�
R

G
e
tF
lo
a
tv

0
,1
;0
,1

2
d
g
ri
d
en
d
p
o
in
ts

5
.1

ev
a
l

M
A
P
1
G
R
ID

S
E
G
M
E
N
T
S

Z
+

G
e
tF
lo
a
tv

1

1
d
g
ri
d
d
iv
is
io
n
s

5
.1

ev
a
l

M
A
P
2
G
R
ID

S
E
G
M
E
N
T
S

2
�
Z
+

G
e
tF
lo
a
tv

1
,1

2
d
g
ri
d
d
iv
is
io
n
s

5
.1

ev
a
l

A
U
T
O

N
O
R
M
A
L

B

Is
E
n
a
b
le
d

F
a
ls
e

T
ru
e
if
a
u
to
m
a
ti
c

n
o
rm
a
l
g
en
er
a
ti
o
n

en
a
b
le
d

5
.1

ev
a
l/
en
a
b
le

Table 6.22. Evaluators (GetMap takes a map name)

Version 1.2.1 - April 1, 1999

6.2. STATE TABLES 213

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

P
E
R
S
P
E
C
T
IV
E

C
O
R
R
E
C
T
IO
N

H
IN
T

Z
3

G
e
tI
n
te
g
e
rv

D
O
N
T
C
A
R
E

P
er
sp
ec
ti
v
e
co
rr
ec
ti
o
n

h
in
t

5
.6

h
in
t

P
O
IN
T

S
M
O
O
T
H

H
IN
T

Z
3

G
e
tI
n
te
g
e
rv

D
O
N
T
C
A
R
E

P
o
in
t
sm
o
o
th
h
in
t

5
.6

h
in
t

L
IN
E

S
M
O
O
T
H

H
IN
T

Z
3

G
e
tI
n
te
g
e
rv

D
O
N
T
C
A
R
E

L
in
e
sm
o
o
th
h
in
t

5
.6

h
in
t

P
O
L
Y
G
O
N

S
M
O
O
T
H

H
IN
T

Z
3

G
e
tI
n
te
g
e
rv

D
O
N
T
C
A
R
E

P
o
ly
g
o
n
sm
o
o
th
h
in
t

5
.6

h
in
t

F
O
G

H
IN
T

Z
3

G
e
tI
n
te
g
e
rv

D
O
N
T
C
A
R
E

F
o
g
h
in
t

5
.6

h
in
t

Table 6.23. Hints

Version 1.2.1 - April 1, 1999

214 CHAPTER 6. STATE AND STATE REQUESTS

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

M
in
im
u
m

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

M
A
X

L
IG
H
T
S

Z
+

G
e
tI
n
te
g
e
rv

8

M
a
x
im
u
m
n
u
m
b
er
o
f

li
g
h
ts

2
.1
3
.1

{

M
A
X

C
L
IP

P
L
A
N
E
S

Z
+

G
e
tI
n
te
g
e
rv

6

M
a
x
im
u
m
n
u
m
b
er
o
f

u
se
r
cl
ip
p
in
g
p
la
n
es

2
.1
1

{

M
A
X

C
O
L
O
R

M
A
T
R
IX

S
T
A
C
K

D
E
P
T
H

Z
+

G
e
tI
n
te
g
e
rv

2

M
a
x
im
u
m
co
lo
r
m
a
tr
ix

st
a
ck
d
ep
th

3
.6
.3

{

M
A
X

M
O
D
E
L
V
IE
W

S
T
A
C
K

D
E
P
T
H

Z
+

G
e
tI
n
te
g
e
rv

3
2

M
a
x
im
u
m
m
o
d
el
-v
ie
w

st
a
ck
d
ep
th

2
.1
0
.2

{

M
A
X

P
R
O
J
E
C
T
IO
N

S
T
A
C
K

D
E
P
T
H

Z
+

G
e
tI
n
te
g
e
rv

2

M
a
x
im
u
m
p
ro
je
ct
io
n

m
a
tr
ix
st
a
ck
d
ep
th

2
.1
0
.2

{

M
A
X

T
E
X
T
U
R
E

S
T
A
C
K

D
E
P
T
H

Z
+

G
e
tI
n
te
g
e
rv

2

M
a
x
im
u
m
n
u
m
b
er

d
ep
th
o
f
te
x
tu
re

m
a
tr
ix
st
a
ck

2
.1
0
.2

{

S
U
B
P
IX
E
L
B
IT
S

Z
+

G
e
tI
n
te
g
e
rv

4

N
u
m
b
er
o
f
b
it
s
o
f

su
b
p
ix
el
p
re
ci
si
o
n
in

sc
re
en
x
w

a
n
d
y
w

3

{

M
A
X

3
D

T
E
X
T
U
R
E

S
IZ
E

Z
+

G
e
tI
n
te
g
e
rv

1
6

S
ee
th
e
d
is
cu
ss
io
n
in

S
ec
ti
o
n
3
.8
.

3
.8

{

M
A
X

T
E
X
T
U
R
E

S
IZ
E

Z
+

G
e
tI
n
te
g
e
rv

6
4

S
ee
th
e
d
is
cu
ss
io
n
in

S
ec
ti
o
n
3
.8
.

3
.8

{

M
A
X

P
IX
E
L
M
A
P

T
A
B
L
E

Z
+

G
e
tI
n
te
g
e
rv

3
2

M
a
x
im
u
m
si
ze
o
f
a

P
ix
e
lM
a
p
tr
a
n
sl
a
ti
o
n

ta
b
le

3
.6
.3

{

M
A
X

N
A
M
E

S
T
A
C
K

D
E
P
T
H

Z
+

G
e
tI
n
te
g
e
rv

6
4

M
a
x
im
u
m
se
le
ct
io
n

n
a
m
e
st
a
ck
d
ep
th

5
.2

{

M
A
X

L
IS
T

N
E
S
T
IN
G

Z
+

G
e
tI
n
te
g
e
rv

6
4

M
a
x
im
u
m
d
is
p
la
y
li
st

ca
ll
n
es
ti
n
g

5
.4

{

M
A
X

E
V
A
L
O
R
D
E
R

Z
+

G
e
tI
n
te
g
e
rv

8

M
a
x
im
u
m
ev
a
lu
a
to
r

p
o
ly
n
o
m
ia
l
o
rd
er

5
.1

{

M
A
X

V
IE
W
P
O
R
T

D
IM
S

2
�
Z
+

G
e
tI
n
te
g
e
rv

se
e
2
.1
0
.1

M
a
x
im
u
m
v
ie
w
p
o
rt

d
im
en
si
o
n
s

2
.1
0
.1

{

M
A
X

A
T
T
R
IB

S
T
A
C
K

D
E
P
T
H

Z
+

G
e
tI
n
te
g
e
rv

1
6

M
a
x
im
u
m
d
ep
th
o
f
th
e

se
rv
er
a
tt
ri
b
u
te
st
a
ck

6

{

M
A
X

C
L
IE
N
T

A
T
T
R
IB

S
T
A
C
K

D
E
P
T
H

Z
+

G
e
tI
n
te
g
e
rv

1
6

M
a
x
im
u
m
d
ep
th
o
f
th
e

cl
ie
n
t
a
tt
ri
b
u
te
st
a
ck

6

{

{

3
�
Z
+

-

3
2

M
a
x
im
u
m
si
ze
o
f
a

co
lo
r
ta
b
le

3
.6
.3

{

{

Z
+

-

3
2

M
a
x
im
u
m
si
ze
o
f
th
e

h
is
to
g
ra
m
ta
b
le

3
.6
.3

{

Table 6.24. Implementation Dependent Values

Version 1.2.1 - April 1, 1999

6.2. STATE TABLES 215

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

M
in
im
u
m

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

A
U
X

B
U
F
F
E
R
S

Z
+

G
e
tI
n
te
g
e
rv

0

N
u
m
b
er
o
f
a
u
x
il
ia
ry

b
u
�
er
s

4
.2
.1

{

R
G
B
A

M
O
D
E

B

G
e
tB
o
o
le
a
n
v

{

T
ru
e
if
co
lo
r
b
u
�
er
s

st
o
re
rg
b
a

2
.7

{

IN
D
E
X

M
O
D
E

B

G
e
tB
o
o
le
a
n
v

{

T
ru
e
if
co
lo
r
b
u
�
er
s

st
o
re
in
d
ex
es

2
.7

{

D
O
U
B
L
E
B
U
F
F
E
R

B

G
e
tB
o
o
le
a
n
v

{

T
ru
e
if
fr
o
n
t
&
b
a
ck

b
u
�
er
s
ex
is
t

4
.2
.1

{

S
T
E
R
E
O

B

G
e
tB
o
o
le
a
n
v

{

T
ru
e
if
le
ft
&
ri
g
h
t

b
u
�
er
s
ex
is
t

6

{

A
L
IA
S
E
D

P
O
IN
T

S
IZ
E

R
A
N
G
E

2
�
R
+

G
e
tF
lo
a
tv

1
,1

R
a
n
g
e
(l
o
to
h
i)
o
f

a
li
a
se
d
p
o
in
t
si
ze
s

3
.3

{

S
M
O
O
T
H

P
O
IN
T

S
IZ
E

R
A
N
G
E

(v
1
.1
:
P
O
IN
T

S
IZ
E

R
A
N
G
E
)

2
�
R
+

G
e
tF
lo
a
tv

1
,1

R
a
n
g
e
(l
o
to
h
i)
o
f

a
n
ti
a
li
a
se
d
p
o
in
t
si
ze
s

3
.3

{

S
M
O
O
T
H

P
O
IN
T

S
IZ
E

G
R
A
N
U
L
A
R
IT
Y

(v
1
.1
:
P
O
IN
T

S
IZ
E

G
R
A
N
U
L
A
R
IT
Y
)

R
+

G
e
tF
lo
a
tv

{

A
n
ti
a
li
a
se
d
p
o
in
t
si
ze

g
ra
n
u
la
ri
ty

3
.3

{

A
L
IA
S
E
D

L
IN
E

W
ID
T
H

R
A
N
G
E

2
�
R
+

G
e
tF
lo
a
tv

1
,1

R
a
n
g
e
(l
o
to
h
i)
o
f

a
li
a
se
d
li
n
e
w
id
th
s

3
.4

{

S
M
O
O
T
H

L
IN
E

W
ID
T
H

R
A
N
G
E

(v
1
.1
:
L
IN
E

W
ID
T
H

R
A
N
G
E
)

2
�
R
+

G
e
tF
lo
a
tv

1
,1

R
a
n
g
e
(l
o
to
h
i)
o
f

a
n
ti
a
li
a
se
d
li
n
e
w
id
th
s

3
.4

{

S
M
O
O
T
H

L
IN
E

W
ID
T
H

G
R
A
N
U
L
A
R
IT
Y

(v
1
.1
:
L
IN
E

W
ID
T
H

G
R
A
N
U
L
A
R
IT
Y
)

R
+

G
e
tF
lo
a
tv

{

A
n
ti
a
li
a
se
d
li
n
e
w
id
th

g
ra
n
u
la
ri
ty

3
.4

{

M
A
X

C
O
N
V
O
L
U
T
IO
N

W
ID
T
H

3
�
Z
+

G
e
tC
o
n
v
o
lu
ti
o
n
-

P
a
ra
m
e
te
ri
v

3

M
a
x
im
u
m
w
id
th
o
f

co
n
v
o
lu
ti
o
n
�
lt
er

4
.3

{

M
A
X

C
O
N
V
O
L
U
T
IO
N

H
E
IG
H
T

2
�
Z
+

G
e
tC
o
n
v
o
lu
ti
o
n
-

P
a
ra
m
e
te
ri
v

3

M
a
x
im
u
m
h
ei
g
h
t
o
f

co
n
v
o
lu
ti
o
n
�
lt
er

4
.3

{

M
A
X

E
L
E
M
E
N
T
S
IN
D
IC
E
S

Z
+

G
e
tI
n
te
g
e
rv

{

R
ec
o
m
m
en
d
ed

m
a
x
im
u
m
n
u
m
b
er
o
f

D
ra
w
R
a
n
g
e
E
le
-

m
e
n
ts
in
d
ic
es

2
.8

{

M
A
X

E
L
E
M
E
N
T
S
V
E
R
T
IC
E
S

Z
+

G
e
tI
n
te
g
e
rv

{

R
ec
o
m
m
en
d
ed

m
a
x
im
u
m
n
u
m
b
er
o
f

D
ra
w
R
a
n
g
e
E
le
-

m
e
n
ts
v
er
ti
ce
s

2
.8

{

Table 6.25. More Implementation Dependent Values

Version 1.2.1 - April 1, 1999

216 CHAPTER 6. STATE AND STATE REQUESTS

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

x
B
IT
S

Z
+

G
e
tI
n
te
g
e
rv

-

N
u
m
b
er
o
f
b
it
s
in
x

co
lo
r
b
u
�
er

co
m
p
o
n
en
t;
x
is
o
n
e
o
f

R
E
D
,
G
R
E
E
N
,
B
L
U
E
,

A
L
P
H
A
,
o
r
I
N
D
E
X

4

{

D
E
P
T
H

B
IT
S

Z
+

G
e
tI
n
te
g
e
rv

-

N
u
m
b
er
o
f
d
ep
th

b
u
�
er
p
la
n
es

4

{

S
T
E
N
C
IL
B
IT
S

Z
+

G
e
tI
n
te
g
e
rv

-

N
u
m
b
er
o
f
st
en
ci
l

p
la
n
es

4

{

A
C
C
U
M

x
B
IT
S

Z
+

G
e
tI
n
te
g
e
rv

-

N
u
m
b
er
o
f
b
it
s
in
x

a
cc
u
m
u
la
ti
o
n
b
u
�
er

co
m
p
o
n
en
t
(x
is
R
E
D
,

G
R
E
E
N
,
B
L
U
E
,
o
r
A
L
P
H
A

4

{

Table 6.26. Implementation Dependent Pixel Depths

Version 1.2.1 - April 1, 1999

6.2. STATE TABLES 217

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
a
lu
e

D
es
cr
ip
ti
o
n

S
ec
.

A
tt
ri
b
u
te

L
IS
T

B
A
S
E

Z
+

G
e
tI
n
te
g
e
rv

0

S
et
ti
n
g
o
f
L
is
tB
a
se

5
.4

li
st

L
IS
T

IN
D
E
X

Z
+

G
e
tI
n
te
g
e
rv

0

n
u
m
b
er
o
f
d
is
p
la
y
li
st

u
n
d
er
co
n
st
ru
ct
io
n
;
0

if
n
o
n
e

5
.4

{

L
IS
T

M
O
D
E

Z
+

G
e
tI
n
te
g
e
rv

0

M
o
d
e
o
f
d
is
p
la
y
li
st

u
n
d
er
co
n
st
ru
ct
io
n
;

u
n
d
e�
n
ed
if
n
o
n
e

5
.4

{

{

1
6
�
�
A

{

em
p
ty

S
er
v
er
a
tt
ri
b
u
te
st
a
ck

6

{

A
T
T
R
IB

S
T
A
C
K

D
E
P
T
H

Z
+

G
e
tI
n
te
g
e
rv

0

S
er
v
er
a
tt
ri
b
u
te
st
a
ck

p
o
in
te
r

6

{

{

1
6
�
�
A

{

em
p
ty

C
li
en
t
a
tt
ri
b
u
te
st
a
ck

6

{

C
L
IE
N
T

A
T
T
R
IB

S
T
A
C
K

D
E
P
T
H

Z
+

G
e
tI
n
te
g
e
rv

0

C
li
en
t
a
tt
ri
b
u
te
st
a
ck

p
o
in
te
r

6

{

N
A
M
E

S
T
A
C
K

D
E
P
T
H

Z
+

G
e
tI
n
te
g
e
rv

0

N
a
m
e
st
a
ck
d
ep
th

5
.2

{

R
E
N
D
E
R

M
O
D
E

Z
3

G
e
tI
n
te
g
e
rv

R
E
N
D
E
R

R
e
n
d
e
rM
o
d
e
se
tt
in
g

5
.2

{

S
E
L
E
C
T
IO
N

B
U
F
F
E
R

P
O
IN
T
E
R

Y

G
e
tP
o
in
te
rv

0

S
el
ec
ti
o
n
b
u
�
er

p
o
in
te
r

5
.2

se
le
ct

S
E
L
E
C
T
IO
N

B
U
F
F
E
R

S
IZ
E

Z
+

G
e
tI
n
te
g
e
rv

0

S
el
ec
ti
o
n
b
u
�
er
si
ze

5
.2

se
le
ct

F
E
E
D
B
A
C
K

B
U
F
F
E
R

P
O
IN
T
E
R

Y

G
e
tP
o
in
te
rv

0

F
ee
d
b
a
ck
b
u
�
er

p
o
in
te
r

5
.3

fe
ed
b
a
ck

F
E
E
D
B
A
C
K

B
U
F
F
E
R

S
IZ
E

Z
+

G
e
tI
n
te
g
e
rv

0

F
ee
d
b
a
ck
b
u
�
er
si
ze

5
.3

fe
ed
b
a
ck

F
E
E
D
B
A
C
K

B
U
F
F
E
R

T
Y
P
E

Z
5

G
e
tI
n
te
g
e
rv

2
D

F
ee
d
b
a
ck
ty
p
e

5
.3

fe
ed
b
a
ck

{

n
�
Z
8

G
e
tE
rr
o
r

0

C
u
rr
en
t
er
ro
r
co
d
e(
s)

2
.5

{

{

n
�
B

{

F
a
ls
e

T
ru
e
if
th
er
e
is
a

co
rr
es
p
o
n
d
in
g
er
ro
r

2
.5

{

Table 6.27. Miscellaneous

Version 1.2.1 - April 1, 1999

Appendix A

Invariance

The OpenGL speci�cation is not pixel exact. It therefore does not guarantee
an exact match between images produced by di�erent GL implementations.
However, the speci�cation does specify exact matches, in some cases, for
images produced by the same implementation. The purpose of this appendix
is to identify and provide justi�cation for those cases that require exact
matches.

A.1 Repeatability

The obvious and most fundamental case is repeated issuance of a series of
GL commands. For any given GL and framebu�er state vector, and for
any GL command, the resulting GL and framebu�er state must be identical
whenever the command is executed on that initial GL and framebu�er state.

One purpose of repeatability is avoidance of visual artifacts when a
double-bu�ered scene is redrawn. If rendering is not repeatable, swapping
between two bu�ers rendered with the same command sequence may re-
sult in visible changes in the image. Such false motion is distracting to the
viewer. Another reason for repeatability is testability.

Repeatability, while important, is a weak requirement. Given only re-
peatability as a requirement, two scenes rendered with one (small) polygon
changed in position might di�er at every pixel. Such a di�erence, while
within the law of repeatability, is certainly not within its spirit. Additional
invariance rules are desirable to ensure useful operation.

218

Version 1.2.1 - April 1, 1999

A.2. MULTI-PASS ALGORITHMS 219

A.2 Multi-pass Algorithms

Invariance is necessary for a whole set of useful multi-pass algorithms. Such
algorithms render multiple times, each time with a di�erent GL mode vec-
tor, to eventually produce a result in the framebu�er. Examples of these
algorithms include:

� \Erasing" a primitive from the framebu�er by redrawing it, either in
a di�erent color or using the XOR logical operation.

� Using stencil operations to compute capping planes.

On the other hand, invariance rules can greatly increase the complexity
of high-performance implementations of the GL. Even the weak repeatabil-
ity requirement signi�cantly constrains a parallel implementation of the GL.
Because GL implementations are required to implement ALL GL capabili-
ties, not just a convenient subset, those that utilize hardware acceleration
are expected to alternate between hardware and software modules based on
the current GL mode vector. A strong invariance requirement forces the
behavior of the hardware and software modules to be identical, something
that may be very di�cult to achieve (for example, if the hardware does
oating-point operations with di�erent precision than the software).

What is desired is a compromise that results in many compliant, high-
performance implementations, and in many software vendors choosing to
port to OpenGL.

A.3 Invariance Rules

For a given instantiation of an OpenGL rendering context:

Rule 1 For any given GL and framebu�er state vector, and for any given
GL command, the resulting GL and framebu�er state must be identical each
time the command is executed on that initial GL and framebu�er state.

Rule 2 Changes to the following state values have no side e�ects (the use
of any other state value is not a�ected by the change):

Required:

� Framebu�er contents (all bitplanes)

� The color bu�ers enabled for writing

Version 1.2.1 - April 1, 1999

220 APPENDIX A. INVARIANCE

� The values of matrices other than the top-of-stack matrices

� Scissor parameters (other than enable)

� Writemasks (color, index, depth, stencil)

� Clear values (color, index, depth, stencil, accumulation)

� Current values (color, index, normal, texture coords, edgeag)

� Current raster color, index and texture coordinates.

� Material properties (ambient, di�use, specular, emission, shini-
ness)

Strongly suggested:

� Matrix mode

� Matrix stack depths

� Alpha test parameters (other than enable)

� Stencil parameters (other than enable)

� Depth test parameters (other than enable)

� Blend parameters (other than enable)

� Logical operation parameters (other than enable)

� Pixel storage and transfer state

� Evaluator state (except as it a�ects the vertex data generated by
the evaluators)

� Polygon o�set parameters (other than enables, and except as they
a�ect the depth values of fragments)

Corollary 1 Fragment generation is invariant with respect to the state val-
ues marked with � in Rule 2.

Corollary 2 The window coordinates (x, y, and z) of generated fragments
are also invariant with respect to

Required:

� Current values (color, color index, normal, texture coords, edge-
ag)

� Current raster color, color index, and texture coordinates

� Material properties (ambient, di�use, specular, emission, shini-
ness)

Version 1.2.1 - April 1, 1999

A.4. WHAT ALL THIS MEANS 221

Rule 3 The arithmetic of each per-fragment operation is invariant except
with respect to parameters that directly control it (the parameters that control
the alpha test, for instance, are the alpha test enable, the alpha test function,
and the alpha test reference value).

Corollary 3 Images rendered into di�erent color bu�ers sharing the same
framebu�er, either simultaneously or separately using the same command
sequence, are pixel identical.

A.4 What All This Means

Hardware accelerated GL implementations are expected to default to soft-
ware operation when some GL state vectors are encountered. Even the weak
repeatability requirement means, for example, that OpenGL implementa-
tions cannot apply hysteresis to this swap, but must instead guarantee that
a given mode vector implies that a subsequent command always is executed
in either the hardware or the software machine.

The stronger invariance rules constrain when the switch from hardware
to software rendering can occur, given that the software and hardware ren-
derers are not pixel identical. For example, the switch can be made when
blending is enabled or disabled, but it should not be made when a change
is made to the blending parameters.

Because oating point values may be represented using di�erent formats
in di�erent renderers (hardware and software), many OpenGL state values
may change subtly when renderers are swapped. This is the type of state
value change that Rule 1 seeks to avoid.

Version 1.2.1 - April 1, 1999

Appendix B

Corollaries

The following observations are derived from the body and the other ap-
pendixes of the speci�cation. Absence of an observation from this list in no
way impugns its veracity.

1. The CURRENT RASTER TEXTURE COORDS must be maintained correctly at
all times, including periods while texture mapping is not enabled, and
when the GL is in color index mode.

2. When requested, texture coordinates returned in feedback mode are
always valid, including periods while texture mapping is not enabled,
and when the GL is in color index mode.

3. The error semantics of upward compatible OpenGL revisions may
change. Otherwise, only additions can be made to upward compat-
ible revisions.

4. GL query commands are not required to satisfy the semantics of the
Flush or the Finish commands. All that is required is that the
queried state be consistent with complete execution of all previously
executed GL commands.

5. Application speci�ed point size and line width must be returned as
speci�ed when queried. Implementation dependent clamping a�ects
the values only while they are in use.

6. Bitmaps and pixel transfers do not cause selection hits.

7. The mask speci�ed as the third argument to StencilFunc a�ects the
operands of the stencil comparison function, but has no direct e�ect on

222

Version 1.2.1 - April 1, 1999

223

the update of the stencil bu�er. The mask speci�ed by StencilMask
has no e�ect on the stencil comparison function; it limits the e�ect of
the update of the stencil bu�er.

8. Polygon shading is completed before the polygon mode is interpreted.
If the shade model is FLAT, all of the points or lines generated by a
single polygon will have the same color.

9. A display list is just a group of commands and arguments, so errors
generated by commands in a display list must be generated when the
list is executed. If the list is created in COMPILE mode, errors should
not be generated while the list is being created.

10. RasterPos does not change the current raster index from its default
value in an RGBA mode GL context. Likewise, RasterPos does not
change the current raster color from its default value in a color index
GL context. Both the current raster index and the current raster
color can be queried, however, regardless of the color mode of the GL
context.

11. A material property that is attached to the current color via Color-
Material always takes the value of the current color. Attempts to
change that material property via Material calls have no e�ect.

12. Material and ColorMaterial can be used to modify the RGBA ma-
terial properties, even in a color index context. Likewise, Material
can be used to modify the color index material properties, even in an
RGBA context.

13. There is no atomicity requirement for OpenGL rendering commands,
even at the fragment level.

14. Because rasterization of non-antialiased polygons is point sampled,
polygons that have no area generate no fragments when they are ras-
terized in FILLmode, and the fragments generated by the rasterization
of \narrow" polygons may not form a continuous array.

15. OpenGL does not force left- or right-handedness on any of its coor-
dinates systems. Consider, however, the following conditions: (1) the
object coordinate system is right-handed; (2) the only commands used
to manipulate the model-view matrix are Scale (with positive scaling
values only), Rotate, and Translate; (3) exactly one of either Frus-
tum or Ortho is used to set the projection matrix; (4) the near value

Version 1.2.1 - April 1, 1999

224 APPENDIX B. COROLLARIES

is less than the far value for DepthRange. If these conditions are all
satis�ed, then the eye coordinate system is right-handed and the clip,
normalized device, and window coordinate systems are left-handed.

16. ColorMaterial has no e�ect on color index lighting.

17. (No pixel dropouts or duplicates.) Let two polygons share an identical
edge (that is, there exist vertices A and B of an edge of one polygon,
and vertices C and D of an edge of the other polygon, and the coordi-
nates of vertex A (resp. B) are identical to those of vertex C (resp. D),
and the state of the the coordinate transfomations is identical when
A, B, C, and D are speci�ed). Then, when the fragments produced
by rasterization of both polygons are taken together, each fragment
intersecting the interior of the shared edge is produced exactly once.

18. OpenGL state continues to be modi�ed in FEEDBACK mode and in
SELECT mode. The contents of the framebu�er are not modi�ed.

19. The current raster position, the user de�ned clip planes, the spot direc-
tions and the light positions for LIGHTi, and the eye planes for texgen
are transformed when they are speci�ed. They are not transformed
during a PopAttrib, or when copying a context.

20. Dithering algorithms may be di�erent for di�erent components. In
particular, alpha may be dithered di�erently from red, green, or blue,
and an implementation may choose to not dither alpha at all.

21. For any GL and framebu�er state, and for any group of GL commands
and arguments, the resulting GL and framebu�er state is identical
whether the GL commands and arguments are executed normally or
from a display list.

Version 1.2.1 - April 1, 1999

Appendix C

Version 1.1

OpenGL version 1.1 is the �rst revision since the original version 1.0 was
released on 1 July 1992. Version 1.1 is upward compatible with version 1.0,
meaning that any program that runs with a 1.0 GL implementation will also
run unchanged with a 1.1 GL implementation. Several additions were made
to the GL, especially to the texture mapping capabilities, but also to the
geometry and fragment operations. Following are brief descriptions of each
addition.

C.1 Vertex Array

Arrays of vertex data may be transferred to the GL with many fewer com-
mands than were previously necessary. Six arrays are de�ned, one each
storing vertex positions, normal coordinates, colors, color indices, texture
coordinates, and edge ags. The arrays may be speci�ed and enabled inde-
pendently, or one of the pre-de�ned con�gurations may be selected with a
single command.

The primary goal was to decrease the number of subroutine calls required
to transfer non-display listed geometry data to the GL. A secondary goal was
to improve the e�ciency of the transfer; especially to allow direct memory
access (DMA) hardware to be used to e�ect the transfer. The additions
match those of the EXT vertex array extension, except that static array data
are not supported (because they complicated the interface, and were not
being used), and the pre-de�ned con�gurations are added (both to reduce
subroutine count even further, and to allow for e�cient transfer of array
data).

225

Version 1.2.1 - April 1, 1999

226 APPENDIX C. VERSION 1.1

C.2 Polygon O�set

Depth values of fragments generated by the rasterization of a polygon may be
shifted toward or away from the origin, as an a�ne function of the window
coordinate depth slope of the polygon. Shifted depth values allow copla-
nar geometry, especially facet outlines, to be rendered without depth bu�er
artifacts. They may also be used by future shadow generation algorithms.

The additions match those of the EXT polygon offset extension, with two
exceptions. First, the o�set is enabled separately for POINT, LINE, and FILL

rasterization modes, all sharing a single a�ne function de�nition. (Shifting
the depth values of the outline fragments, instead of the �ll fragments, allows
the contents of the depth bu�er to be maintained correctly.) Second, the
o�set bias is speci�ed in units of depth bu�er resolution, rather than in the
[0,1] depth range.

C.3 Logical Operation

Fragments generated by RGBA rendering may be merged into the frame-
bu�er using a logical operation, just as color index fragments are in GL
version 1.0. Blending is disabled during such operation because it is rarely
desired, because many systems could not support it, and to match the se-
mantics of the EXT blend logic op extension, on which this addition is loosely
based.

C.4 Texture Image Formats

Stored texture arrays have a format, known as the internal format, rather
than a simple count of components. The internal format is represented as
a single enumerated value, indicating both the organization of the image
data (LUMINANCE, RGB, etc.) and the number of bits of storage for each image
component. Clients can use the internal format speci�cation to suggest the
desired storage precision of texture images. New base formats, ALPHA and
INTENSITY, provide new texture environment operations. These additions
match those of a subset of the EXT texture extension.

C.5 Texture Replace Environment

A common use of texture mapping is to replace the color values of generated
fragments with texture color data. This could be speci�ed only indirectly

Version 1.2.1 - April 1, 1999

C.6. TEXTURE PROXIES 227

in GL version 1.0, which required that client speci�ed \white" geometry
be modulated by a texture. GL version 1.1 allows such replacement to be
speci�ed explicitly, possibly improving performance. These additions match
those of a subset of the EXT texture extension.

C.6 Texture Proxies

Texture proxies allow a GL implementation to advertise di�erent maximum
texture image sizes as a function of some other texture parameters, especially
of the internal image format. Clients may use the proxy query mechanism
to tailor their use of texture resources at run time. The proxy interface is
designed to allow such queries without adding new routines to the GL inter-
face. These additions match those of a subset of the EXT texture extension,
except that implementations return allocation information consistent with
support for complete mipmap arrays.

C.7 Copy Texture and Subtexture

Texture array data can be speci�ed from framebu�er memory, as well as
from client memory, and rectangular subregions of texture arrays can be
rede�ned either from client or framebu�er memory. These additions match
those de�ned by the EXT copy texture and EXT subtexture extensions.

C.8 Texture Objects

A set of texture arrays and their related texture state can be treated as a
single object. Such treatment allows for greater implementation e�ciency
when multiple arrays are used. In conjunction with the subtexture capabil-
ity, it also allows clients to make gradual changes to existing texture arrays,
rather than completely rede�ning them. These additions match those of the
EXT texture object extension, with slight additions to the texture residency
semantics.

C.9 Other Changes

1. Color indices may now be speci�ed as unsigned bytes.

Version 1.2.1 - April 1, 1999

228 APPENDIX C. VERSION 1.1

2. Texture coordinates s, t, and r are divided by q during the rasterization
of points, pixel rectangles, and bitmaps. This division was documented
only for lines and polygons in the 1.0 version.

3. The line rasterization algorithm was changed so that vertical lines on
pixel borders rasterize correctly.

4. Separate pixel transfer discussions in chapter 3 and chapter 4 were
combined into a single discussion in chapter 3.

5. Texture alpha values are returned as 1.0 if there is no alpha channel
in the texture array. This behavior was unspeci�ed in the 1.0 version,
and was incorrectly documented in the reference manual.

6. Fog start and end values may now be negative.

7. Evaluated color values direct the evaluation of the lighting equation if
ColorMaterial is enabled.

C.10 Acknowledgements

OpenGL 1.1 is the result of the contributions of many people, representing
a cross section of the computer industry. Following is a partial list of the
contributors, including the company that they represented at the time of
their contribution:

Kurt Akeley, Silicon Graphics

Bill Armstrong, Evans & Sutherland

Andy Bigos, 3Dlabs
Pat Brown, IBM

Jim Cobb, Evans & Sutherland

Dick Coulter, Digital Equipment

Bruce D'Amora, GE Medical Systems

John Dennis, Digital Equipment

Fred Fisher, Accel Graphics
Chris Frazier, Silicon Graphics

Todd Frazier, Evans & Sutherland

Tim Freese, NCD

Ken Garnett, NCD

Mike Heck, Template Graphics Software

Dave Higgins, IBM
Phil Huxley, 3Dlabs

Version 1.2.1 - April 1, 1999

C.10. ACKNOWLEDGEMENTS 229

Dale Kirkland, Intergraph
Hock San Lee, Microsoft
Kevin LeFebvre, Hewlett Packard
Jim Miller, IBM
Tim Misner, SunSoft
Jeremy Morris, 3Dlabs
Israel Pinkas, Intel
Bimal Poddar, IBM
Lyle Ramshaw, Digital Equipment
Randi Rost, Hewlett Packard
John Schimpf, Silicon Graphics
Mark Segal, Silicon Graphics
Igor Sinyak, Intel
Je� Stevenson, Hewlett Packard
Bill Sweeney, SunSoft
Kelvin Thompson, Portable Graphics
Neil Trevett, 3Dlabs
Linas Vepstas, IBM
Andy Vesper, Digital Equipment
Henri Warren, Megatek
Paula Womack, Silicon Graphics
Mason Woo, Silicon Graphics
Steve Wright, Microsoft

Version 1.2.1 - April 1, 1999

Appendix D

Version 1.2

OpenGL version 1.2, released on March 16, 1998, is the second revision since
the original version 1.0. Version 1.2 is upward compatible with version 1.1,
meaning that any program that runs with a 1.1 GL implementation will also
run unchanged with a 1.2 GL implementation.

Several additions were made to the GL, especially to texture mapping ca-
pabilities and the pixel processing pipeline. Following are brief descriptions
of each addition.

D.1 Three-Dimensional Texturing

Three-dimensional textures can be de�ned and used. In-memory formats
for three-dimensional images, and pixel storage modes to support them, are
also de�ned. The additions match those of the EXT texture3D extension.

One important application of three-dimensional textures is rendering
volumes of image data.

D.2 BGRA Pixel Formats

BGRA extends the list of host-memory color formats. Speci�cally, it pro-
vides a component order matching �le and framebu�er formats common on
Windows platforms. The additions match those of the EXT bgra extension.

D.3 Packed Pixel Formats

Packed pixels in host memory are represented entirely by one unsigned byte,
one unsigned short, or one unsigned integer. The �elds with the packed pixel

230

Version 1.2.1 - April 1, 1999

D.4. NORMAL RESCALING 231

are not proper machine types, but the pixel as a whole is. Thus the pixel
storage modes and their unpacking counterparts all work correctly with
packed pixels.

The additions match those of the EXT packed pixels extension, with the
further addition of reversed component order packed formats.

D.4 Normal Rescaling

Normals may be rescaled by a constant factor derived from the modelview
matrix. Rescaling can operate faster than renormalization in many cases,
while resulting in the same unit normals.

The additions are based on the EXT rescale normal extension.

D.5 Separate Specular Color

Lighting calculations are modi�ed to produce a primary color consisting of
emissive, ambient and di�use terms of the usual GL lighting equation, and
a secondary color consisting of the specular term. Only the primary color
is modi�ed by the texture environment; the secondary color is added to
the result of texturing to produce a single post-texturing color. This allows
highlights whose color is based on the light source creating them, rather
than surface properties.

The additions match those of the EXT separate specular color exten-
sion.

D.6 Texture Coordinate Edge Clamping

GL normally clamps such that the texture coordinates are limited to exactly
the range [0; 1]. When a texture coordinate is clamped using this algorithm,
the texture sampling �lter straddles the edge of the texture image, taking
half its sample values from within the texture image, and the other half from
the texture border. It is sometimes desirable to clamp a texture without
requiring a border, and without using the constant border color.

A new texture clamping algorithm, CLAMP TO EDGE, clamps texture coor-
dinates at all mipmap levels such that the texture �lter never samples a
border texel. The color returned when clamping is derived only from texels
at the edge of the texture image.

The additions match those of the SGIS texture edge clamp extension.

Version 1.2.1 - April 1, 1999

232 APPENDIX D. VERSION 1.2

D.7 Texture Level of Detail Control

Two constraints related to the texture level of detail parameter � are added.
One constraint clamps � to a speci�ed oating point range. The other limits
the selection of mipmap image arrays to a subset of the arrays that would
otherwise be considered.

Together these constraints allow a large texture to be loaded and used
initially at low resolution, and to have its resolution raised gradually as more
resolution is desired or available. Image array speci�cation is necessarily in-
tegral, rather than continuous. By providing separate, continuous clamping
of the � parameter, it is possible to avoid "popping" artifacts when higher
resolution images are provided.

The additions match those of the SGIS texture lod extension.

D.8 Vertex Array Draw Element Range

A new form of DrawElements that provides explicit information on the
range of vertices referred to by the index set is added. Implementations can
take advantage of this additional information to process vertex data without
having to scan the index data to determine which vertices are referenced.

The additions match those of the EXT draw range elements extension.

D.9 Imaging Subset

The remaining new features are primarily intended for advanced image pro-
cessing applications, and may not be present in all GL implementations.
The are collectively referred to as the imaging subset.

D.9.1 Color Tables

A new RGBA-format color lookup mechanism is de�ned in the pixel trans-
fer process, providing additional lookup capabilities beyond the existing
lookup. The key di�erence is that the new lookup tables are treated as
one-dimensional images with internal formats, like texture images and con-
volution �lter images. Thus the new tables can operate on a subset of the
components of passing pixel groups. For example, a table with internal for-
mat ALPHA modi�es only the A component of each pixel group, leaving the
R, G, and B components unmodi�ed.

Version 1.2.1 - April 1, 1999

D.9. IMAGING SUBSET 233

Three independent lookups may be performed: prior to convolution;
after convolution and prior to color matrix transformation; after color matrix
transformation and prior to gathering pipeline statistics.

Methods to initialize the color lookup tables from the framebu�er, in
addition to the standard memory source mechanisms, are provided.

Portions of a color lookup table may be rede�ned without reinitializing
the entire table. The a�ected portions may be speci�ed either from host
memory or from the framebu�er.

The additions match those of the EXT color table and
EXT color subtable extensions.

D.9.2 Convolution

One- or two-dimensional convolution operations are executed following the
�rst color table lookup in the pixel transfer process. The convolution kernels
are themselves treated as one- and two-dimensional images, which can be
loaded from application memory or from the framebu�er.

The convolution framework is designed to accommodate three-
dimensional convolution, but that API is left for a future extension.

The additions match those of the EXT convolution and
HP convolution border modes extensions.

D.9.3 Color Matrix

A 4x4 matrix transformation and associated matrix stack are added to the
pixel transfer path. The matrix operates on RGBA pixel groups, using the
equation

C 0 =MC;

where

C =

0
BB@
R
G
B
A

1
CCA

andM is the 4�4 matrix on the top of the color matrix stack. After the
matrix multiplication, each resulting color component is scaled and biased
by a programmed amount. Color matrix multiplication follows convolution.

The color matrix can be used to reassign and duplicate color components.
It can also be used to implement simple color space conversions.

The additions match those of the SGI color matrix extension.

Version 1.2.1 - April 1, 1999

234 APPENDIX D. VERSION 1.2

D.9.4 Pixel Pipeline Statistics

Pixel operations that count occurences of speci�c color component values
(histogram) and that track the minimum and maximum color component
values (minmax) are performed at the end of the pixel transfer pipeline. An
optional mode allows pixel data to be discarded after the histogram and/or
minmax operations are completed. Otherwise the pixel data continues on
to the next operation una�ected.

The additions match those of the EXT histogram extension.

D.9.5 Constant Blend Color

A constant color that can be used to de�ne blend weighting factors may be
de�ned. A typical usage is blending two RGB images. Without the constant
blend factor, one image must have an alpha channel with each pixel set to
the desired blend factor.

The additions match those of the EXT blend color extension.

D.9.6 New Blending Equations

Blending equations other than the normal weighted sum of source and des-
tination components may be used.

Two of the new equations produce the minimum (or maximum) color
components of the source and destination colors. Taking the maximum is
useful for applications such as maximum projection in medical imaging.

The other two equations are similar to the default blending equation,
but produce the di�erence of its left and right hand sides, rather than the
sum. Image di�erences are useful in many image processing applications.

The additions match those of the EXT blend minmax and
EXT blend subtract extensions.

D.10 Acknowledgements

OpenGL 1.2 is the result of the contributions of many people, representing
a cross section of the computer industry. Following is a partial list of the
contributors, including the company that they represented at the time of
their contribution:

Kurt Akeley, Silicon Graphics

Bill Armstrong, Evans & Sutherland

Otto Berkes, Microsoft

Version 1.2.1 - April 1, 1999

D.10. ACKNOWLEDGEMENTS 235

Pierre-Luc Bisaillon, Matrox Graphics
Drew Bliss, Microsoft
David Blythe, Silicon Graphics
Jon Brewster, Hewlett Packard
Dan Brokenshire, IBM
Pat Brown, IBM
Newton Cheung, S3
Bill Cli�ord, Digital
Jim Cobb, Parametric Technology
Bruce D'Amora, IBM
Kevin Dallas, Microsoft
Mahesh Dandapani, Rendition
Daniel Daum, AccelGraphics
Suzy De�eyes, IBM
Peter Doyle, Intel
Jay Duluk, Raycer
Craig Dunwoody, Silicon Graphics
Dave Erb, IBM
Fred Fisher, AccelGraphics / Dynamic Pictures
Celeste Fowler, Silicon Graphics
Allen Gallotta, ATI
Ken Garnett, NCD
Michael Gold, Nvidia / Silicon Graphics
Craig Groeschel, Metro Link
Jan Hardenbergh, Mitsubishi Electric
Mike Heck, Template Graphics Software
Dick Hessel, Raycer Graphics
Paul Ho, Silicon Graphics
Shawn Hopwood, Silicon Graphics
Jim Hurley, Intel
Phil Huxley, 3Dlabs
Dick Jay, Template Graphics Software
Paul Jensen, 3Dfx
Brett Johnson, Hewlett Packard
Michael Jones, Silicon Graphics
Tim Kelley, Real3D
Jon Khazam, Intel
Louis Khouw, Sun
Dale Kirkland, Intergraph
Chris Kitrick, Raycer

Version 1.2.1 - April 1, 1999

236 APPENDIX D. VERSION 1.2

Don Kuo, S3
Herb Kuta, Quantum 3D
Phil Lacroute, Silicon Graphics
Prakash Ladia, S3
Jon Leech, Silicon Graphics
Kevin Lefebvre, Hewlett Packard
David Ligon, Raycer Graphics
Kent Lin, S3
Dan McCabe, S3
Jack Middleton, Sun
Tim Misner, Intel
Bill Mitchell, National Institute of Standards
Jeremy Morris, 3Dlabs
Gene Munce, Intel
William Newhall, Real3D
Matthew Papakipos, Nvidia / Raycer
Garry Paxinos, Metro Link
Hanspeter P�ster, Mitsubishi Electric
Richard Pimentel, Parametric Technology
Bimal Poddar, IBM / Intel
Rob Putney, IBM
Mike Quinlan, Real3D
Nate Robins, University of Utah
Detlef Roettger, Elsa
Randi Rost, Hewlett Packard
Kevin Rushforth, Sun
Richard S. Wright, Real3D
Hock San Lee, Microsoft
John Schimpf, Silicon Graphics
Stefan Seeboth, ELSA
Mark Segal, Silicon Graphics
Bob Seitsinger, S3
Min-Zhi Shao, S3
Colin Sharp, Rendition
Igor Sinyak, Intel
Bill Sweeney, Sun
William Sweeney, Sun
Nathan Tuck, Raycer
Doug Twillenger, Sun
John Tynefeld, 3dfx

Version 1.2.1 - April 1, 1999

D.10. ACKNOWLEDGEMENTS 237

Kartik Venkataraman, Intel
Andy Vesper, Digital Equipment
Henri Warren, Digital Equipment / Megatek
Paula Womack, Silicon Graphics
Steve Wright, Microsoft
David Yu, Silicon Graphics
Randy Zhao, S3

Version 1.2.1 - April 1, 1999

Appendix E

Version 1.2.1

OpenGL version 1.2.1, released on October 14, 1998, introduced ARB ex-
tensions (see Appendix F). The only ARB extension de�ned in this version
is multitexture, allowing application of multiple textures to a fragment in
one rendering pass. Multitexture is based on the SGIS multitexture exten-
sion, simpli�ed by removing the ability to route texture coordinate sets to
arbitrary texture units.

A new corollary discussing display list and immediate mode invariance
was added to Appendix B on April 1, 1999.

238

Version 1.2.1 - April 1, 1999

Appendix F

ARB Extensions

OpenGL extensions that have been approved by the OpenGL Architectural
Review Board (ARB) are described in this chapter. These extensions are
not required to be supported by a conformant OpenGL implementation, but
are expected to be widely available; they de�ne functionality that is likely
to move into the required feature set in a future revision of the speci�cation.

In order not to compromise the readability of the core speci�cation,
ARB extensions are not integrated into the core language; instead, they are
presented in this chapter, as changes to the core.

F.1 Naming Conventions

To distinguish ARB extensions from core OpenGL features and from vendor-
speci�c extensions, the following naming conventions are used:

� A unique name string of the form "GL ARB name" is associated with
each extension. If the extension is supported by an implementation,
this string will be present in the EXTENSIONS string described in sec-
tion 6.1.11.

� All functions de�ned by the extension will have names of the form
FunctionARB

� All enumerants de�ned by the extension will have names of the form
NAME ARB.

239

Version 1.2.1 - April 1, 1999

240 APPENDIX F. ARB EXTENSIONS

F.2 Multitexture

Multitexture adds support for multiple texture units. The capabilities of
the multiple texture units are identical, except that evaluation and feedback
are supported only for texture unit 0. Each texture unit has its own state
vector which includes texture vertex array speci�cation, texture image and
�ltering parameters, and texture environment application.

The texture environments of the texture units are applied in a pipelined
fashion whereby the output of one texture environment is used as the input
fragment color for the next texture environment. Changes to texture client
state and texture server state are each routed through one of two selectors
which control which instance of texture state is a�ected.

The speci�cation is written using four texture units though the actual
number supported is implementation dependent and can be larger or smaller
than four.

The name string for multitexture is GL ARB multitexture.

F.2.1 Dependencies

Multitexture requires features of OpenGL 1.1.

F.2.2 Issues

The extension currently requires a separate texture coordinate input for each
texture unit. Modi�cation to allow routing and/or broadcasting texcoords
and TexGen output would be useful, possibly as a future extension layered
on multitexture.

F.2.3 Changes to Section 2.6 (Begin/End Paradigm)

Amend paragraphs 2 and 3
Each vertex is speci�ed with two, three, or four coordinates. In addition,

a current normal, multiple current texture coordinate sets, and current color
may be used in processing each vertex. Normals are used by the GL in
lighting calculations; the current normal is a three-dimensional vector that
may be set by sending three coordinates that specify it. Texture coordinates
determine how a texture image is mapped onto a primitive. Multiple sets
of texture coordinates may be used to specify how multiple texture images
are mapped onto a primitive. The number of texture units supported is
implementation dependent but must be at least one. The number of active
textures supported can be queried with the state MAX TEXTURE UNITS ARB.

Version 1.2.1 - April 1, 1999

F.2. MULTITEXTURE 241

Primary and secondary colors are associated with each vertex (see sec-
tion 3.9). These associated colors are either based on the current color or
produced by lighting, depending on whether or not lighting is enabled. Tex-
ture coordinates are similarly associated with each vertex. Multiple sets of
texture coordinates may be associated with a vertex. Figure F.1 summa-
rizes the association of auxiliary data with a transformed vertex to produce
a processed vertex.
Amend paragraph 6

Before colors have been assigned to a vertex, the state required by a
vertex is the vertex's coordinates, the current normal, the current edge ag
(see section 2.6.2), the current material properties (see section 2.13.2), and
the multiple current texture coordinate sets. Because color assignment is
done vertex-by-vertex, a processed vertex comprises the vertex's coordinates,
its edge ag, its assigned colors, and its multiple texture coordinate sets.

F.2.4 Changes to Section 2.7 (Vertex Speci�cation)

Amend paragraph 2
Current values are used in associating auxiliary data with a vertex as

described in section 2.6. A current value may be changed at any time by
issuing an appropriate command. The commands

void TexCoordf1234gfsifdg(T coords);
void TexCoordf1234gfsifdgv(T coords);

specify the current homogeneous texture coordinates, named s, t, r, and q.
The TexCoord1 family of commands set the s coordinate to the provided
single argument while setting t and r to 0 and q to 1. Similarly, TexCoord2
sets s and t to the speci�ed values, r to 0 and q to 1; TexCoord3 sets s, t,
and r, with q set to 1, and TexCoord4 sets all four texture coordinates.

Implementations may support more than one texture unit, and thus more
than one set of texture coordinates. The commands

void MultiTexCoordf1234gfsifdgARB(enum texture,T
coords)

void MultiTexCoordf1234gfsifdgvARB(enum texture,T
coords)

take the coordinate set to be modi�ed as the texture parameter. texture
is a symbolic constant of the form TEXTUREi ARB, indicating that texture
coordinate set i is to be modi�ed. The constants obey TEXTUREi ARB =

Version 1.2.1 - April 1, 1999

242 APPENDIX F. ARB EXTENSIONS

lighting

vertex / normal
transformation

Current
Normal

Current
Color and
Materials

Associated
Data

Transformed
Coordinates

Processed
Vertex

Out

(Colors, Edge Flag,
and Texture
Coordinates)

Vertex
Coordinates In

Current
Edge Flag

texgen texture
matrix 1

Current
Texture

Coord Set 1

texgen texture
matrix 2

Current
Texture

Coord Set 2

texgen texture
matrix 3

Current
Texture

Coord Set 3

texgen texture
matrix 4

Current
Texture

Coord Set 4

Figure F.1. Association of current values with a vertex. The heavy lined
boxes represent GL state. Four texture units are shown; however, multitex-
turing may support a di�erent number of units depending on the implemen-
tation.

Version 1.2.1 - April 1, 1999

F.2. MULTITEXTURE 243

TEXTURE0 ARB+ i (i is in the range 0 to k�1, where k is the implementation-
dependent number of texture units de�ned by MAX TEXTURE UNITS ARB).

The TexCoord commands are exactly equivalent to the corresponding
MultiTexCoordARB commands with texture set to TEXTURE0 ARB.

Gets of CURRENT TEXTURE COORDS return the texture coordinate set de�ned
by the value of ACTIVE TEXTURE ARB.

Specifying an invalid texture coordinate set for the texture argument of
MultiTexCoordARB results in unde�ned behavior.

F.2.5 Changes to Section 2.8 (Vertex Arrays)

Amend paragraph 1

The vertex speci�cation commands described in section 2.7 accept data
in almost any format, but their use requires many command executions to
specify even simple geometry. Vertex data may also be placed into arrays
that are stored in the client's address space. Blocks of data in these arrays
may then be used to specify multiple geometric primitives through the ex-
ecution of a single GL command. The client may specify up to 5 plus the
value of MAX TEXTURE UNITS ARB arrays: one each to store vertex coordinates,
edge ags, colors, color indices, normals, and one or more texture coordinate
sets. The commands . . .

Insert between paragraph 2 and 3

In implementations which support more than one texture unit, the com-
mand

void ClientActiveTextureARB(enum texture);

is used to select the vertex array client state parameters to
be modi�ed by the TexCoordPointer command and the array af-
fected by EnableClientState and DisableClientState with parame-
ter TEXTURE COORD ARRAY. This command sets the client state variable
CLIENT ACTIVE TEXTURE ARB. Each texture unit has a client state vector which
is selected when this command is invoked. This state vector includes the
vertex array state. This call also selects which texture units' client state
vector is used for queries of client state.

Specifying an invalid texture generates the error INVALID ENUM. Valid val-
ues of texture are the same as for the MultiTexCoordARB commands
described in section 2.7.

Amend �nal paragraph

Version 1.2.1 - April 1, 1999

244 APPENDIX F. ARB EXTENSIONS

If the number of supported texture units (the value of
MAX TEXTURE UNITS ARB) is k, then the client state required to imple-
ment vertex arrays consists of 5 + k boolean values, 5 + k memory pointers,
5 + k integer stride values, 4 + k symbolic constants representing array
types, and 3 + k integers representing values per element. In the initial
state, the boolean values are each disabled, the memory pointers are each
null, the strides are each zero, the array types are each FLOAT, and the
integers representing values per element are each four.

F.2.6 Changes to Section 2.10.2 (Matrices)

Amend paragraph 8

For each texture unit, a 4 � 4 matrix is applied to the corresponding
texture coordinates. This matrix is applied as

0
BB@
m1 m5 m9 m13

m2 m6 m10 m14

m3 m7 m11 m15

m4 m8 m12 m16

1
CCA
0
BB@
s
t
r
q

1
CCA ;

where the left matrix is the current texture matrix. The matrix is applied
to the coordinates resulting from texture coordinate generation (which may
simply be the current texture coordinates), and the resulting transformed co-
ordinates become the texture coordinates associated with a vertex. Setting
the matrix mode to TEXTURE causes the already described matrix operations
to apply to the texture matrix.

There is also a corresponding texture matrix stack for each texture unit.
To change the stack a�ected by matrix operations, set the active texture
unit selector by calling

void ActiveTextureARB(enum texture);

The selector also a�ects calls modifying texture environment state, texture
coordinate generation state, texture binding state, and queries of all these
state values as well as current texture coordinates and current raster texture
coordinates.

Specifying an invalid texture generates the error INVALID ENUM. Valid val-
ues of texture are the same as for the MultiTexCoordARB commands
described in section 2.7.

The active texture unit selector may be queried by callingGetIntegerv
with pname set to ACTIVE TEXTURE ARB.

Version 1.2.1 - April 1, 1999

F.2. MULTITEXTURE 245

There is a stack of matrices for each of matrix modes MODELVIEW,
PROJECTION, and COLOR, and for each texture unit. For MODELVIEW mode,
the stack depth is at least 32 (that is, there is a stack of at least 32 model-
view matrices). For the other modes, the depth is at least 2. Texture matrix
stacks for all texture units have the same depth. The current matrix in any
mode is the matrix on the top of the stack for that mode.

void PushMatrix(void);

pushes the stack down by one, duplicating the current matrix in both the
top of the stack and the entry below it.

void PopMatrix(void);

pops the top entry o� of the stack, replacing the current matrix with the
matrix that was the second entry in the stack. The pushing or popping takes
place on the stack corresponding to the current matrix mode. Popping a
matrix o� a stack with only one entry generates the error STACK UNDERFLOW;
pushing a matrix onto a full stack generates STACK OVERFLOW.

When the current matrix mode is TEXTURE, the texture matrix stack of
the active texture unit is pushed or popped.

The state required to implement transformations consists of a four-
valued integer indicating the current matrix mode, one stack of at least
two 4�4 matrices for each of COLOR, PROJECTION, each texture unit, TEXTURE,
and a stack of at least 32 4 � 4 matrices for MODELVIEW. Each matrix stack
has an associated stack pointer. Initially, there is only one matrix on each
stack, and all matrices are set to the identity. The initial matrix mode is
MODELVIEW. The initial value of ACTIVE TEXTURE ARB is TEXTURE0 ARB.

F.2.7 Changes to Section 2.10.4 (Generating Texture Coor-
dinates)

Amend paragraph 4
The state required for texture coordinate generation for each texture

unit comprises a three-valued integer for each coordinate indicating coor-
dinate generation mode, and a bit for each coordinate to indicate whether
texture coordinate generation is enabled or disabled. In addition, four co-
e�cients are required for the four coordinates for each of EYE LINEAR and
OBJECT LINEAR. The initial state has the texture generation function dis-
abled for all texture coordinates. The initial values of pi for s are all 0
except p1 which is one; for t all the pi are zero except p2, which is 1.
The values of pi for r and q are all 0. These values of pi apply for both

Version 1.2.1 - April 1, 1999

246 APPENDIX F. ARB EXTENSIONS

the EYE LINEAR and OBJECT LINEAR versions. Initially all texture generation
modes are EYE LINEAR.

For implementations which support more than one texture unit, there is
texture coordinate generation state for each unit. The texture coordinate
generation state which is a�ected by the TexGen, Enable, and Disable
operations is set with ActiveTextureARB.

F.2.8 Changes to Section 2.12 (Current Raster Position)

Amend paragraph 2
The state required for the current raster position consists of three window

coordinates xw, yw, and zw, a clip coordinate wc value, an eye coordinate
distance, a valid bit, and associated data consisting of a color and multiple
texture coordinate sets. It is set using one of the RasterPos commands:

void RasterPosf234gfsifdg(T coords);
void RasterPosf234gfsifdgv(T coords);

RasterPos4 takes four values indicating x, y, z, and w. RasterPos3 (or
RasterPos2) is analogous, but sets only x, y, and z with w implicitly set
to 1 (or only x and y with z implicitly set to 0 and w implicitly set to 1).

Gets of CURRENT RASTER TEXTURE COORDS are a�ected by the setting of the
state ACTIVE TEXTURE ARB.
Modify �gure 2.7
Amend paragraph 5

The current raster position requires �ve single-precision oating-point
values for its xw, yw, and zw window coordinates, its wc clip coordinate,
and its eye coordinate distance, a single valid bit, a color (RGBA and color
index), and texture coordinates for each texture unit. In the initial state,
the coordinates and texture coordinates are all (0; 0; 0; 1), the eye coordinate
distance is 0, the valid bit is set, the associated RGBA color is (1; 1; 1; 1)
and the associated color index color is 1. In RGBA mode, the associated
color index always has its initial value; in color index mode, the RGBA color
always maintains its initial value.

F.2.9 Changes to Section 3.8 (Texturing)

Amend paragraphs 1 and 2
Texturing maps a portion of one or more speci�ed images onto each

primitive for which texturing is enabled. This mapping is accomplished by
using the color of an image at the location indicated by a fragment's (s; t; r)

Version 1.2.1 - April 1, 1999

F.2. MULTITEXTURE 247

Rasterpos In

Current
Normal

Lighting

Vertex/Normal
Transformation

Clip Project

Current
Raster

Position

Valid

Raster
Position

Raster
Distance

Associated
Data

Current
Color &

Materials

Texture
Matrix 0Current

Texture
Coord Set 0

Texgen

Texture
Matrix 3Current

Texture
Coord Set 3

Texgen

Texture
Matrix 2Current

Texture
Coord Set 2

Texgen

Texture
Matrix 1Current

Texture
Coord Set 1

Texgen

Figure F.2. The current raster position and how it is set. Four texture units
are shown; however, multitexturing may support a di�erent number of units
depending on the implementation.

Version 1.2.1 - April 1, 1999

248 APPENDIX F. ARB EXTENSIONS

coordinates to modify the fragment's primary RGBA color. Texturing does
not a�ect the secondary color.

An implementation may support texturing using more than one image at
a time. In this case the fragment carries multiple sets of texture coordinates
(s; t; r) which are used to index separate images to produce color values
which are collectively used to modify the fragment's RGBA color. Texturing
is speci�ed only for RGBA mode; its use in color index mode is unde�ned.
The following subsections (up to and including Section 3.8.5) specify the
GL operation with a single texture and Section 3.8.10 speci�es the details
of how multiple texture units interact.

F.2.10 Changes to Section 3.8.5 (Texture Mini�cation)

Amend second paragraph under the Mipmapping subheading

Each array in a mipmap is de�ned using TexImage3D, TexImage2D,
CopyTexImage2D, TexImage1D, or CopyTexImage1D; the array be-
ing set is indicated with the level-of-detail argument level. Level-of-detail
numbers proceed from TEXTURE BASE LEVEL for the original texture array
through p = maxfn;m; lg + TEXTURE BASE LEVEL with each unit increase in-
dicating an array of half the dimensions of the previous one as already de-
scribed. If texturing is enabled (and TEXTURE MIN FILTER is one that requires
a mipmap) at the time a primitive is rasterized and if the set of arrays
TEXTURE BASE LEVEL through q = minfp; TEXTURE MAX LEVELg is incomplete,
then it is as if texture mapping were disabled for that texture unit. The set
of arrays TEXTURE BASE LEVEL through q is incomplete if the internal formats
of all the mipmap arrays were not speci�ed with the same symbolic constant,
if the border widths of the mipmap arrays are not the same, if the dimen-
sions of the mipmap arrays do not follow the sequence described above,
if TEXTURE MAX LEVEL < TEXTURE BASE LEVEL, or if TEXTURE BASE LEVEL > p.
Array levels k where k < TEXTURE BASE LEVEL or k > q are insigni�cant.

F.2.11 Changes to Section 3.8.8 (Texture Objects)

Insert following the last paragraph

The texture object name space, including the initial one-, two-, and
three-dimensional texture objects, is shared among all texture units. A
texture object may be bound to more than one texture unit simultaneously.
After a texture object is bound, any GL operations on that target object
a�ect any other texture units to which the same texture object is bound.

Texture binding is a�ected by the setting of the state ACTIVE TEXTURE ARB.

Version 1.2.1 - April 1, 1999

F.2. MULTITEXTURE 249

If a texture object is deleted, it as if all texture units which are bound
to that texture object are rebound to texture object zero.

F.2.12 Changes to Section 3.8.10 (Texture Application)

Amend second paragraph

Each texture unit is enabled and bound to texture objects independently
from the other texture units. Each texture unit follows the precendence
rules for one-, two-, and three-dimensional textures. Thus texture units can
be performing texture mapping of di�erent dimensionalities simultaneously.
Each unit has its own enable and binding states.

Each texture unit is paired with an environment function, as shown
in �gure F.3. The second texture function is computed using the texture
value from the second texture, the fragment resulting from the �rst texture
function computation and the second texture unit's environment function.
If there is a third texture, the fragment resulting from the second texture
function is combined with the third texture value using the third texture
unit's environment function and so on. The texture unit selected by Ac-
tiveTextureARB determines which texture unit's environment is modi�ed
by TexEnv calls.

Texturing is enabled and disabled individually for each texture unit. If
texturing is disabled for one of the units, then the fragment resulting from
the previous unit, is passed unaltered to the following unit.

The required state, per texture unit, is three bits indicating whether
each of one-, two-, or three-dimensional texturing is enabled or disabled. In
the intial state, all texturing is disabled for all texture units.

F.2.13 Changes to Section 5.1 (Evaluators)

Amend paragraph 7

The evaluation of a de�ned map is enabled or disabled with Enable and
Disable using the constant corresponding to the map as described above.
The evaluator map generates only coordinates for texture unit TEXTURE0 ARB.
The error INVALID VALUE results if either ustride or vstride is less than k, or
if u1 is equal to u2, or if v1 is equal to v2. If the value of ACTIVE TEXTURE ARB

is not TEXTURE0 ARB, callingMap[12] generates the error INVALID OPERATION.

F.2.14 Changes to Section 5.3 (Feedback)

Amend paragraph 4

Version 1.2.1 - April 1, 1999

250 APPENDIX F. ARB EXTENSIONS

TE0

TE1

TE2

TE3

Cf

CT0

CT1

CT2

CT3

C’f

CTi = texture color from texture lookup i

Cf = fragment color input to texturing

C’f = fragment color output from texturing

TEi = texture environment i

Figure F.3. Multitexture pipeline. Four texture units are shown; however,
multitexturing may support a di�erent number of units depending on the
implementation. The input fragment color is successively combined with each
texture according to the state of the corresponding texture environment, and
the resulting fragment color passed as input to the next texture unit in the
pipeline.

Version 1.2.1 - April 1, 1999

F.2. MULTITEXTURE 251

The texture coordinates and colors returned are those resulting from the
clipping operations described in Section 2.13.8. Only coordinates for tex-
ture unit TEXTURE0 ARB are returned even for implementations which support
multiple texture units. The colors returned are the primary colors.

F.2.15 Changes to Section 6.1.2 (Data Conversions)

Insert following the last paragraph

Most texture state variables are quali�ed by the
value of ACTIVE TEXTURE ARB to determine which server texture state vector
is queried. Client texture state variables such as texture coordinate array
pointers are quali�ed by the value of CLIENT ACTIVE TEXTURE ARB. Tables 6.5,
6.6, 6.7, 6.12, 6.14, and 6.25 indicate those state variables which are quali�ed
by ACTIVE TEXTURE ARB or CLIENT ACTIVE TEXTURE ARB during state queries.

F.2.16 Changes to Section 6.1.12 (Saving and Restoring
State)

Insert following paragraph 3

Operations on groups containing replicated texture state push or pop
texture state within that group for all texture units. When state for a
group is pushed, all state corresponding to TEXTURE0 ARB is pushed �rst,
followed by state corresponding to TEXTURE1 ARB, and so on up to and in-
cluding the state corresponding to TEXTUREk ARB where k + 1 is the value of
MAX TEXTURE UNITS ARB. When state for a group is popped, the replicated tex-
ture state is restored in the opposite order that it was pushed, starting with
state corresponding to TEXTUREk ARB and ending with TEXTURE0 ARB. Identical
rules are observed for client texture state push and pop operations. Matrix
stacks are never pushed or popped with PushAttrib, PushClientAttrib,
PopAttrib, or PopClientAttrib.

Version 1.2.1 - April 1, 1999

252 APPENDIX F. ARB EXTENSIONS

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
al
u
e

D
es
cr
ip
ti
on

S
ec
.

A
tt
ri
b
u
te

M
o
d
i�
ed
st
at
e
in
ta
b
le
6.
5

C
U
R
R
E
N
T

T
E
X
T
U
R
E

C
O
O
R
D
S

1
��
T

G
e
tF
lo
a
tv

0,
0,
0,
1

C
u
rr
en
t
te
x
tu
re

co
or
d
in
at
es

2.
7

cu
rr
en
t

C
U
R
R
E
N
T

R
A
S
T
E
R

T
E
X
T
U
R
E

C
O
O
R
D
S

1
��
T

G
e
tF
lo
a
tv

0,
0,
0,
1

T
ex
tu
re
co
or
d
in
at
es

as
so
ci
at
ed
w
it
h

ra
st
er
p
os
it
io
n

2.
12

cu
rr
en
t

M
o
d
i�
ed
st
at
e
in
ta
b
le
6.
6

T
E
X
T
U
R
E

C
O
O
R
D

A
R
R
A
Y

1
��
B

Is
E
n
a
b
le
d

F
a
ls
e

T
ex
tu
re
co
or
d
in
at
e

ar
ra
y
en
ab
le

2.
8

ve
rt
ex
-a
rr
ay

T
E
X
T
U
R
E

C
O
O
R
D

A
R
R
A
Y

S
IZ
E

1
��
Z
+

G
e
tI
n
te
g
e
rv

4

C
o
or
d
in
at
es
p
er

el
em
en
t

2.
8

ve
rt
ex
-a
rr
ay

T
E
X
T
U
R
E

C
O
O
R
D

A
R
R
A
Y

T
Y
P
E

1
��
Z
4

G
e
tI
n
te
g
e
rv

F
L
O
A
T

T
y
p
e
of
te
x
tu
re

co
or
d
in
at
es

2.
8

ve
rt
ex
-a
rr
ay

T
E
X
T
U
R
E

C
O
O
R
D

A
R
R
A
Y

S
T
R
ID
E

1
��
Z
+

G
e
tI
n
te
g
e
rv

0

S
tr
id
e
b
et
w
ee
n

te
x
tu
re
co
or
d
in
at
es

2.
8

ve
rt
ex
-a
rr
ay

T
E
X
T
U
R
E

C
O
O
R
D

A
R
R
A
Y

P
O
IN
T
E
R

1
��
Y

G
e
tP
o
in
te
rv

0

P
oi
n
te
r
to
th
e

te
x
tu
re
co
or
d
in
at
e

ar
ra
y

2.
8

ve
rt
ex
-a
rr
ay

Table F.1. Changes to State Tables

Version 1.2.1 - April 1, 1999

F.2. MULTITEXTURE 253

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
al
u
e

D
es
cr
ip
ti
on

S
ec
.

A
tt
ri
b
u
te

M
o
d
i�
ed
st
at
e
in
ta
b
le
6.
7

T
E
X
T
U
R
E

M
A
T
R
IX

1
��
2
��
M
4

G
e
tF
lo
a
tv

Id
en
ti
ty

T
ex
tu
re
m
at
ri
x
st
ac
k

2.
10
.2

{

T
E
X
T
U
R
E

S
T
A
C
K

D
E
P
T
H

1
��
Z
+

G
e
tI
n
te
g
e
rv

1

T
ex
tu
re
m
at
ri
x
st
ac
k

p
oi
n
te
r

2.
10
.2

{

M
o
d
i�
ed
st
at
e
in
ta
b
le
6.
12

T
E
X
T
U
R
E

x
D

1
��
3
�
B

Is
E
n
a
b
le
d

F
a
ls
e

T
ru
e
if
x
D
te
x
tu
ri
n
g

is
en
ab
le
d
;
x
is
1
,
2
,

or
3

3.
8.
10

te
x
tu
re
/e
n
ab
le

T
E
X
T
U
R
E

B
IN
D
IN
G

x
D

1
��
3
�
Z
+

G
e
tI
n
te
g
e
rv

0

T
ex
tu
re
ob
je
ct

b
ou
n
d
to
T
E
X
T
U
R
E
x
D

3.
8.
8

te
x
tu
re

M
o
d
i�
ed
st
at
e
in
ta
b
le
6.
14

T
E
X
T
U
R
E

E
N
V

M
O
D
E

1
��
Z
4

G
e
tT
e
x
E
n
v
iv

M
O
D
U
L
A
T
E

T
ex
tu
re
ap
p
li
ca
ti
on

fu
n
ct
io
n

3.
8.
9

te
x
tu
re

T
E
X
T
U
R
E

E
N
V

C
O
L
O
R

1
��
C

G
e
tT
e
x
E
n
v
fv

0,
0,
0,
0

T
ex
tu
re
en
v
ir
on
m
en
t

co
lo
r

3.
8.
9

te
x
tu
re

T
E
X
T
U
R
E

G
E
N

x

1
��
4
�
B

Is
E
n
a
b
le
d

F
a
ls
e

T
ex
ge
n
en
ab
le
d
(x
is

S
,
T
,
R
,
or
Q
)

2.
10
.4

te
x
tu
re
/e
n
ab
le

E
Y
E

P
L
A
N
E

1
��
4
�
R
4

G
e
tT
e
x
G
e
n
fv

se
e
2.
10
.4

T
ex
ge
n
p
la
n
e

eq
u
at
io
n
co
e�
ci
en
ts

(f
or
S
,
T
,
R
,
an
d
Q
)

2.
10
.4

te
x
tu
re

O
B
J
E
C
T

P
L
A
N
E

1
��
4
�
R
4

G
e
tT
e
x
G
e
n
fv

se
e
2.
10
.4

T
ex
ge
n
ob
je
ct
li
n
ea
r

co
e�
ci
en
ts
(f
or
S
,
T
,

R
,
an
d
Q
)

2.
10
.4

te
x
tu
re

T
E
X
T
U
R
E

G
E
N

M
O
D
E

1
��
4
�
Z
3

G
e
tT
e
x
G
e
n
iv

E
Y
E
L
I
N
E
A
R

F
u
n
ct
io
n
u
se
d
fo
r

te
x
ge
n
(f
or
S
,
T
,
R
,

an
d
Q

2.
10
.4

te
x
tu
re

Table F.2. Changes to State Tables (cont.)

Version 1.2.1 - April 1, 1999

254 APPENDIX F. ARB EXTENSIONS

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

In
it
ia
l

V
al
u
e

D
es
cr
ip
ti
on

S
ec
.

A
tt
ri
b
u
te

A
d
d
ed
to
ta
b
le
6.
6

C
L
IE
N
T

A
C
T
IV
E

T
E
X
T
U
R
E

A
R
B

Z
1
�

G
e
tI
n
te
g
e
rv

T
E
X
T
U
R
E
0
A
R
B

C
li
en
t
ac
ti
ve
te
x
tu
re

u
n
it
se
le
ct
or

2.
7

ve
rt
ex
-a
rr
ay

A
d
d
ed
to
ta
b
le
6.
14

A
C
T
IV
E

T
E
X
T
U
R
E

A
R
B

Z
1
�

G
e
tI
n
te
g
e
rv

T
E
X
T
U
R
E
0
A
R
B

A
ct
iv
e
te
x
tu
re
u
n
it

se
le
ct
or

2.
7

te
x
tu
re

Table F.3. New State Introduced by Multitexture

Version 1.2.1 - April 1, 1999

F.2. MULTITEXTURE 255

G
et
va
lu
e

T
y
p
e

G
et
C
m
n
d

M
in
im
u
m

V
al
u
e

D
es
cr
ip
ti
on

S
ec
.

A
tt
ri
b
u
te

A
d
d
ed
to
ta
b
le
6.
25

M
A
X

T
E
X
T
U
R
E

U
N
IT
S
A
R
B

Z
+

G
e
tI
n
te
g
e
rv

1

N
u
m
b
er
of
te
x
tu
re

u
n
it
s
(n
ot
to
ex
ce
ed

32
)

2.
6

{

Table F.4. New Implementation-Dependent Values Introduced by Multitexture

Version 1.2.1 - April 1, 1999

Index of OpenGL Commands

x BIAS, 78, 208
x SCALE, 78, 208
2D, 174, 176, 217
2 BYTES, 177
3D, 174, 176
3D COLOR, 174, 176
3D COLOR TEXTURE, 174, 176
3 BYTES, 177
4D COLOR TEXTURE, 174, 176
4 BYTES, 177

1, 113, 120, 131, 136, 137, 185, 202,
253

2, 113, 120, 136, 137, 185, 202, 253
3, 113, 120, 136, 137, 185, 202, 253
4, 113, 120, 136, 137, 185

ACCUM, 155
Accum, 155, 156
ACCUM BUFFER BIT, 154, 191
ACTIVE TEXTURE ARB, 243{246,

248, 249, 251
ActiveTextureARB, 244, 246, 249
ADD, 155, 156
ALL ATTRIB BITS, 191
ALL CLIENT ATTRIB BITS, 191
ALPHA, 78, 92, 103, 104, 114, 115,

136, 137, 159, 160, 185, 208,
210, 216, 226, 232

ALPHA12, 115
ALPHA16, 115
ALPHA4, 115
ALPHA8, 115
ALPHA BIAS, 101
ALPHA SCALE, 101
ALPHA TEST, 143

AlphaFunc, 143
ALWAYS, 143{145, 205
AMBIENT, 50, 51
AMBIENT AND DIFFUSE, 50, 51,

53
AND, 151
AND INVERTED, 151
AND REVERSE, 151
AreTexturesResident, 134, 178
ArrayElement, 19, 23, 24, 175
AUTO NORMAL, 167
AUXi, 151, 152
AUXn, 151, 158
AUX0, 151, 158

BACK, 49, 51, 52, 70, 73, 151, 152,
158, 159, 183, 201

BACK LEFT, 151, 152, 158
BACK RIGHT, 151, 152, 158
Begin, 12, 15{20, 23, 24, 28, 55, 62,

67, 70, 73, 168, 169, 174
BGR, 92, 159, 162
BGRA, 92, 94, 98, 159, 230
BindTexture, 133
BITMAP, 72, 80, 83, 90, 91, 98, 110,

160, 185
Bitmap, 110
BITMAP TOKEN, 176
BLEND, 135, 137, 146, 150
BlendColor, 77, 146
BlendEquation, 77, 146, 147
BlendFunc, 77, 146, 147, 149
BLUE, 78, 92, 159, 160, 208, 210, 216
BLUE BIAS, 101
BLUE SCALE, 101
BYTE, 22, 91, 160, 161, 177

256

Version 1.2.1 - April 1, 1999

INDEX 257

C3F V3F, 25, 26
C4F N3F V3F, 25, 26
C4UB V2F, 25, 26
C4UB V3F, 25, 26
CallList, 19, 177, 178
CallLists, 19, 177, 178
CCW, 48, 201
CLAMP, 124, 127
CLAMP TO EDGE, 124, 125, 127,

231
CLEAR, 151
Clear, 153, 154
ClearAccum, 154
ClearColor, 154
ClearDepth, 154
ClearIndex, 154
ClearStencil, 154
CLIENT ACTIVE TEXTURE

ARB, 243, 251
CLIENT PIXEL STORE BIT, 191
CLIENT VERTEX ARRAY BIT,

191
ClientActiveTextureARB, 243
CLIP PLANEi, 39
CLIP PLANE0, 39
ClipPlane, 38
COEFF, 184
COLOR, 31, 34, 81, 85, 86, 120, 162,

245
Color, 19{21, 43, 56
Color3, 20
Color4, 20
COLOR ARRAY, 23, 27
COLOR ARRAY POINTER, 189
COLOR BUFFER BIT, 153, 191
COLOR INDEX, 72, 80, 83, 90, 92,

102, 110, 159, 162, 184, 185
COLOR INDEXES, 50, 54
COLOR LOGIC OP, 150
COLOR MATERIAL, 51, 53
COLOR MATRIX, 185
COLOR MATRIX STACK DEPTH,

185
COLOR TABLE, 80, 82, 103
COLOR TABLE ALPHA SIZE, 186

COLOR TABLE BIAS, 80, 81, 186
COLOR TABLE BLUE SIZE, 186
COLOR TABLE FORMAT, 186
COLOR TABLE GREEN SIZE, 186
COLOR TABLE INTENSITY

SIZE, 186
COLOR TABLE LUMINANCE

SIZE, 186
COLOR TABLE RED SIZE, 186
COLOR TABLE SCALE, 80, 81, 186
COLOR TABLE WIDTH, 186
ColorMask, 152, 153
ColorMaterial, 51{53, 167, 223, 228
ColorPointer, 19, 21, 22, 27, 178
ColorSubTable, 81, 82
ColorTable, 79, 81{83, 108, 109, 179
ColorTableParameter, 80
ColorTableParameterfv, 80
Colorub, 56
Colorui, 56
Colorus, 56
COMPILE, 175, 223
COMPILE AND EXECUTE, 175,

177, 178
CONSTANT ALPHA, 77, 148, 149
CONSTANT ATTENUATION, 50
CONSTANT BORDER, 105, 106
CONSTANT COLOR, 77, 148, 149
CONVOLUTION 1D, 84, 86, 103,

117, 186, 187
CONVOLUTION 2D, 83{85, 103,

117, 186, 187
CONVOLUTION BORDER

COLOR, 106, 187
CONVOLUTION BORDER

MODE, 105, 187
CONVOLUTION FILTER BIAS,

83{85, 187
CONVOLUTION FILTER SCALE,

83{86, 187
CONVOLUTION FORMAT, 187
CONVOLUTION HEIGHT, 187
CONVOLUTION WIDTH, 187
ConvolutionFilter1D, 84{86
ConvolutionFilter2D, 83{86

Version 1.2.1 - April 1, 1999

258 INDEX

ConvolutionParameter, 84, 105
ConvolutionParameterfv, 83, 84, 106
ConvolutionParameteriv, 85, 106
COPY, 150, 151, 205
COPY INVERTED, 151
COPY PIXEL TOKEN, 176
CopyColorSubTable, 81, 82
CopyColorTable, 81, 82
CopyConvolutionFilter1D, 85
CopyConvolutionFilter2D, 85
CopyPixels, 75, 78, 81, 85, 86, 103,

120, 156, 162, 163, 173
CopyTexImage1D, 103, 120, 121, 129,

248
CopyTexImage2D, 103, 118, 120, 121,

129, 248
CopyTexImage3D, 121
CopyTexSubImage1D, 103, 121, 123
CopyTexSubImage2D, 103, 121, 122
CopyTexSubImage3D, 103, 121, 122
CULL FACE, 70
CullFace, 70
CURRENT BIT, 191
CURRENT RASTER

TEXTURE COORDS, 222,
246

CURRENT TEXTURE COORDS,
243

CW, 48

DECAL, 135, 137
DECR, 144
DeleteLists, 178
DeleteTextures, 133, 178
DEPTH, 162, 208
DEPTH BIAS, 78, 101
DEPTH BUFFER BIT, 153, 191
DEPTH COMPONENT, 80, 83, 90,

92, 112, 158, 159, 162, 184
DEPTH SCALE, 78, 101
DEPTH TEST, 145
DepthFunc, 145
DepthMask, 153
DepthRange, 30, 182, 224
DIFFUSE, 50, 51

Disable, 35, 38, 39, 44, 51, 60, 64,
67, 70, 72, 74, 108, 109, 138,
143{146, 149, 150, 166, 167,
246, 249

DisableClientState, 19, 23, 27, 178,
243

DITHER, 150
DOMAIN, 184
DONT CARE, 180, 213
DOUBLE, 22
DRAW PIXEL TOKEN, 176
DrawArrays, 23, 24, 175
DrawBu�er, 151, 152
DrawElements, 24, 25, 175, 232
DrawPixels, 72, 75, 76, 78, 80, 83, 89{

93, 98, 100, 103, 110, 112,
113, 156, 158, 160, 162, 173

DrawRangeElements, 25, 215
DST ALPHA, 148
DST COLOR, 148

EDGE FLAG ARRAY, 23, 27
EDGE FLAG ARRAY POINTER,

189
EdgeFlag, 18, 19
EdgeFlagPointer, 19, 21, 22, 178
EdgeFlagv, 18
EMISSION, 50, 51
Enable, 35, 38, 39, 44, 51, 60, 64,

67, 70, 72, 74, 108, 109, 138,
143{146, 149, 150, 166, 167,
181, 246, 249

ENABLE BIT, 191
EnableClientState, 19, 23, 27, 178,

243
End, 12, 15{20, 23, 24, 28, 55, 62, 70,

73, 168, 169, 174
EndList, 175, 177
EQUAL, 143{145
EQUIV, 151
EVAL BIT, 191
EvalCoord, 19, 167
EvalCoord1, 167{169
EvalCoord1d, 168
EvalCoord1f, 168

Version 1.2.1 - April 1, 1999

INDEX 259

EvalCoord2, 167, 169, 170
EvalMesh1, 168
EvalMesh2, 168, 169
EvalPoint, 19
EvalPoint1, 169
EvalPoint2, 170
EXP, 139, 140, 198
EXP2, 139
EXT bgra, 230
EXT blend color, 234
EXT blend logic op, 226
EXT blend minmax, 234
EXT blend subtract, 234
EXT color subtable, 233
EXT color table, 233
EXT convolution, 233
EXT copy texture, 227
EXT draw range elements, 232
EXT histogram, 234
EXT packed pixels, 231
EXT polygon o�set, 226
EXT rescale normal, 231
EXT separate specular color, 231
EXT subtexture, 227
EXT texture, 226, 227
EXT texture3D, 230
EXT texture object, 227
EXT vertex array, 225
EXTENSIONS, 77, 189, 239
EYE LINEAR, 37, 38, 183, 204, 245,

246, 253
EYE PLANE, 37

FALSE, 18, 19, 46{48, 76, 78, 87, 88,
98, 101, 109, 110, 134, 158,
182, 184, 187, 188

FASTEST, 180
FEEDBACK, 171, 173, 174, 224
FEEDBACK BUFFER POINTER,

189
FeedbackBu�er, 173, 174, 178
FILL, 73{75, 169, 201, 223, 226
Finish, 178, 179, 222
FLAT, 54, 223

FLOAT, 22, 26, 27, 91, 160, 161, 177,
196, 244, 252

Flush, 178, 179, 222
FOG, 138
Fog, 139, 140
FOG BIT, 191
FOG COLOR, 139
FOG DENSITY, 139
FOG END, 139
FOG HINT, 180
FOG INDEX, 140
FOG MODE, 139, 140
FOG START, 139
FRONT, 49, 51, 70, 73, 151, 152, 158,

159, 183
FRONT AND BACK, 49, 51{53, 70,

73, 151, 152
FRONT LEFT, 151, 152, 158
FRONT RIGHT, 151, 152, 158
FrontFace, 48, 70
Frustum, 32, 33, 223
FUNC ADD, 147, 149, 205
FUNC REVERSE SUBTRACT, 147
FUNC SUBTRACT, 147

GenLists, 178
GenTextures, 133, 134, 178, 184
GEQUAL, 143{145
Get, 30, 178, 181, 182, 243, 246
GetBooleanv, 181, 182, 193
GetClipPlane, 182, 183
GetColorTable, 83, 158, 185
GetColorTableParameter, 186
GetConvolutionFilter, 158, 186
GetConvolutionParameter, 187
GetConvolutionParameteriv, 83, 84
GetDoublev, 181, 182, 193
GetError, 11
GetFloatv, 181, 182, 185, 193
GetHistogram, 88, 158, 187
GetHistogramParameter, 188
GetIntegerv, 25, 181, 182, 185, 193,

244
GetLight, 182, 183
GetMap, 183

Version 1.2.1 - April 1, 1999

260 INDEX

GetMaterial, 182, 183
GetMinmax, 158, 188
GetMinmaxParameter, 188
GetPixelMap, 183
GetPointerv, 189
GetPolygonStipple, 185
GetSeparableFilter, 158, 186
GetString, 189
GetTexEnv, 182, 183
GetTexGen, 182, 183
GetTexImage, 103, 132, 184, 186{188
GetTexImage1D, 158
GetTexImage2D, 158
GetTexImage3D, 158
GetTexLevelParameter, 182, 183
GetTexParameter, 182, 183
GetTexParameterfv, 132, 134
GetTexParameteriv, 132, 134
GL ARB multitexture, 240
GREATER, 143{145
GREEN, 78, 92, 159, 160, 208, 210,

216
GREEN BIAS, 101
GREEN SCALE, 101

Hint, 179
HINT BIT, 191
HISTOGRAM, 87, 88, 109, 187, 188
Histogram, 87, 88, 109, 179
HISTOGRAM ALPHA SIZE, 188
HISTOGRAM BLUE SIZE, 188
HISTOGRAM FORMAT, 188
HISTOGRAM GREEN SIZE, 188
HISTOGRAM LUMINANCE SIZE,

188
HISTOGRAM RED SIZE, 188
HISTOGRAM SINK, 188
HISTOGRAM WIDTH, 188
HP convolution border modes, 233

INCR, 144
INDEX, 216
Index, 19, 21
INDEX ARRAY, 23, 27
INDEX ARRAY POINTER, 189

INDEX LOGIC OP, 150
INDEX OFFSET, 78, 101, 208
INDEX SHIFT, 78, 101, 208
IndexMask, 152, 153
IndexPointer, 19, 22, 178
InitNames, 171
INT, 22, 91, 160, 161, 177
INTENSITY, 87, 88, 103, 104, 114,

115, 136, 137, 185, 208, 226
INTENSITY12, 87, 88, 115
INTENSITY16, 87, 88, 115
INTENSITY4, 87, 88, 115
INTENSITY8, 87, 88, 115
InterleavedArrays, 19, 25, 26, 178
INVALID ENUM, 12, 13, 38, 49, 77,

83, 87, 88, 90, 120, 132, 184,
243, 244

INVALID OPERATION, 13, 19, 77,
90, 94, 133, 151, 156, 158,
159, 171, 173, 175, 249

INVALID VALUE, 12, 13, 22, 25, 30,
33, 49, 60, 64, 76, 78{80, 82{
84, 87, 113, 114, 116, 121{
123, 130, 134, 139, 143, 154,
165, 166, 168, 175, 177, 183,
184, 249

INVERT, 144, 151
IsEnabled, 178, 181, 193
IsList, 178
IsTexture, 178, 184

KEEP, 144, 145, 205

LEFT, 151, 152, 158
LEQUAL, 143{145
LESS, 143{145, 205
Light, 49, 50
LIGHTi, 49, 51, 224
LIGHT0, 49
LIGHT MODEL AMBIENT, 50
LIGHT MODEL COLOR

CONTROL, 50
LIGHT MODEL LOCAL VIEWER,

50
LIGHT MODEL TWO SIDE, 50

Version 1.2.1 - April 1, 1999

INDEX 261

LIGHTING, 44
LIGHTING BIT, 191
LightModel, 49, 50
LINE, 73{75, 168, 169, 201, 226
LINE BIT, 191
LINE LOOP, 15
LINE RESET TOKEN, 176
LINE SMOOTH, 64
LINE SMOOTH HINT, 180
LINE STIPPLE, 67
LINE STRIP, 15, 168
LINE TOKEN, 176
LINEAR, 124, 127, 130, 131, 139
LINEAR ATTENUATION, 50
LINEAR MIPMAP LINEAR, 124,

129, 130
LINEAR MIPMAP NEAREST, 124,

129, 130
LINES, 16, 67
LineStipple, 66
LineWidth, 62
LIST BIT, 191
ListBase, 178, 179
LOAD, 155
LoadIdentity, 31
LoadMatrix, 31, 32
LoadName, 171
LOGIC OP, 150
LogicOp, 150, 151
LUMINANCE, 92, 99, 103, 104, 113{

115, 136, 137, 159, 160, 185,
208, 210, 226

LUMINANCE12, 115
LUMINANCE12 ALPHA12, 115
LUMINANCE12 ALPHA4, 115
LUMINANCE16, 115
LUMINANCE16 ALPHA16, 115
LUMINANCE4, 115
LUMINANCE4 ALPHA4, 115
LUMINANCE6 ALPHA2, 115
LUMINANCE8, 115
LUMINANCE8 ALPHA8, 115
LUMINANCE ALPHA, 92, 99, 103,

104, 113{115, 136, 137, 159,
160, 162, 185

Map1, 165, 166, 182
MAP1 COLOR 4, 165
MAP1 INDEX, 165
MAP1 NORMAL, 165
MAP1 TEXTURE COORD 1, 165,

167
MAP1 TEXTURE COORD 2, 165,

167
MAP1 TEXTURE COORD 3, 165
MAP1 TEXTURE COORD 4, 165
MAP1 VERTEX 3, 165
MAP1 VERTEX 4, 165
Map2, 165, 166, 182
MAP2 VERTEX 3, 167
MAP2 VERTEX 4, 167
Map[12], 249
MAP COLOR, 78, 101, 102
MAP STENCIL, 78, 102
MAP VERTEX 3, 167
MAP VERTEX 4, 167
MapGrid1, 168
MapGrid2, 168
Material, 19, 49, 50, 54, 223
MatrixMode, 31
MAX, 147
MAX 3D TEXTURE SIZE, 116
MAX ATTRIB STACK DEPTH,

190
MAX CLIENT ATTRIB STACK

DEPTH, 190
MAX COLOR MATRIX STACK

DEPTH, 185
MAX CONVOLUTION HEIGHT,

83, 187
MAX CONVOLUTION WIDTH,

83, 84, 187
MAX ELEMENTS INDICES, 25
MAX ELEMENTS VERTICES, 25
MAX EVAL ORDER, 165, 166
MAX PIXEL MAP TABLE, 79, 101
MAX TEXTURE SIZE, 116
MAX TEXTURE UNITS ARB, 240,

243, 244, 251
MIN, 147
MINMAX, 88, 109, 188

Version 1.2.1 - April 1, 1999

262 INDEX

Minmax, 88, 110
MINMAX FORMAT, 188
MINMAX SINK, 188
MODELVIEW, 31, 34, 245
MODULATE, 135, 136
MULT, 155, 156
MultiTexCoord, 241
MultiTexCoordARB, 243, 244
MultMatrix, 31, 32

N3F V3F, 25, 26
NAND, 151
NEAREST, 124, 127, 130, 131
NEAREST MIPMAP LINEAR, 124,

129{131
NEAREST MIPMAP NEAREST,

124, 129{131
NEVER, 143{145
NewList, 175, 177, 178
NICEST, 180
NO ERROR, 11, 12
NONE, 151, 152
NOOP, 151
NOR, 151
Normal, 19, 20
Normal3, 8, 9, 20
Normal3d, 8
Normal3dv, 9
Normal3f, 8
Normal3fv, 9
NORMAL ARRAY, 23, 27
NORMAL ARRAY POINTER, 189
NORMALIZE, 35
NormalPointer, 19, 22, 27, 178
NOTEQUAL, 143{145

OBJECT LINEAR, 37, 38, 183, 245,
246

OBJECT PLANE, 37
ONE, 148, 149, 205
ONE MINUS CONSTANT ALPHA,

77, 148, 149
ONE MINUS CONSTANT COLOR,

77, 148, 149
ONE MINUS DST ALPHA, 148

ONE MINUS DST COLOR, 148
ONE MINUS SRC ALPHA, 148
ONE MINUS SRC COLOR, 148
OR, 151
OR INVERTED, 151
OR REVERSE, 151
ORDER, 184
Ortho, 32, 33, 223
OUT OF MEMORY, 12, 13, 177

PACK ALIGNMENT, 158, 207
PACK IMAGE HEIGHT, 158, 184,

207
PACK LSB FIRST, 158, 207
PACK ROW LENGTH, 158, 207
PACK SKIP IMAGES, 158, 184, 207
PACK SKIP PIXELS, 158, 207
PACK SKIP ROWS, 158, 207
PACK SWAP BYTES, 158, 207
PASS THROUGH TOKEN, 176
PassThrough, 174
PERSPECTIVE CORRECTION

HINT, 180
PIXEL MAP A TO A, 79, 101
PIXEL MAP B TO B, 79, 101
PIXEL MAP G TO G, 79, 101
PIXEL MAP I TO A, 79, 102
PIXEL MAP I TO B, 79, 102
PIXEL MAP I TO G, 79, 102
PIXEL MAP I TO I, 79, 102
PIXEL MAP I TO R, 79, 102
PIXEL MAP R TO R, 79, 101
PIXEL MAP S TO S, 79, 102
PIXEL MODE BIT, 191
PixelMap, 75, 78, 79, 162
PixelStore, 19, 75, 76, 78, 158, 162,

178
PixelTransfer, 75, 78, 107, 162
PixelZoom, 100
POINT, 73, 74, 168, 169, 201, 226
POINT BIT, 191
POINT SMOOTH, 60
POINT SMOOTH HINT, 180
POINT TOKEN, 176
POINTS, 15, 168

Version 1.2.1 - April 1, 1999

INDEX 263

PointSize, 60
POLYGON, 16, 19
POLYGON BIT, 191
POLYGON OFFSET FILL, 74
POLYGON OFFSET LINE, 74
POLYGON OFFSET POINT, 74
POLYGON SMOOTH, 70
POLYGON SMOOTH HINT, 180
POLYGON STIPPLE, 72
POLYGON STIPPLE BIT, 191
POLYGON TOKEN, 176
PolygonMode, 69, 73, 75, 171, 173
PolygonO�set, 74
PolygonStipple, 72
PopAttrib, 189, 190, 192, 224, 251
PopClientAttrib, 19, 178, 189, 190,

192, 251
PopMatrix, 34, 245
PopName, 171
POSITION, 50, 183
POST COLOR MATRIX x BIAS,

78
POST COLOR MATRIX x SCALE,

78
POST COLOR MATRIX ALPHA

BIAS, 108
POST COLOR MATRIX ALPHA

SCALE, 108
POST COLOR MATRIX BLUE

BIAS, 108
POST COLOR MATRIX BLUE

SCALE, 108
POST COLOR MATRIX COLOR

TABLE, 80, 109
POST COLOR MATRIX GREEN

BIAS, 108
POST COLOR MATRIX GREEN

SCALE, 108
POST COLOR MATRIX RED

BIAS, 108
POST COLOR MATRIX RED

SCALE, 108
POST CONVOLUTION x BIAS, 78
POST CONVOLUTION x SCALE,

78

POST CONVOLUTION ALPHA
BIAS, 107

POST CONVOLUTION ALPHA
SCALE, 107

POST CONVOLUTION BLUE
BIAS, 107

POST CONVOLUTION BLUE
SCALE, 107

POST CONVOLUTION COLOR
TABLE, 80, 108

POST CONVOLUTION GREEN
BIAS, 107

POST CONVOLUTION GREEN
SCALE, 107

POST CONVOLUTION RED
BIAS, 107

POST CONVOLUTION RED
SCALE, 107

PrioritizeTextures, 134, 135
PROJECTION, 31, 34, 245
PROXY COLOR TABLE, 80, 82,

179
PROXY HISTOGRAM, 87, 88, 179,

188
PROXY POST COLOR MATRIX

COLOR TABLE, 80, 179
PROXY POST CONVOLUTION

COLOR TABLE, 80, 179
PROXY TEXTURE 1D, 117, 132,

179, 183
PROXY TEXTURE 2D, 116, 132,

179, 183
PROXY TEXTURE 3D, 112, 132,

179, 183
PushAttrib, 189, 190, 192, 251
PushClientAttrib, 19, 178, 189, 190,

192, 251
PushMatrix, 34, 245
PushName, 171

Q, 36, 38, 183
QUAD STRIP, 17
QUADRATIC ATTENUATION, 50
QUADS, 18, 19

R, 36, 38, 183

Version 1.2.1 - April 1, 1999

264 INDEX

R3 G3 B2, 115
RasterPos, 41, 171, 223, 246
RasterPos2, 41, 246
RasterPos3, 41, 246
RasterPos4, 41, 246
ReadBu�er, 158, 159, 162
ReadPixels, 75, 78, 91{93, 103, 156{

160, 162, 178, 184{186
Rect, 28, 70
RED, 78, 92, 159, 160, 208, 210, 216
RED BIAS, 101
RED SCALE, 101
REDUCE, 105, 107, 209
RENDER, 171, 172, 217
RENDERER, 189
RenderMode, 171{174, 178
REPEAT, 124, 125, 127, 128, 131,

203
REPLACE, 135, 136, 144
REPLICATE BORDER, 105, 106
RESCALE NORMAL, 35
ResetHistogram, 187
ResetMinmax, 188
RETURN, 155, 156
RGB, 92, 94, 98, 103, 104, 113{115,

136, 137, 159, 162, 185, 226
RGB10, 115
RGB10 A2, 115
RGB12, 115
RGB16, 115
RGB4, 115
RGB5, 115
RGB5 A1, 115
RGB8, 115
RGBA, 81, 82, 85{88, 92, 94, 98, 103,

104, 113{115, 136, 137, 159,
162, 185, 208{211

RGBA12, 115
RGBA16, 115
RGBA2, 115
RGBA4, 115
RGBA8, 115
RIGHT, 151, 152, 158
Rotate, 32, 223

S, 36, 37, 183
Scale, 32, 33, 223
Scissor, 143
SCISSOR BIT, 191
SCISSOR TEST, 143
SELECT, 171, 172, 224
SelectBu�er, 171, 172, 178
SELECTION BUFFER POINTER,

189
SEPARABLE 2D, 85, 103, 117, 187
SeparableFilter2D, 84
SEPARATE SPECULAR COLOR,

47
SET, 151
SGI color matrix, 233
SGIS multitexture, 238
SGIS texture edge clamp, 231
SGIS texture lod, 232
ShadeModel, 54
SHININESS, 50
SHORT, 22, 91, 160, 161, 177
SINGLE COLOR, 46, 47, 199
SMOOTH, 54, 198
SPECULAR, 50, 51
SPHERE MAP, 37, 38
SPOT CUTOFF, 50
SPOT DIRECTION, 50, 183
SPOT EXPONENT, 50
SRC ALPHA, 148
SRC ALPHA SATURATE, 148
SRC COLOR, 148
STACK OVERFLOW, 13, 34, 171,

190, 245
STACK UNDERFLOW, 13, 34, 171,

190, 245
STENCIL, 162
STENCIL BUFFER BIT, 154, 191
STENCIL INDEX, 80, 83, 90, 92,

100, 112, 156, 158, 159, 162,
184

STENCIL TEST, 144
StencilFunc, 144, 222
StencilMask, 153, 156, 223
StencilOp, 144, 145

Version 1.2.1 - April 1, 1999

INDEX 265

T, 36, 183
T2F C3F V3F, 25, 26
T2F C4F N3F V3F, 25, 26
T2F C4UB V3F, 25, 26
T2F N3F V3F, 25, 26
T2F V3F, 25, 26
T4F C4F N3F V4F, 25, 26
T4F V4F, 25, 26
TABLE TOO LARGE, 13, 80, 87
TexCoord, 19, 20, 241, 243
TexCoord1, 20, 241
TexCoord2, 20, 241
TexCoord3, 20, 241
TexCoord4, 20, 241
TexCoordPointer, 19, 21, 22, 27, 178,

243
TexEnv, 135, 249
TexGen, 36{38, 240, 246
TexImage, 121
TexImage1D, 76, 103, 105, 113, 117,

118, 120, 121, 129, 132, 179,
248

TexImage2D, 76, 87, 88, 103, 105,
113, 116{118, 120, 121, 129,
132, 179, 248

TexImage3D, 76, 112{114, 116{118,
121, 129, 132, 178, 184, 248

TexParameter, 123
TexParameter[if], 126, 130
TexParameterf, 134
TexParameterfv, 134
TexParameteri, 134
TexParameteriv, 134
TexSubImage, 121
TexSubImage1D, 103, 121, 123
TexSubImage2D, 103, 120{122
TexSubImage3D, 120{122
TEXTURE, 31, 34, 244, 245
TEXTUREi ARB, 241
TEXTURE0 ARB, 243, 245, 249,

251, 254
TEXTURE1 ARB, 251
TEXTURE xD, 202, 253
TEXTURE 1D, 103, 117, 120, 121,

124, 132, 133, 138, 183, 184

TEXTURE 2D, 103, 116, 120, 121,
124, 132, 133, 138, 183, 184

TEXTURE 3D, 112, 121, 124, 132,
133, 138, 183, 184

TEXTURE ALPHA SIZE, 183
TEXTURE BASE LEVEL, 116, 117,

124, 126, 127, 129{132, 248
TEXTURE BIT, 190, 191
TEXTURE BLUE SIZE, 183
TEXTURE BORDER, 183
TEXTURE BORDER COLOR, 124,

129, 131, 132
TEXTURE COMPONENTS, 183
TEXTURE COORD ARRAY, 23,

27, 243
TEXTURE COORD ARRAY

POINTER, 189
TEXTURE DEPTH, 183
TEXTURE ENV, 135, 183
TEXTURE ENV COLOR, 135
TEXTURE ENV MODE, 135
TEXTURE GEN MODE, 37, 38
TEXTURE GEN Q, 38
TEXTURE GEN R, 38
TEXTURE GEN S, 38
TEXTURE GEN T, 38
TEXTURE GREEN SIZE, 183
TEXTURE HEIGHT, 183
TEXTURE INTENSITY SIZE, 183
TEXTURE INTERNAL FORMAT,

183
TEXTURE LUMINANCE SIZE,

183
TEXTURE MAG FILTER, 124, 131
TEXTURE MAX LEVEL, 116, 124,

130, 132, 248
TEXTURE MAX LOD, 124{126,

132
TEXTURE MIN FILTER, 124, 127,

129{131, 248
TEXTURE MIN LOD, 124{126, 132
TEXTURE PRIORITY, 124, 132,

134
TEXTURE RED SIZE, 183
TEXTURE RESIDENT, 132, 134

Version 1.2.1 - April 1, 1999

266 INDEX

TEXTURE WIDTH, 183
TEXTURE WRAP R, 124, 128
TEXTURE WRAP S, 124, 127, 128
TEXTURE WRAP T, 124, 128
TRANSFORM BIT, 191
Translate, 32, 223
TRIANGLE FAN, 17
TRIANGLE STRIP, 16
TRIANGLES, 17, 19
TRUE, 18, 19, 40, 46{48, 76, 78, 87,

88, 134, 153, 158, 178, 182,
184, 187, 188

UNPACK ALIGNMENT, 76, 93,
112, 207

UNPACK IMAGE HEIGHT, 76,
112, 207

UNPACK LSB FIRST, 76, 98, 207
UNPACK ROW LENGTH, 76, 90,

93, 112, 207
UNPACK SKIP IMAGES, 76, 112,

117, 207
UNPACK SKIP PIXELS, 76, 93, 98,

207
UNPACK SKIP ROWS, 76, 93, 98,

207
UNPACK SWAP BYTES, 76, 90, 92,

207
UNSIGNED BYTE, 22, 24, 26, 91,

95, 160, 161, 177
UNSIGNED BYTE 2 3 3 REV, 91,

93{95, 161
UNSIGNED BYTE 3 3 2, 91, 93{95,

161
UNSIGNED INT, 22, 24, 91, 97, 160,

161, 177
UNSIGNED INT 10 10 10 2, 91, 94,

97, 161
UNSIGNED INT 2 10 10 10 REV,

91, 94, 97, 161
UNSIGNED INT 8 8 8 8, 91, 94, 97,

161
UNSIGNED INT 8 8 8 8 REV, 91,

94, 97, 161

UNSIGNED SHORT, 22, 24, 91, 96,
160, 161, 177

UNSIGNED SHORT 1 5 5 5 REV,
91, 94, 96, 161

UNSIGNED SHORT 4 4 4 4, 91, 94,
96, 161

UNSIGNED SHORT 4 4 4 4 REV,
91, 94, 96, 161

UNSIGNED SHORT 5 5 5 1, 91, 94,
96, 161

UNSIGNED SHORT 5 6 5, 91, 93,
94, 96, 161

UNSIGNED SHORT 5 6 5 REV, 91,
93, 94, 96, 161

V2F, 25, 26
V3F, 25, 26
VENDOR, 189
VERSION, 189
Vertex, 7, 19, 20, 41, 167
Vertex2, 20, 28
Vertex2sv, 7
Vertex3, 20
Vertex3f, 7
Vertex4, 20
VERTEX ARRAY, 23, 27
VERTEX ARRAY POINTER, 189
VertexPointer, 19, 22, 27, 178
Viewport, 30
VIEWPORT BIT, 191

XOR, 151

ZERO, 144, 148, 149, 205

Version 1.3 - 4 November 1998

The OpenGL
R

Graphics System Utility Library
(Version 1.3)

Norman Chin

Chris Frazier

Paul Ho

Zicheng Liu

Kevin P. Smith

Editor (version 1.3): Jon Leech

Version 1.3 - 4 November 1998

Copyright c 1992-1998 Silicon Graphics, Inc.

This document contains unpublished information of
Silicon Graphics, Inc.

This document is protected by copyright, and contains information propri-
etary to Silicon Graphics, Inc. Any copying, adaptation, distribution, public
performance, or public display of this document without the express written
consent of Silicon Graphics, Inc. is strictly prohibited. The receipt or pos-
session of this document does not convey any rights to reproduce, disclose,
or distribute its contents, or to manufacture, use, or sell anything that it
may describe, in whole or in part.

U.S. Government Restricted Rights Legend

Use, duplication, or disclosure by the Government is subject to restrictions
set forth in FAR 52.227.19(c)(2) or subparagraph (c)(1)(ii) of the Rights
in Technical Data and Computer Software clause at DFARS 252.227-7013
and/or in similar or successor clauses in the FAR or the DOD or NASA FAR
Supplement. Unpublished rights reserved under the copyright laws of the
United States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N.
Shoreline Blvd., Mountain View, CA 94039-7311.

OpenGL is a registered trademark of Silicon Graphics, Inc.
Unix is a registered trademark of The Open Group.

The "X" device and X Windows System are trademarks of
The Open Group.

Version 1.3 - 4 November 1998

Contents

1 Overview 1

2 Initialization 2

3 Mipmapping 4

3.1 Image Scaling . 4

3.2 Automatic Mipmapping . 5

4 Matrix Manipulation 7

4.1 Matrix Setup . 7

4.2 Coordinate Projection . 9

5 Polygon Tessellation 10

5.1 The Tessellation Object . 10

5.2 Polygon De�nition . 11

5.3 Callbacks . 12

5.4 Control Over Tessellation . 14

5.5 CSG Operations . 16

5.5.1 UNION . 17

5.5.2 INTERSECTION (two polygons at a time only) . . . 17

5.5.3 DIFFERENCE . 17

5.6 Performance . 17

5.7 Backwards Compatibility . 18

6 Quadrics 20

6.1 The Quadrics Object . 20

6.2 Callbacks . 20

6.3 Rendering Styles . 21

6.4 Quadrics Primitives . 22

i

Version 1.3 - 4 November 1998

ii CONTENTS

7 NURBS 24

7.1 The NURBS Object . 24
7.2 Callbacks . 25
7.3 NURBS Curves . 27
7.4 NURBS Surfaces . 27
7.5 Trimming . 28
7.6 NURBS Properties . 29

8 Errors 33

9 GLU Versions 34

9.1 GLU 1.1 . 34
9.2 GLU 1.2 . 35
9.3 GLU 1.3 . 35

Index of GLU Commands 36

Version 1.3 - 4 November 1998

Chapter 1

Overview

The GL Utilities (GLU) library is a set of routines designed to comple-
ment the OpenGL graphics system by providing support for mipmapping,
matrix manipulation, polygon tessellation, quadrics, NURBS, and error han-
dling. Mipmapping routines include image scaling and automatic mipmap
generation. A variety of matrix manipulation functions build projection and
viewing matrices, or project vertices from one coordinate system to another.
Polygon tessellation routines convert concave polygons into triangles for easy
rendering. Quadrics support renders a few basic quadrics such as spheres
and cones. NURBS code maps complicated NURBS curves and trimmed
surfaces into simpler OpenGL evaluators. Lastly, an error lookup routine
translates OpenGL and GLU error codes into strings. GLU library rou-
tines may call OpenGL library routines. Thus, an OpenGL context should
be made current before calling any GLU functions. Otherwise an OpenGL
error may occur.

All GLU routines, except for the initialization routines listed in Section 2,
may be called during display list creation. This will cause any OpenGL com-
mands that are issued as a result of the call to be stored in the display list.
The result of calling the intialization routines after glNewList is unde�ned.

1

Version 1.3 - 4 November 1998

Chapter 2

Initialization

To get the GLU version number or supported GLU extensions call:

const GLubyte *gluGetString(GLenum name);

If name is GLU VERSION or GLU EXTENSIONS, then a pointer to a static
zero-terminated string that describes the version or available extensions re-
spectively is returned; otherwise NULL is returned.

The version string is laid out as follows:

<version number><space><vendor-speci�c information>

version number is either of the form major number.minor number or ma-
jor number.minor number.release number, where the numbers all have one
or more digits. The version number determines which interfaces are pro-
vided by the GLU client library. If the underlying OpenGL implementation
is an older version than that corresponding to this version of GLU, some of
the GL calls made by GLU may fail. Chapter 9 describes how GLU versions
and OpenGL versions correspond.

The vendor speci�c information is optional. However, if it is present the
format and contents are implementation dependent.

The extension string is a space separated list of extensions to the GLU
library. The extension names themselves do not contain any spaces. To
determine if a speci�c extension name is present in the extension string, call

GLboolean gluCheckExtension(char *extName,
const GLubyte *extString);

where extName is the extension name to check, and extString is the exten-
sion string. GL TRUE is returned if extName is present in extString, GL FALSE

2

Version 1.3 - 4 November 1998

3

otherwise. gluCheckExtension correctly handles boundary cases where
one extension name is a substring of another. It may also be used to check-
ing for the presence of OpenGL or GLX extensions by passing the extension
strings returned by glGetString or glXGetClientString, instead of the
GLU extension string.

gluGetString is not available in GLU 1.0. One way to determine
whether this routine is present when using the X Window System is to
query the GLX version. If the client version is 1.1 or greater then this rou-
tine is available. Operating system dependent methods may also be used to
check for the existence of this function.

Version 1.3 - 4 November 1998

Chapter 3

Mipmapping

GLU provides image scaling and automatic mipmapping functions to sim-
plify the creation of textures. The image scaling function can scale any
image to a legal texture size. The resulting image can then be passed to
OpenGL as a texture. The automatic mipmapping routines will take an in-
put image, create mipmap textures from it, and pass them to OpenGL. With
this interface, the user need only supply an image and the rest is automatic.

3.1 Image Scaling

The following routine magni�es or shrinks an image:

int gluScaleImage(GLenum format, GLsizei widthin,
GLsizei heightin, GLenum typein, const void *datain,
GLsizei widthout, GLsizei heightout, GLenum typeout,
void *dataout);

gluScaleImage will scale an image using the appropriate pixel store
modes to unpack data from the input image and pack the result into the
output image. format speci�es the image format used by both images. The
input image is described by widthin, heightin, typein, and datain, where
widthin and heightin specify the size of the image, typein speci�es the data
type used, and datain is a pointer to the image data in memory. The output
image is similarly described by widthout, heightout, typeout, and dataout,
where widthout and heightout specify the desired size of the image, typeout
speci�es the desired data type, and dataout points to the memory location
where the image is to be stored. The pixel formats and types supported are

4

Version 1.3 - 4 November 1998

3.2. AUTOMATIC MIPMAPPING 5

the same as those supported by glDrawPixels for the underlying OpenGL
implementation.

gluScaleImage reconstructs the input image by linear interpolation,
convolves it with a one-pixel-square box kernel, and then samples the result
to produce the output image.

A return value of 0 indicates success. Otherwise the return value is a
GLU error code indicating the cause of the problem (see gluErrorString
below).

3.2 Automatic Mipmapping

These routines will automatically generate mipmaps for any image provided
by the user and then pass them to OpenGL:

int gluBuild1DMipmaps(GLenum target,
GLint internalFormat, GLsizei width, GLenum format,
GLenum type, const void *data);

int gluBuild2DMipmaps(GLenum target,
GLint internalFormat, GLsizei width, GLsizei height,
GLenum format, GLenum type, const void *data);

int gluBuild3DMipmaps(GLenum target,
GLint internalFormat, GLsizei width, GLsizei height,
GLsizei depth, GLenum format, GLenum type,
const void *data);

gluBuild1DMipmaps, gluBuild2DMipmaps, and
gluBuild3DMipmaps all take an input image and derive from it a
pyramid of scaled images suitable for use as mipmapped textures. The
resulting textures are then passed to glTexImage1D, glTexImage2D,
or glTexImage3D as appropriate. target, internalFormat, format, type,
width, height, depth, and data de�ne the level 0 texture, and have the same
meaning as the corresponding arguments to glTexImage1D, glTexIm-
age2D, and glTexImage3D. Note that the image size does not need to be
a power of 2, because the image will be automatically scaled to the nearest
power of 2 size if necessary.

To load only a subset of mipmap levels, call

int gluBuild1DMipmapLevels(GLenum target,
GLint internalFormat, GLsizei width, GLenum format,

Version 1.3 - 4 November 1998

6 CHAPTER 3. MIPMAPPING

GLenum type, GLint level, GLint base, GLint max,
const void *data);

int gluBuild2DMipmapLevels(GLenum target,
GLint internalFormat, GLsizei width, GLsizei height,
GLenum format, GLenum type, GLint level, GLint base,
GLint max, const void *data);

int gluBuild3DMipmapLevels(GLenum target,
GLint internalFormat, GLsizei width, GLsizei height,
GLsizei depth, GLenum format, GLenum type, GLint level,
GLint base, GLint max, const void *data);

level speci�es the mipmap level of the input image. base and
max determine the minimum and maximum mipmap levels which will
be passed to glTexImagexD. Other parameters are the same as for
gluBuildxDMipmaps. If level > base, base < 0, max < base, or max
is larger than the highest mipmap level for a texture of the speci�ed size, no
mipmap levels will be loaded, and the calls will return GLU INVALID VALUE.

A return value of 0 indicates success. Otherwise the return value is a
GLU error code indicating the cause of the problem.

Version 1.3 - 4 November 1998

Chapter 4

Matrix Manipulation

The GLU library includes support for matrix creation and coordinate pro-
jection (transformation). The matrix routines create matrices and multiply
the current OpenGL matrix by the result. They are used for setting projec-
tion and viewing parameters. The coordinate projection routines are used
to transform object space coordinates into screen coordinates or vice-versa.
This makes it possible to determine where in the window an object is being
drawn.

4.1 Matrix Setup

The following routines create projection and viewing matrices and apply
them to the current matrix using glMultMatrix. With these routines, a
user can construct a clipping volume and set viewing parameters to render
a scene.

gluOrtho2D and gluPerspective build commonly-needed projection
matrices.

void gluOrtho2D(GLdouble left, GLdouble right,
GLdouble bottom, GLdouble top);

sets up a two dimensional orthographic viewing region. The pa-
rameters de�ne the bounding box of the region to be viewed. Call-
ing gluOrtho2D(left, right, bottom, top) is equivalent to calling
glOrtho(left, right, bottom, top, �1, 1).

void gluPerspective(GLdouble fovy, GLdouble aspect,
GLdouble near, GLdouble far);

7

Version 1.3 - 4 November 1998

8 CHAPTER 4. MATRIX MANIPULATION

sets up a perspective viewing volume. fovy de�nes the �eld-of-view angle
(in degrees) in the y direction. aspect is the aspect ratio used to determine
the �eld-of-view in the x direction. It is the ratio of x (width) to y (height).
near and far de�ne the near and far clipping planes (as positive distances
from the eye point).

gluLookAt creates a commonly-used viewing matrix:

void gluLookAt(GLdouble eyex, GLdouble eyey,
GLdouble eyez, GLdouble centerx, GLdouble centery,
GLdouble centerz, GLdouble upx, GLdouble upy,
GLdouble upz);

The viewing matrix created is based on an eye point (eyex,eyey,eyez),
a reference point that represents the center of the scene (cen-
terx,centery,centerz), and an up vector (upx,upy,upz). The matrix is de-
signed to map the center of the scene to the negative Z axis, so that when
a typical projection matrix is used, the center of the scene will map to the
center of the viewport. Similarly, the projection of the up vector on the
viewing plane is mapped to the positive Y axis so that it will point upward
in the viewport. The up vector must not be parallel to the line-of-sight from
the eye to the center of the scene.

gluPickMatrix is designed to simplify selection by creating a matrix
that restricts drawing to a small region of the viewport. This is typically used
to determine which objects are being drawn near the cursor. First restrict
drawing to a small region around the cursor, then rerender the scene with
selection mode turned on. All objects that were being drawn near the cursor
will be selected and stored in the selection bu�er.

void gluPickMatrix(GLdouble x, GLdouble y,
GLdouble deltax, GLdouble deltay,
const GLint viewport[4]);

gluPickMatrix should be called just before applying a projection ma-
trix to the stack (e�ectively pre-multiplying the projection matrix by the
selection matrix). x and y specify the center of the selection bounding
box in pixel coordinates; deltax and deltay specify its width and height
in pixels. viewport should specify the current viewport's x, y, width, and
height. A convenient way to obtain this information is to call glGetInte-
gerv(GL VIEWPORT, viewport).

Version 1.3 - 4 November 1998

4.2. COORDINATE PROJECTION 9

4.2 Coordinate Projection

Two routines are provided to project coordinates back and forth from ob-
ject space to screen space. gluProject projects from object space to screen
space, and gluUnProject does the reverse. gluUnProject4 should be
used instead of gluUnProject when a nonstandard glDepthRange is in
e�ect, or when a clip-space w coordinate other than 1 needs to be spec-
i�ed, as for vertices in the OpenGL glFeedbackBu�er when data type
GL 4D COLOR TEXTURE is returned.

int gluProject(GLdouble objx, GLdouble objy,
GLdouble objz, const GLdouble modelMatrix[16],
const GLdouble projMatrix[16], const GLint viewport[4],
GLdouble *winx, GLdouble *winy, GLdouble *winz);

gluProject performs the projection with the given modelMatrix, pro-
jectionMatrix, and viewport. The format of these arguments is the same as
if they were obtained from glGetDoublev and glGetIntegerv. A return
value of GL TRUE indicates success, and GL FALSE indicates failure.

int gluUnProject(GLdouble winx, GLdouble winy,
GLdouble winz, const GLdouble modelMatrix[16],
const GLdouble projMatrix[16], const GLint viewport[4],
GLdouble *objx, GLdouble *objy, GLdouble *objz);

gluUnProject uses the given modelMatrix, projectionMatrix, and view-
port to perform the projection. A return value of GL TRUE indicates success,
and GL FALSE indicates failure.

int gluUnProject4(GLdouble winx, GLdouble winy,
GLdouble winz, GLdouble clipw,
const GLdouble modelMatrix[16],
const GLdouble projMatrix[16], const GLint viewport[4],
GLclampd near, GLclampd far, GLdouble *objx,
GLdouble *objy, GLdouble *objz, GLdouble *objw);

gluUnProject4 takes three additional parameters and returns one ad-
ditional parameter clipw is the clip-space w coordinate of the screen-space
vertex (e.g. the wc value computed by OpenGL); normally, clipw = 1. near
and far correspond to the current glDepthRange; normally, near = 0 and
far = 1. The object-space w value of the unprojected vertex is returned in
objw. Other parameters are the same as for gluUnProject.

Version 1.3 - 4 November 1998

Chapter 5

Polygon Tessellation

The polygon tessellation routines triangulate concave polygons with one or
more closed contours. Several winding rules are supported to determine
which parts of the polygon are on the \interior". In addition, boundary
extraction is supported: instead of tessellating the polygon, a set of closed
contours separating the interior from the exterior are generated.

To use these routines, �rst create a tessellation object. Second, de�ne the
callback routines and the tessellation parameters. (The callback routines are
used to process the triangles generated by the tessellator.) Finally, specify
the concave polygon to be tessellated.

Input contours can be intersecting, self-intersecting, or degenerate. Also,
polygons with multiple coincident vertices are supported.

5.1 The Tessellation Object

A new tessellation object is created with gluNewTess:

GLUtesselator *tessobj;
tessobj = gluNewTess(void);

gluNewTess returns a new tessellation object, which is used by the
other tessellation functions. A return value of 0 indicates an out-of-memory
error. Several tessellator objects can be used simultaneously.

When a tessellation object is no longer needed, it should be deleted with
gluDeleteTess:

void gluDeleteTess(GLUtesselator *tessobj);

This will destroy the object and free any memory used by it.

10

Version 1.3 - 4 November 1998

5.2. POLYGON DEFINITION 11

5.2 Polygon De�nition

The input contours are speci�ed with the following routines:

void gluTessBeginPolygon(GLUtesselator *tess,
void *polygon data);

void gluTessBeginContour(GLUtesselator *tess);
void gluTessVertex(GLUtesselator *tess,

GLdouble coords[3], void *vertex data);
void gluTessEndContour(GLUtesselator *tess);
void gluTessEndPolygon(GLUtesselator *tess);

Within each gluTessBeginPolygon / gluTessEndPolygon pair,
there must be one or more calls to gluTessBeginContour / gluTessEnd-
Contour. Within each contour, there are zero or more calls to gluTessVer-
tex. The vertices specify a closed contour (the last vertex of each contour
is automatically linked to the �rst).

polygon data is a pointer to a user-de�ned data structure. If the appro-
priate callback(s) are speci�ed (see section 5.3), then this pointer is returned
to the callback function(s). Thus, it is a convenient way to store per-polygon
information.

coords give the coordinates of the vertex in 3-space. For useful results,
all vertices should lie in some plane, since the vertices are projected onto a
plane before tessellation. vertex data is a pointer to a user-de�ned vertex
structure, which typically contains other vertex information such as color,
texture coordinates, normal, etc. It is used to refer to the vertex during
rendering.

When gluTessEndPolygon is called, the tessellation algorithm deter-
mines which regions are interior to the given contours, according to one
of several \winding rules" described below. The interior regions are then
tessellated, and the output is provided as callbacks.

gluTessBeginPolygon indicates the start of a polygon, and it must
be called �rst. It is an error to call gluTessBeginContour outside of a
gluTessBeginPolygon / gluTessEndPolygon pair; it is also an error to
call gluTessVertex outside of a gluTessBeginContour / gluTessEnd-
Contour pair. In addition, gluTessBeginPolygon / gluTessEndPoly-
gon and gluTessBeginContour / gluTessEndContour calls must pair
up.

Version 1.3 - 4 November 1998

12 CHAPTER 5. POLYGON TESSELLATION

5.3 Callbacks

Callbacks are speci�ed with gluTessCallback:

void gluTessCallback(GLUtesselator *tessobj,
GLenum which, void (*fn);())

This routine replaces the callback selected by which with the function
speci�ed by fn. If fn is equal to NULL, then any previously de�ned call-
back is discarded and becomes unde�ned. Any of the callbacks may be left
unde�ned; if so, the corresponding information will not be supplied during
rendering. (Note that, under some conditions, it is an error to leave the
combine callback unde�ned. See the description of this callback below for
details.)

It is legal to leave any of the callbacks unde�ned. However, the informa-
tion that they would have provided is lost.

which may be one of GLU TESS BEGIN, GLU TESS EDGE FLAG,
GLU TESS VERTEX, GLU TESS END, GLU TESS ERROR, GLU TESS COMBINE,
GLU TESS BEGIN DATA, GLU TESS EDGE FLAG DATA, GLU TESS VERTEX DATA,
GLU TESS END DATA, GLU TESS ERROR DATA or GLU TESS COMBINE DATA. The
twelve callbacks have the following prototypes:

void begin(GLenum type);
void edgeFlag(GLboolean ag);
void vertex(void *vertex data);
void end(void);
void error(GLenum errno);
void combine(GLdouble coords[3], void *vertex data[4],

GLfloat weight[4], void **outData);
void beginData(GLenum type, void *polygon data);
void edgeFlagData(GLboolean ag, void *polygon data);
void endData(void *polygon data);
void vertexData(void *vertex data, void *polygon data);
void errorData(GLenum errno, void *polygon data);
void combineData(GLdouble coords[3],

void *vertex data[4], GLfloat weight[4], void **outDatab,
void *polygon data);

Note that there are two versions of each callback: one with user-speci�ed
polygon data and one without. If both versions of a particular callback are

Version 1.3 - 4 November 1998

5.3. CALLBACKS 13

speci�ed then the callback with polygon data will be used. Note that poly-
gon data is a copy of the pointer that was speci�ed when gluTessBegin-
Polygon was called.

The begin callbacks indicate the start of a primitive. type is one of
GL TRIANGLE FAN, GL TRIANGLE STRIP, or GL TRIANGLES (but see the description
of the edge ag callbacks below and the notes on boundary extraction in
section 5.4 where the GLU TESS BOUNDARY ONLY property is described).

It is followed by any number of vertex callbacks, which supply the ver-
tices in the same order as expected by the corresponding glBegin call. ver-
tex data is a copy of the pointer that the user provided when the vertex was
speci�ed (see gluTessVertex). After the last vertex of a given primitive,
the end or endData callback is called.

If one of the edge ag callbacks is provided, no triangle fans or strips will
be used. When edgeFlag or edgeFlagData is called, if ag is GL TRUE, then
each vertex which follows begins an edge which lies on the polygon boundary
(i.e., an edge which separates an interior region from an exterior one). If
ag is GL FALSE, each vertex which follows begins an edge which lies in the
polygon interior. The edge ag callback will be called before the �rst call
to the vertex callback.

The error or errorData callback is invoked when an error is encoun-
tered. The errno will be set to one of GLU TESS MISSING BEGIN POLYGON,
GLU TESS MISSING END POLYGON, GLU TESS MISSING BEGIN CONTOUR,
GLU TESS MISSING END CONTOUR, GLU TESS COORD TOO LARGE, or
GLU TESS NEED COMBINE CALLBACK.

The �rst four errors are self-explanatory. The GLU library will recover
from these errors by inserting the missing call(s). GLU TESS COORD TOO LARGE

says that some vertex coordinate exceeded the prede�ned constant
GLU TESS MAX COORD TOO LARGE in absolute value, and that the value has been
clamped. (Coordinate values must be small enough so that two can be
multiplied together without overow.) GLU TESS NEED COMBINE CALLBACK says
that the algorithm detected an intersection between two edges in the input
data, and the combine callback (below) was not provided. No output will
be generated.

The combine or combineData callback is invoked to create a new ver-
tex when the algorithm detects an intersection, or wishes to merge features.
The vertex is de�ned as a linear combination of up to 4 existing vertices, ref-
erenced by vertex data[0..3]. The coe�cients of the linear combination are
given by weight[0..3]; these weights always sum to 1.0. All vertex pointers
are valid even when some of the weights are zero. coords gives the location
of the new vertex.

Version 1.3 - 4 November 1998

14 CHAPTER 5. POLYGON TESSELLATION

The user must allocate another vertex, interpolate parameters using ver-
tex data and weights, and return the new vertex pointer in outData. This
handle is supplied during rendering callbacks. For example, if the polygon
lies in an arbitrary plane in 3-space, and we associate a color with each
vertex, the combine callback might look like this:

void MyCombine(GLdouble coords[3], VERTEX *d[4],

GLfloat w[4], VERTEX **dataOut);

f
VERTEX *new = new vertex();

new->x = coords[0];

new->y = coords[1];

new->z = coords[2];

new->r = w[0]*d[0]->r + w[1]*d[1]->r +

w[2]*d[2]->r + w[3]*d[3]->r;

new->g = w[0]*d[0]->g + w[1]*d[1]->g +

w[2]*d[2]->g + w[3]*d[3]->g;

new->b = w[0]*d[0]->b + w[1]*d[1]->b +

w[2]*d[2]->b + w[3]*d[3]->b;

new->a = w[0]*d[0]->a + w[1]*d[1]->a +

w[2]*d[2]->a + w[3]*d[3]->a;

*dataOut = new;

g

If the algorithm detects an intersection, then the combine or com-
bineData callback must be de�ned, and it must write a non-NULL pointer
into dataOut. Otherwise the GLU TESS NEED COMBINE CALLBACK error occurs,
and no output is generated. This is the only error that can occur during
tessellation and rendering.

5.4 Control Over Tessellation

The properties associated with a tessellator object a�ect the way the poly-
gons are interpreted and rendered. The properties are set by calling:

void gluTessProperty(GLUtesselator tess, GLenum which,
GLdouble value);

Version 1.3 - 4 November 1998

5.4. CONTROL OVER TESSELLATION 15

which indicates the property to be modi�ed and must be set to one of
GLU TESS WINDING RULE, GLU TESS BOUNDARY ONLY, or GLU TESS TOLERANCE.

value speci�es the new property

The GLU TESS WINDING RULE property determines which parts of
the polygon are on the interior. It is an enumerated value; the
possible values are: GLU TESS WINDING ODD, GLU TESS WINDING NONZERO,
GLU TESS WINDING NEGATIVE, GLU TESS WINDING POSITIVE and
GLU TESS WINDING ABS GEQ TWO.

To understand how the winding rule works �rst consider that the input
contours partition the plane into regions. The winding rule determines which
of these regions are inside the polygon.

For a single contour C, the winding number of a point x is simply the
signed number of revolutions we make around x as we travel once around
C, where counter-clockwise (CCW) is positive. When there are several
contours, the individual winding numbers are summed. This procedure as-
sociates a signed integer value with each point x in the plane. Note that the
winding number is the same for all points in a single region.

The winding rule classi�es a region as inside if its winding number be-
longs to the chosen category (odd, nonzero, positive, negative, or absolute
value of at least two). The previous GLU tessellator (prior to GLU 1.2)
used the odd rule. The nonzero rule is another common way to de�ne the
interior. The other three rules are useful for polygon CSG operations (see
below).

The GLU TESS BOUNDARY ONLY property is a boolean value (value should
be set to GL TRUE or GL FALSE). When set to GL TRUE, a set of closed con-
tours separating the polygon interior and exterior are returned instead of a
tessellation. Exterior contours are oriented CCW with respect to the nor-
mal, interior contours are oriented clockwise (CW). The GLU TESS BEGIN and
GLU TESS BEGIN DATA callbacks use the type GL LINE LOOP for each contour.

GLU TESS TOLERANCE speci�es a tolerance for merging features to reduce
the size of the output. For example, two vertices which are very close to
each other might be replaced by a single vertex. The tolerance is multiplied
by the largest coordinate magnitude of any input vertex; this speci�es the
maximum distance that any feature can move as the result of a single merge
operation. If a single feature takes part in several merge operations, the
total distance moved could be larger.

Feature merging is completely optional; the tolerance is only a hint. The
implementation is free to merge in some cases and not in others, or to never
merge features at all. The default tolerance is zero.

Version 1.3 - 4 November 1998

16 CHAPTER 5. POLYGON TESSELLATION

The current implementation merges vertices only if they are exactly co-
incident, regardless of the current tolerance. A vertex is spliced into an edge
only if the implementation is unable to distinguish which side of the edge the
vertex lies on.Two edges are merged only when both endpoints are identical.

Property values can also be queried by calling

void gluGetTessProperty(GLUtesselator tess,
GLenum which, GLdouble *value);

to load value with the value of the property speci�ed by which.

To supply the polygon normal call:

void gluTessNormal(GLUtesselator tess, GLdouble x,
GLdouble y, GLdouble z);

All input data will be projected into a plane perpendicular to the nor-
mal before tessellation and all output triangles will be oriented CCW with
respect to the normal (CW orientation can be obtained by reversing the
sign of the supplied normal). For example, if you know that all polygons
lie in the x-y plane, call gluTessNormal(tess,0.0,0.0,1.0) before rendering
any polygons.

If the supplied normal is (0,0,0) (the default value), the normal is de-
termined as follows. The direction of the normal, up to its sign, is found
by �tting a plane to the vertices, without regard to how the vertices are
connected. It is expected that the input data lies approximately in plane;
otherwise projection perpendicular to the computed normal may substan-
tially change the geometry. The sign of the normal is chosen so that the
sum of the signed areas of all input contours is non-negative (where a CCW
contour has positive area).

The supplied normal persists until it is changed by another call to
gluTessNormal.

5.5 CSG Operations

The features of the tessellator make it easy to �nd the union, di�erence, or
intersection of several polygons.

First, assume that each polygon is de�ned so that the winding number is
0 for each exterior region, and 1 for each interior region. Under this model,
CCW contours de�ne the outer boundary of the polygon, and CW contours

Version 1.3 - 4 November 1998

5.6. PERFORMANCE 17

de�ne holes. Contours may be nested, but a nested contour must be oriented
oppositely from the contour that contains it.

If the original polygons do not satisfy this description, they can
be converted to this form by �rst running the tessellator with the
GLU TESS BOUNDARY ONLY property turned on. This returns a list of contours
satisfying the restriction above. By allocating two tessellator objects, the
callbacks from one tessellator can be fed directly to the input of another.

Given two or more polygons of the form above, CSG operations can be
implemented as follows:

5.5.1 UNION

Draw all the input contours as a single polygon. The winding number
of each resulting region is the number of original polygons which cover
it. The union can be extracted using the GLU TESS WINDING NONZERO or
GLU TESS WINDING POSITIVE winding rules. Note that with the nonzero rule,
we would get the same result if all contour orientations were reversed.

5.5.2 INTERSECTION (two polygons at a time only)

Draw a single polygon using the contours from both input polygons. Extract
the result using GLU TESS WINDING ABS GEQ TWO. (Since this winding rule looks
at the absolute value, reversing all contour orientations does not change the
result.)

5.5.3 DIFFERENCE

Suppose we want to compute A � (B [C [D). Draw a single polygon
consisting of the unmodi�ed contours from A, followed by the contours
of B, C, and D with the vertex order reversed (this changes the wind-
ing number of the interior regions to -1). To extract the result, use the
GLU TESS WINDING POSITIVE rule.

If B, C, and D are the result of a GLU TESS BOUNDARY ONLY call, an al-
ternative to reversing the vertex order is to reverse the sign of the supplied
normal. For example in the x-y plane, call gluTessNormal(tess, 0, 0, -1).

5.6 Performance

The tessellator is not intended for immediate-mode rendering; when possible
the output should be cached in a user structure or display list. General

Version 1.3 - 4 November 1998

18 CHAPTER 5. POLYGON TESSELLATION

polygon tessellation is an inherently di�cult problem, especially given the
goal of extreme robustness.

Single-contour input polygons are �rst tested to see whether they can be
rendered as a triangle fan with respect to the �rst vertex (to avoid running
the full decomposition algorithm on convex polygons). Non-convex polygons
may be rendered by this \fast path" as well, if the algorithm gets lucky in
its choice of a starting vertex.

For best performance follow these guidelines:

� supply the polygon normal, if available, using gluTessNormal. For
example, if all polygons lie in the x-y plane, use gluTessNormal(tess,
0, 0, 1).

� render many polygons using the same tessellator object, rather than
allocating a new tessellator for each one. (In a multi-threaded, multi-
processor environment you may get better performance using several
tessellators.)

5.7 Backwards Compatibility

The polygon tessellation routines described previously are new in version 1.2
of the GLU library. For backwards compatibility, earlier versions of these
routines are still supported:

void gluBeginPolygon(GLUtesselator *tess);

void gluNextContour(GLUtesselator *tess,
GLenum type);

void gluEndPolygon(GLUtesselator *tess);

gluBeginPolygon indicates the start of the polygon and gluEndPoly-
gon de�nes the end of the polygon. gluNextContour is called once before
each contour; however it does not need to be called when specifying a poly-
gon with one contour. type is ignored by the GLU tessellator. type is one of
GLU EXTERIOR, GLU INTERIOR, GLU CCW, GLU CW or GLU UNKNOWN.

Calls to gluBeginPolygon, gluNextContour and gluEndPolygon

are mapped to the new tessellator interface as follows:

Version 1.3 - 4 November 1998

5.7. BACKWARDS COMPATIBILITY 19

gluBeginPolygon ! gluTessBeginPolygon

gluTessBeginContour

gluNextContour ! gluTessEndContour

gluTessBeginContour

gluEndPolygon ! gluTessEndContour

gluTessEndPolygon
Constants and data structures used in the previous versions of the tessel-

lator are also still supported. GLU BEGIN, GLU VERTEX, GLU END, GLU ERROR and
GLU EDGE FLAG are de�ned as synonyms for GLU TESS BEGIN, GLU TESS VERTEX,
GLU TESS END, GLU TESS ERROR and GLU TESS EDGE FLAG. GLUtriangulatorObj
is de�ned to be the same as GLUtesselator.

The preferred interface for polygon tessellation is the one described in
sections 5.1-5.4. The routines described in this section are provided for
backward compatibility only.

Version 1.3 - 4 November 1998

Chapter 6

Quadrics

The GLU library quadrics routines will render spheres, cylinders and disks in
a variety of styles as speci�ed by the user. To use these routines, �rst create a
quadrics object. This object contains state indicating how a quadric should
be rendered. Second, modify this state using the function calls described be-
low. Finally, render the desired quadric by invoking the appropriate quadric
rendering routine.

6.1 The Quadrics Object

A quadrics object is created with gluNewQuadric:

GLUquadricObj *quadobj;
quadobj = gluNewQuadric(void);

gluNewQuadric returns a new quadrics object. This object contains
state describing how a quadric should be constructed and rendered. A return
value of 0 indicates an out-of-memory error.

When the object is no longer needed, it should be deleted with
gluDeleteQuadric:

void gluDeleteQuadric(GLUquadricObj *quadobj);

This will delete the quadrics object and any memory used by it.

6.2 Callbacks

To associate a callback with the quadrics object, use gluQuadricCallback:

20

Version 1.3 - 4 November 1998

6.3. RENDERING STYLES 21

void gluQuadricCallback(GLUquadricObj *quadobj,
GLenum which, void (*fn);())

The only callback provided for quadrics is the GLU ERROR callback (iden-
tical to the polygon tessellation callback described above). This callback
takes an error code as its only argument. To translate the error code to an
error message, see gluErrorString below.

6.3 Rendering Styles

A variety of variables control how a quadric will be drawn. These are nor-
mals, textureCoords, orientation, and drawStyle. normals indicates if surface
normals should be generated, and if there should be one normal per vertex
or one normal per face. textureCoords determines whether texture coordi-
nates should be generated. orientation describes which side of the quadric
should be the \outside". Lastly, drawStyle indicates if the quadric should
be drawn as a set of polygons, lines, or points.

To specify the kind of normals desired, use gluQuadricNormals:

void gluQuadricNormals(GLUquadricObj *quadobj,
GLenum normals);

normals is either GLU NONE (no normals), GLU FLAT (one normal per face)
or GLU SMOOTH (one normal per vertex). The default is GLU SMOOTH.

Texture coordinate generation can be turned on and o� with
gluQuadricTexture:

void gluQuadricTexture(GLUquadricObj *quadobj,
GLboolean textureCoords);

If textureCoords is GL TRUE, then texture coordinates will be generated
when a quadric is rendered. Note that how texture coordinates are generated
depends upon the speci�c quadric. The default is GL FALSE.

An orientation can be speci�ed with gluQuadricOrientation:

void gluQuadricOrientation(GLUquadricObj *quadobj,
GLenum orientation);

If orientation is GLU OUTSIDE then quadrics will be drawn with normals
pointing outward. If orientation is GLU INSIDE then the normals will point
inward (faces are rendered counter-clockwise with respect to the normals).

Version 1.3 - 4 November 1998

22 CHAPTER 6. QUADRICS

Note that \outward" and \inward" are de�ned by the speci�c quadric. The
default is GLU OUTSIDE.

A drawing style can be chosen with gluQuadricDrawStyle:

void gluQuadricDrawStyle(GLUquadricObj *quadobj,
GLenum drawStyle);

drawStyle is one of GLU FILL, GLU LINE, GLU POINT or GLU SILHOUETTE. In
GLU FILLmode, the quadric is rendered as a set of polygons, in GLU LINEmode
as a set of lines, and in GLU POINT mode as a set of points. GLU SILHOUETTE

mode is similar to GLU LINE mode except that edges separating coplanar
faces are not drawn. The default style is GLU FILL.

6.4 Quadrics Primitives

The four supported quadrics are spheres, cylinders, disks, and partial disks.
Each of these quadrics may be subdivided into arbitrarily small pieces.

A sphere can be created with gluSphere:

void gluSphere(GLUquadricObj *quadobj,
GLdouble radius, GLint slices, GLint stacks);

This renders a sphere of the given radius centered around the origin. The
sphere is subdivided along the Z axis into the speci�ed number of stacks,
and each stack is then sliced evenly into the given number of slices. Note
that the globe is subdivided in an analogous fashion, where lines of latitude
represent stacks, and lines of longitude represent slices.

If texture coordinate generation is enabled then coordinates are com-
puted so that t ranges from 0.0 at Z = -radius to 1.0 at Z = radius (t
increases linearly along longitudinal lines), and s ranges from 0.0 at the +Y
axis, to 0.25 at the +X axis, to 0.5 at the -Y axis, to 0.75 at the -X axis,
and back to 1.0 at the +Y axis.

A cylinder is speci�ed with gluCylinder:

void gluCylinder(GLUquadricObj *quadobj,
GLdouble baseRadius, GLdouble topRadius,
GLdouble height, GLint slices, GLint stacks);

gluCylinder draws a frustum of a cone centered on the Z axis with the
base at Z = 0 and the top at Z = height. baseRadius speci�es the radius at Z

Version 1.3 - 4 November 1998

6.4. QUADRICS PRIMITIVES 23

= 0, and topRadius speci�es the radius at Z = height. (If baseRadius equals
topRadius, the result is a conventional cylinder.) Like a sphere, a cylinder is
subdivided along the Z axis into stacks, and each stack is further subdivided
into slices. When textured, t ranges linearly from 0.0 to 1.0 along the Z
axis, and s ranges from 0.0 to 1.0 around the Z axis (in the same manner as
it does for a sphere).

A disk is created with gluDisk:

void gluDisk(GLUquadricObj *quadobj,
GLdouble innerRadius, GLdouble outerRadius,
GLint slices, GLint loops);

This renders a disk on the Z=0 plane. The disk has the given outer-
Radius, and if innerRadius > 0:0 then it will contain a central hole with
the given innerRadius. The disk is subdivided into the speci�ed number of
slices (similar to cylinders and spheres), and also into the speci�ed number
of loops (concentric rings about the origin). With respect to orientation, the
+Z side of the disk is considered to be \outside".

When textured, coordinates are generated in a linear grid such that the
value of (s,t) at (outerRadius,0,0) is (1,0.5), at (0,outerRadius,0) it is (0.5,1),
at (-outerRadius,0,0) it is (0,0.5), and at (0,-outerRadius,0) it is (0.5,0). This
allows a 2D texture to be mapped onto the disk without distortion.

A partial disk is speci�ed with gluPartialDisk:

void gluPartialDisk(GLUquadricObj *quadobj,
GLdouble innerRadius, GLdouble outerRadius,
GLint slices, GLint loops, GLdouble startAngle,
GLdouble sweepAngle);

This function is identical to gluDisk except that only the subset of the
disk from startAngle through startAngle+ sweepAngle is included (where
0 degrees is along the +Y axis, 90 degrees is along the +X axis, 180 is along
the -Y axis, and 270 is along the -X axis). In the case that drawStyle is set
to either GLU FILL or GLU SILHOUETTE, the edges of the partial disk separating
the included area from the excluded arc will be drawn.

Version 1.3 - 4 November 1998

Chapter 7

NURBS

NURBS curves and surfaces are converted to OpenGL primitives by the
functions in this section. The interface employs a NURBS object to describe
the curves and surfaces and to specify how they should be rendered. Basic
trimming support is included to allow more exible de�nition of surfaces.

There are two ways to handle a NURBS object (curve or surface), to
either render or to tessellate. In rendering mode, the objects are converted
or tessellated to a sequence of OpenGL evaluators and sent to the OpenGL
pipeline for rendering. In tessellation mode, objects are converted to a se-
quence of triangles and triangle strips and returned back to the application
through a callback interface for further processing. The decomposition algo-
rithm used for rendering and for returning tessellations are not guaranteed
to produce identical results.

7.1 The NURBS Object

A NURBS object is created with gluNewNurbsRenderer:

GLUnurbsObj *nurbsObj;
nurbsObj = gluNewNurbsRenderer(void);

nurbsObj is an opaque pointer to all of the state information needed to
tessellate and render a NURBS curve or surface. Before any of the other
routines in this section can be used, a NURBS object must be created. A
return value of 0 indicates an out of memory error.

When a NURBS object is no longer needed, it should be deleted with
gluDeleteNurbsRenderer:

24

Version 1.3 - 4 November 1998

7.2. CALLBACKS 25

void gluDeleteNurbsRenderer(GLUnurbsObj *nurbsObj);

This will destroy all state contained in the object, and free any memory
used by it.

7.2 Callbacks

To de�ne a callback for a NURBS object, use:

void gluNurbsCallback(GLUnurbsObj *nurbsObj,
GLenum which, void (*fn);())

The parameter which can be one of the following: GLU NURBS BEGIN,
GLU NURBS VERTEX, GLU NORMAL, GLU NURBS COLOR, GLU NURBS TEXTURE COORD,
GLU END, GLU NURBS BEGIN DATA, GLU NURBS VERTEX DATA, GLU NORMAL DATA,
GLU NURBS COLOR DATA, GLU NURBS TEXTURE COORD DATA, GLU END DATA and
GLU ERROR.

These callbacks have the following prototypes:

void begin(GLenum type);
void vertex(GLfloat *vertex);
void normal(GLfloat *normal);
void color(GLfloat *color);
void texCoord(GLfloat *tex coord);
void end(void);
void beginData(GLenum type, void *userData);
void vertexData(GLfloat *vertex, void *userData);
void normalData(GLfloat *normal, void *userData);
void colorData(GLfloat *color, void *userData);
void texCoordData(GLfloat *tex coord, void *userData);
void endData(void *userData);
void error(GLenum errno);

The �rst 12 callbacks are for the user to get the primitives back from
the NURBS tessellator when NURBS property GLU NURBS MODE is set to
GLU NURBS TESSELLATOR (see section 7.6). These callbacks have no e�ect when
GLU NURBS MODE is GLU NURBS RENDERER.

There are two forms of each callback: one with a pointer to application
supplied data and one without. If both versions of a particular callback are
speci�ed then the callback with application data will be used. userData is
speci�ed by calling

Version 1.3 - 4 November 1998

26 CHAPTER 7. NURBS

void gluNurbsCallbackData(GLUnurbsObj *nurbsObj,
void *userData);

The value of userData passed to callback functions for a speci�c NURBS
object is the value speci�ed by the last call to gluNurbsCallbackData.

All callback functions can be set to NULL even when GLU NURBS MODE is
set to GLU NURBS TESSELLATOR. When a callback function is set to NULL, this
callback function will not get invoked and the related data, if any, will be
lost.

The begin callback indicates the start of a primitive. type is one of
GL LINES, GL LINE STRIPS, GL TRIANGLE FAN, GL TRIANGLE STRIP, GL TRIANGLES

or GL QUAD STRIP. The default begin callback function is NULL.

The vertex callback indicates a vertex of the primitive. The coordinates
of the vertex are stored in the parameter vertex. All the generated vertices
have dimension 3; that is, homogeneous coordinates have been transformed
into a�ne coordinates. The default vertex callback function is NULL.

The normal callback is invoked as the vertex normal is generated. The
components of the normal are stored in the parameter normal. In the case
of a NURBS curve, the callback function is e�ective only when the user
provides a normal map (GL MAP1 NORMAL). In the case of a NURBS surface,
if a normal map (GL MAP2 NORMAL) is provided, then the generated normal
is computed from the normal map. If a normal map is not provided then
a surface normal is computed in a manner similar to that described for
evaluators when GL AUTO NORMAL is enabled. The default normal callback
function is NULL.

The color callback is invoked as the color of a vertex is generated. The
components of the color are stored in the parameter color. This callback
is e�ective only when the user provides a color map (GL MAP1 COLOR 4 or
GL MAP2 COLOR 4). color contains four components: R,G,B,A. The default
color callback function is NULL.

The texture callback is invoked as the texture coordinates of a vertex
are generated. These coordinates are stored in the parameter tex coord. The
number of texture coordinates can be 1, 2, 3 or 4 depending on which type of
texture map is speci�ed (GL MAP* TEXTURE COORD 1, GL MAP* TEXTURE COORD 2,
GL MAP* TEXTURE COORD 3, GL MAP* TEXTURE COORD 4 where * can be either 1 or
2). If no texture map is speci�ed, this callback function will not be called.
The default texture callback function is NULL.

The end callback is invoked at the end of a primitive. The default end
callback function is NULL.

Version 1.3 - 4 November 1998

7.3. NURBS CURVES 27

The error callback is invoked when a NURBS function detects an error
condition. There are 37 errors speci�c to NURBS functions, and they are
named GLU NURBS ERROR1 through GLU NURBS ERROR37. Strings describing the
meaning of these error codes can be retrieved with gluErrorString.

7.3 NURBS Curves

NURBS curves are speci�ed with the following routines:

void gluBeginCurve(GLUnurbsObj *nurbsObj);

void gluNurbsCurve(GLUnurbsObj *nurbsObj,
GLint nknots, GLfloat *knot, GLint stride,
GLfloat *ctlarray, GLint order, GLenum type);

void gluEndCurve(GLUnurbsObj *nurbsObj);

gluBeginCurve and gluEndCurve delimit a curve de�nition. After
the gluBeginCurve and before the gluEndCurve, a series of gluNurb-
sCurve calls specify the attributes of the curve. type can be any of the one
dimensional evaluators (such as GL MAP1 VERTEX 3). knot points to an array
of monotonically increasing knot values, and nknots tells how many knots
are in the array. ctlarray points to an array of control points, and order
indicates the order of the curve. The number of control points in ctlarray
will be equal to nknots - order. Lastly, stride indicates the o�set (expressed
in terms of single precision values) between control points.

The NURBS curve attribute de�nitions must include either a
GL MAP1 VERTEX3 description or a GL MAP1 VERTEX4 description.

At the point that gluEndCurve is called, the curve will be tessellated
into line segments and rendered with the aid of OpenGL evaluators. gl-

PushAttrib and glPopAttrib are used to preserve the previous evaluator
state during rendering.

7.4 NURBS Surfaces

NURBS surfaces are described with the following routines:

void gluBeginSurface(GLUnurbsObj *nurbsObj);

Version 1.3 - 4 November 1998

28 CHAPTER 7. NURBS

void gluNurbsSurface(GLUnurbsObj *nurbsObj,
GLint sknot count, GLfloat *sknot, GLint tknot count,
GLfloat *tknot, GLint s stride, GLint t stride,
GLfloat *ctlarray, GLint sorder, GLint torder,
GLenum type);

void gluEndSurface(GLUnurbsObj *nurbsObj);

The surface description is almost identical to the curve description.
gluBeginSurface and gluEndSurface delimit a surface de�nition. Af-
ter the gluBeginSurface, and before the gluEndSurface, a series of
gluNurbsSurface calls specify the attributes of the surface. type can be
any of the two dimensional evaluators (such as GL MAP2 VERTEX 3). sknot
and tknot point to arrays of monotonically increasing knot values, and
sknot count and tknot count indicate how many knots are in each array.
ctlarray points to an array of control points, and sorder and torder indicate
the order of the surface in both the s and t directions. The number of control
points in ctlarray will be equal to (sknot count� sorder)� (tknot count�
torder). Finally, s stride and t stride indicate the o�set in single precision
values between control points in the s and t directions.

The NURBS surface, like the NURBS curve, must include an attribute
de�nition of type GL MAP2 VERTEX3 or GL MAP2 VERTEX4.

When gluEndSurface is called, the NURBS surface will be tessellated
and rendered with the aid of OpenGL evaluators. The evaluator state is
preserved during rendering with glPushAttrib and glPopAttrib.

7.5 Trimming

A trimming region de�nes a subset of the NURBS surface domain to be
evaluated. By limiting the part of the domain that is evaluated, it is possible
to create NURBS surfaces that contain holes or have smooth boundaries.

A trimming region is de�ned by a set of closed trimming loops in the
parameter space of a surface. When a loop is oriented counter-clockwise, the
area within the loop is retained, and the part outside is discarded. When
the loop is oriented clockwise, the area within the loop is discarded, and the
rest is retained. Loops may be nested, but a nested loop must be oriented
oppositely from the loop that contains it. The outermost loop must be
oriented counter-clockwise.

A trimming loop consists of a connected sequence of NURBS curves and
piecewise linear curves. The last point of every curve in the sequence must

Version 1.3 - 4 November 1998

7.6. NURBS PROPERTIES 29

be the same as the �rst point of the next curve, and the last point of the last
curve must be the same as the �rst point of the �rst curve. Self-intersecting
curves are not allowed.

To de�ne trimming loops, use the following routines:

void gluBeginTrim(GLUnurbsObj *nurbsObj);

void gluPwlCurve(GLUnurbsObj *nurbsObj, GLint count,
GLfloat *array, GLint stride, GLenum type);

void gluNurbsCurve(GLUnurbsObj *nurbsObj,
GLint nknots, GLfloat *knot, GLint stride,
GLfloat *ctlarray, GLint order, GLenum type);

void gluEndTrim(GLUnurbsObj *nurbsObj);

A NURBS trimming curve is very similar to a regular NURBS curve,
with the major di�erence being that a NURBS trimming curve exists in the
parameter space of a NURBS surface.

gluPwlCurve de�nes a piecewise linear curve. count indicates how
many points are on the curve, and array points to an array containing the
curve points. stride indicates the o�set in single precision values between
curve points.

type for both gluPwlCurve and gluNurbsCurve can be either
GLU MAP1 TRIM 2 or GLU MAP1 TRIM 3. GLU MAP1 TRIM 2 curves de�ne trimming
regions in two dimensional (s and t) parameter space. The GLU MAP1 TRIM 3

curves de�ne trimming regions in two dimensional homogeneous (s, t and q)
parameter space.

Note that the trimming loops must be de�ned at the same time that the
surface is de�ned (between gluBeginSurface and gluEndSurface).

7.6 NURBS Properties

A set of properties associated with a NURBS object a�ects the way that
NURBS are rendered or tessellated. These properties can be adjusted by
the user.

void gluNurbsProperty(GLUnurbsObj *nurbsObj,
GLenum property, GLfloat value);

Version 1.3 - 4 November 1998

30 CHAPTER 7. NURBS

allows the user to set one of the following properties: GLU CULLING,
GLU SAMPLING TOLERANCE, GLU SAMPLING METHOD, GLU PARAMETRIC TOLERANCE,
GLU DISPLAY MODE, GLU AUTO LOAD MATRIX, GLU U STEP, GLU V STEP and
GLU NURBS MODE. property indicates the property to be modi�ed, and value
speci�es the new value.

GLU NURBS MODE should be set to either GLU NURBS RENDERER or
GLU NURBS TESSELLATOR. When set to GLU NURBS RENDERER, NURBS objects
are tessellated into OpenGL evaluators and sent to the pipeline for render-
ing. When set to GLU NURBS TESSELLATOR, NURBS objects are tessellated
into a sequence of primitives such as lines, triangles and triangle strips, but
the vertices, normals, colors, and/or textures are retrieved back through
a callback interface as speci�ed in Section 7.2. This allows the user to
cache the tessellated results for further processing. The default value is
GLU NURBS RENDERER

The GLU CULLING property is a boolean value (value should be set to either
GL TRUE or GL FALSE). When set to GL TRUE, it indicates that a NURBS curve
or surface should be discarded prior to tessellation if its control polyhedron
lies outside the current viewport. The default is GL FALSE.

GLU SAMPLING METHOD speci�es how a NURBS surface should
be tessellated. value may be set to one of GLU PATH LENGTH,
GLU PARAMETRIC ERROR, GLU DOMAIN DISTANCE, GLU OBJECT PATH LENGTH or
GLU OBJECT PARAMETRIC ERROR. When set to GLU PATH LENGTH, the surface is
rendered so that the maximum length, in pixels, of the edges of the tessella-
tion polygons is no greater than what is speci�ed by GLU SAMPLING TOLERANCE.
GLU PARAMETRIC ERROR speci�es that the surface is rendered in such a way
that the value speci�ed by GLU PARAMETRIC TOLERANCE describes the maxi-
mum distance, in pixels, between the tessellation polygons and the surfaces
they approximate. GLU DOMAIN DISTANCE allows users to specify, in paramet-
ric coordinates, how many sample points per unit length are taken in u,
v dimension. GLU OBJECT PATH LENGTH is similar to GLU PATH LENGTH except
that it is view independent; that is, it speci�es that the surface is rendered
so that the maximum length, in object space, of edges of the tessellation
polygons is no greater than what is speci�ed by GLU SAMPLING TOLERANCE.
GLU OBJECT PARAMETRIC ERROR is similar to GLU PARAMETRIC ERROR except
that the surface is rendered in such a way that the value speci�ed by
GLU PARAMETRIC TOLERANCE describes the maximum distance, in object space,
between the tessellation polygons and the surfaces they approximate. The
default value of GLU SAMPLING METHOD is GLU PATH LENGTH.

GLU SAMPLING TOLERANCE speci�es the maximum length, in pixels or in
object space length unit, to use when the sampling method is set to

Version 1.3 - 4 November 1998

7.6. NURBS PROPERTIES 31

GLU PATH LENGTH or GLU OBJECT PATH LENGTH. The default value is 50.0.
GLU PARAMETRIC TOLERANCE speci�es the maximum distance, in pixels or

in object space length unit, to use when the sampling method is set to
GLU PARAMETRIC ERROR or GLU OBJECT PARAMETRIC ERROR. The default value for
GLU PARAMETRIC TOLERANCE is 0.5.

GLU U STEP speci�es the number of sample points per unit length taken
along the u dimension in parametric coordinates. It is needed when
GLU SAMPLING METHOD is set to GLU DOMAIN DISTANCE. The default value is 100.

GLU V STEP speci�es the number of sample points per unit length taken
along the v dimension in parametric coordinates. It is needed when
GLU SAMPLING METHOD is set to GLU DOMAIN DISTANCE. The default value is 100.

GLU AUTO LOAD MATRIX is a boolean value. When it is set to GL TRUE, the
NURBS code will download the projection matrix, the model view matrix,
and the viewport from the OpenGL server in order to compute sampling and
culling matrices for each curve or surface that is rendered. These matrices
are required to tessellate a curve or surface and to cull it if it lies outside
the viewport. If this mode is turned o�, then the user needs to provide a
projection matrix, a model view matrix, and a viewport that the NURBS
code can use to construct sampling and culling matrices. This can be done
with the gluLoadSamplingMatrices function:

void gluLoadSamplingMatrices(GLUnurbsObj *nurbsObj,
const GLfloat modelMatrix[16],
const GLfloat projMatrix[16], const GLint viewport[4]);

Until the GLU AUTO LOAD MATRIX property is turned back on, the NURBS
routines will continue to use whatever sampling and culling matrices are
stored in the NURBS object. The default for GLU AUTO LOAD MATRIX is
GL TRUE.

You may get unexpected results when GLU AUTO LOAD MATRIX is enabled
and the results of the NURBS tesselation are being stored in a display list,
since the OpenGLmatrices which are used to create the sampling and culling
matrices will be those that are in e�ect when the list is created, not those
in e�ect when it is executed.

GLU DISPLAY MODE speci�es how a NURBS surface should be rendered.
value may be set to one of GLU FILL, GLU OUTLINE POLY or GLU OUTLINE PATCH.
When GLU NURBS MODE is set to be GLU NURBS RENDERER, value de�nes how a
NURBS surface should be rendered. When set to GLU FILL, the surface
is rendered as a set of polygons. GLU OUTLINE POLY instructs the NURBS
library to draw only the outlines of the polygons created by tessella-
tion. GLU OUTLINE PATCH will cause just the outlines of patches and trim

Version 1.3 - 4 November 1998

32 CHAPTER 7. NURBS

curves de�ned by the user to be drawn. When GLU NURBS MODE is set to
be GLU NURBS TESSELLATOR, value de�nes how a NURBS surface should be
tessellated. When GLU DISPLAY MODE is set to GLU FILL or GLU OUTLINE POLY,
the NURBS surface is tessellated into OpenGL triangle primitives which
can be retrieved back through callback functions. If value is set to
GLU OUTLINE PATCH, only the outlines of the patches and trim curves are gen-
erated as a sequence of line strips and can be retrieved back through callback
functions. The default is GLU FILL.

Property values can be queried by calling

void gluGetNurbsProperty(GLUnurbsObj *nurbsObj,
GLenum property, GLfloat *value);

The speci�ed property is returned in value.

Version 1.3 - 4 November 1998

Chapter 8

Errors

Calling

const GLubyte *gluErrorString(GLenum errorCode);

produces an error string corresponding to a GL or GLU error code.
The error string is in ISO Latin 1 format. The standard GLU error
codes are GLU INVALID ENUM, GLU INVALID VALUE, GLU INVALID OPERATION and
GLU OUT OF MEMORY. There are also speci�c error codes for polygon tessella-
tion, quadrics, and NURBS as described in their respective sections.

If an invalid call to the underlying OpenGL implementation is made
by GLU, either GLU or OpenGL errors may be generated, depending on
where the error is detected. This condition may occur only when making
a GLU call introduced in a later version of GLU than that correspond-
ing to the OpenGL implementation (see Chapter 9); for example, calling
gluBuild3DMipmaps or passing packed pixel types to gluScaleImage
when the underlying OpenGL version is earlier than 1.2.

33

Version 1.3 - 4 November 1998

Chapter 9

GLU Versions

Each version of GLU corresponds to the OpenGL version shown in Table 9.1;
GLU features introduced in a particular version of GLU may not be usable
if the underlying OpenGL implementation is an earlier version.

All versions of GLU are upward compatible with earlier versions, mean-
ing that any program that runs with the earlier implementation will run
unchanged with any later GLU implementation.

9.1 GLU 1.1

In GLU 1.1, gluGetString was added allowing the GLU version num-
ber and GLU extensions to be queried. Also, the NURBS properties
GLU SAMPLING METHOD, GLU PARAMETRIC TOLERANCE, GLU U STEP and GLU V STEP

were added providing support for di�erent tesselation methods. In GLU 1.0,
the only sampling method supported was GLU PATH LENGTH.

GLU Version Corresponding OpenGL
Version

GLU 1.0 OpenGL 1.0

GLU 1.1 OpenGL 1.0

GLU 1.2 OpenGL 1.1

GLU 1.3 OpenGL 1.2

Table 9.1: Relationship of OpenGL and GLU versions.

34

Version 1.3 - 4 November 1998

9.2. GLU 1.2 35

9.2 GLU 1.2

A new polygon tesselation interface was added in GLU 1.2. See section 5.7
for more information on the API changes.

A new NURBS callback interface and object space sampling methods
was also added in GLU 1.2. See sections 7.2 and 7.6 for API changes.

9.3 GLU 1.3

The gluCheckExtension utility function was introduced.
gluScaleImage and gluBuildxDMipmaps support the new packed

pixel formats and types introduced by OpenGL 1.2.
gluBuild3DMipmaps was added to support 3D textures, introduced

by OpenGL 1.2.
gluBuildxDMipmapLevels was added to support OpenGL 1.2's abil-

ity to load only a subset of mipmap levels.
gluUnproject4 was added for use when non-default depth range or w

values other than 1 need to be speci�ed.
New gluNurbsCallback callbacks and the GLU NURBS MODE NURBS

property were introduced to allow applications to capture NURBS tes-
selations. These features exactly match corresponding features of the
GLU EXT nurbs tessellatorGLU extension, and may be used interchange-
ably with the extension.

New values of the GLU SAMPLING METHODNURBS property were introduced
to support object-space sampling criteria. These features exactly match
corresponding features of the GLU EXT object space tess GLU extension,
and may be used interchangeably with the extension.

Version 1.3 - 4 November 1998

Index of GLU Commands

begin, 12, 25

beginData, 12, 25

color, 25

colorData, 25

combine, 12

combineData, 12

edgeFlag, 12

edgeFlagData, 12

end, 12, 25

endData, 12, 25

error, 12, 25

errorData, 12

GL 4D COLOR TEXTURE, 9

GL AUTO NORMAL, 26

GL FALSE,2,9,13,15,21, 30

GL LINE LOOP, 15

GL LINE STRIPS, 26

GL LINES, 26

GL MAP� TEXTURE COORD 1,

26

GL MAP� TEXTURE COORD 2,

26

GL MAP� TEXTURE COORD 3,

26

GL MAP� TEXTURE COORD 4,

26

GL MAP1 COLOR 4, 26

GL MAP1 NORMAL, 26

GL MAP1 VERTEX3, 27

GL MAP1 VERTEX4, 27

GL MAP1 VERTEX 3, 27

GL MAP2 COLOR 4, 26

GL MAP2 NORMAL, 26

GL MAP2 VERTEX3, 28

GL MAP2 VERTEX4, 28

GL MAP2 VERTEX 3, 28

GL QUAD STRIP, 26

GL TRIANGLE FAN,13, 26

GL TRIANGLE STRIP,13, 26

GL TRIANGLES,13, 26

GL TRUE,2,9,13,15,21,30, 31

GL VIEWPORT, 8

glBegin, 13

glDepthRange, 9

glDrawPixels, 5

glFeedbackBu�er, 9

glGetDoublev, 9

glGetIntegerv, 8, 9

glGetString, 3

glMultMatrix, 7

glNewList, 1

glOrtho, 7

glPopAttrib, 27, 28

glPushAttrib, 27, 28

glTexImage1D, 5

glTexImage2D, 5

glTexImage3D, 5

glTexImagexD, 6

GLU AUTO LOAD MATRIX,30, 31

GLU BEGIN, 19

GLU CCW, 18

GLU CULLING, 30

GLU CW, 18

GLU DISPLAY MODE, 30{32

GLU DOMAIN DISTANCE,30, 31

GLU EDGE FLAG, 19

GLU END,19, 25

GLU END DATA, 25

GLU ERROR,19,21, 25

GLU EXTENSIONS, 2

36

Version 1.3 - 4 November 1998

INDEX 37

GLU EXTERIOR, 18

GLU FILL,22,23,31, 32

GLU FLAT, 21

GLU INSIDE, 21

GLU INTERIOR, 18

GLU INVALID ENUM, 33

GLU INVALID OPERATION, 33

GLU INVALID VALUE,6, 33

GLU LINE, 22

GLU MAP1 TRIM 2, 29

GLU MAP1 TRIM 3, 29

GLU NONE, 21

GLU NORMAL, 25

GLU NORMAL DATA, 25

GLU NURBS BEGIN, 25

GLU NURBS BEGIN DATA, 25

GLU NURBS COLOR, 25

GLU NURBS COLOR DATA, 25

GLU NURBS ERROR1, 27

GLU NURBS ERROR37, 27

GLU NURBS MODE,25,26,30--32,

35

GLU NURBS RENDERER,25,30,

31

GLU NURBS TESSELLATOR,25,

26,30, 32

GLU NURBS TEXTURE COORD,

25

GLU NURBS TEXTURE COORD

DATA, 25

GLU NURBS VERTEX, 25

GLU NURBS VERTEX DATA, 25

GLU OBJECT PARAMETRIC

ERROR,30, 31

GLU OBJECT PATH LENGTH,30,

31

GLU OUT OF MEMORY, 33

GLU OUTLINE PATCH,31, 32

GLU OUTLINE POLY,31, 32

GLU OUTSIDE,21, 22

GLU PARAMETRIC ERROR,30,

31

GLU PARAMETRIC

TOLERANCE,30,31, 34

GLU PATH LENGTH,30,31, 34

GLU POINT, 22

GLU SAMPLING METHOD,30,31,

34, 35

GLU SAMPLING TOLERANCE,

30

GLU SILHOUETTE,22, 23

GLU SMOOTH, 21

GLU TESS BEGIN,12,15, 19

GLU TESS BEGIN DATA,12, 15

GLU TESS BOUNDARY ONLY,13,

15, 17

GLU TESS COMBINE, 12

GLU TESS COMBINE DATA, 12

GLU TESS COORD TOO LARGE,

13

GLU TESS EDGE FLAG,12, 19

GLU TESS EDGE FLAG DATA, 12

GLU TESS END,12, 19

GLU TESS END DATA, 12

GLU TESS ERROR,12, 19

GLU TESS ERROR DATA, 12

GLU TESS MAX COORD TOO

LARGE, 13

GLU TESS MISSING BEGIN

CONTOUR, 13

GLU TESS MISSING BEGIN

POLYGON, 13

GLU TESS MISSING END

CONTOUR, 13

GLU TESS MISSING END

POLYGON, 13

GLU TESS NEED COMBINE

CALLBACK,13, 14

GLU TESS TOLERANCE, 15

GLU TESS TOLERANCE., 15

GLU TESS VERTEX,12, 19

GLU TESS VERTEX DATA, 12

GLU TESS WINDING ABS GEQ

TWO,15, 17

GLU TESS WINDING NEGATIVE,

15

GLU TESS WINDING NONZERO,

15, 17

GLU TESS WINDING ODD, 15

GLU TESS WINDING POSITIVE,

Version 1.3 - 4 November 1998

38 INDEX

15, 17

GLU TESS WINDING RULE, 15

GLU U STEP,30,31, 34

GLU UNKNOWN, 18

GLU V STEP,30,31, 34

GLU VERSION, 2

GLU VERTEX, 19

gluBeginCurve, 27

gluBeginPolygon, 18, 19

gluBeginSurface, 27{29

gluBeginTrim, 29

gluBuild1DMipmapLevels, 5

gluBuild1DMipmaps, 5

gluBuild2DMipmapLevels, 6

gluBuild2DMipmaps, 5

gluBuild3DMipmapLevels, 6

gluBuild3DMipmaps, 5, 33, 35

gluBuildxDMipmapLevels, 35

gluBuildxDMipmaps, 6, 35

gluCheckExtension, 2, 3, 35

gluCylinder, 22

gluDeleteNurbsRenderer, 24, 25

gluDeleteQuadric, 20

gluDeleteTess, 10

gluDisk, 23

gluEndCurve, 27

gluEndPolygon, 18, 19

gluEndSurface, 28, 29

gluEndTrim, 29

gluErrorString, 5, 21, 27, 33

gluGetNurbsProperty, 32

gluGetString, 2, 3, 34

gluGetTessProperty, 16

gluLoadSamplingMatrices, 31

gluLookAt, 8

gluNewNurbsRenderer, 24

gluNewQuadric, 20

gluNewTess, 10

gluNextContour, 18, 19

gluNurbsCallback, 25, 35

gluNurbsCallbackData, 26

gluNurbsCurve, 27, 29

gluNurbsProperty, 29

gluNurbsSurface, 28

gluOrtho2D, 7

gluPartialDisk, 23

gluPerspective, 7

gluPickMatrix, 8

gluProject, 9

gluPwlCurve, 29

gluQuadricCallback, 20, 21

gluQuadricDrawStyle, 22

gluQuadricNormals, 21

gluQuadricOrientation, 21

gluQuadricTexture, 21

gluScaleImage, 4, 5, 33, 35

gluSphere, 22

gluTessBeginContour, 11, 19

gluTessBeginPolygon, 11, 13, 19

gluTessCallback, 12

gluTessEndContour, 11, 19

gluTessEndPolygon, 11, 19

gluTessNormal, 16{18

gluTessProperty, 14

gluTessVertex, 11, 13

gluUnProject, 9

gluUnProject4, 9

gluUnproject4, 35

glXGetClientString, 3

normal, 25

normalData, 25

texCoord, 25

texCoordData, 25

vertex, 12, 25

vertexData, 12, 25

The OpenGL Utility Toolkit (GLUT)
Programming Interface

API Version 3

Mark J. Kilgard
Silicon Graphics, Inc.

November 13, 1996

OpenGL is a trademark of Silicon Graphics, Inc. X Window System is a trademark of X Consortium, Inc.
Spaceball is a registered trademark of Spatial Systems Inc.

The author has taken care in preparation of this documentation but makes no expressed or implied warranty
of any kind and assumes no responsibility for errors or omissions. No liability is assumed for incidental or
consequential damages in connection with or arising from the use of information or programs contained herein.

Copyright c1994, 1995, 1996. Mark J. Kilgard. All rights reserved.

All rights reserved. No part of this documentation may be reproduced, in any form or by any means, without
permission in writing from the author.

CONTENTS i

Contents

1 Introduction 1
1.1 Background : 1
1.2 Design Philosophy : 2
1.3 API Version 2 : 3
1.4 API Version 3 : 3
1.5 Conventions : 4
1.6 Terminology : 4

2 Initialization 6
2.1 glutInit : 6
2.2 glutInitWindowPosition, glutInitWindowSize : 7
2.3 glutInitDisplayMode : 7

3 Beginning Event Processing 8
3.1 glutMainLoop : 8

4 Window Management 8
4.1 glutCreateWindow : 9
4.2 glutCreateSubWindow : 9
4.3 glutSetWindow, glutGetWindow : 10
4.4 glutDestroyWindow : 10
4.5 glutPostRedisplay : 10
4.6 glutSwapBuffers : 11
4.7 glutPositionWindow : 11
4.8 glutReshapeWindow : 11
4.9 glutFullScreen : 12
4.10 glutPopWindow, glutPushWindow : 12
4.11 glutShowWindow, glutHideWindow, glutIconifyWindow : : : : : : : : : : : : : : : : : : : 13
4.12 glutSetWindowTitle, glutSetIconTitle : 13
4.13 glutSetCursor : 13

5 Overlay Management 14
5.1 glutEstablishOverlay : 14
5.2 glutUseLayer : 15
5.3 glutRemoveOverlay : 15
5.4 glutPostOverlayRedisplay : 16
5.5 glutShowOverlay, glutHideOverlay : 16

6 Menu Management 16
6.1 glutCreateMenu : 16
6.2 glutSetMenu, glutGetMenu : 17
6.3 glutDestroyMenu : 17
6.4 glutAddMenuEntry : 17
6.5 glutAddSubMenu : 18
6.6 glutChangeToMenuEntry : 18
6.7 glutChangeToSubMenu : 18
6.8 glutRemoveMenuItem : 19
6.9 glutAttachMenu, glutDetachMenu : 19

ii CONTENTS

7 Callback Registration 19
7.1 glutDisplayFunc : 20
7.2 glutOverlayDisplayFunc : 20
7.3 glutReshapeFunc : 21
7.4 glutKeyboardFunc : 21
7.5 glutMouseFunc : 22
7.6 glutMotionFunc, glutPassiveMotionFunc : 22
7.7 glutVisibilityFunc : 23
7.8 glutEntryFunc : 23
7.9 glutSpecialFunc : 24
7.10 glutSpaceballMotionFunc : 24
7.11 glutSpaceballRotateFunc : 25
7.12 glutSpaceballButtonFunc : 25
7.13 glutButtonBoxFunc : 26
7.14 glutDialsFunc : 26
7.15 glutTabletMotionFunc : 27
7.16 glutTabletButtonFunc : 27
7.17 glutMenuStatusFunc : 27
7.18 glutIdleFunc : 28
7.19 glutTimerFunc : 28

8 Color Index Colormap Management 29
8.1 glutSetColor : 29
8.2 glutGetColor : 29
8.3 glutCopyColormap : 30

9 State Retrieval 30
9.1 glutGet : 30
9.2 glutLayerGet : 32
9.3 glutDeviceGet : 32
9.4 glutGetModifiers : 33
9.5 glutExtensionSupported : 33

10 Font Rendering 34
10.1 glutBitmapCharacter : 34
10.2 glutBitmapWidth : 35
10.3 glutStrokeCharacter : 35
10.4 glutStrokeWidth : 36

11 Geometric Object Rendering 36
11.1 glutSolidSphere, glutWireSphere : 36
11.2 glutSolidCube, glutWireCube : 36
11.3 glutSolidCone, glutWireCone : 37
11.4 glutSolidTorus, glutWireTorus : 37
11.5 glutSolidDodecahedron, glutWireDodecahedron : 38
11.6 glutSolidOctahedron, glutWireOctahedron : 38
11.7 glutSolidTetrahedron, glutWireTetrahedron : 38
11.8 glutSolidIcosahedron, glutWireIcosahedron : 38
11.9 glutSolidTeapot, glutWireTeapot : 39

12 Usage Advice 39

CONTENTS iii

13 FORTRAN Binding 41
13.1 Names for the FORTRAN GLUT Binding : 41
13.2 Font Naming Caveat : 41
13.3 NULL Callback : 42

14 Implementation Issues 42
14.1 Name Space Conventions : 42
14.2 Modular Implementation : 42
14.3 Error Checking and Reporting : 42
14.4 Avoid Unspecified GLUT Usage Restrictions : 42

A GLUT State 44
A.1 Types of State : 44
A.2 Global State : 44
A.3 Window State : 45
A.4 Menu State : 48

B glut.h ANSI C Header File 49

C fglut.h FORTRAN Header File 55

References 60

Index 61

iv CONTENTS

1

1 Introduction

The OpenGL UtilityToolkit (GLUT) is a programming interface with ANSI C and FORTRAN bindings for writ-
ing window system independent OpenGL programs. The toolkit supports the following functionality:

� Multiple windows for OpenGL rendering.

� Callback driven event processing.

� Sophisticated input devices.

� An “idle” routine and timers.

� A simple, cascading pop-up menu facility.

� Utility routines to generate various solid and wire frame objects.

� Support for bitmap and stroke fonts.

� Miscellaneous window management functions, including managing overlays.

An ANSI C implementation of GLUT for the X Window System [15] has been implemented by the author.
Windows NT and OS/2 versions of GLUT are also available.

This documentation serves as both a specification and a programming guide. If you are interested in a brief
introduction to programming with GLUT, look for the introductory OpenGL column [9] published in The X
Journal. For a complete introduction to using GLUT, obtain the book Programming OpenGL for the X Window
System [10]. GLUT is also used by the 2nd edition of the OpenGL Programming Guide. Teachers and students
interested in using GLUT in conjunction with a college-level computer graphics class should investigate An-
gel’s textbook Interactive Computer Graphics: A top-down approach with OpenGL [2] that uses GLUT for its
OpenGL-based examples programs.

The remainder of this section describes GLUT’s design philosophyand usage model. The followingsections
specify the GLUT routines, grouped by functionality. The final sections discuss usage advice, the FORTRAN

binding, and implementation issues. Appendix A enumerates and annotates the logical programmer visible state
maintained by GLUT. Appendix B presents the ANSI C GLUT API via its header file. Appendix C presents the
FORTRAN GLUT API via its header file.

1.1 Background

One of the major accomplishments in the specification of OpenGL [16, 12] was the isolation of window system
dependencies from OpenGL’s rendering model. The result is that OpenGL is window system independent.

Window system operations such as the creation of a rendering window and the handling of window system
events are left to the native window system to define. Necessary interactions between OpenGL and the window
system such as creating and binding an OpenGL context to a window are described separately from the OpenGL
specification in a window system dependent specification. For example, the GLX specification [4] describes the
standard by which OpenGL interacts with the X Window System.

The predecessor to OpenGL is IRIS GL [17, 18]. Unlike OpenGL, IRIS GL does specify how rendering
windows are created and manipulated. IRIS GL’s windowing interface is reasonably popular largely because it
is simple to use. IRIS GL programmers can worry about graphics programming without needing to be an expert
in programming the native window system. Experience also demonstrated that IRIS GL’s windowing interface
was high-level enough that it could be retargeted to different window systems. Silicon Graphics migrated from
NeWS to the X Window System without any major changes to IRIS GL’s basic windowing interface.

Removing window system operations from OpenGL is a sound decision because it allows the OpenGL
graphics system to be retargeted to various systems including powerful but expensive graphics workstations as
well as mass-production graphics systems like video games, set-top boxes for interactive television, and PCs.

Unfortunately, the lack of a window system interface for OpenGL is a gap in OpenGL’s utility. Learning
native window system APIs such as the X Window System’s Xlib [7] or Motif [8] can be daunting. Even those
familiar with native window system APIs need to understand the interface that binds OpenGL to the native

2 1. INTRODUCTION

window system. And when an OpenGL program is written using the native window system interface, despite
the portability of the program’s OpenGL rendering code, the program itself will be window system dependent.

Testing and documenting OpenGL’s functionality lead to the development of the tk and aux toolkits. The
aux toolkit is used in the examples found in the OpenGL Programming Guide [11]. Unfortunately, aux has
numerous limitations and its utility is largely limited to toy programs. The tk library has more functionality
than aux but was developed in an ad hoc fashion and still lacks much important functionality that IRIS GL
programmers expect, like pop-up menus and overlays.

GLUT is designed to fill the need for a window system independent programming interface for OpenGL
programs. The interface is designed to be simple yet still meet the needs of useful OpenGL programs. Features
from the IRIS GL, aux, and tk interfaces are included to make it easy for programmers used to these interfaces
to develop programs for GLUT.

1.2 Design Philosophy

GLUT simplifies the implementation of programs using OpenGL rendering. The GLUT application program-
ming interface (API) requires very few routines to display a graphics scene rendered using OpenGL. The GLUT
API (like the OpenGL API) is stateful. Most initial GLUT state is defined and the initial state is reasonable for
simple programs.

The GLUT routines also take relatively few parameters. No pointers are returned. The only pointers passed
into GLUT are pointers to character strings (all strings passed to GLUT are copied, not referenced) and opaque
font handles.

The GLUT API is (as much as reasonable) window system independent. For this reason, GLUT does not
return any native window system handles, pointers, or other data structures. More subtle window system de-
pendencies such as reliance on window system dependent fonts are avoided by GLUT; instead, GLUT supplies
its own (limited) set of fonts.

For programming ease, GLUT provides a simple menu sub-API. While the menuing support is designed to
be implemented as pop-up menus, GLUT gives window system leeway to support the menu functionality in
another manner (pull-down menus for example).

Two of the most important pieces of GLUT state are the current window and current menu. Most window
and menu routines affect the current window or menu respectively. Most callbacks implicitly set the current
window and menu to the appropriate window or menu responsible for the callback. GLUT is designed so that a
program with only a single window and/or menu will not need to keep track of any window or menu identifiers.
This greatly simplifies very simple GLUT programs.

GLUT is designed for simple to moderately complex programs focused on OpenGL rendering. GLUT im-
plements its own event loop. For this reason, mixing GLUT with other APIs that demand their own event han-
dling structure may be difficult. The advantage of a builtin event dispatch loop is simplicity.

GLUT contains routines for rendering fonts and geometric objects, however GLUT makes no claims on the
OpenGL display list name space. For this reason, none of the GLUT rendering routines use OpenGL display
lists. It is up to the GLUT programmer to compile the output from GLUT rendering routines into display lists
if this is desired.

GLUT routines are logically organized into several sub-APIs according to their functionality. The sub-APIs
are:

Initialization. Command line processing, window system initialization, and initial window creation state are
controlled by these routines.

Beginning Event Processing. This routine enters GLUT’s event processing loop. This routine never returns,
and it continuously calls GLUT callbacks as necessary.

Window Management. These routines create and control windows.

Overlay Management. These routines establish and manage overlays for windows.

Menu Management. These routines create and control pop-up menus.

Callback Registration. These routines register callbacks to be called by the GLUT event processing loop.

1.3 API Version 2 3

Color Index Colormap Management. These routines allow the manipulationof color index colormaps for win-
dows.

State Retrieval. These routines allows programs to retrieve state from GLUT.

Font Rendering. These routines allow rendering of stroke and bitmap fonts.

Geometric Shape Rendering. These routines allow the rendering of 3D geometric objects including spheres,
cones, icosahedrons, and teapots.

1.3 API Version 2

In response to feedback from the original version of GLUT, GLUT API version 2 was developed. Additions to
the original GLUT API version 1 are:

� Support for requesting stereo and multisample windows.

� New routines to query support for and provide callbacks for sophisticated input devices: the Spaceball,
tablet, and dial & button box.

� New routine to register a callback for keyboard function and directional keys. In version 1, only ASCII
characters could be generated.

� New queries for stereo, multisampling, and elapsed time.

� New routine to ease querying for OpenGL extension support.

GLUT API version 2 is completely compatible with version 1 of the API.

1.4 API Version 3

Further feedback lead to the development of GLUT API version 3. Additions to the GLUT API version 2 are:

� The glutMenuStateFunc has been deprecated in favor of the glutMenuStatusFunc.

� glutFullScreen requests full screen top-level windows.

� Three additional Helvetica bitmap fonts.

� Implementations should enforce not allowing any modifications to menus while menus are in use.

� glutBitmapWidth and glutStrokeBitmap return the widths of individual characters.

� glutGetModifiers called during a keyboard, mouse, or special callback returns the modifiers (Shift,
Ctrl, Alt) held down when the mouse or keyboard event was generated.

� Access to per-window transparent overlays when overlay hardware is supported.
The routines added are glutEstablishOverlay, glutRemoveOverlay,
glutShowOverlay, glutHideOverlay, glutUseOverlay, glutLayerGet, and
glutPostOverlayRedisplay.

� A new display mode called GLUT LUMINANCE using OpenGL’s RGBA color model, but that has no
green or blue components. The red component is converted to an index and looked up in a writable col-
ormap to determine displayed colors. See glutInitDisplayMode.

GLUT API version 3 should be largely compatible with version 2. Be aware that programs that used to (through
some degree of fortuitous timing) modify menus while menus are in use will encounter fatal errors when doing
so in version 3.

Another change in GLUT 3.0 that may require source code modification to pre-3.0 GLUT programs. GLUT
3.0 no longer lets a window be shown without a display callback registered. This change makes sure windows
are not displayed on the screen without the GLUT application providing a way for them to be rendered. In

4 1. INTRODUCTION

conjunction with this change, glutDisplayFunc no longer allows NULL to deregister a display callback.
While there is no longer a way to deregister a display callback, you can still change the change the display
callback routine with subsequent calls to glutDisplayFunc.

The display mode mask parameter for glutInitDisplayMode and the milliseconds parameter for
glutTimerFunc are now of type unsigned int (previously unsigned long).

1.5 Conventions

GLUT window and screen coordinates are expressed in pixels. The upper left hand corner of the screen or a
window is (0,0). X coordinates increase in a rightward direction; Y coordinates increase in a downward direc-
tion. Note: This is inconsistent with OpenGL’s coordinate scheme that generally considers the lower left hand
coordinate of a window to be at (0,0) but is consistent with most popular window systems.

Integer identifiers in GLUT begin with one, not zero. So window identifiers, menu identifiers, and menu
item indices are based from one, not zero.

In GLUT’s ANSI C binding, for most routines, basic types (int, char*) are used as parameters. In routines
where the parameters are directly passed to OpenGL routines, OpenGL types (GLfloat) are used.

The header files for GLUT should be included in GLUT programs with the following include directive:

#include <GL/glut.h>

Because a very large window system software vendor (who will remain nameless) has an apparent inability to
appreciate that OpenGL’s API is independent of their window system API, portable ANSI C GLUT programs
should not directly include <GL/gl.h> or <GL/glu.h>. Instead, ANSI C GLUT programs should rely on
<GL/glut.h> to include the necessary OpenGL and GLU related header files.

The ANSI C GLUT library archive is typicallynamed libglut.a on Unix systems. GLUT programs need
to link with the system’s OpenGL and GLUT libraries (and any libraries these libraries potentially depend on).
A set of window system dependent libraries may also be necessary for linking GLUT programs. For example,
programs using the X11 GLUT implementation typicallyneed to link with Xlib, the X extension library, possibly
the X Input extension library, the X miscellaneous utilities library, and the math library. An example X11/Unix
compile line would look like:

cc -o foo foo.c -lglut -lGLU -lGL -lXmu -lXi -lXext -lX11 -lm

1.6 Terminology

A number of terms are used in a GLUT-specific manner throughout this document. The GLUT meaning of
these terms is independent of the window system GLUT is used with. Here are GLUT-specific meanings for the
following GLUT-specific terms:

Callback A programmer specified routine that can be registered with GLUT to be called in response to a specific
type of event. Also used to refer to a specific callback routine being called.

Colormap A mapping of pixel values to RGB color values. Use by color index windows.

Dials and button box A sophisticated input device consisting of a pad of buttons and an array of rotating dials,
often used by computer-aided design programs.

Display mode A set of OpenGL frame buffer capabilities that can be attributed to a window.

Idle A state when no window system events are received for processing as callbacks and the idle callback, if
one is registered, is called.

Layer in use Either the normal plane or overlay. This per-window state determines what frame buffer layer
OpenGL commands affect.

Menu entry A menu item that the user can select to trigger the menu callback for the menu entry’s value.

Menu item Either a menu entry or a sub-menu trigger.

1.6 Terminology 5

Modifiers The Shift, Ctrl, and Alt keys that can be held down simultaneously with a key or mouse button being
pressed or released.

Multisampling A technique for hardware antialiasing generally available only on expensive 3D graphics hard-
ware [1]. Each pixel is composed of a number of samples (each containing color and depth information).
The samples are averaged to determine the displayed pixel color value. Multisampling is supported as an
extension to OpenGL.

Normal plane The default frame buffer layer where GLUT window state resides; as opposed to the overlay.

Overlay A frame buffer layer that can be displayed preferentially to the normal plane and supports transparency
to display through to the normal plane. Overlays are useful for rubber-banding effects, text annotation,
and other operations, to avoid damaging the normal plane frame buffer state. Overlays require hardware
support not present on all systems.

Pop The act of forcing a window to the top of the stacking order for sibling windows.

Pop-up menu A menu that can be set to appear when a specified mouse button is pressed in a window. A pop-
menu consists of multiple menu items.

Push The act of forcing a window to the bottom of the stacking order for sibling windows.

Reshape The act of changing the size or shape of the window.

Spaceball A sophisticated 3D input device that provides six degrees of freedom, three axes of rotation and three
axes of translation. It also supports a number of buttons. The device is a hand-sized ball attached to a base.
By cupping the ball with one’s hand and applying torsional or directional force on the ball, rotations and
translationsare generated.

Stereo A frame buffer capability providing left and right color buffers for creating stereoscopic renderings.
Typically, the user wears LCD shuttered goggles synchronized with the alternating display on the screen
of the left and right color buffers.

Sub-menu A menu cascaded from some sub-menu trigger.

Sub-menu trigger A menu item that the user can enter to cascade another pop-up menu.

Subwindow A type of window that is the child window of a top-level window or other subwindow. The drawing
and visible region of a subwindow is limited by its parent window.

Tablet A precise 2D input device. Like a mouse, 2D coordinates are returned. The absolute position of the
tablet “puck” on the tablet is returned. Tablets also support a number of buttons.

Timer A callback that can be scheduled to be called in a specified interval of time.

Top-level window A window that can be placed, moved, resized, etc. independently from other top-level win-
dows by the user. Subwindows may reside within a top-level window.

Window A rectangular area for OpenGL rendering.

Window display state One of shown, hidden, or iconified. A shown window is potentially visible on the screen
(it may be obscured by other windows and not actually visible). A hidden window will never be visible.
An iconified window is not visible but could be made visible in response to some user action like clicking
on the window’s corresponding icon.

Window system A broad notion that refers to both the mechanism and policy of the window system. For ex-
ample, in the X Window System both the window manager and the X server are integral to what GLUT
considers the window system.

6 2. INITIALIZATION

2 Initialization

Routines beginning with the glutInit- prefix are used to initialize GLUT state. The primary initialization
routine is glutInit that should only be called exactly once in a GLUT program. No non-glutInit- pre-
fixed GLUT or OpenGL routines should be called before glutInit.

The other glutInit- routines may be called before glutInit. The reason is these routines can be used
to set default window initializationstate that might be modified by the command processing done inglutInit.
For example, glutInitWindowSize(400, 400) can be called beforeglutInit to indicate 400 by 400
is the program’s default window size. Setting the initial window size or position before glutInit allows the
GLUT program user to specify the initial size or position using command line arguments.

2.1 glutInit

glutInit is used to initialize the GLUT library.

Usage

void glutInit(int *argcp, char **argv);

argcp A pointer to the program’s unmodified argc variable from main. Upon return, the value pointed
to by argcp will be updated, because glutInit extracts any command line options intended for the
GLUT library.

argv The program’s unmodifiedargv variable from main. Likeargcp, the data forargvwill be updated
because glutInit extracts any command line options understood by the GLUT library.

Description

glutInit will initialize the GLUT library and negotiate a session with the window system. During this pro-
cess, glutInit may cause the termination of the GLUT program with an error message to the user if GLUT
cannot be properly initialized. Examples of this situation include the failure to connect to the window system,
the lack of window system support for OpenGL, and invalid command line options.

glutInit also processes command line options, but the specific options parse are window system depen-
dent.

X Implementation Notes

The X Window System specific options parsed by glutInit are as follows:

-display DISPLAY Specify the X server to connect to. If not specified, the value of theDISPLAY environ-
ment variable is used.

-geometry WxH+X+Y Determines where window’s should be created on the screen. The parameter follow-
ing -geometry should be formatted as a standard X geometry specification. The effect of using this
option is to change the GLUT initial size and initial position the same as if glutInitWindowSize or
glutInitWindowPositionwere called directly.

-iconic Requests all top-level windows be created in an iconic state.

-indirect Force the use of indirect OpenGL rendering contexts.

-direct Force the use of direct OpenGL rendering contexts (not all GLX implementations support direct
rendering contexts). A fatal error is generated if direct rendering is not supported by the OpenGL imple-
mentation.

If neither -indirect or -direct are used to force a particular behavior, GLUT will attempt to use
direct rendering if possible and otherwise fallback to indirect rendering.

2.2 glutInitWindowPosition, glutInitWindowSize 7

-gldebug After processing callbacks and/or events, check if there are any OpenGL errors by calling
glGetError. If an error is reported, print out a warning by looking up the error code with
gluErrorString. Using this option is helpful in detecting OpenGL run-time errors.

-sync Enable synchronous X protocol transactions. This option makes it easier to track down potential X
protocol errors.

2.2 glutInitWindowPosition, glutInitWindowSize

glutInitWindowPositionandglutInitWindowSize set the initial windowpositionand size respec-
tively.

Usage

void glutInitWindowSize(int width, int height);
void glutInitWindowPosition(int x, int y);

width Width in pixels.

height Height in pixels.

x Window X location in pixels.

y Window Y location in pixels.

Description

Windows created by glutCreateWindow will be requested to be created with the current initial window
position and size.

The initial value of the initial window position GLUT state is -1 and -1. If either the X or Y component to
the initial window position is negative, the actual window position is left to the window system to determine.
The initial value of the initial window size GLUT state is 300 by 300. The initial window size components must
be greater than zero.

The intent of the initial window position and size values is to provide a suggestion to the window system for
a window’s initial size and position. The window system is not obligated to use this information. Therefore,
GLUT programs should not assume the window was created at the specified size or position. A GLUT program
should use the window’s reshape callback to determine the true size of the window.

2.3 glutInitDisplayMode

glutInitDisplayMode sets the initial display mode.

Usage

void glutInitDisplayMode(unsigned int mode);

mode Display mode, normally the bitwise OR-ing of GLUT display mode bit masks. See values below:

GLUT RGBA Bit mask to select an RGBA mode window. This is the default if neither GLUT RGBA nor
GLUT INDEX are specified.

GLUT RGB An alias for GLUT RGBA.

GLUT INDEX Bit mask to select a color index mode window. This overridesGLUT RGBA if it is also specified.

GLUT SINGLE Bit mask to select a single buffered window. This is the default if neither GLUT DOUBLE or
GLUT SINGLE are specified.

GLUT DOUBLE Bit mask to select a double buffered window. This overrides GLUT SINGLE if it is also spec-
ified.

8 4. WINDOW MANAGEMENT

GLUT ACCUM Bit mask to select a window with an accumulation buffer.

GLUT ALPHA Bit mask to select a window with an alpha component to the color buffer(s).

GLUT DEPTH Bit mask to select a window with a depth buffer.

GLUT STENCIL Bit mask to select a window with a stencil buffer.

GLUT MULTISAMPLE Bit mask to select a window with multisampling support. If multisampling is not avail-
able, a non-multisampling window will automatically be chosen. Note: both the OpenGL client-side and
server-side implementations must support the GLX SAMPLE SGIS extension for multisampling to be
available.

GLUT STEREO Bit mask to select a stereo window.

GLUT LUMINANCE Bit mask to select a window with a “luminance” color model. This model provides the
functionality of OpenGL’s RGBA color model, but the green and blue components are not maintained
in the frame buffer. Instead each pixel’s red component is converted to an index between zero and
glutGet(GLUT WINDOW COLORMAP SIZE)-1 and looked up in a per-window color map to deter-
mine the color of pixels within the window. The initial colormap of GLUT LUMINANCEwindows is ini-
tialized to be a linear gray ramp, but can be modified with GLUT’s colormap routines.

Description

The initial display mode is used when creating top-level windows, subwindows, and overlays to determine the
OpenGL display mode for the to-be-created window or overlay.

Note that GLUT RGBA selects the RGBA color model, but it does not request any bits of alpha (sometimes
called an alpha buffer or destination alpha) be allocated. To request alpha, specify GLUT ALPHA. The same
applies to GLUT LUMINANCE.

GLUT LUMINANCE Implementation Notes

GLUT LUMINANCE is not supported on most OpenGL platforms.

3 Beginning Event Processing

After a GLUT program has done initial setup such as creating windows and menus, GLUT programs enter the
GLUT event processing loop by calling glutMainLoop.

3.1 glutMainLoop

glutMainLoop enters the GLUT event processing loop.

Usage

void glutMainLoop(void);

Description

glutMainLoop enters the GLUT event processing loop. This routine should be called at most once in a GLUT
program. Once called, this routine will never return. It will call as necessary any callbacks that have been reg-
istered.

4 Window Management

GLUT supports two types of windows: top-level windows and subwindows. Both types support OpenGL ren-
dering and GLUT callbacks. There is a single identifier space for both types of windows.

4.1 glutCreateWindow 9

4.1 glutCreateWindow

glutCreateWindow creates a top-level window.

Usage

int glutCreateWindow(char *name);

name ASCII character string for use as window name.

Description

glutCreateWindow creates a top-level window. The name will be provided to the window system as the
window’s name. The intent is that the window system will label the window with the name.

Implicitly, the current window is set to the newly created window.
Each created window has a unique associated OpenGL context. State changes to a window’s associated

OpenGL context can be done immediately after the window is created.
The display state of a window is initially for the window to be shown. But the window’s display state is not

actually acted upon until glutMainLoop is entered. This means until glutMainLoop is called, rendering
to a created window is ineffective because the window can not yet be displayed.

The value returned is a unique small integer identifier for the window. The range of allocated identifiers
starts at one. This window identifier can be used when calling glutSetWindow.

X Implementation Notes

The proper X Inter-Client Communication Conventions Manual (ICCCM) top-level properties are established.
The WM COMMAND property that lists the command line used to invoke the GLUT program is only established
for the first window created.

4.2 glutCreateSubWindow

glutCreateSubWindow creates a subwindow.

Usage

int glutCreateSubWindow(int win,
int x, int y, int width, int height);

win Identifier of the subwindow’s parent window.

x Window X location in pixels relative to parent window’s origin.

y Window Y location in pixels relative to parent window’s origin.

width Width in pixels.

height Height in pixels.

Description

glutCreateSubWindow creates a subwindow of the window identified bywin of sizewidth and height
at location x and y within the current window. Implicitly, the current window is set to the newly created sub-
window.

Each created window has a unique associated OpenGL context. State changes to a window’s associated
OpenGL context can be done immediately after the window is created.

The display state of a window is initially for the window to be shown. But the window’s display state is not
actually acted upon until glutMainLoop is entered. This means until glutMainLoop is called, rendering
to a created window is ineffective. Subwindows can not be iconified.

Subwindows can be nested arbitrarily deep.

10 4. WINDOW MANAGEMENT

The value returned is a unique small integer identifier for the window. The range of allocated identifiers
starts at one.

4.3 glutSetWindow, glutGetWindow

glutSetWindow sets the current window; glutGetWindow returns the identifier of the current window.

Usage

void glutSetWindow(int win);
int glutGetWindow(void);

win Identifier of GLUT window to make the current window.

Description

glutSetWindow sets the current window; glutGetWindow returns the identifier of the current win-
dow. If no windows exist or the previously current window was destroyed, glutGetWindow returns zero.
glutSetWindow does not change the layer in use for the window; this is done using glutUseLayer.

4.4 glutDestroyWindow

glutDestroyWindow destroys the specified window.

Usage

void glutDestroyWindow(int win);

win Identifier of GLUT window to destroy.

Description

glutDestroyWindow destroys the window specified by win and the window’s associated OpenGL context,
logical colormap (if the window is color index), and overlay and related state (if an overlay has been established).
Any subwindows of destroyed windows are also destroyed byglutDestroyWindow. Ifwinwas the current
window, the current window becomes invalid (glutGetWindow will return zero).

4.5 glutPostRedisplay

glutPostRedisplay marks the current window as needing to be redisplayed.

Usage

void glutPostRedisplay(void);

Description

Mark the normal plane of current window as needing to be redisplayed. The next iteration through
glutMainLoop, the window’s display callback will be called to redisplay the window’s normal plane. Multi-
ple calls to glutPostRedisplay before the next display callback opportunity generates only a single redis-
play callback. glutPostRedisplay may be called within a window’s display or overlay display callback
to re-mark that window for redisplay.

Logically, normal plane damage notification for a window is treated as a glutPostRedisplay on the
damaged window. Unlike damage reported by the window system, glutPostRedisplaywill not set to true
the normal plane’s damaged status (returned by glutLayerGet(GLUT NORMAL DAMAGED).

Also, see glutPostOverlayRedisplay.

4.6 glutSwapBuffers 11

4.6 glutSwapBuffers

glutSwapBuffers swaps the buffers of the current window if double buffered.

Usage

void glutSwapBuffers(void);

Description

Performs a buffer swap on the layer in use for the current window. Specifically, glutSwapBufferspromotes
the contents of the back buffer of the layer in use of the current window to become the contents of the front
buffer. The contents of the back buffer then become undefined. The update typically takes place during the
vertical retrace of the monitor, rather than immediately after glutSwapBuffers is called.

An implicitglFlush is done by glutSwapBuffers before it returns. Subsequent OpenGL commands
can be issued immediately after calling glutSwapBuffers, but are not executed until the buffer exchange
is completed.

If the layer in use is not double buffered, glutSwapBuffers has no effect.

4.7 glutPositionWindow

glutPositionWindow requests a change to the position of the current window.

Usage

void glutPositionWindow(int x, int y);

x New X location of window in pixels.

y New Y location of window in pixels.

Description

glutPositionWindow requests a change in the position of the current window. For top-level windows, the
x and y parameters are pixel offsets from the screen origin. For subwindows, the x and y parameters are pixel
offsets from the window’s parent window origin.

The requests by glutPositionWindow are not processed immediately. The request is executed after
returning to the main event loop. This allows multiple glutPositionWindow, glutReshapeWindow,
and glutFullScreen requests to the same window to be coalesced.

In the case of top-level windows, a glutPositionWindow call is considered only a request for position-
ing the window. The window system is free to apply its own policies to top-level window placement. The intent
is that top-level windows should be repositioned according glutPositionWindow’s parameters.

glutPositionWindow disables the full screen status of a window if previously enabled.

4.8 glutReshapeWindow

glutReshapeWindow requests a change to the size of the current window.

Usage

void glutReshapeWindow(int width, int height);

width New width of window in pixels.

height New height of window in pixels.

12 4. WINDOW MANAGEMENT

Description

glutReshapeWindow requests a change in the size of the current window. The width and height pa-
rameters are size extents in pixels. The width and height must be positive values.

The requests by glutReshapeWindow are not processed immediately. The request is executed after re-
turning to the main event loop. This allows multipleglutReshapeWindow, glutPositionWindow, and
glutFullScreen requests to the same window to be coalesced.

In the case of top-level windows, a glutReshapeWindow call is considered only a request for sizing the
window. The window system is free to apply its own policies to top-level window sizing. The intent is that
top-level windows should be reshaped according glutReshapeWindow’s parameters. Whether a reshape
actually takes effect and, if so, the reshaped dimensions are reported to the program by a reshape callback.

glutReshapeWindow disables the full screen status of a window if previously enabled.

4.9 glutFullScreen

glutFullScreen requests that the current window be made full screen.

Usage

void glutFullScreen(void);

Description

glutFullScreen requests that the current window be made full screen. The exact semantics of what full
screen means may vary by window system. The intent is to make the window as large as possible and disable
any window decorations or borders added the window system. The window width and height are not guaranteed
to be the same as the screen width and height, but that is the intent of making a window full screen.

glutFullScreen is defined to work only on top-level windows.
The glutFullScreen requests are not processed immediately. The request is executed after return-

ing to the main event loop. This allows multiple glutReshapeWindow, glutPositionWindow, and
glutFullScreen requests to the same window to be coalesced.

Subsequent glutReshapeWindow and glutPositionWindow requests on the window will disable
the full screen status of the window.

X Implementation Notes

In the X implementation of GLUT, full screen is implemented by sizing and positioning the window to cover the
entire screen and posting the MOTIF WM HINTS property on the window requesting absolutely no decorations.
Non-Motif window managers may not respond to MOTIF WM HINTS.

4.10 glutPopWindow, glutPushWindow

glutPopWindow and glutPushWindow change the stacking order of the current window relative to its
siblings.

Usage

void glutPopWindow(void);
void glutPushWindow(void);

Description

glutPopWindow and glutPushWindow work on both top-level windows and subwindows. The effect of
pushing and popping windows does not take place immediately. Instead the push or pop is saved for execution
upon return to the GLUT event loop. Subsequent push or pop requests on a window replace the previously

4.11 glutShowWindow, glutHideWindow, glutIconifyWindow 13

saved request for that window. The effect of pushing and popping top-level windows is subject to the window
system’s policy for restacking windows.

4.11 glutShowWindow, glutHideWindow, glutIconifyWindow

glutShowWindow, glutHideWindow, and glutIconifyWindow change the display status of the cur-
rent window.

Usage

void glutShowWindow(void);
void glutHideWindow(void);
void glutIconifyWindow(void);

Description

glutShowWindowwill show the current window (though it may still not be visible if obscured by other shown
windows). glutHideWindowwill hide the current window. glutIconifyWindowwill iconify a top-level
window, but GLUT prohibits iconification of a subwindow. The effect of showing, hiding, and iconifying win-
dows does not take place immediately. Instead the requests are saved for execution upon return to the GLUT
event loop. Subsequent show, hide, or iconification requests on a window replace the previously saved request
for that window. The effect of hiding, showing, or iconifying top-level windows is subject to the window sys-
tem’s policy for displaying windows.

4.12 glutSetWindowTitle, glutSetIconTitle

glutSetWindowTitle and glutSetIconTitle change the window or icon title respectively of the cur-
rent top-level window.

Usage

void glutSetWindowTitle(char *name);
void glutSetIconTitle(char *name);

name ASCII character string for the window or icon name to be set for the window.

Description

These routines should be called only when the current window is a top-level window. Upon creation of a top-
level window, the window and icon names are determined by the name parameter to glutCreateWindow.
Once created, glutSetWindowTitle and glutSetIconTitle can change the window and icon names
respectively of top-level windows. Each call requests the window system change the title appropriately. Re-
quests are not buffered or coalesced. The policy by which the window and icon name are displayed is window
system dependent.

4.13 glutSetCursor

glutSetCursor changes the cursor image of the current window.

Usage

void glutSetCursor(int cursor);

cursor Name of cursor image to change to.

GLUT CURSOR RIGHT ARROW Arrow pointing up and to the right.

14 5. OVERLAY MANAGEMENT

GLUT CURSOR LEFT ARROW Arrow pointing up and to the left.

GLUT CURSOR INFO Pointing hand.

GLUT CURSOR DESTROY Skull & cross bones.

GLUT CURSOR HELP Question mark.

GLUT CURSOR CYCLE Arrows rotating in a circle.

GLUT CURSOR SPRAY Spray can.

GLUT CURSOR WAIT Wrist watch.

GLUT CURSOR TEXT Insertion point cursor for text.

GLUT CURSOR CROSSHAIR Simple cross-hair.

GLUT CURSOR UP DOWN Bi-directional pointing up & down.

GLUT CURSOR LEFT RIGHT Bi-directional pointing left & right.

GLUT CURSOR TOP SIDE Arrow pointing to top side.

GLUT CURSOR BOTTOM SIDE Arrow pointing to bottom side.

GLUT CURSOR LEFT SIDE Arrow pointing to left side.

GLUT CURSOR RIGHT SIDE Arrow pointing to right side.

GLUT CURSOR TOP LEFT CORNER Arrow pointing to top-left corner.

GLUT CURSOR TOP RIGHT CORNER Arrow pointing to top-right corner.

GLUT CURSOR BOTTOM RIGHT CORNER Arrow pointing to bottom-left corner.

GLUT CURSOR BOTTOM LEFT CORNER Arrow pointing to bottom-right corner.

GLUT CURSOR FULL CROSSHAIR Full-screen cross-hair cursor (if possible, otherwise
GLUT CURSOR CROSSHAIR).

GLUT CURSOR NONE Invisible cursor.

GLUT CURSOR INHERIT Use parent’s cursor.

Description

glutSetCursor changes the cursor image of the current window. Each call requests the window system
change the cursor appropriately. The cursor image when a window is created is GLUT CURSOR INHERIT.
The exact cursor images used are implementation dependent. The intent is for the image to convey the meaning
of the cursor name. For a top-level window,GLUT CURSOR INHERIT uses the default window system cursor.

X Implementation Notes

GLUT for X uses SGI’s SGI CROSSHAIR CURSOR convention [5] to access a full screen cross-hair cursor
if possible.

5 Overlay Management

When overlay hardware is available, GLUT provides a set of routine for establishing, using, and removing an
overlay for GLUT windows. When an overlay is established, a separate OpenGL context is also established. A
window’s overlay OpenGL state is kept distinct from the normal planes OpenGL state.

5.1 glutEstablishOverlay

glutEstablishOverlay establishes an overlay (if possible) for the current window.

5.2 glutUseLayer 15

Usage

void glutEstablishOverlay(void);

Description

glutEstablishOverlay establishes an overlay (if possible) for the current window.
The requested display mode for the overlay is determined by the initial display mode.
glutLayerGet(GLUT OVERLAY POSSIBLE) can be called to determine if an overlay is possible
for the current window with the current initial display mode. Do not attempt to establish an overlay when one
is not possible; GLUT will terminate the program.

If glutEstablishOverlay is called when an overlay already exists, the existing overlay is first re-
moved, and then a new overlay is established. The state of the old overlay’s OpenGL context is discarded.

The initial display state of an overlay is shown, however the overlay is only actually shown if the overlay’s
window is shown.

Implicitly, the window’s layer in use changes to the overlay immediately after the overlay is established.

X Implementation Notes

GLUT for X uses the SERVER OVERLAY VISUALS convention [6] is used to determine if overlay visuals
are available. While the convention allows for opaque overlays (no transparency) and overlays with the trans-
parency specified as a bitmask, GLUT overlay management only provides access to transparent pixel overlays.

Until RGBA overlays are better understood, GLUT only supports color index overlays.

5.2 glutUseLayer

glutUseLayer changes the layer in use for the current window.

Usage

void glutUseLayer(GLenum layer);

layer Either GLUT NORMAL or GLUT OVERLAY, selecting the normal plane or overlay respectively.

Description

glutUseLayer changes the per-window layer in use for the current window, selecting either the normal plane
or overlay. The overlay should only be specified if an overlay exists, however windows without an overlay may
still call glutUseLayer(GLUT NORMAL). OpenGL commands for the window are directed to the current
layer in use.

To query the layer in use for a window, call glutLayerGet(GLUT LAYER IN USE).

5.3 glutRemoveOverlay

glutRemoveOverlay removes the overlay (if one exists) from the current window.

Usage

void glutRemoveOverlay(void);

Description

glutRemoveOverlay removes the overlay (if one exists). It is safe to call glutRemoveOverlay even if
no overlay is currently established–it does nothing in this case. Implicitly, the window’s layer in use changes
to the normal plane immediately once the overlay is removed.

If the program intends to re-establish the overlay later, it is typically faster and less resource intensive to use
glutHideOverlay and glutShowOverlay to simply change the display status of the overlay.

16 6. MENU MANAGEMENT

5.4 glutPostOverlayRedisplay

glutPostOverlayRedisplaymarks the overlay of the current window as needing to be redisplayed.

Usage

void glutPostOverlayRedisplay(void);

Description

Mark the overlay of current window as needing to be redisplayed. The next iteration through
glutMainLoop, the window’s overlay display callback (or simply the display callback if no overlay
display callback is registered) will be called to redisplay the window’s overlay plane. Multiple calls to
glutPostOverlayRedisplay before the next display callback opportunity (or overlay display callback
opportunity if one is registered) generate only a single redisplay. glutPostOverlayRedisplay may be
called within a window’s display or overlay display callback to re-mark that window for redisplay.

Logically, overlay damage notification for a window is treated as a glutPostOverlayRedisplay on
the damaged window. Unlike damage reported by the window system, glutPostOverlayRedisplaywill
not set to true the overlay’s damaged status (returned by glutLayerGet(GLUT OVERLAY DAMAGED).

Also, see glutPostRedisplay.

5.5 glutShowOverlay, glutHideOverlay

glutShowOverlay shows the overlay of the current window; glutHideOverlay hides the overlay.

Usage

void glutShowOverlay(void);
void glutHideOverlay(void);

Description

glutShowOverlay shows the overlay of the current window; glutHideOverlay hides the overlay. The
effect of showing or hiding an overlay takes place immediately. Note that glutShowOverlay will not actu-
ally display the overlay unless the window is also shown (and even a shown window may be obscured by other
windows, thereby obscuring the overlay). It is typically faster and less resource intensive to use these routines
to control the display status of an overlay as opposed to removing and re-establishing the overlay.

6 Menu Management

GLUT supports simple cascading pop-up menus. They are designed to let a user select various modes within
a program. The functionality is simple and minimalistic and is meant to be that way. Do not mistake GLUT’s
pop-up menu facility with an attempt to create a full-featured user interface.

It is illegal to create or destroy menus, or change, add, or remove menu items while a menu (and any cascaded
sub-menus) are in use (that is, popped up).

6.1 glutCreateMenu

glutCreateMenu creates a new pop-up menu.

Usage

int glutCreateMenu(void (*func)(int value));

func The callback function for the menu that is called when a menu entry from the menu is selected. The
value passed to the callback is determined by the value for the selected menu entry.

6.2 glutSetMenu, glutGetMenu 17

Description

glutCreateMenu creates a new pop-up menu and returns a unique small integer identifier. The range of al-
located identifiers starts at one. The menu identifier range is separate from the window identifier range. Im-
plicitly, the current menu is set to the newly created menu. This menu identifier can be used when calling
glutSetMenu.

When the menu callback is called because a menu entry is selected for the menu, the current menu will be
implicitly set to the menu with the selected entry before the callback is made.

X Implementation Notes

If available, GLUT for X will take advantage of overlay planes for implementing pop-up menus.
The use of overlay planes can eliminate display callbacks when pop-up menus are deactivated. The
SERVER OVERLAY VISUALS convention [6] is used to determine if overlay visuals are available.

6.2 glutSetMenu, glutGetMenu

glutSetMenu sets the current menu; glutGetMenu returns the identifier of the current menu.

Usage

void glutSetMenu(int menu);
int glutGetMenu(void);

menu The identifier of the menu to make the current menu.

Description

glutSetMenu sets the current menu; glutGetMenu returns the identifier of the current menu. If no menus
exist or the previous current menu was destroyed, glutGetMenu returns zero.

6.3 glutDestroyMenu

glutDestroyMenu destroys the specified menu.

Usage

void glutDestroyMenu(int menu);

menu The identifier of the menu to destroy.

Description

glutDestroyMenu destroys the specified menu by menu. If menu was the current menu, the current menu
becomes invalid and glutGetMenu will return zero.

When a menu is destroyed, this has no effect on any sub-menus for which the destroyed menu has triggers.
Sub-menu triggers are by name, not reference.

6.4 glutAddMenuEntry

glutAddMenuEntry adds a menu entry to the bottom of the current menu.

Usage

void glutAddMenuEntry(char *name, int value);

name ASCII character string to display in the menu entry.

value Value to return to the menu’s callback function if the menu entry is selected.

18 6. MENU MANAGEMENT

Description

glutAddMenuEntry adds a menu entry to the bottom of the current menu. The stringnamewill be displayed
for the newly added menu entry. If the menu entry is selected by the user, the menu’s callback will be called
passing value as the callback’s parameter.

6.5 glutAddSubMenu

glutAddSubMenu adds a sub-menu trigger to the bottom of the current menu.

Usage

void glutAddSubMenu(char *name, int menu);

name ASCII character string to display in the menu item from which to cascade the sub-menu.

menu Identifier of the menu to cascade from this sub-menu menu item.

Description

glutAddSubMenu adds a sub-menu trigger to the bottom of the current menu. The string name will be dis-
played for the newly added sub-menu trigger. If the sub-menu trigger is entered, the sub-menu numbered menu
will be cascaded, allowing sub-menu menu items to be selected.

6.6 glutChangeToMenuEntry

glutChangeToMenuEntry changes the specified menu item in the current menu into a menu entry.

Usage

void glutChangeToMenuEntry(int entry, char *name, int value);

entry Index into the menu items of the current menu (1 is the topmost menu item).

name ASCII character string to display in the menu entry.

value Value to return to the menu’s callback function if the menu entry is selected.

Description

glutChangeToMenuEntry changes the specified menu entry in the current menu into a menu entry. The
entry parameter determines which menu item should be changed, with one being the topmost item. entry
must be between 1 and glutGet(GLUT MENU NUM ITEMS) inclusive. The menu item to change does not
have to be a menu entry already. The string name will be displayed for the newly changed menu entry. The
value will be returned to the menu’s callback if this menu entry is selected.

6.7 glutChangeToSubMenu

glutChangeToSubMenu changes the specified menu item in the current menu into a sub-menu trigger.

Usage

void glutChangeToSubMenu(int entry, char *name, int menu);

entry Index into the menu items of the current menu (1 is the topmost menu item).

name ASCII character string to display in the menu item to cascade the sub-menu from.

menu Identifier of the menu to cascade from this sub-menu menu item.

6.8 glutRemoveMenuItem 19

Description

glutChangeToSubMenu changes the specified menu item in the current menu into a sub-menu trigger. The
entry parameter determines which menu item should be changed, with one being the topmost item. entry
must be between 1 and glutGet(GLUT MENU NUM ITEMS) inclusive. The menu item to change does not
have to be a sub-menu trigger already. The string name will be displayed for the newly changed sub-menu
trigger. The menu identifier names the sub-menu to cascade from the newly added sub-menu trigger.

6.8 glutRemoveMenuItem

glutRemoveMenuItem remove the specified menu item.

Usage

void glutRemoveMenuItem(int entry);

entry Index into the menu items of the current menu (1 is the topmost menu item).

Description

glutRemoveMenuItem remove theentry menu item regardless of whether it is a menu entry or sub-menu
trigger. entry must be between 1 and glutGet(GLUT MENU NUM ITEMS) inclusive. Menu items below
the removed menu item are renumbered.

6.9 glutAttachMenu, glutDetachMenu

glutAttachMenu attaches a mouse button for the current window to the identifier of the current menu;
glutDetachMenu detaches an attached mouse button from the current window.

Usage

void glutAttachMenu(int button);
void glutDetachMenu(int button);

button The button to attach a menu or detach a menu.

Description

glutAttachMenu attaches a mouse button for the current window to the identifier of the current menu;
glutDetachMenu detaches an attached mouse button from the current window. By attaching a menu identi-
fier to a button, the named menu will be popped up when the user presses the specified button. button should
be one of GLUT LEFT BUTTON, GLUT MIDDLE BUTTON, and GLUT RIGHT BUTTON. Note that the menu
is attached to the button by identifier, not by reference.

7 Callback Registration

GLUT supports a number of callbacks to respond to events. There are three types of callbacks: window, menu,
and global. Window callbacks indicate when to redisplay or reshape a window, when the visibilityof the window
changes, and when input is available for the window. The menu callback is set by the glutCreateMenu
call described already. The global callbacks manage the passing of time and menu usage. The calling order of
callbacks between different windows is undefined.

Callbacks for input events should be delivered to the window the event occurs in. Events should not prop-
agate to parent windows.

20 7. CALLBACK REGISTRATION

X Implementation Notes

The X GLUT implementation uses the X Input extension [13, 14] to support sophisticated input devices: Space-
ball, dial & button box, and digitizing tablet. Because the X Input extension does not mandate how particular
types of devices are advertised through the extension, it is possible GLUT for X may not correctly support in-
put devices that would otherwise be of the correct type. The X GLUT implementation will support the Silicon
Graphics Spaceball, dial & button box, and digitizing tablet as advertised through the X Input extension.

7.1 glutDisplayFunc

glutDisplayFunc sets the display callback for the current window.

Usage

void glutDisplayFunc(void (*func)(void));

func The new display callback function.

Description

glutDisplayFunc sets the display callback for the current window. When GLUT determines that the nor-
mal plane for the window needs to be redisplayed, the display callback for the window is called. Before the
callback, the current window is set to the window needing to be redisplayed and (if no overlay display callback
is registered) the layer in use is set to the normal plane. The display callback is called with no parameters. The
entire normal plane region should be redisplayed in response to the callback (this includes ancillary buffers if
your program depends on their state).

GLUT determines when the display callback should be triggered based on the window’s redisplay state.
The redisplay state for a window can be either set explicitly by calling glutPostRedisplay or implicitly
as the result of window damage reported by the window system. Multiple posted redisplays for a window are
coalesced by GLUT to minimize the number of display callbacks called.

When an overlay is established for a window, but there is no overlay display callback registered, the display
callback is used for redisplaying both the overlay and normal plane (that is, it will be called if either the redisplay
state or overlay redisplay state is set). In this case, the layer in use is not implicitly changed on entry to the
display callback.

See glutOverlayDisplayFunc to understand how distinct callbacks for the overlay and normal plane
of a window may be established.

When a window is created, no display callback exists for the window. It is the responsibility of the pro-
grammer to install a display callback for the window before the window is shown. A display callback must be
registered for any window that is shown. If a window becomes displayed without a display callback being reg-
istered, a fatal error occurs. Passing NULL to glutDisplayFunc is illegal as of GLUT 3.0; there is no way
to “deregister” a display callback (though another callback routine can always be registered).

Upon return from the display callback, the normal damaged state of the window (returned by calling
glutLayerGet(GLUT NORMAL DAMAGED) is cleared. If there is no overlay display callback registered the
overlay damaged state of the window (returned by calling glutLayerGet(GLUT OVERLAY DAMAGED) is
also cleared.

7.2 glutOverlayDisplayFunc

glutOverlayDisplayFunc sets the overlay display callback for the current window.

Usage

void glutOverlayDisplayFunc(void (*func)(void));

func The new overlay display callback function.

7.3 glutReshapeFunc 21

Description

glutDisplayFunc sets the overlay display callback for the current window. The overlay display callback
is functionally the same as the window’s display callback except that the overlay display callback is used to
redisplay the window’s overlay.

When GLUT determines that the overlay plane for the window needs to be redisplayed, the overlay display
callback for the window is called. Before the callback, the current window is set to the window needing to be
redisplayed and the layer in use is set to the overlay. The overlay display callback is called with no parameters.
The entire overlay region should be redisplayed in response to the callback (this includes ancillary buffers if
your program depends on their state).

GLUT determines when the overlay display callback should be triggered based on the window’s over-
lay redisplay state. The overlay redisplay state for a window can be either set explicitly by calling
glutPostOverlayRedisplay or implicitly as the result of window damage reported by the window sys-
tem. Multiple posted overlay redisplays for a window are coalesced by GLUT to minimize the number of over-
lay display callbacks called.

Upon return from the overlay display callback, the overlay damaged state of the window (returned by calling
glutLayerGet(GLUT OVERLAY DAMAGED) is cleared.

The overlay display callback can be deregistered by passingNULL toglutOverlayDisplayFunc. The
overlay display callback is initiallyNULL when an overlay is established. See glutDisplayFunc to under-
stand how the display callback alone is used if an overlay display callback is not registered.

7.3 glutReshapeFunc

glutReshapeFunc sets the reshape callback for the current window.

Usage

void glutReshapeFunc(void (*func)(int width, int height));

func The new reshape callback function.

Description

glutReshapeFunc sets the reshape callback for the current window. The reshape callback is triggered when
a window is reshaped. A reshape callback is also triggered immediately before a window’s first display callback
after a window is created or whenever an overlay for the window is established. The width and height
parameters of the callback specify the new window size in pixels. Before the callback, the current window is
set to the window that has been reshaped.

If a reshape callback is not registered for a window orNULL is passed toglutReshapeFunc (to deregister
a previously registered callback), the default reshape callback is used. This default callback will simply call
glViewport(0,0,width,height) on the normal plane (and on the overlay if one exists).

If an overlay is established for the window, a single reshape callback is generated. It is the callback’s respon-
sibility to update both the normal plane and overlay for the window (changing the layer in use as necessary).

When a top-level window is reshaped, subwindows are not reshaped. It is up to the GLUT program to man-
age the size and positions of subwindows within a top-level window. Still, reshape callbacks will be triggered
for subwindows when their size is changed using glutReshapeWindow.

7.4 glutKeyboardFunc

glutKeyboardFunc sets the keyboard callback for the current window.

Usage

void glutKeyboardFunc(void (*func)(unsigned char key,
int x, int y));

22 7. CALLBACK REGISTRATION

func The new keyboard callback function.

Description

glutKeyboardFunc sets the keyboard callback for the current window. When a user types into the window,
each key press generating an ASCII character will generate a keyboard callback. The key callback parameter
is the generated ASCII character. The state of modifier keys such as Shift cannot be determined directly; their
only effect will be on the returned ASCII data. The x and y callback parameters indicate the mouse location in
window relative coordinates when the key was pressed. When a new window is created, no keyboard callback is
initially registered, and ASCII key strokes in the window are ignored. Passing NULL toglutKeyboardFunc
disables the generation of keyboard callbacks.

During a keyboard callback, glutGetModifiersmay be called to determine the state of modifier keys
when the keystroke generating the callback occurred.

Also, see glutSpecialFunc for a means to detect non-ASCII key strokes.

7.5 glutMouseFunc

glutMouseFunc sets the mouse callback for the current window.

Usage

void glutMouseFunc(void (*func)(int button, int state,
int x, int y));

func The new mouse callback function.

Description

glutMouseFunc sets the mouse callback for the current window. When a user presses and releases mouse
buttons in the window, each press and each release generates a mouse callback. The button parameter is one
of GLUT LEFT BUTTON, GLUT MIDDLE BUTTON, or GLUT RIGHT BUTTON. For systems with only two
mouse buttons, it may not be possible to generate GLUT MIDDLE BUTTON callback. For systems with a single
mouse button, it may be possible to generate only a GLUT LEFT BUTTON callback. The state parameter is
either GLUT UP or GLUT DOWN indicating whether the callback was due to a release or press respectively. The
x and y callback parameters indicate the window relative coordinates when the mouse button state changed.
If a GLUT DOWN callback for a specific button is triggered, the program can assume a GLUT UP callback for
the same button will be generated (assuming the window still has a mouse callback registered) when the mouse
button is released even if the mouse has moved outside the window.

If a menu is attached to a button for a window, mouse callbacks will not be generated for that button.
During a mouse callback, glutGetModifiers may be called to determine the state of modifier keys

when the mouse event generating the callback occurred.
Passing NULL to glutMouseFunc disables the generation of mouse callbacks.

7.6 glutMotionFunc, glutPassiveMotionFunc

glutMotionFunc and glutPassiveMotionFunc set the motion and passive motion callbacks respec-
tively for the current window.

Usage

void glutMotionFunc(void (*func)(int x, int y));
void glutPassiveMotionFunc(void (*func)(int x, int y));

func The new motion or passive motion callback function.

7.7 glutVisibilityFunc 23

Description

glutMotionFunc and glutPassiveMotionFunc set the motion and passive motion callback respec-
tively for the current window. The motion callback for a window is called when the mouse moves within the
window while one or more mouse buttons are pressed. The passive motion callback for a window is called when
the mouse moves within the window while no mouse buttons are pressed.

The x and y callback parameters indicate the mouse location in window relative coordinates.
Passing NULL to glutMotionFunc or glutPassiveMotionFunc disables the generation of the

mouse or passive motion callback respectively.

7.7 glutVisibilityFunc

glutVisibilityFunc sets the visibility callback for the current window.

Usage

void glutVisibilityFunc(void (*func)(int state));

func The new visibility callback function.

Description

glutVisibilityFunc sets the visibility callback for the current window. The visibility callback
for a window is called when the visibility of a window changes. The state callback parameter
is either GLUT NOT VISIBLE or GLUT VISIBLE depending on the current visibility of the window.
GLUT VISIBLE does not distinguish a window being totally versus partially visible. GLUT NOT VISIBLE
means no part of the window is visible, i.e., until the window’s visibility changes, all further rendering to the
window is discarded.

GLUT considers a window visible if any pixel of the window is visible or any pixel of any descendant win-
dow is visible on the screen.

Passing NULL to glutVisibilityFunc disables the generation of the visibility callback.
If the visibility callback for a window is disabled and later re-enabled, the visibility status of the window

is undefined; any change in window visibility will be reported, that is if you disable a visibility callback and
re-enable the callback, you are guaranteed the next visibility change will be reported.

7.8 glutEntryFunc

glutEntryFunc sets the mouse enter/leave callback for the current window.

Usage

void glutEntryFunc(void (*func)(int state));

func The new entry callback function.

Description

glutEntryFunc sets the mouse enter/leave callback for the current window. The state callback parameter
is eitherGLUT LEFT or GLUT ENTERED depending on if the mouse pointer has last left or entered the window.

Passing NULL to glutEntryFunc disables the generation of the mouse enter/leave callback.
Some window systems may not generate accurate enter/leave callbacks.

X Implementation Notes

An X implementation of GLUT should generate accurate enter/leave callbacks.

24 7. CALLBACK REGISTRATION

7.9 glutSpecialFunc

glutSpecialFunc sets the special keyboard callback for the current window.

Usage

void glutSpecialFunc(void (*func)(int key, int x, int y));

func The new special callback function.

Description

glutSpecialFunc sets the special keyboard callback for the current window. The special keyboard call-
back is triggered when keyboard function or directional keys are pressed. The key callback parameter is a
GLUT KEY * constant for the special key pressed. The x and y callback parameters indicate the mouse in win-
dow relative coordinates when the key was pressed. When a new window is created, no special callback is
initially registered and special key strokes in the window are ignored. Passing NULL to glutSpecialFunc
disables the generation of special callbacks.

During a special callback, glutGetModifiers may be called to determine the state of modifier keys
when the keystroke generating the callback occurred.

An implementation should do its best to provide ways to generate all the GLUT KEY * special keys. The
available GLUT KEY * values are:

GLUT KEY F1 F1 function key.

GLUT KEY F2 F2 function key.

GLUT KEY F3 F3 function key.

GLUT KEY F4 F4 function key.

GLUT KEY F5 F5 function key.

GLUT KEY F6 F6 function key.

GLUT KEY F7 F7 function key.

GLUT KEY F8 F8 function key.

GLUT KEY F9 F9 function key.

GLUT KEY F10 F10 function key.

GLUT KEY F11 F11 function key.

GLUT KEY F12 F12 function key.

GLUT KEY LEFT Left directional key.

GLUT KEY UP Up directional key.

GLUT KEY RIGHT Right directional key.

GLUT KEY DOWN Down directional key.

GLUT KEY PAGE UP Page up directional key.

GLUT KEY PAGE DOWN Page down directional key.

GLUT KEY HOME Home directional key.

GLUT KEY END End directional key.

GLUT KEY INSERT Inset directional key.

Note that the escape, backspace, and delete keys are generated as an ASCII character.

7.10 glutSpaceballMotionFunc

glutSpaceballMotionFunc sets the Spaceball motion callback for the current window.

7.11 glutSpaceballRotateFunc 25

Usage

void glutSpaceballMotionFunc(void (*func)(int x, int y, int z));

func The new spaceball motion callback function.

Description

glutSpaceballMotionFunc sets the Spaceball motion callback for the current window. The Spaceball
motion callback for a window is called when the window has Spaceball input focus (normally, when the mouse
is in the window) and the user generates Spaceball translations. The x, y, and z callback parameters indicate
the translations along the X, Y, and Z axes. The callback parameters are normalized to be within the range of
-1000 to 1000 inclusive.

Registering a Spaceball motion callback when a Spaceball device is not available has no effect and is not an
error. In this case, no Spaceball motion callbacks will be generated.

Passing NULL to glutSpaceballMotionFunc disables the generation of Spaceball motion callbacks.
When a new window is created, no Spaceball motion callback is initially registered.

7.11 glutSpaceballRotateFunc

glutSpaceballRotateFunc sets the Spaceball rotation callback for the current window.

Usage

void glutSpaceballRotateFunc(void (*func)(int x, int y, int z));

func The new spaceball rotate callback function.

Description

glutSpaceballRotateFunc sets the Spaceball rotate callback for the current window. The Spaceball ro-
tate callback for a window is called when the window has Spaceball input focus (normally, when the mouse is
in the window) and the user generates Spaceball rotations. The x, y, and z callback parameters indicate the
rotation along the X, Y, and Z axes. The callback parameters are normalized to be within the range of -1800 to
1800 inclusive.

Registering a Spaceball rotate callback when a Spaceball device is not available is ineffectual and not an
error. In this case, no Spaceball rotate callbacks will be generated.

Passing NULL to glutSpaceballRotateFunc disables the generation of Spaceball rotate callbacks.
When a new window is created, no Spaceball rotate callback is initially registered.

7.12 glutSpaceballButtonFunc

glutSpaceballButtonFunc sets the Spaceball button callback for the current window.

Usage

void glutSpaceballButtonFunc(void (*func)(int button, int state));

func The new spaceball button callback function.

Description

glutSpaceballButtonFunc sets the Spaceball button callback for the current window. The Space-
ball button callback for a window is called when the window has Spaceball input focus (normally, when
the mouse is in the window) and the user generates Spaceball button presses. The button parameter will
be the button number (starting at one). The number of available Spaceball buttons can be determined with

26 7. CALLBACK REGISTRATION

glutDeviceGet(GLUT NUM SPACEBALL BUTTONS). Thestate is eitherGLUT UP orGLUT DOWN in-
dicating whether the callback was due to a release or press respectively.

Registering a Spaceball button callback when a Spaceball device is not available is ineffectual and not an
error. In this case, no Spaceball button callbacks will be generated.

Passing NULL to glutSpaceballButtonFunc disables the generation of Spaceball button callbacks.
When a new window is created, no Spaceball button callback is initially registered.

7.13 glutButtonBoxFunc

glutButtonBoxFunc sets the dial & button box button callback for the current window.

Usage

void glutButtonBoxFunc(void (*func)(int button, int state));

func The new button box callback function.

Description

glutButtonBoxFunc sets the dial & button box button callback for the current window. The dial & but-
ton box button callback for a window is called when the window has dial & button box input focus (normally,
when the mouse is in the window) and the user generates dial & button box button presses. The button pa-
rameter will be the button number (starting at one). The number of available dial & button box buttons can be
determined with glutDeviceGet(GLUT NUM BUTTON BOX BUTTONS). The state is either GLUT UP
or GLUT DOWN indicating whether the callback was due to a release or press respectively.

Registering a dial & button box buttoncallback when a dial & buttonbox device is not available is ineffectual
and not an error. In this case, no dial & button box button callbacks will be generated.

Passing NULL to glutButtonBoxFunc disables the generation of dial & button box button callbacks.
When a new window is created, no dial & button box button callback is initially registered.

7.14 glutDialsFunc

glutDialsFunc sets the dial & button box dials callback for the current window.

Usage

void glutDialsFunc(void (*func)(int dial, int value));

func The new dials callback function.

Description

glutDialsFunc sets the dial & button box dials callback for the current window. The dial & button box di-
als callback for a window is called when the window has dial & button box input focus (normally, when the
mouse is in the window) and the user generates dial & button box dial changes. The dial parameter will
be the dial number (starting at one). The number of available dial & button box dials can be determined with
glutDeviceGet(GLUT NUM DIALS). The value measures the absolute rotation in degrees. Dial values
do not “roll over” with each complete rotation but continue to accumulate degrees (until the int dial value
overflows).

Registering a dial & button box dials callback when a dial & button box device is not available is ineffectual
and not an error. In this case, no dial & button box dials callbacks will be generated.

Passing NULL to glutDialsFunc disables the generation of dial & button box dials callbacks. When a
new window is created, no dial & button box dials callback is initially registered.

7.15 glutTabletMotionFunc 27

7.15 glutTabletMotionFunc

glutTabletMotionFunc sets the special keyboard callback for the current window.

Usage

void glutTabletMotionFunc(void (*func)(int x, int y));

func The new tablet motion callback function.

Description

glutTabletMotionFunc sets the tablet motion callback for the current window. The tablet motion callback
for a window is called when the window has tablet input focus (normally, when the mouse is in the window) and
the user generates tablet motion. The x and y callback parameters indicate the absolute position of the tablet
“puck” on the tablet. The callback parameters are normalized to be within the range of 0 to 2000 inclusive.

Registering a tablet motion callback when a tablet device is not available is ineffectual and not an error. In
this case, no tablet motion callbacks will be generated.

Passing NULL to glutTabletMotionFunc disables the generation of tablet motion callbacks. When a
new window is created, no tablet motion callback is initially registered.

7.16 glutTabletButtonFunc

glutTabletButtonFunc sets the special keyboard callback for the current window.

Usage

void glutTabletButtonFunc(void (*func)(int button, int state,
int x, int y));

func The new tablet button callback function.

Description

glutTabletButtonFunc sets the tablet button callback for the current window. The tablet but-
ton callback for a window is called when the window has tablet input focus (normally, when the
mouse is in the window) and the user generates tablet button presses. The button parameter will be
the button number (starting at one). The number of available tablet buttons can be determined with
glutDeviceGet(GLUT NUM TABLET BUTTONS). The state is either GLUT UP or GLUT DOWN indi-
cating whether the callback was due to a release or press respectively. The x and y callback parameters indicate
the window relative coordinates when the tablet button state changed.

Registering a tablet button callback when a tablet device is not available is ineffectual and not an error. In
this case, no tablet button callbacks will be generated.

Passing NULL to glutTabletButtonFunc disables the generation of tablet button callbacks. When a
new window is created, no tablet button callback is initially registered.

7.17 glutMenuStatusFunc

glutMenuStatusFunc sets the global menu status callback.

Usage

void glutMenuStatusFunc(void (*func)(int status, int x, int y));
void glutMenuStateFunc(void (*func)(int status));

func The new menu status (or state) callback function.

28 7. CALLBACK REGISTRATION

Description

glutMenuStatusFunc sets the global menu status callback so a GLUT program can determine when a menu
is in use or not. When a menu status callback is registered, it will be called with the valueGLUT MENU IN USE
for itsvalue parameter when pop-up menus are in use by the user; and the callback will be called with the value
GLUT MENU NOT IN USE for its status parameter when pop-up menus are no longer in use. The x and y
parameters indicate the location in window coordinates of the button press that caused the menu to go into use,
or the location where the menu was released (may be outside the window). The func parameter names the
callback function. Other callbacks continue to operate (except mouse motion callbacks) when pop-up menus
are in use so the menu status callback allows a program to suspend animation or other tasks when menus are in
use. The cascading and unmapping of sub-menus from an initial pop-up menu does not generate menu status
callbacks. There is a single menu status callback for GLUT.

When the menu status callback is called, the current menu will be set to the initial pop-up menu in both the
GLUT MENU IN USE and GLUT MENU NOT IN USE cases. The current window will be set to the window
from which the initial menu was popped up from, also in both cases.

Passing NULL to glutMenuStatusFunc disables the generation of the menu status callback.
glutMenuStateFunc is a deprecated version of the glutMenuStatusFunc routine. The only dif-

ference is glutMenuStateFunc callback prototype does not deliver the two additionalx and y coordinates.

7.18 glutIdleFunc

glutIdleFunc sets the global idle callback.

Usage

void glutIdleFunc(void (*func)(void));

func The new idle callback function.

Description

glutIdleFunc sets the global idle callback to be func so a GLUT program can perform background pro-
cessing tasks or continuous animation when window system events are not being received. If enabled, the idle
callback is continuously called when events are not being received. The callback routine has no parameters.
The current window and current menu will not be changed before the idle callback. Programs with multiple
windows and/or menus should explicitly set the current window and/or current menu and not rely on its current
setting.

The amount of computation and rendering done in an idle callback should be minimized to avoid affecting
the program’s interactive response. In general, not more than a single frame of rendering should be done in an
idle callback.

Passing NULL to glutIdleFunc disables the generation of the idle callback.

7.19 glutTimerFunc

glutTimerFunc registers a timer callback to be triggered in a specified number of milliseconds.

Usage

void glutTimerFunc(unsigned int msecs,
void (*func)(int value), value);

msecs Number of milliseconds to pass before calling the callback.

func The timer callback function.

value Integer value to pass to the timer callback.

29

Description

glutTimerFunc registers the timer callback func to be triggered in at least msecs milliseconds. The
value parameter to the timer callback will be the value of the value parameter to glutTimerFunc. Mul-
tiple timer callbacks at same or differing times may be registered simultaneously.

The number of milliseconds is a lower bound on the time before the callback is generated. GLUT attempts
to deliver the timer callback as soon as possible after the expiration of the callback’s time interval.

There is no support for canceling a registered callback. Instead, ignore a callback based on its value pa-
rameter when it is triggered.

8 Color Index Colormap Management

OpenGL supports both RGBA and color index rendering. The RGBA mode is generally preferable to color
index because more OpenGL rendering capabilities are available and color index mode requires the loading of
colormap entries.

The GLUT color index routines are used to write and read entries in a window’s color index colormap. Every
GLUT color index window has its own logical color index colormap. The size of a window’s colormap can be
determined by calling glutGet(GLUT WINDOW COLORMAP SIZE).

GLUT color index windows within a program can attempt to share colormap resources by copying a sin-
gle color index colormap to multiple windows using glutCopyColormap. If possible GLUT will attempt
to share the actual colormap. While copying colormaps using glutCopyColormap can potentially allow
sharing of physical colormap resources, logically each window has its own colormap. So changing a copied
colormap of a window will force the duplication of the colormap. For this reason, color index programs should
generally load a single color index colormap, copy it to all color index windows within the program, and then
not modify any colormap cells.

Use of multiple colormaps is likely to result in colormap installation problems where some windows are
displayed with an incorrect colormap due to limitations on colormap resources.

8.1 glutSetColor

glutSetColor sets the color of a colormap entry in the layer of use for the current window.

Usage

void glutSetColor(int cell,
GLfloat red, GLfloat green, GLfloat blue);

cell Color cell index (starting at zero).

red Red intensity (clamped between 0.0 and 1.0 inclusive).

green Green intensity (clamped between 0.0 and 1.0 inclusive).

blue Blue intensity (clamped between 0.0 and 1.0 inclusive).

Description

Sets the cell color index colormap entry of the current window’s logical colormap for the layer in use with
the color specified by red, green, and blue. The layer in use of the current window should be a color index
window. cell should be zero or greater and less than the total number of colormap entries for the window. If
the layer in use’s colormap was copied by reference, a glutSetColor call will force the duplication of the
colormap. Do not attempt to set the color of an overlay’s transparent index.

8.2 glutGetColor

glutGetColor retrieves a red, green, or blue component for a given color index colormap entry for the layer
in use’s logical colormap for the current window.

30 9. STATE RETRIEVAL

Usage

GLfloat glutGetColor(int cell, int component);

cell Color cell index (starting at zero).

component One of GLUT RED, GLUT GREEN, or GLUT BLUE.

Description

glutGetColor retrieves a red, green, or blue component for a given color index colormap entry for the cur-
rent window’s logical colormap. The current window should be a color index window. cell should be zero
or greater and less than the total number of colormap entries for the window. For valid color indices, the value
returned is a floating point value between 0.0 and 1.0 inclusive. glutGetColor will return -1.0 if the color
index specified is an overlay’s transparent index, less than zero, or greater or equal to the value returned by
glutGet(GLUT WINDOW COLORMAP SIZE), that is if the color index is transparent or outside the valid
range of color indices.

8.3 glutCopyColormap

glutCopyColormap copies the logical colormap for the layer in use from a specified window to the current
window.

Usage

void glutCopyColormap(int win);

win The identifier of the window to copy the logical colormap from.

Description

glutCopyColormap copies (lazily if possible to promote sharing) the logical colormap from a specified win-
dow to the current window’s layer in use. The copy will be from the normal plane to the normal plane; or from
the overlay to the overlay (never across different layers). Once a colormap has been copied, avoid setting cells
in the colormap with glutSetColor since that will force an actual copy of the colormap if it was previously
copied by reference. glutCopyColormap should only be called when both the current window and the win
window are color index windows.

9 State Retrieval

GLUT maintains a considerable amount of programmer visible state. Some (but not all) of this state may be
directly retrieved.

9.1 glutGet

glutGet retrieves simple GLUT state represented by integers.

Usage

int glutGet(GLenum state);

state Name of state to retrieve.

GLUT WINDOW X X location in pixels (relative to the screen origin) of the current window.

GLUT WINDOW Y Y location in pixels (relative to the screen origin) of the current window.

GLUT WINDOW WIDTH Width in pixels of the current window.

9.1 glutGet 31

GLUT WINDOW HEIGHT Height in pixels of the current window.

GLUT WINDOW BUFFER SIZE Total number of bits for current window’s color buffer. For an
RGBA window, this is the sum of GLUT WINDOW RED SIZE, GLUT WINDOW GREEN SIZE,
GLUT WINDOW BLUE SIZE, and GLUT WINDOW ALPHA SIZE. For color index windows, this is the
number of bits for color indices.

GLUT WINDOW STENCIL SIZE Number of bits in the current window’s stencil buffer.

GLUT WINDOW DEPTH SIZE Number of bits in the current window’s depth buffer.

GLUT WINDOW RED SIZE Number of bits of red stored the current window’s color buffer. Zero if the window
is color index.

GLUT WINDOW GREEN SIZE Number of bits of green stored the current window’s color buffer. Zero if the
window is color index.

GLUT WINDOW BLUE SIZE Number of bits of blue stored the current window’s color buffer. Zero if the win-
dow is color index.

GLUT WINDOW ALPHA SIZE Number of bits of alpha stored the current window’s color buffer. Zero if the
window is color index.

GLUT WINDOW ACCUM RED SIZE Number of bits of red stored in the current window’s accumulation buffer.
Zero if the window is color index.

GLUT WINDOW ACCUM GREEN SIZE Number of bits of green stored in the current window’s accumulation
buffer. Zero if the window is color index.

GLUT WINDOW ACCUM BLUE SIZE Number of bits of blue stored in the current window’s accumulation
buffer. Zero if the window is color index.

GLUT WINDOW ACCUM ALPHA SIZE Number of bits of alpha stored in the current window’s accumulation
buffer. Zero if the window is color index.

GLUT WINDOW DOUBLEBUFFER One if the current window is double buffered, zero otherwise.

GLUT WINDOW RGBA One if the current window is RGBA mode, zero otherwise (i.e., color index).

GLUT WINDOW PARENT The window number of the current window’sparent; zero if the window is a top-level
window.

GLUT WINDOW NUM CHILDREN The number of subwindows the current window has (not counting children
of children).

GLUT WINDOW COLORMAP SIZE Size of current window’s color index colormap; zero for RGBA color
model windows.

GLUT WINDOW NUM SAMPLES Number of samples for multisampling for the current window.

GLUT WINDOW STEREO One if the current window is stereo, zero otherwise.

GLUT WINDOW CURSOR Current cursor for the current window.

GLUT SCREEN WIDTH Width of the screen in pixels. Zero indicates the width is unknown or not available.

GLUT SCREEN HEIGHT Height of the screen in pixels. Zero indicates the height is unknown or not available.

GLUT SCREEN WIDTH MM Width of the screen in millimeters. Zero indicates the width is unknown or not
available.

GLUT SCREEN HEIGHT MM Height of the screen in millimeters. Zero indicates the height is unknown or not
available.

GLUT MENU NUM ITEMS Number of menu items in the current menu.

GLUT DISPLAY MODE POSSIBLE Whether the current display mode is supported or not.

GLUT INIT DISPLAY MODE The initial display mode bit mask.

GLUT INIT WINDOW X The X value of the initial window position.

GLUT INIT WINDOW Y The Y value of the initial window position.

32 9. STATE RETRIEVAL

GLUT INIT WINDOW WIDTH The width value of the initial window size.

GLUT INIT WINDOW HEIGHT The height value of the initial window size.

GLUT ELAPSED TIME Number of milliseconds since glutInit called (or first call to
glutGet(GLUT ELAPSED TIME)).

Description

glutGet retrieves simple GLUT state represented by integers. The state parameter determines what type
of state to return. Window capability state is returned for the layer in use. GLUT state names beginning with
GLUT WINDOW return state for the current window. GLUT state names beginning with GLUT MENU return
state for the current menu. Other GLUT state names return global state. Requesting state for an invalid GLUT
state name returns negative one.

9.2 glutLayerGet

glutLayerGet retrieves GLUT state pertaining to the layers of the current window.

Usage

int glutLayerGet(GLenum info);

info Name of device information to retrieve.

GLUT OVERLAY POSSIBLE Whether an overlay could be established for the current window given the cur-
rent initial display mode. If false, glutEstablishOverlaywill fail with a fatal error if called.

GLUT LAYER IN USE Either GLUT NORMAL or GLUT OVERLAY depending on whether the normal plane or
overlay is the layer in use.

GLUT HAS OVERLAY If the current window has an overlay established.

GLUT TRANSPARENT INDEX The transparent color index of the overlay of the current window; negative one
is returned if no overlay is in use.

GLUT NORMAL DAMAGED True if the normal plane of the current window has damaged (by window system
activity) since the last display callback was triggered. Calling glutPostRedisplay will not set this
true.

GLUT OVERLAY DAMAGED True if the overlay plane of the current window has damaged (by window
system activity) since the last display callback was triggered. Calling glutPostRedisplay or
glutPostOverlayRedisplaywill not set this true. Negative one is returned if no overlay is in use.

Description

glutLayerGet retrieves GLUT layer information for the current window represented by integers. The info
parameter determines what type of layer information to return.

9.3 glutDeviceGet

glutDeviceGet retrieves GLUT device information represented by integers.

Usage

int glutDeviceGet(GLenum info);

info Name of device information to retrieve.

GLUT HAS KEYBOARD Non-zero if a keyboard is available; zero if not available. For most GLUT implemen-
tations, a keyboard can be assumed.

9.4 glutGetModifiers 33

GLUT HAS MOUSE Non-zero if a mouse is available; zero if not available. For most GLUT implementations,
a keyboard can be assumed.

GLUT HAS SPACEBALL Non-zero if a Spaceball is available; zero if not available.

GLUT HAS DIAL AND BUTTON BOX Non-zero if a dial & button box is available; zero if not available.

GLUT HAS TABLET Non-zero if a tablet is available; zero if not available.

GLUT NUM MOUSE BUTTONS Number of buttons supported by the mouse. If no mouse is supported, zero is
returned.

GLUT NUM SPACEBALL BUTTONS Number of buttons supported by the Spaceball. If no Spaceball is sup-
ported, zero is returned.

GLUT NUM BUTTON BOX BUTTONS Number of buttons supported by the dial & buttonbox device. If no dials
& button box device is supported, zero is returned.

GLUT NUM DIALS Number of dials supported by the dial & button box device. If no dials & button box device
is supported, zero is returned.

GLUT NUM TABLET BUTTONS Number of buttons supported by the tablet. If no tablet is supported, zero is
returned.

Description

glutDeviceGet retrieves GLUT device information represented by integers. The info parameter deter-
mines what type of device information to return. Requesting device information for an invalid GLUT device
information name returns negative one.

9.4 glutGetModifiers

glutGetModifiers returns the modifier key state when certain callbacks were generated.

Usage

int glutGetModifiers(void);

GLUT ACTIVE SHIFT Set if the Shift modifier or Caps Lock is active.

GLUT ACTIVE CTRL Set if the Ctrl modifier is active.

GLUT ACTIVE ALT Set if the Alt modifier is active.

Description

glutGetModifiers returns the modifier key state at the time the input event for a keyboard, special, or
mouse callback is generated. This routine may only be called while a keyboard, special, or mouse callback is
being handled. The window system is permitted to intercept window system defined modifier key strokes or
mouse buttons, in which case, no GLUT callback will be generated. This interception will be independent of
use of glutGetModifiers.

9.5 glutExtensionSupported

glutExtensionSupported helps to easily determine whether a given OpenGL extension is supported.

Usage

int glutExtensionSupported(char *extension);

extension Name of OpenGL extension.

34 10. FONT RENDERING

Description

glutExtensionSupported helps to easily determine whether a given OpenGL extension is supported or
not. The extension parameter names the extension to query. The supported extensions can also be deter-
mined with glGetString(GL EXTENSIONS), but glutExtensionSupported does the correct pars-
ing of the returned string.

glutExtensionSupported returns non-zero if the extension is supported, zero if not supported.
There must be a valid current window to call glutExtensionSupported.
glutExtensionSupported only returns information about OpenGL extensions only. This

means window system dependent extensions (for example, GLX extensions) are not reported by
glutExtensionSupported.

10 Font Rendering

GLUT supports two type of font rendering: stroke fonts, meaning each character is rendered as a set of line
segments; and bitmap fonts, where each character is a bitmap generated with glBitmap. Stroke fonts have
the advantage that because they are geometry, they can be arbitrarily scale and rendered. Bitmap fonts are less
flexible since they are rendered as bitmaps but are usually faster than stroke fonts.

10.1 glutBitmapCharacter

glutBitmapCharacter renders a bitmap character using OpenGL.

Usage

void glutBitmapCharacter(void *font, int character);

font Bitmap font to use.

character Character to render (not confined to 8 bits).

Description

Without using any display lists, glutBitmapCharacter renders the character in the named bitmap
font. The available fonts are:

GLUT BITMAP 8 BY 13 A fixed width font with every character fitting in an 8 by 13 pixel rectangle. The
exact bitmaps to be used is defined by the standard X glyph bitmaps for the X font named:

-misc-fixed-medium-r-normal--13-120-75-75-C-80-iso8859-1

GLUT BITMAP 9 BY 15 A fixed width font with every character fitting in an 9 by 15 pixel rectangle. The
exact bitmaps to be used is defined by the standard X glyph bitmaps for the X font named:

-misc-fixed-medium-r-normal--15-140-75-75-C-90-iso8859-1

GLUT BITMAP TIMES ROMAN 10 A 10-point proportional spaced Times Roman font. The exact bitmaps to
be used is defined by the standard X glyph bitmaps for the X font named:

-adobe-times-medium-r-normal--10-100-75-75-p-54-iso8859-1

GLUT BITMAP TIMES ROMAN 24 A 24-point proportional spaced Times Roman font. The exact bitmaps to
be used is defined by the standard X glyph bitmaps for the X font named:

-adobe-times-medium-r-normal--24-240-75-75-p-124-iso8859-1

GLUT BITMAP HELVETICA 10 A 10-point proportionalspaced Helvetica font. The exact bitmaps to be used
is defined by the standard X glyph bitmaps for the X font named:

-adobe-helvetica-medium-r-normal--10-100-75-75-p-56-iso8859-1

10.2 glutBitmapWidth 35

GLUT BITMAP HELVETICA 12 A 12-point proportionalspaced Helvetica font. The exact bitmaps to be used
is defined by the standard X glyph bitmaps for the X font named:

-adobe-helvetica-medium-r-normal--12-120-75-75-p-67-iso8859-1

GLUT BITMAP HELVETICA 18 A 18-point proportionalspaced Helvetica font. The exact bitmaps to be used
is defined by the standard X glyph bitmaps for the X font named:

-adobe-helvetica-medium-r-normal--18-180-75-75-p-98-iso8859-1

Rendering a nonexistent character has no effect. glutBitmapCharacter automatically sets the OpenGL
unpack pixel storage modes it needs appropriately and saves and restores the previous modes before returning.
The generated call to glBitmap will adjust the current raster position based on the width of the character.

10.2 glutBitmapWidth

glutBitmapWidth returns the width of a bitmap character.

Usage

int glutBitmapWidth(GLUTbitmapFont font, int character);

font Bitmap font to use.

character Character to return width of (not confined to 8 bits).

Description

glutBitmapWidth returns the width in pixels of a bitmap character in a supported bitmap font. While the
width of characters in a font may vary (though fixed width fonts do not vary), the maximum height characteristics
of a particular font are fixed.

10.3 glutStrokeCharacter

glutStrokeCharacter renders a stroke character using OpenGL.

Usage

void glutStrokeCharacter(void *font, int character);

font Stroke font to use.

character Character to render (not confined to 8 bits).

Description

Without using any display lists, glutStrokeCharacter renders the character in the named stroke
font. The available fonts are:

GLUT STROKE ROMAN A proportionally spaced Roman Simplex font for ASCII characters 32 through 127.
The maximum top character in the font is 119.05 units; the bottom descends 33.33 units.

GLUT STROKE MONO ROMAN A mono-spaced spaced Roman Simplex font (same characters as
GLUT STROKE ROMAN) for ASCII characters 32 through 127. The maximum top character in the
font is 119.05 units; the bottom descends 33.33 units. Each character is 104.76 units wide.

Rendering a nonexistent character has no effect. A glTranslatef is used to translate the current model
view matrix to advance the width of the character.

36 11. GEOMETRIC OBJECT RENDERING

10.4 glutStrokeWidth

glutStrokeWidth returns the width of a stroke character.

Usage

int glutStrokeWidth(GLUTstrokeFont font, int character);

font Stroke font to use.

character Character to return width of (not confined to 8 bits).

Description

glutStrokeWidth returns the width in pixels of a stroke character in a supported stroke font. While the
width of characters in a font may vary (though fixed width fonts do not vary), the maximum height characteristics
of a particular font are fixed.

11 Geometric Object Rendering

GLUT includes a number of routines for generating easily recognizable 3D geometric objects. These routines
reflect functionality available in the aux toolkit described in the OpenGL Programmer’s Guide

and are included in GLUT to allow the construction of simple GLUT programs that render recognizable
objects. These routines can be implemented as pure OpenGL rendering routines. The routines do not generate
display lists for the objects they create.

The routines generate normals appropriate for lighting but do not generate texture coordinates (except for
the teapot).

11.1 glutSolidSphere, glutWireSphere

glutSolidSphere and glutWireSphere render a solid or wireframe sphere respectively.

Usage

void glutSolidSphere(GLdouble radius,
GLint slices, GLint stacks);

void glutWireSphere(GLdouble radius,
GLint slices, GLint stacks);

radius The radius of the sphere.

slices The number of subdivisions around the Z axis (similar to lines of longitude).

stacks The number of subdivisions along the Z axis (similar to lines of latitude).

Description

Renders a sphere centered at the modeling coordinates origin of the specified radius. The sphere is subdivided
around the Z axis into slices and along the Z axis into stacks.

11.2 glutSolidCube, glutWireCube

glutSolidCube and glutWireCube render a solid or wireframe cube respectively.

11.3 glutSolidCone, glutWireCone 37

Usage

void glutSolidCube(GLdouble size);
void glutWireCube(GLdouble size);

size Length of each edge.

Description

glutSolidCube and glutWireCube render a solid or wireframe cube respectively. The cube is centered
at the modeling coordinates origin with sides of length size.

11.3 glutSolidCone, glutWireCone

glutSolidCone and glutWireCone render a solid or wireframe cone respectively.

Usage

void glutSolidCone(GLdouble base, GLdouble height,
GLint slices, GLint stacks);

void glutWireCone(GLdouble base, GLdouble height,
GLint slices, GLint stacks);

base The radius of the base of the cone.

height The height of the cone.

slices The number of subdivisions around the Z axis.

stacks The number of subdivisions along the Z axis.

Description

glutSolidCone and glutWireCone render a solid or wireframe cone respectively oriented along the Z
axis. The base of the cone is placed at Z = 0, and the top at Z = height. The cone is subdivided around the Z
axis into slices, and along the Z axis into stacks.

11.4 glutSolidTorus, glutWireTorus

glutSolidTorus and glutWireTorus render a solid or wireframe torus (doughnut) respectively.

Usage

void glutSolidTorus(GLdouble innerRadius,
GLdouble outerRadius,
GLint nsides, GLint rings);

void glutWireTorus(GLdouble innerRadius,
GLdouble outerRadius,
GLint nsides, GLint rings);

innerRadius Inner radius of the torus.

outerRadius Outer radius of the torus.

nsides Number of sides for each radial section.

rings Number of radial divisions for the torus.

38 11. GEOMETRIC OBJECT RENDERING

Description

glutSolidTorus andglutWireTorus render a solidor wireframe torus (doughnut) respectively centered
at the modeling coordinates origin whose axis is aligned with the Z axis.

11.5 glutSolidDodecahedron, glutWireDodecahedron

glutSolidDodecahedron and glutWireDodecahedron render a solid or wireframe dodecahedron
(12-sided regular solid) respectively.

Usage

void glutSolidDodecahedron(void);
void glutWireDodecahedron(void);

Description

glutSolidDodecahedron and glutWireDodecahedron render a solid or wireframe dodecahedron
respectively centered at the modeling coordinates origin with a radius of

p
3.

11.6 glutSolidOctahedron, glutWireOctahedron

glutSolidOctahedron and glutWireOctahedron render a solid or wireframe octahedron (8-sided
regular solid) respectively.

Usage

void glutSolidOctahedron(void);
void glutWireOctahedron(void);

Description

glutSolidOctahedron and glutWireOctahedron render a solid or wireframe octahedron respec-
tively centered at the modeling coordinates origin with a radius of 1.0.

11.7 glutSolidTetrahedron, glutWireTetrahedron

glutSolidTetrahedronandglutWireTetrahedron render a solid or wireframe tetrahedron (4-sided
regular solid) respectively.

Usage

void glutSolidTetrahedron(void);
void glutWireTetrahedron(void);

Description

glutSolidTetrahedron and glutWireTetrahedron render a solid or wireframe tetrahedron respec-
tively centered at the modeling coordinates origin with a radius of

p
3.

11.8 glutSolidIcosahedron, glutWireIcosahedron

glutSolidIcosahedron and glutWireIcosahedron render a solid or wireframe icosahedron (20-
sided regular solid) respectively.

11.9 glutSolidTeapot, glutWireTeapot 39

Usage

void glutSolidIcosahedron(void);
void glutWireIcosahedron(void);

Description

glutSolidIcosahedron andglutWireIcosahedron render a solid or wireframe icosahedron respec-
tively. The icosahedron is centered at the modeling coordinates origin and has a radius of 1.0.

11.9 glutSolidTeapot, glutWireTeapot

glutSolidTeapot and glutWireTeapot render a solid or wireframe teapot1 respectively.

Usage

void glutSolidTeapot(GLdouble size);
void glutWireTeapot(GLdouble size);

size Relative size of the teapot.

Description

glutSolidTeapot and glutWireTeapot render a solid or wireframe teapot respectively. Both surface
normals and texture coordinates for the teapot are generated. The teapot is generated with OpenGL evaluators.

12 Usage Advice

There are a number of points to keep in mind when writing GLUT programs. Some of these are strong recom-
mendations, others simply hints and tips.

� Do not change state that will affect the way a window will be drawn in a window’s display callback. Your
display callbacks should be idempotent.

� If you need to redisplay a window, instead of rendering in whatever callback you happen to be in, call
glutPostRedisplay (or glutPostRedisplay for overlays). As a general rule, the only code
that renders directly to the screen should be in called from display callbacks; other types of callbacks
should not be rendering to the screen.

� If you use an idle callback to control your animation, use the visibility callbacks to determine when the
window is fully obscured or iconified to determine when not to waste processor time rendering.

� Neither GLUT nor the window system automatically reshape sub-windows. If subwindows should be
reshaped to reflect a reshaping of the top-level window, the GLUT program is responsible for doing this.

� Avoid using color index mode if possible. The RGBA color model is more functional, and it is less likely
to cause colormap swapping effects.

� Do not call any GLUT routine that affects the current window or current menu if there is no current win-
dow or current menu defined. This can be the case at initialization time (before any windows or menus
have been created) or if your destroy the current window or current menu. GLUT implementations are
not obliged to generate a warning because doing so would slow down the operation of every such routine
to first make sure there was a current window or current menu.

1Yes, the classic computer graphics teapot modeled by Martin Newell in 1975 [3].

40 12. USAGE ADVICE

� For most callbacks, the current window and/or current menu is set appropriately at the time of the call-
back. Timer and idle callbacks are exceptions. If your application uses multiple windows or menus,
make sure you explicitly you set the current window or menu appropriately using glutSetWindow or
glutSetMenu in the idle and timer callbacks.

� If you register a single function as a callback routine for multiple windows, you can call
glutGetWindow within the callback to determine what window generated the callback. Like-
wise, glutGetMenu can be called to determine what menu.

� By default, timer and idle callbacks may be called while a pop-up menu is active. On slow machines,
slow rendering in an idle callback may compromise menu performance. Also, it may be desirable for
motion to stop immediately when a menu is triggered. In this case, use the menu entry/exit callback set
with glutMenuStateFunc to track the usage of pop-up menus.

� Do not select for more input callbacks than you actually need. For example, if you do not need motion or
passive motion callbacks, disable them by passing NULL to their callback register functions. Disabling
input callbacks allows the GLUT implementation to limit the window system input events that must be
processed.

� Not every OpenGL implementation supports the same range of frame buffer capabilities, though
minimum requirements for frame buffer capabilities do exist. If glutCreateWindow or
glutCreateSubWindow are called with an initial display mode not supported by the OpenGL
implementation, a fatal error will be generated with an explanatory message. To avoid this,
glutGet(GLUT DISPLAY MODE POSSIBLE) should be called to determine if the initial dis-
play mode is supported by the OpenGL implementation.

� The Backspace, Delete, and Escape keys generate ASCII characters, so detect these key presses with the
glutKeyboardFunc callback, not with the glutSpecialFunc callback.

� Keep in mind that when a window is damaged, you should assume all of the ancillary buffers are damaged
and redraw them all.

� Keep in mind that after a glutSwapBuffers, you should assume the state of the back buffer becomes
undefined.

� If not using glutSwapBuffers for double buffered animation, remember to use glFlush to make
sure rendering requests are dispatched to the frame buffer. While many OpenGL implementations will
automatically flush pending commands, this is specifically not mandated.

� Remember that it is illegal to create or destroy menus or change, add, or remove menu items while a menu
(and any cascaded sub-menus) are in use (that is, “popped up”). Use the menu status callback to know
when to avoid menu manipulation.

� It is more efficient to use glutHideOverlay and glutShowOverlay to control the display state of
a window’s overlay instead of removing and re-establishing an overlay every time an overlay is needed.

� Few workstations have support for multiple simultaneously installed overlay colormaps. For this reason,
if an overlay is cleared or otherwise not be used, it is best to hide it using glutHideOverlay to avoid
other windows with active overlays from being displayed with the wrong colormap. If your application
uses multiple overlays, use glutCopyColormap to promote colormap sharing.

� If you are encountering GLUT warnings or fatal errors in your programs, try setting a debugger break-
point in glutWarning or glutFatalError (though these names are potentially implementation
dependent) to determine where within your program the error occurred.

� GLUT has no special routine for exiting the program. GLUT programs should use ANSI C’s exit rou-
tine. If a program needs to perform special operations before quitting the program, use the ANSI C
onexit routine to register exit callbacks. GLUT will exit the program unilaterally when fatal errors
occur or when the window system requests the program to terminate. For this reason, avoid calling any
GLUT routines within an exit callback.

41

� Definitely, definitely, use the-gldebug option to look for OpenGL errors when OpenGL rendering does
not appear to be operating properly. OpenGL errors are only reported if you explicitly look for them!

13 FORTRAN Binding

All GLUT functionality is available through the GLUT FORTRAN API. The GLUT FORTRAN binding is in-
tended to be used in conjunction with the OpenGL and GLU FORTRAN APIs.

A FORTRAN routine using GLUT routines should include the GLUT FORTRAN header file. While this is
potentially system dependent, on Unix systems this is normally done by including after the SUBROUTINE,
FUNCTION, or PROGRAM line:

#include "GL/fglut.h"

Though the FORTRAN 77 specification differentiates identifiers by their first six characters only, the GLUT
FORTRAN binding (and the OpenGL and GLU FORTRAN bindings) assume identifiers are not limited to 6 char-
acters.

The FORTRAN GLUT binding library archive is typically named libfglut.a on Unix systems. FOR-
TRAN GLUT programs need to link with the system’s OpenGL and GLUT libraries and the respective Fortran
binding libraries (and any libraries these libraries potentially depend on). A set of window system dependent
libraries may also be necessary for linking GLUT programs. For example, programs using the X11 GLUT im-
plementation typically need to link with Xlib, the X extension library, possibly the X Input extension library, the
X miscellaneous utilities library, and the math library. An example X11/Unix compile line for a GLUT FOR-
TRAN program would look like:

f77 -o foo foo.c -lfglut -lglut -lfGLU -lGLU -lfGL -lGL \
-lXmu -lXi -lXext -lX11 -lm

13.1 Names for the FORTRAN GLUT Binding

Allowing for FORTRAN’s case-insensitivity, the GLUT FORTRAN binding constant and routine names are the
same as the C binding’s names.

The OpenGL Architectural Review Board (ARB) official OpenGL FORTRAN API prefixes every routine and
constant with the letter F. The justification was to avoid name space collisions with the C names in anachronistic
compilers. Nearly all modern FORTRAN compilers avoid these name space clashes via other means (underbar
suffixing of FORTRAN routines is used by most Unix FORTRAN compilers).

The GLUT FORTRAN API does not use such prefixing conventions because of the documentation and cod-
ing confusion introduced by such prefixes. The confusion is heightened by FORTRAN’s default implicit variable
initialization so programmers may realize the lack of a constant prefix as a result of a run-time error. The confu-
sion introduced to support the prefixes was not deemed worthwhile simply to support anachronistic compliers.

13.2 Font Naming Caveat

Because GLUT fonts are compiled directly into GLUT programs as data, and programs should only have the
fonts compiled into them that they use, GLUT font names like GLUT BITMAP TIMES ROMAN 24 are really
symbols so the linker should only pull in used fonts.

Unfortunately, because some supposedly modern FORTRAN compilers link declared but unused data
EXTERNALs, “GL/fglut.h” does not explicitly declare EXTERNAL the GLUT font symbols. Declaring the
GLUT font symbols as EXTERNAL risks forcing every GLUT FORTRAN program to contain the data for ev-
ery GLUT font. GLUT Fortran programmers should explicitly declare EXTERNAL the GLUT fonts they use.
Example:

SUBROUTINE PRINTA
#include "GL/fglut.h"

EXTERNAL GLUT_BITMAP_TIMES_ROMAN_24
CALL glutBitmapCharacter(GLUT_BITMAP_TIMES_ROMAN_24, 65)
END

42 14. IMPLEMENTATION ISSUES

13.3 NULL Callback

FORTRAN does not support passing NULL as a callback parameter the way ANSI C does. For this reason,
GLUTNULL is used in place of NULL in GLUT FORTRAN programs to indicate a NULL callback.

14 Implementation Issues

While this specification is primarily intended to describe the GLUT API and not its implementation, the section
describes implementation issues that are likely to help both GLUT implementors properly implement GLUT
and provide GLUT programmers with information to better utilize GLUT.

14.1 Name Space Conventions

The GLUT implementation should have a well-defined name space for both exported symbols and visible, but
not purposefully exported symbols. All exported functions are prefixed by glut. All exported macro defini-
tions are prefixed by GLUT . No data symbols are exported. All internal symbols that might be user-visible but
not intended to be exported should be prefixed by glut. Users of the GLUT API should not use any glut
prefixed symbols.

14.2 Modular Implementation

It is often the case that windowing libraries tend to result in large, bulky programs because a large measure
of “dynamically dead” code is linked into the programs because it can not be determined at link time that the
program will never require (that is, execute) the code. A consideration (not a primary one though) in GLUT’s
API design is make the API modular enough that programs using a limited subset of GLUT’s API can minimize
the portion of the GLUT library implementation required. This does assume the implementation of GLUT is
structured to take advantage of the API’s modularity.

A good implementation can be structured so significant chunks of code for color index colormap manage-
ment, non-standard device support (Spaceball, dial & button box, and tablet), overlay management, pop-up
menus, miscellaneous window management routines (pop, push, show, hide, full screen, iconify), geometric
shape rendering, and font rendering only need to be pulled into GLUT programs when the interface to this func-
tionality is explicitly used by the GLUT program.

14.3 Error Checking and Reporting

How errors and warnings about improper GLUT usage are reported to GLUT programs is implementation de-
pendent. The recommended behavior in the case of an error is to output a message and exit. In the case of a
warning, the recommended behavior is to output a message and continue. All improper uses of the GLUT inter-
face do not need to be caught or reported. What conditions are caught or reported should be based on how ex-
pensive the condition is to check for. For example, an implementation may not check every glutSetWindow
call to determine if the window identifier is valid.

The run-time overhead of error checking for a very common operation may outweight the benefit of clean
error reporting. This trade-off is left for the implementor to make. The implementor should also consider the
difficulty of diagnosing the improper usage without a message being output. For example, if a GLUT program
attempts to create a menu while a menu is in use (improper usage!), this warrants a message because this im-
proper usage may often be benign, allowing the bug to easily go unnoticed.

14.4 Avoid Unspecified GLUT Usage Restrictions

GLUT implementations should be careful to not limit the conditions under which GLUT routines may be called.
GLUT implementations are expected to be resilient when GLUT programs call GLUT routines with defined
behavior at “unexpected” times. For example, a program should be permitted to destroy the current window
from within a display callback (assuming the user does not then call GLUT routines requiring a current window).

14.4 Avoid Unspecified GLUT Usage Restrictions 43

This means after dispatching callbacks, a GLUT implementation should be “defensive” about how the program
might have used manipulated GLUT state during the callback.

44 A. GLUT STATE

A GLUT State

This appendix specifies precisely what programmer visible state GLUT maintains. There are three categories of
programmer visible state that GLUT maintains: global, window, and menu. The window and menu state cate-
gories are maintained for each created window or menu. Additional overlay-related window state is maintained
when an overlay is established for a window for the lifetime of the overlay.

The tables below name each element of state, define its type, specify what GLUT API entry points set
or change the state (if possible), specify what GLUT API entry point or glutGet, glutDeviceGet, or
glutLayerGet state constant is used to get the state (if possible), and how the state is initially set. For details
of how any API entry point operates on the specified state, see the routine’s official description. Footnotes for
each category of state indicate additional caveats to the element of state.

A.1 Types of State

These types are used to specify GLUT’s programmer visible state:

Bitmask A group of boolean bits.

Boolean True or false.

Callback A handle to a user-supplied routine invoked when the given callback is triggered (or NULL which is
the default callback).

ColorCell Red, green, and blue color component triple, an array of which makes a colormap.

Cursor A GLUT cursor name.

Integer An integer value.

Layer Either normal plane or overlay.

MenuItem Either a menu entry or a submenu trigger. Both subtypes contain of a String name. A menu entry
has an Integer value. A submenu cascade has an Integer menu name naming its associated submenu.

MenuState Either in use or not in use.

Stacking An ordering for top-level windows and sub-windows having the same parent. Higher windows ob-
scure lower windows.

State One of shown, hidden, or iconified.

String A string of ASCII characters.

Timer A triple of a timer Callback, an Integer callback parameter, and a time in milliseconds (that expires in
real time).

A.2 Global State

There are two types of global state: program controlled state which can be modified directly or indirectly by the
program, and fixed system dependent state.

A.3 Window State 45

A.2.1 Program Controlled State

Name Type Set/Change Get Initial
currentWindow Integer glutSetWindow (1) glutGetWindow 0
currentMenu Integer glutSetMenu (2) glutGetMenu 0
initWindowX Integer glutInitWindowPosition GLUT INIT WINDOW X -1
initWindowY Integer glutInitWindowPosition GLUT INIT WINDOW Y -1
initWindowWidth Integer glutInitWindowSize GLUT INIT WINDOW WIDTH 300
initWindowHeight Integer glutInitWindowSize GLUT INIT WINDOW HEIGHT 300
initDisplayMode Bitmask glutInitDisplayMode GLUT INIT DISPLAY MODE GLUT RGB,

GLUT SINGLE,
GLUT DEPTH

idleCallback Callback glutIdleFunc - NULL
menuState MenuState - (3) NotInUse
menuStateCallback Callback glutMenuEntryFunc - NULL
timerList list of Timer glutTimerFunc - none

(1) The currentWindow is also changed implicitly by every window or menu callback (to the window triggering the callback) and the
creation of a window (to the window being created).

(2) The currentMenu is also changed implicitly by every menu callback (to the menu triggering the callback) and the creation of a menu
(to the menu being created).

(3) The menu state callback is triggered when the menuState changes.

A.2.2 Fixed System Dependent State

Name Type Get
screenWidth Integer GLUT SCREEN WIDTH
screenHeight Integer GLUT SCREEN HEIGHT
screenWidthMM Integer GLUT SCREEN WIDTH MM
screenHeightMM Integer GLUT SCREEN HEIGHT MM
hasKeyboard Boolean GLUT HAS KEYBOARD
hasMouse Boolean GLUT HAS MOUSE
hasSpaceball Boolean GLUT HAS SPACEBALL
hasDialAndButtonBox Boolean GLUT HAS DIAL AND BUTTON BOX
hasTablet Boolean GLUT HAS TABLET
numMouseButtons Integer GLUT NUM MOUSE BUTTONS
numSpaceballButtons Integer GLUT NUM SPACEBALL BUTTONS
numButtonBoxButtons Integer GLUT NUM BUTTON BOX BUTTONS
numDials Integer GLUT NUM DIALS
numTabletButtons Integer GLUT NUM TABLET BUTTONS

A.3 Window State

For the purposes of listing the window state elements, window state is classified into three types: base state,
frame buffer capability state, and layer state. The tags top-level, sub-win, and cindex indicate the table entry
applies only to top-level windows, subwindows, or color index windows respectively.

46 A. GLUT STATE

A.3.1 Basic State

Name Type Set/Change Get Initial
number Integer - glutGetWindow top-level: glutCreateWindow (1)

sub-win: glutCreateSubWindow (1)
x Integer glutPositionWindow GLUT WINDOW X top-level: initWindowX (2)

sub-win: glutCreateSubWindow
y Integer glutPositionWindow GLUT WINDOW Y top-level: initWindowY (3)

sub-win: glutCreateSubWindow
width Integer glutReshapeWindow GLUT WINDOW WIDTH top-level: initWindowWidth (4)

sub-win: glutCreateSubWindow
height Integer glutReshapeWindow GLUT WINDOW HEIGHT top-level: initWindowHeight (5)

sub-win: glutCreateSubWindow
top-level: fullScreen Boolean glutFullScreen False

glutPositionWindow
glutReshapeWindow (6)

cursor Cursor glutSetCursor GLUT WINDOW CURSOR GLUT CURSOR INHERIT
stacking Stacking glutPopWindow - top

glutPushWindow
displayState State (7) glutShowWindow (8) - shown

glutHideWindow
glutIconifyWindow

visibility Visibility (9) (10) undefined
redisplay Boolean glutPostRedisplay (11) - False
top-level: windowTitle String glutWindowTitle - glutCreateWindow
top-level: iconTitle String glutIconTitle - glutCreateWindow
displayCallback Callback glutDisplayFunc - NULL (12)
reshapeCallback Callback glutReshapeFunc - NULL (13)
keyboardCallback Callback glutKeyboardFunc - NULL
mouseCallback Callback glutMouseFunc - NULL
motionCallback Callback glutMotionFunc - NULL
passiveMotionCallback Callback glutPassiveMotionFunc - NULL
specialCallback Callback glutSpecialFunc - NULL
spaceballMotionCallback Callback glutSpaceballMotionFunc - NULL
spaceballRotateCallback Callback glutSpaceballRotateFunc - NULL
spaceballButtonCallback Callback glutSpaceballButtonFunc - NULL
buttonBoxCallback Callback glutButtonBoxFunc - NULL
dialsCallback Callback glutDialsFunc - NULL
tabletMotionCallback Callback glutTabletMotionFunc - NULL
tabletButtonCallback Callback glutTabletButtonFunc - NULL
visibilityCallback Callback glutVisibilityFunc - NULL
entryCallback Callback glutEntryFunc - NULL
cindex: colormap array of glutSetColor glutGetColor undefined

ColorCell glutCopyColormap
windowParent Integer - GLUT WINDOW PARENT top-level: 0

sub-win: (14)
numChildren Integer glutCreateSubWindow GLUT NUM CHILDREN 0

glutDestroyWindow
leftMenu Integer glutAttachMenu - 0

glutDetachMenu
middleMenu Integer glutAttachMenu - 0

glutDetachMenu
rightMenu Integer glutAttachMenu - 0

glutDetachMenu

(1) Assigned dynamically from unassigned window numbers greater than zero.

(2) If initWindowX is greater or equal to zero and initWindowY is greater or equal to zero then initWindowX, else window location left to
window system to decide.

(3) If initWindowY is greater or equal to zero and initWindowX is greater or equal to zero then initWindowY, else window location left to
window system to decide.

(4) If initWindowWidth is greater than zero and initWindowHeight is greater than zero the initWindowWidth, else window size left to win-
dow system to decide.

(5) If initWindowHeight is greater than zero and initWindowWidth is greater than zero then initWindowHeight, else window size left to
window system to decide.

(6) glutFullScreen sets to true; glutPositionWindow and glutReshapeWindow set to false.

(7) Subwindows can not be iconified.

(8) Window system events can also change the displayState.

A.3 Window State 47

(9) Visibility of a window can change for window system dependent reason, for example, a new window may occlude the window.
glutPopWindow and glutPushWindow can affect window visibility as a side effect.

(10) The visibility callback set by glutVisibilityFunc allows the visibility state to be tracked.

(11) The redisplay state can be explicitly enabled by glutRedisplayFunc or implicitly in response to normal plane redisplay events
from the window system.

(12) A window’s displayCallback must be registered before the first display callback would be triggered (or the program is terminated).

(13) Instead of being a no-op as most NULL callbacks are, a NULL reshapeCallback sets the OpenGL viewport to render into the complete
window, i.e., glViewport(0,0,width, height).

(14) Determined by currentWindow at glutCreateSubWindow time.

A.3.2 Frame Buffer Capability State

Name Type Get
Total number of bits in color buffer Integer GLUT WINDOW BUFFER SIZE
Number of bits in stencil buffer Integer GLUT WINDOW STENCIL SIZE
Number of bits in depth buffer Integer GLUT WINDOW DEPTH SIZE
Number of bits of red stored in color buffer Integer GLUT WINDOW RED SIZE
Number of bits of green stored in color buffer Integer GLUT WINDOW GREEN SIZE
Number of bits of blue stored in color buffer Integer GLUT WINDOW BLUE SIZE
Number of bits of alpha stored in color buffer Integer GLUT WINDOW ALPHA SIZE
Number of bits of red stored in accumulation buffer Integer GLUT WINDOW ACCUM RED SIZE
Number of bits of green stored in accumulation buffer Integer GLUT WINDOW ACCUM GREEN SIZE
Number of bits of blue stored in accumulation buffer Integer GLUT WINDOW ACCUM BLUE SIZE
Number of bits of alpha stored in accumulation buffer Integer GLUT WINDOW ACCUM ALPHA SIZE
Color index colormap size Integer GLUT WINDOW COLORMAP SIZE
If double buffered Boolean GLUT WINDOW DOUBLEBUFFER
If RGBA color model Boolean GLUT WINDOW RGBA
If stereo Boolean GLUT WINDOW STEREO
Number of samples for multisampling Integer GLUT WINDOW MULTISAMPLE

A window’s (normal plane) frame buffer capability state is derived from the global initDisplayMode state
at the window’s creation. A window’s frame buffer capabilities can not be changed.

A.3.3 Layer State

Name Type Set/Change Get Initial
hasOverlay Boolean glutEstablishOverlay GLUT HAS OVERLAY False

glutRemoveOverlay
overlayPossible Boolean (1) GLUT OVERLAY POSSIBLE False
layerInUse Layer glutUseLayer (2) GLUT LAYER IN USE normal plane
cindex: transparentIndex Integer - GLUT TRANSPARENT INDEX (3)
overlayRedisplay Boolean glutPostOverlayRedisplay (4) - False
overlayDisplayCallback Callback glutOverlayDisplayFunc - NULL
overlayDisplayState State glutShowOverlay - shown

glutHideOverlay
normalDamaged Boolean (5) GLUT NORMAL DAMAGED False
overlayDamaged Boolean (6) GLUT OVERLAY DAMAGED False

(1) Whether an overlay is possible is based on the initDisplayMode state and the frame buffer capability state of the window.

(2) The layerInUse is implicitly set to overlay after glutEstablishOverlay; likewise, glutRemoveOverlay resets the state to
normal plane.

(3) The transparentIndex is set when a color index overlay is established. It cannot be set; it may change if the overlay is re-established.
When no overlay is in use or if the overlay is not color index, the transparentIndex is -1.

(4) The overlayRedisplay state can be explicitly enabled by glutPostOverlayRedisplayor implicitly in response to overlay redis-
play events from the window system.

(5) Set when the window system reports a region of the window’s normal plane is undefined (for example, damaged by another window
moving or being initially shown). The specifics of when damage occurs are left to the window system to determine. The window’s
redisplay state is always set true when damage occurs. normalDamaged is cleared whenever the window’s display callback returns.

(6) Set when the window system reports a region of the window’s overlay plane is undefined (for example, damaged by another window
moving or being initially shown). The specifics of when damage occurs are left to the window system to determine. The damage
may occur independent from damage to the window’s normal plane. The window’s redisplay state is always set true when damage
occurs. normalDamaged is cleared whenever the window’s display callback returns.

When an overlay is established, overlay frame buffer capability state is maintained as described in Section
A.3.2. The layerInUse determines whether glutGet returns normal plane or overlay state when an overlay is
established.

48 A. GLUT STATE

A.4 Menu State
Name Type Set/Change Get Initial
number Integer - glutSetMenu top-level: glutCreateMenu (1)
select Callback - - glutCreateMenu
items list of MenuItem - - -
numItems Integer - GLUT MENU NUM ITEMS 0

(1) Assigned dynamically from unassigned window numbers greater than zero.

49

B glut.h ANSI C Header File

1 #ifndef __glut_h__
2 #define __glut_h__
3
4 /* Copyright (c) Mark J. Kilgard, 1994, 1995, 1996. */
5
6 /* This program is freely distributable without licensing fees and is
7 provided without guarantee or warrantee expressed or implied. This
8 program is -not- in the public domain. */
9

10 #include <GL/gl.h>
11 #include <GL/glu.h>
12
13 #ifdef __cplusplus
14 extern "C" {
15 #endif
16
17 /*
18 * GLUT API revision history:
19 *
20 * GLUT_API_VERSION is updated to reflect incompatible GLUT
21 * API changes (interface changes, semantic changes, deletions,
22 * or additions).
23 *
24 * GLUT_API_VERSION=1 First public release of GLUT. 11/29/94
25 *
26 * GLUT_API_VERSION=2 Added support for OpenGL/GLX multisampling,
27 * extension. Supports new input devices like tablet, dial and button
28 * box, and Spaceball. Easy to query OpenGL extensions.
29 *
30 * GLUT_API_VERSION=3 glutMenuStatus added.
31 *
32 */
33 #ifndef GLUT_API_VERSION /* allow this to be overriden */
34 #define GLUT_API_VERSION 3
35 #endif
36
37 /*
38 * GLUT implementation revision history:
39 *
40 * GLUT_XLIB_IMPLEMENTATION is updated to reflect both GLUT
41 * API revisions and implementation revisions (ie, bug fixes).
42 *
43 * GLUT_XLIB_IMPLEMENTATION=1 mjk’s first public release of
44 * GLUT Xlib-based implementation. 11/29/94
45 *
46 * GLUT_XLIB_IMPLEMENTATION=2 mjk’s second public release of
47 * GLUT Xlib-based implementation providing GLUT version 2
48 * interfaces.
49 *
50 * GLUT_XLIB_IMPLEMENTATION=3 mjk’s GLUT 2.2 images. 4/17/95
51 *
52 * GLUT_XLIB_IMPLEMENTATION=4 mjk’s GLUT 2.3 images. 6/?/95
53 *
54 * GLUT_XLIB_IMPLEMENTATION=5 mjk’s GLUT 3.0 images. 10/?/95
55 *
56 * GLUT_XLIB_IMPLEMENTATION=6 mjk’s GLUT 3.1
57 */
58 #ifndef GLUT_XLIB_IMPLEMENTATION /* allow this to be overriden */
59 #define GLUT_XLIB_IMPLEMENTATION 6
60 #endif
61
62 /* display mode bit masks */
63 #define GLUT_RGB 0
64 #define GLUT_RGBA GLUT_RGB
65 #define GLUT_INDEX 1
66 #define GLUT_SINGLE 0

50 B. GLUT.H ANSI C HEADER FILE

67 #define GLUT_DOUBLE 2
68 #define GLUT_ACCUM 4
69 #define GLUT_ALPHA 8
70 #define GLUT_DEPTH 16
71 #define GLUT_STENCIL 32
72 #if (GLUT_API_VERSION >= 2)
73 #define GLUT_MULTISAMPLE 128
74 #define GLUT_STEREO 256
75 #endif
76 #if (GLUT_API_VERSION >= 3)
77 #define GLUT_LUMINANCE 512
78 #endif
79
80 /* mouse buttons */
81 #define GLUT_LEFT_BUTTON 0
82 #define GLUT_MIDDLE_BUTTON 1
83 #define GLUT_RIGHT_BUTTON 2
84
85 /* mouse button callback state */
86 #define GLUT_DOWN 0
87 #define GLUT_UP 1
88
89 #if (GLUT_API_VERSION >= 2)
90 /* function keys */
91 #define GLUT_KEY_F1 1
92 #define GLUT_KEY_F2 2
93 #define GLUT_KEY_F3 3
94 #define GLUT_KEY_F4 4
95 #define GLUT_KEY_F5 5
96 #define GLUT_KEY_F6 6
97 #define GLUT_KEY_F7 7
98 #define GLUT_KEY_F8 8
99 #define GLUT_KEY_F9 9

100 #define GLUT_KEY_F10 10
101 #define GLUT_KEY_F11 11
102 #define GLUT_KEY_F12 12
103 /* directional keys */
104 #define GLUT_KEY_LEFT 100
105 #define GLUT_KEY_UP 101
106 #define GLUT_KEY_RIGHT 102
107 #define GLUT_KEY_DOWN 103
108 #define GLUT_KEY_PAGE_UP 104
109 #define GLUT_KEY_PAGE_DOWN 105
110 #define GLUT_KEY_HOME 106
111 #define GLUT_KEY_END 107
112 #define GLUT_KEY_INSERT 108
113 #endif
114
115 /* entry/exit callback state */
116 #define GLUT_LEFT 0
117 #define GLUT_ENTERED 1
118
119 /* menu usage callback state */
120 #define GLUT_MENU_NOT_IN_USE 0
121 #define GLUT_MENU_IN_USE 1
122
123 /* visibility callback state */
124 #define GLUT_NOT_VISIBLE 0
125 #define GLUT_VISIBLE 1
126
127 /* color index component selection values */
128 #define GLUT_RED 0
129 #define GLUT_GREEN 1
130 #define GLUT_BLUE 2
131
132 /* layers for use */
133 #define GLUT_NORMAL 0
134 #define GLUT_OVERLAY 1

51

135
136 /* stroke font opaque addresses (use constants instead in source code) */
137 extern void *glutStrokeRoman;
138 extern void *glutStrokeMonoRoman;
139
140 /* stroke font constants (use these in GLUT program) */
141 #define GLUT_STROKE_ROMAN (&glutStrokeRoman)
142 #define GLUT_STROKE_MONO_ROMAN (&glutStrokeMonoRoman)
143
144 /* bitmap font opaque addresses (use constants instead in source code) */
145 extern void *glutBitmap9By15;
146 extern void *glutBitmap8By13;
147 extern void *glutBitmapTimesRoman10;
148 extern void *glutBitmapTimesRoman24;
149 extern void *glutBitmapHelvetica10;
150 extern void *glutBitmapHelvetica12;
151 extern void *glutBitmapHelvetica18;
152
153 /* bitmap font constants (use these in GLUT program) */
154 #define GLUT_BITMAP_9_BY_15 (&glutBitmap9By15)
155 #define GLUT_BITMAP_8_BY_13 (&glutBitmap8By13)
156 #define GLUT_BITMAP_TIMES_ROMAN_10 (&glutBitmapTimesRoman10)
157 #define GLUT_BITMAP_TIMES_ROMAN_24 (&glutBitmapTimesRoman24)
158 #if (GLUT_API_VERSION >= 3)
159 #define GLUT_BITMAP_HELVETICA_10 (&glutBitmapHelvetica10)
160 #define GLUT_BITMAP_HELVETICA_12 (&glutBitmapHelvetica12)
161 #define GLUT_BITMAP_HELVETICA_18 (&glutBitmapHelvetica18)
162 #endif
163
164 /* glutGet parameters */
165 #define GLUT_WINDOW_X 100
166 #define GLUT_WINDOW_Y 101
167 #define GLUT_WINDOW_WIDTH 102
168 #define GLUT_WINDOW_HEIGHT 103
169 #define GLUT_WINDOW_BUFFER_SIZE 104
170 #define GLUT_WINDOW_STENCIL_SIZE 105
171 #define GLUT_WINDOW_DEPTH_SIZE 106
172 #define GLUT_WINDOW_RED_SIZE 107
173 #define GLUT_WINDOW_GREEN_SIZE 108
174 #define GLUT_WINDOW_BLUE_SIZE 109
175 #define GLUT_WINDOW_ALPHA_SIZE 110
176 #define GLUT_WINDOW_ACCUM_RED_SIZE 111
177 #define GLUT_WINDOW_ACCUM_GREEN_SIZE 112
178 #define GLUT_WINDOW_ACCUM_BLUE_SIZE 113
179 #define GLUT_WINDOW_ACCUM_ALPHA_SIZE 114
180 #define GLUT_WINDOW_DOUBLEBUFFER 115
181 #define GLUT_WINDOW_RGBA 116
182 #define GLUT_WINDOW_PARENT 117
183 #define GLUT_WINDOW_NUM_CHILDREN 118
184 #define GLUT_WINDOW_COLORMAP_SIZE 119
185 #if (GLUT_API_VERSION >= 2)
186 #define GLUT_WINDOW_NUM_SAMPLES 120
187 #define GLUT_WINDOW_STEREO 121
188 #endif
189 #if (GLUT_API_VERSION >= 3)
190 #define GLUT_WINDOW_CURSOR 122
191 #endif
192 #define GLUT_SCREEN_WIDTH 200
193 #define GLUT_SCREEN_HEIGHT 201
194 #define GLUT_SCREEN_WIDTH_MM 202
195 #define GLUT_SCREEN_HEIGHT_MM 203
196 #define GLUT_MENU_NUM_ITEMS 300
197 #define GLUT_DISPLAY_MODE_POSSIBLE 400
198 #define GLUT_INIT_WINDOW_X 500
199 #define GLUT_INIT_WINDOW_Y 501
200 #define GLUT_INIT_WINDOW_WIDTH 502
201 #define GLUT_INIT_WINDOW_HEIGHT 503
202 #define GLUT_INIT_DISPLAY_MODE 504

52 B. GLUT.H ANSI C HEADER FILE

203 #if (GLUT_API_VERSION >= 2)
204 #define GLUT_ELAPSED_TIME 700
205 #endif
206
207 #if (GLUT_API_VERSION >= 2)
208 /* glutDeviceGet parameters */
209 #define GLUT_HAS_KEYBOARD 600
210 #define GLUT_HAS_MOUSE 601
211 #define GLUT_HAS_SPACEBALL 602
212 #define GLUT_HAS_DIAL_AND_BUTTON_BOX 603
213 #define GLUT_HAS_TABLET 604
214 #define GLUT_NUM_MOUSE_BUTTONS 605
215 #define GLUT_NUM_SPACEBALL_BUTTONS 606
216 #define GLUT_NUM_BUTTON_BOX_BUTTONS 607
217 #define GLUT_NUM_DIALS 608
218 #define GLUT_NUM_TABLET_BUTTONS 609
219 #endif
220
221 #if (GLUT_API_VERSION >= 3)
222 /* glutLayerGet parameters */
223 #define GLUT_OVERLAY_POSSIBLE 800
224 #define GLUT_LAYER_IN_USE 801
225 #define GLUT_HAS_OVERLAY 802
226 #define GLUT_TRANSPARENT_INDEX 803
227 #define GLUT_NORMAL_DAMAGED 804
228 #define GLUT_OVERLAY_DAMAGED 805
229
230 /* glutUseLayer parameters */
231 #define GLUT_NORMAL 0
232 #define GLUT_OVERLAY 1
233
234 /* glutGetModifiers return mask */
235 #define GLUT_ACTIVE_SHIFT 1
236 #define GLUT_ACTIVE_CTRL 2
237 #define GLUT_ACTIVE_ALT 4
238
239 /* glutSetCursor parameters */
240 /* Basic arrows */
241 #define GLUT_CURSOR_RIGHT_ARROW 0
242 #define GLUT_CURSOR_LEFT_ARROW 1
243 /* Symbolic cursor shapees */
244 #define GLUT_CURSOR_INFO 2
245 #define GLUT_CURSOR_DESTROY 3
246 #define GLUT_CURSOR_HELP 4
247 #define GLUT_CURSOR_CYCLE 5
248 #define GLUT_CURSOR_SPRAY 6
249 #define GLUT_CURSOR_WAIT 7
250 #define GLUT_CURSOR_TEXT 8
251 #define GLUT_CURSOR_CROSSHAIR 9
252 /* Directional cursors */
253 #define GLUT_CURSOR_UP_DOWN 10
254 #define GLUT_CURSOR_LEFT_RIGHT 11
255 /* Sizing cursors */
256 #define GLUT_CURSOR_TOP_SIDE 12
257 #define GLUT_CURSOR_BOTTOM_SIDE 13
258 #define GLUT_CURSOR_LEFT_SIDE 14
259 #define GLUT_CURSOR_RIGHT_SIDE 15
260 #define GLUT_CURSOR_TOP_LEFT_CORNER 16
261 #define GLUT_CURSOR_TOP_RIGHT_CORNER 17
262 #define GLUT_CURSOR_BOTTOM_RIGHT_CORNER 18
263 #define GLUT_CURSOR_BOTTOM_LEFT_CORNER 19
264 /* Inherit from parent window */
265 #define GLUT_CURSOR_INHERIT 100
266 /* Blank cursor */
267 #define GLUT_CURSOR_NONE 101
268 /* Fullscreen crosshair (if available) */
269 #define GLUT_CURSOR_FULL_CROSSHAIR 102
270 #endif

53

271
272 /* GLUT initialization sub-API */
273 extern void glutInit(int *argcp, char **argv);
274 extern void glutInitDisplayMode(unsigned int mode);
275 extern void glutInitWindowPosition(int x, int y);
276 extern void glutInitWindowSize(int width, int height);
277 extern void glutMainLoop(void);
278
279 /* GLUT window sub-api */
280 extern int glutCreateWindow(char *title);
281 extern int glutCreateSubWindow(int win, int x, int y, int width, int height);
282 extern void glutDestroyWindow(int win);
283 extern void glutPostRedisplay(void);
284 extern void glutSwapBuffers(void);
285 extern int glutGetWindow(void);
286 extern void glutSetWindow(int win);
287 extern void glutSetWindowTitle(char *title);
288 extern void glutSetIconTitle(char *title);
289 extern void glutPositionWindow(int x, int y);
290 extern void glutReshapeWindow(int width, int height);
291 extern void glutPopWindow(void);
292 extern void glutPushWindow(void);
293 extern void glutIconifyWindow(void);
294 extern void glutShowWindow(void);
295 extern void glutHideWindow(void);
296 #if (GLUT_API_VERSION >= 3)
297 extern void glutFullScreen(void);
298 extern void glutSetCursor(int cursor);
299
300 /* GLUT overlay sub-API */
301 extern void glutEstablishOverlay(void);
302 extern void glutRemoveOverlay(void);
303 extern void glutUseLayer(GLenum layer);
304 extern void glutPostOverlayRedisplay(void);
305 extern void glutShowOverlay(void);
306 extern void glutHideOverlay(void);
307 #endif
308
309 /* GLUT menu sub-API */
310 extern int glutCreateMenu(void (*)(int));
311 extern void glutDestroyMenu(int menu);
312 extern int glutGetMenu(void);
313 extern void glutSetMenu(int menu);
314 extern void glutAddMenuEntry(char *label, int value);
315 extern void glutAddSubMenu(char *label, int submenu);
316 extern void glutChangeToMenuEntry(int item, char *label, int value);
317 extern void glutChangeToSubMenu(int item, char *label, int submenu);
318 extern void glutRemoveMenuItem(int item);
319 extern void glutAttachMenu(int button);
320 extern void glutDetachMenu(int button);
321
322 /* GLUT callback sub-api */
323 extern void glutDisplayFunc(void (*)(void));
324 extern void glutReshapeFunc(void (*)(int width, int height));
325 extern void glutKeyboardFunc(void (*)(unsigned char key, int x, int y));
326 extern void glutMouseFunc(void (*)(int button, int state, int x, int y));
327 extern void glutMotionFunc(void (*)(int x, int y));
328 extern void glutPassiveMotionFunc(void (*)(int x, int y));
329 extern void glutEntryFunc(void (*)(int state));
330 extern void glutVisibilityFunc(void (*)(int state));
331 extern void glutIdleFunc(void (*)(void));
332 extern void glutTimerFunc(unsigned int millis, void (*)(int value), int value);
333 extern void glutMenuStateFunc(void (*)(int state));
334 #if (GLUT_API_VERSION >= 2)
335 extern void glutSpecialFunc(void (*)(int key, int x, int y));
336 extern void glutSpaceballMotionFunc(void (*)(int x, int y, int z));
337 extern void glutSpaceballRotateFunc(void (*)(int x, int y, int z));
338 extern void glutSpaceballButtonFunc(void (*)(int button, int state));

54 B. GLUT.H ANSI C HEADER FILE

339 extern void glutButtonBoxFunc(void (*)(int button, int state));
340 extern void glutDialsFunc(void (*)(int dial, int value));
341 extern void glutTabletMotionFunc(void (*)(int x, int y));
342 extern void glutTabletButtonFunc(void (*)(int button, int state, int x, int y));
343 #if (GLUT_API_VERSION >= 3)
344 extern void glutMenuStatusFunc(void (*)(int status, int x, int y));
345 extern void glutOverlayDisplayFunc(void (*)(void));
346 #endif
347 #endif
348
349 /* GLUT color index sub-api */
350 extern void glutSetColor(int, GLfloat red, GLfloat green, GLfloat blue);
351 extern GLfloat glutGetColor(int ndx, int component);
352 extern void glutCopyColormap(int win);
353
354 /* GLUT state retrieval sub-api */
355 extern int glutGet(GLenum type);
356 extern int glutDeviceGet(GLenum type);
357 #if (GLUT_API_VERSION >= 2)
358 /* GLUT extension support sub-API */
359 extern int glutExtensionSupported(char *name);
360 #endif
361 #if (GLUT_API_VERSION >= 3)
362 extern int glutGetModifiers(void);
363 extern int glutLayerGet(GLenum type);
364 #endif
365
366 /* GLUT font sub-API */
367 extern void glutBitmapCharacter(void *font, int character);
368 extern int glutBitmapWidth(void *font, int character);
369 extern void glutStrokeCharacter(void *font, int character);
370 extern int glutStrokeWidth(void *font, int character);
371
372 /* GLUT pre-built models sub-API */
373 extern void glutWireSphere(GLdouble radius, GLint slices, GLint stacks);
374 extern void glutSolidSphere(GLdouble radius, GLint slices, GLint stacks);
375 extern void glutWireCone(GLdouble base, GLdouble height, GLint slices, GLint stacks);
376 extern void glutSolidCone(GLdouble base, GLdouble height, GLint slices, GLint stacks);
377 extern void glutWireCube(GLdouble size);
378 extern void glutSolidCube(GLdouble size);
379 extern void glutWireTorus(GLdouble innerRadius, GLdouble outerRadius, GLint sides, GLint rings);
380 extern void glutSolidTorus(GLdouble innerRadius, GLdouble outerRadius, GLint sides, GLint rings);
381 extern void glutWireDodecahedron(void);
382 extern void glutSolidDodecahedron(void);
383 extern void glutWireTeapot(GLdouble size);
384 extern void glutSolidTeapot(GLdouble size);
385 extern void glutWireOctahedron(void);
386 extern void glutSolidOctahedron(void);
387 extern void glutWireTetrahedron(void);
388 extern void glutSolidTetrahedron(void);
389 extern void glutWireIcosahedron(void);
390 extern void glutSolidIcosahedron(void);
391
392 #ifdef __cplusplus
393 }
394
395 #endif
396 #endif /* __glut_h__ */

55

C fglut.h FORTRAN Header File

1 C Copyright (c) Mark J. Kilgard, 1994.
2
3 C This program is freely distributable without licensing fees
4 C and is provided without guarantee or warrantee expressed or
5 C implied. This program is -not- in the public domain.
6
7 C GLUT Fortran header file
8
9 C display mode bit masks

10 integer*4 GLUT_RGB
11 parameter (GLUT_RGB = 0)
12 integer*4 GLUT_RGBA
13 parameter (GLUT_RGBA = 0)
14 integer*4 GLUT_INDEX
15 parameter (GLUT_INDEX = 1)
16 integer*4 GLUT_SINGLE
17 parameter (GLUT_SINGLE = 0)
18 integer*4 GLUT_DOUBLE
19 parameter (GLUT_DOUBLE = 2)
20 integer*4 GLUT_ACCUM
21 parameter (GLUT_ACCUM = 4)
22 integer*4 GLUT_ALPHA
23 parameter (GLUT_ALPHA = 8)
24 integer*4 GLUT_DEPTH
25 parameter (GLUT_DEPTH = 16)
26 integer*4 GLUT_STENCIL
27 parameter (GLUT_STENCIL = 32)
28 integer*4 GLUT_MULTISAMPLE
29 parameter (GLUT_MULTISAMPLE = 128)
30 integer*4 GLUT_STEREO
31 parameter (GLUT_STEREO = 256)
32
33 C mouse buttons
34 integer*4 GLUT_LEFT_BUTTON
35 parameter (GLUT_LEFT_BUTTON = 0)
36 integer*4 GLUT_MIDDLE_BUTTON
37 parameter (GLUT_MIDDLE_BUTTON = 1)
38 integer*4 GLUT_RIGHT_BUTTON
39 parameter (GLUT_RIGHT_BUTTON = 2)
40
41 C mouse button callback state
42 integer*4 GLUT_DOWN
43 parameter (GLUT_DOWN = 0)
44 integer*4 GLUT_UP
45 parameter (GLUT_UP = 1)
46
47 C special key callback values
48 integer*4 GLUT_KEY_F1
49 parameter (GLUT_KEY_F1 = 1)
50 integer*4 GLUT_KEY_F2
51 parameter (GLUT_KEY_F2 = 2)
52 integer*4 GLUT_KEY_F3
53 parameter (GLUT_KEY_F3 = 3)
54 integer*4 GLUT_KEY_F4
55 parameter (GLUT_KEY_F4 = 4)
56 integer*4 GLUT_KEY_F5
57 parameter (GLUT_KEY_F5 = 5)
58 integer*4 GLUT_KEY_F6
59 parameter (GLUT_KEY_F6 = 6)
60 integer*4 GLUT_KEY_F7
61 parameter (GLUT_KEY_F7 = 7)
62 integer*4 GLUT_KEY_F8
63 parameter (GLUT_KEY_F8 = 8)
64 integer*4 GLUT_KEY_F9
65 parameter (GLUT_KEY_F9 = 9)
66 integer*4 GLUT_KEY_F10

56 C. FGLUT.H FORTRAN HEADER FILE

67 parameter (GLUT_KEY_F10 = 10)
68 integer*4 GLUT_KEY_F11
69 parameter (GLUT_KEY_F11 = 11)
70 integer*4 GLUT_KEY_F12
71 parameter (GLUT_KEY_F12 = 12)
72 integer*4 GLUT_KEY_LEFT
73 parameter (GLUT_KEY_LEFT = 100)
74 integer*4 GLUT_KEY_UP
75 parameter (GLUT_KEY_UP = 101)
76 integer*4 GLUT_KEY_RIGHT
77 parameter (GLUT_KEY_RIGHT = 102)
78 integer*4 GLUT_KEY_DOWN
79 parameter (GLUT_KEY_DOWN = 103)
80 integer*4 GLUT_KEY_PAGE_UP
81 parameter (GLUT_KEY_PAGE_UP = 104)
82 integer*4 GLUT_KEY_PAGE_DOWN
83 parameter (GLUT_KEY_PAGE_DOWN = 105)
84 integer*4 GLUT_KEY_HOME
85 parameter (GLUT_KEY_HOME = 106)
86 integer*4 GLUT_KEY_END
87 parameter (GLUT_KEY_END = 107)
88 integer*4 GLUT_KEY_INSERT
89 parameter (GLUT_KEY_INSERT = 108)
90
91 C entry/exit callback state
92 integer*4 GLUT_LEFT
93 parameter (GLUT_LEFT = 0)
94 integer*4 GLUT_ENTERED
95 parameter (GLUT_ENTERED = 1)
96
97 C menu usage callback state
98 integer*4 GLUT_MENU_NOT_IN_USE
99 parameter (GLUT_MENU_NOT_IN_USE = 0)

100 integer*4 GLUT_MENU_IN_USE
101 parameter (GLUT_MENU_IN_USE = 1)
102
103 C visibility callback state
104 integer*4 GLUT_NOT_VISIBLE
105 parameter (GLUT_NOT_VISIBLE = 0)
106 integer*4 GLUT_VISIBLE
107 parameter (GLUT_VISIBLE = 1)
108
109 C color index component selection values
110 integer*4 GLUT_RED
111 parameter (GLUT_RED = 0)
112 integer*4 GLUT_GREEN
113 parameter (GLUT_GREEN = 1)
114 integer*4 GLUT_BLUE
115 parameter (GLUT_BLUE = 2)
116
117 C XXX Unfortunately, SGI’s Fortran compiler links with
118 C EXTERNAL data even if it is not used. This defeats
119 C the purpose of GLUT naming fonts via opaque symbols.
120 C This means GLUT Fortran programmers should explicitly
121 C declared EXTERNAL GLUT fonts in subroutines where
122 C the fonts are used.
123
124 C stroke font opaque names
125 C external GLUT_STROKE_ROMAN
126 C external GLUT_STROKE_MONO_ROMAN
127
128 C bitmap font opaque names
129 C external GLUT_BITMAP_9_BY_15
130 C external GLUT_BITMAP_8_BY_13
131 C external GLUT_BITMAP_TIMES_ROMAN_10
132 C external GLUT_BITMAP_TIMES_ROMAN_24
133 C external GLUT_BITMAP_HELVETICA_10
134 C external GLUT_BITMAP_HELVETICA_12

57

135 C external GLUT_BITMAP_HELVETICA_18
136
137 C glutGet parameters
138 integer*4 GLUT_WINDOW_X
139 parameter (GLUT_WINDOW_X = 100)
140 integer*4 GLUT_WINDOW_Y
141 parameter (GLUT_WINDOW_Y = 101)
142 integer*4 GLUT_WINDOW_WIDTH
143 parameter (GLUT_WINDOW_WIDTH = 102)
144 integer*4 GLUT_WINDOW_HEIGHT
145 parameter (GLUT_WINDOW_HEIGHT = 103)
146 integer*4 GLUT_WINDOW_BUFFER_SIZE
147 parameter (GLUT_WINDOW_BUFFER_SIZE = 104)
148 integer*4 GLUT_WINDOW_STENCIL_SIZE
149 parameter (GLUT_WINDOW_STENCIL_SIZE = 105)
150 integer*4 GLUT_WINDOW_DEPTH_SIZE
151 parameter (GLUT_WINDOW_DEPTH_SIZE = 106)
152 integer*4 GLUT_WINDOW_RED_SIZE
153 parameter (GLUT_WINDOW_RED_SIZE = 107)
154 integer*4 GLUT_WINDOW_GREEN_SIZE
155 parameter (GLUT_WINDOW_GREEN_SIZE = 108)
156 integer*4 GLUT_WINDOW_BLUE_SIZE
157 parameter (GLUT_WINDOW_BLUE_SIZE = 109)
158 integer*4 GLUT_WINDOW_ALPHA_SIZE
159 parameter (GLUT_WINDOW_ALPHA_SIZE = 110)
160 integer*4 GLUT_WINDOW_ACCUM_RED_SIZE
161 parameter (GLUT_WINDOW_ACCUM_RED_SIZE = 111)
162 integer*4 GLUT_WINDOW_ACCUM_GREEN_SIZE
163 parameter (GLUT_WINDOW_ACCUM_GREEN_SIZE = 112)
164 integer*4 GLUT_WINDOW_ACCUM_BLUE_SIZE
165 parameter (GLUT_WINDOW_ACCUM_BLUE_SIZE = 113)
166 integer*4 GLUT_WINDOW_ACCUM_ALPHA_SIZE
167 parameter (GLUT_WINDOW_ACCUM_ALPHA_SIZE = 114)
168 integer*4 GLUT_WINDOW_DOUBLEBUFFER
169 parameter (GLUT_WINDOW_DOUBLEBUFFER = 115)
170 integer*4 GLUT_WINDOW_RGBA
171 parameter (GLUT_WINDOW_RGBA = 116)
172 integer*4 GLUT_WINDOW_PARENT
173 parameter (GLUT_WINDOW_PARENT = 117)
174 integer*4 GLUT_WINDOW_NUM_CHILDREN
175 parameter (GLUT_WINDOW_NUM_CHILDREN = 118)
176 integer*4 GLUT_WINDOW_COLORMAP_SIZE
177 parameter (GLUT_WINDOW_COLORMAP_SIZE = 119)
178 integer*4 GLUT_WINDOW_NUM_SAMPLES
179 parameter (GLUT_WINDOW_NUM_SAMPLES = 120)
180 integer*4 GLUT_WINDOW_STEREO
181 parameter (GLUT_WINDOW_STEREO = 121)
182 integer*4 GLUT_WINDOW_CURSOR
183 parameter (GLUT_WINDOW_CURSOR = 122)
184 integer*4 GLUT_SCREEN_WIDTH
185 parameter (GLUT_SCREEN_WIDTH = 200)
186 integer*4 GLUT_SCREEN_HEIGHT
187 parameter (GLUT_SCREEN_HEIGHT = 201)
188 integer*4 GLUT_SCREEN_WIDTH_MM
189 parameter (GLUT_SCREEN_WIDTH_MM = 202)
190 integer*4 GLUT_SCREEN_HEIGHT_MM
191 parameter (GLUT_SCREEN_HEIGHT_MM = 203)
192 integer*4 GLUT_MENU_NUM_ITEMS
193 parameter (GLUT_MENU_NUM_ITEMS = 300)
194 integer*4 GLUT_DISPLAY_MODE_POSSIBLE
195 parameter (GLUT_DISPLAY_MODE_POSSIBLE = 400)
196 integer*4 GLUT_INIT_WINDOW_X
197 parameter (GLUT_INIT_WINDOW_X = 500)
198 integer*4 GLUT_INIT_WINDOW_Y
199 parameter (GLUT_INIT_WINDOW_Y = 501)
200 integer*4 GLUT_INIT_WINDOW_WIDTH
201 parameter (GLUT_INIT_WINDOW_WIDTH = 502)
202 integer*4 GLUT_INIT_WINDOW_HEIGHT

58 C. FGLUT.H FORTRAN HEADER FILE

203 parameter (GLUT_INIT_WINDOW_HEIGHT = 503)
204 integer*4 GLUT_INIT_DISPLAY_MODE
205 parameter (GLUT_INIT_DISPLAY_MODE = 504)
206 integer*4 GLUT_ELAPSED_TIME
207 parameter (GLUT_ELAPSED_TIME = 700)
208
209 C glutDeviceGet parameters
210 integer*4 GLUT_HAS_KEYBOARD
211 parameter (GLUT_HAS_KEYBOARD = 600)
212 integer*4 GLUT_HAS_MOUSE
213 parameter (GLUT_HAS_MOUSE = 601)
214 integer*4 GLUT_HAS_SPACEBALL
215 parameter (GLUT_HAS_SPACEBALL = 602)
216 integer*4 GLUT_HAS_DIAL_AND_BUTTON_BOX
217 parameter (GLUT_HAS_DIAL_AND_BUTTON_BOX = 603)
218 integer*4 GLUT_HAS_TABLET
219 parameter (GLUT_HAS_TABLET = 604)
220 integer*4 GLUT_NUM_MOUSE_BUTTONS
221 parameter (GLUT_NUM_MOUSE_BUTTONS = 605)
222 integer*4 GLUT_NUM_SPACEBALL_BUTTONS
223 parameter (GLUT_NUM_SPACEBALL_BUTTONS = 606)
224 integer*4 GLUT_NUM_BUTTON_BOX_BUTTONS
225 parameter (GLUT_NUM_BUTTON_BOX_BUTTONS = 607)
226 integer*4 GLUT_NUM_DIALS
227 parameter (GLUT_NUM_DIALS = 608)
228 integer*4 GLUT_NUM_TABLET_BUTTONS
229 parameter (GLUT_NUM_TABLET_BUTTONS = 609)
230
231 C glutLayerGet parameters
232 integer*4 GLUT_OVERLAY_POSSIBLE
233 parameter (GLUT_OVERLAY_POSSIBLE = 800)
234 integer*4 GLUT_LAYER_IN_USE
235 parameter (GLUT_LAYER_IN_USE = 801)
236 integer*4 GLUT_HAS_OVERLAY
237 parameter (GLUT_HAS_OVERLAY = 802)
238 integer*4 GLUT_TRANSPARENT_INDEX
239 parameter (GLUT_TRANSPARENT_INDEX = 803)
240 integer*4 GLUT_NORMAL_DAMAGED
241 parameter (GLUT_NORMAL_DAMAGED = 804)
242 integer*4 GLUT_OVERLAY_DAMAGED
243 parameter (GLUT_OVERLAY_DAMAGED = 805)
244
245 C glutUseLayer parameters
246 integer*4 GLUT_NORMAL
247 parameter (GLUT_NORMAL = 0)
248 integer*4 GLUT_OVERLAY
249 parameter (GLUT_OVERLAY = 1)
250
251 C glutGetModifiers return mask
252 integer*4 GLUT_ACTIVE_SHIFT
253 parameter (GLUT_ACTIVE_SHIFT = 1)
254 integer*4 GLUT_ACTIVE_CTRL
255 parameter (GLUT_ACTIVE_CTRL = 2)
256 integer*4 GLUT_ACTIVE_ALT
257 parameter (GLUT_ACTIVE_ALT = 4)
258
259 C glutSetCursor parameters
260 integer*4 GLUT_CURSOR_RIGHT_ARROW
261 parameter (GLUT_CURSOR_RIGHT_ARROW = 0)
262 integer*4 GLUT_CURSOR_LEFT_ARROW
263 parameter (GLUT_CURSOR_LEFT_ARROW = 1)
264 integer*4 GLUT_CURSOR_INFO
265 parameter (GLUT_CURSOR_INFO = 2)
266 integer*4 GLUT_CURSOR_DESTROY
267 parameter (GLUT_CURSOR_DESTROY = 3)
268 integer*4 GLUT_CURSOR_HELP
269 parameter (GLUT_CURSOR_HELP = 4)
270 integer*4 GLUT_CURSOR_CYCLE

59

271 parameter (GLUT_CURSOR_CYCLE = 5)
272 integer*4 GLUT_CURSOR_SPRAY
273 parameter (GLUT_CURSOR_SPRAY = 6)
274 integer*4 GLUT_CURSOR_WAIT
275 parameter (GLUT_CURSOR_WAIT = 7)
276 integer*4 GLUT_CURSOR_TEXT
277 parameter (GLUT_CURSOR_TEXT = 8)
278 integer*4 GLUT_CURSOR_CROSSHAIR
279 parameter (GLUT_CURSOR_CROSSHAIR = 9)
280 integer*4 GLUT_CURSOR_UP_DOWN
281 parameter (GLUT_CURSOR_UP_DOWN = 10)
282 integer*4 GLUT_CURSOR_LEFT_RIGHT
283 parameter (GLUT_CURSOR_LEFT_RIGHT = 11)
284 integer*4 GLUT_CURSOR_TOP_SIDE
285 parameter (GLUT_CURSOR_TOP_SIDE = 12)
286 integer*4 GLUT_CURSOR_BOTTOM_SIDE
287 parameter (GLUT_CURSOR_BOTTOM_SIDE = 13)
288 integer*4 GLUT_CURSOR_LEFT_SIDE
289 parameter (GLUT_CURSOR_LEFT_SIDE = 14)
290 integer*4 GLUT_CURSOR_RIGHT_SIDE
291 parameter (GLUT_CURSOR_RIGHT_SIDE = 15)
292 integer*4 GLUT_CURSOR_TOP_LEFT_CORNER
293 parameter (GLUT_CURSOR_TOP_LEFT_CORNER = 16)
294 integer*4 GLUT_CURSOR_TOP_RIGHT_CORNER
295 parameter (GLUT_CURSOR_TOP_RIGHT_CORNER = 17)
296 integer*4 GLUT_CURSOR_BOTTOM_RIGHT_CORNER
297 parameter (GLUT_CURSOR_BOTTOM_RIGHT_CORNER = 18)
298 integer*4 GLUT_CURSOR_BOTTOM_LEFT_CORNER
299 parameter (GLUT_CURSOR_BOTTOM_LEFT_CORNER = 19)
300 integer*4 GLUT_CURSOR_INHERIT
301 parameter (GLUT_CURSOR_INHERIT = 100)
302 integer*4 GLUT_CURSOR_NONE
303 parameter (GLUT_CURSOR_NONE = 101)
304 integer*4 GLUT_CURSOR_FULL_CROSSHAIR
305 parameter (GLUT_CURSOR_FULL_CROSSHAIR = 102)
306
307 C GLUT functions
308 integer*4 glutcreatewindow
309 integer*4 glutgetwindow
310 integer*4 glutcreatemenu
311 integer*4 glutgetmenu
312 real glutgetcolor
313 integer*4 glutget
314 integer*4 glutdeviceget
315 integer*4 glutextensionsupported
316
317 C GLUT NULL name
318 external glutnull
319

60 REFERENCES

References

[1] Kurt Akeley, “RealityEngine Graphics,” Proceedings of SIGGRAPH ’93, July 1993.

[2] Edward Angel, Interactive Computer Graphics: A top-down approach with OpenGL, Addison-Wesley,
ISBN 0-201-85571-2, 1996.

[3] F.C. Crow, “The Origins of the Teapot,” IEEE Computer Graphics and Applications, January 1987.

[4] Phil Karlton, OpenGL Graphics with the X Window System, Ver. 1.0, Silicon Graphics, April 30, 1993.

[5] Mark J. Kilgard, “Going Beyond the MIT Sample Server: The Silicon Graphics X11 Server,” The X Jour-
nal, SIGS Publications, January 1993.

[6] Mark Kilgard, “Programming X Overlay Windows,” The X Journal, SIGS Publications, July 1993.

[7] Mark Kilgard, “OpenGL and X, Part 2: Using OpenGL with Xlib,” The X Journal, SIGS Publications,
Jan/Feb 1994.

[8] Mark Kilgard, “OpenGL and X, Part 3: Integrating OpenGL with Motif,” The X Journal, SIGS Publica-
tions, Jul/Aug 1994.

[9] Mark Kilgard, “An OpenGL Toolkit,” The X Journal, SIGS Publications, Nov/Dec 1994.

[10] Mark Kilgard, Programming OpenGL for the X Window System, Addison-Wesley, ISBN 0-201-48359-9,
1996.

[11] Jackie Neider, Tom Davis, Mason Woo, OpenGL Programming Guide: The official guide to learning
OpenGL, Release 1, Addison Wesley, 1993.

[12] OpenGL Architecture Review Board, OpenGL Reference Manual: The official reference document for
OpenGL, Release 1, Addison Wesley, 1992.

[13] Mark Patrick, George Sachs, X11 Input Extension Library Specification, X Consortium Standard, X11R6,
April 18, 1994.

[14] Mark Patrick, George Sachs, X11 Input Extension Protocol Specification, X Consortium Standard, X11R6,
April 17, 1994.

[15] Robert Scheifler, James Gettys, X Window System: The complete Reference to Xlib, X Protocol, ICCCM,
XLFD, third edition, Digital Press, 1992.

[16] Mark Segal, Kurt Akeley, The OpenGLTM Graphics System: A Specification, Version 1.0, Silicon Graph-
ics, June 30, 1992.

[17] Silicon Graphics, Graphics Library Programming Guide, Document Number 007-1210-040, 1991.

[18] Silicon Graphics, Graphics Library Window and Font Library Guide, Document Number 007-1329-010,
1991.

Index
MOTIF WM HINTS, 12
SGI CROSSHAIR CURSOR, 14
glutFatalError, 40
glutWarning, 40

Architectural Review Board, 41

Callback, 4
Colormap, 4

Dials and button box, 4
Display mode, 4

glFlush, 11, 40
GLUT LUMINANCE, 3, 8
glutAddMenuEntry, 17
glutAddSubMenu, 18
glutAttachMenu, 19
glutBitmapCharacter, 34
glutBitmapWidth, 3, 35
glutButtonBoxFunc, 26
glutChangeToMenuEntry, 18
glutChangeToSubMenu, 18
glutCopyColormap, 30
glutCreateMenu, 16
glutCreateSubWindow, 9, 40
glutCreateWindow, 9, 40
glutDestroyMenu, 17
glutDestroyWindow, 10
glutDeviceGet, 32, 44
glutDialsFunc, 26
glutDisplayFunc, 4, 20
glutEntryFunc, 23
glutEstablishOverlay, 3, 14
glutExtensionSupported, 33
glutFullScreen, 12
glutGet, 30, 40, 44
glutGetColor, 29
glutGetMenu, 17, 40
glutGetModifiers, 3, 33
glutGetWindow, 10, 40
glutHideOverlay, 3, 16
glutHideWindow, 13
glutIconifyWindow, 13
glutIdleFunc, 28
glutInit, 6
glutInitDisplayMode, 3, 7
glutInitWindowPosition, 7
glutInitWindowSize, 6, 7
glutKeyboardFunc, 21, 40
glutLayerGet, 3, 32, 44
glutMainLoop, 8

glutMenuStateFunc, 3, 40
glutMenuStatusFunc, 3, 27
glutMotionFunc, 22
glutMouseFunc, 22
GLUTNULL, 42
glutOverlayDisplayFunc, 20
glutPopWindow, 12
glutPositionWindow, 11
glutPostOverlayRedisplay, 3, 16
glutPostRedisplay, 10, 39
glutPushWindow, 12
glutRemoveMenuItem, 19
glutRemoveOverlay, 3, 15
glutReshapeFunc, 21
glutReshapeWindow, 11
glutSetColor, 29
glutSetCursor, 13, 14
glutSetIconTitle, 13
glutSetMenu, 17, 40
glutSetWindow, 10, 40
glutSetWindowTitle, 13
glutShowOverlay, 3, 16
glutShowWindow, 13
glutSolidCone, 37
glutSolidCube, 36
glutSolidDodecahedron, 38
glutSolidIcosahedron, 38
glutSolidOctahedron, 38
glutSolidSphere, 36
glutSolidTeapot, 39
glutSolidTetrahedron, 38
glutSolidTorus, 37
glutSpaceballButtonFunc, 25
glutSpaceballMotionFunc, 24
glutSpaceballRotateFunc, 25
glutSpecialFunc, 24, 40
glutStrokeBitmap, 3
glutStrokeCharacter, 35
glutStrokeWidth, 36
glutSwapBuffers, 11, 40
glutTabletButtonFunc, 27
glutTabletMotionFunc, 27
glutTimerFunc, 28
glutUseLayer, 15
glutUseOverlay, 3
glutVisibilityFunc, 23
glutWireCone, 37
glutWireCube, 36
glutWireDodecahedron, 38
glutWireIcosahedron, 38
glutWireOctahedron, 38

61

62 INDEX

glutWireSphere, 36
glutWireTeapot, 39
glutWireTetrahedron, 38
glutWireTorus, 37

Idle, 4

Layer in use, 4

Menu entry, 4
Menu item, 4
Modifiers, 5
Multisampling, 5

Normal plane, 5

onexit, 40
OpenGL errors, 7
Overlay, 5
overlay hardware, 14

Pop, 5
Pop-up menu, 5
Push, 5

Reshape, 5

SERVER OVERLAY VISUALS, 15, 17
Spaceball, 5
Stereo, 5
Sub-menu, 5
Sub-menu trigger, 5
Subwindow, 5

Tablet, 5
The X Journal, 1
Timer, 5
Top-level window, 5

Window, 5
Window display state, 5
Window system, 5
WM COMMAND, 9

X Input Extension, 20
X Inter-Client Communication Conventions Man-

ual, 9
X protocol errors, 7

Version 1.3 - October 19, 1998

OpenGL
R

Graphics with the X Window System
R

(Version 1.3)

Document Editors (version 1.3): Paula Womack, Jon Leech

Version 1.3 - October 19, 1998

Copyright c 1992-1998 Silicon Graphics, Inc.

This document contains unpublished information of
Silicon Graphics, Inc.

This document is protected by copyright, and contains information propri-
etary to Silicon Graphics, Inc. Any copying, adaptation, distribution, public
performance, or public display of this document without the express written
consent of Silicon Graphics, Inc. is strictly prohibited. The receipt or pos-
session of this document does not convey any rights to reproduce, disclose,
or distribute its contents, or to manufacture, use, or sell anything that it
may describe, in whole or in part.

U.S. Government Restricted Rights Legend

Use, duplication, or disclosure by the Government is subject to restrictions
set forth in FAR 52.227.19(c)(2) or subparagraph (c)(1)(ii) of the Rights
in Technical Data and Computer Software clause at DFARS 252.227-7013
and/or in similar or successor clauses in the FAR or the DOD or NASA FAR
Supplement. Unpublished rights reserved under the copyright laws of the
United States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N.
Shoreline Blvd., Mountain View, CA 94039-7311.

OpenGL is a registered trademark of Silicon Graphics, Inc.
Unix is a registered trademark of The Open Group.

The "X" device and X Windows System are trademarks of
The Open Group.

Version 1.3 - October 19, 1998

Contents

1 Overview 1

2 GLX Operation 2

2.1 Rendering Contexts and Drawing Surfaces 2

2.2 Using Rendering Contexts . 3

2.3 Direct Rendering and Address Spaces 4

2.4 OpenGL Display Lists . 5

2.5 Texture Objects . 6

2.6 Aligning Multiple Drawables 7

2.7 Multiple Threads . 7

3 Functions and Errors 9

3.1 Errors . 9

3.2 Events . 10

3.3 Functions . 10

3.3.1 Initialization . 10

3.3.2 GLX Versioning . 11

3.3.3 Con�guration Management 12

3.3.4 On Screen Rendering 21

3.3.5 O� Screen Rendering 21

3.3.6 Querying Attributes 25

3.3.7 Rendering Contexts 25

3.3.8 Events . 31

3.3.9 Synchronization Primitives 33

3.3.10 Double Bu�ering . 33

3.3.11 Access to X Fonts . 34

3.4 Backwards Compatibility . 35

3.4.1 Using Visuals for Con�guration Management 35

3.4.2 O� Screen Rendering 39

i

Version 1.3 - October 19, 1998

ii CONTENTS

3.5 Rendering Contexts . 40

4 Encoding on the X Byte Stream 42

4.1 Requests that hold a single extension request 42
4.2 Request that holds multiple OpenGL commands 43
4.3 Wire representations and byte swapping 44
4.4 Sequentiality . 44

5 Extending OpenGL 47

6 GLX Versions 49

6.1 New Commands in GLX Version 1.1 49
6.2 New Commands in GLX Version 1.2 49
6.3 New Commands in GLX Version 1.3 50

7 Glossary 51

Index of GLX Commands 53

Version 1.3 - October 19, 1998

List of Figures

2.1 Direct and Indirect Rendering Block Diagram. 4

4.1 GLX byte stream. 43

iii

Version 1.3 - October 19, 1998

List of Tables

3.1 GLXFBConfig attributes. 13
3.2 Types of Drawables Supported by GLXFBConfig 14
3.3 Mapping of Visual Types to GLX tokens. 14
3.4 Default values and match criteria for GLXFBConfig attributes. 19
3.5 Context attributes. 30
3.6 Masks identifying clobbered bu�ers. 32
3.7 GLX attributes for Visuals. 36
3.8 Defaults and selection criteria used by glXChooseVisual. . 38

6.1 Relationship of OpenGL and GLX versions. 49

iv

Version 1.3 - October 19, 1998

Chapter 1

Overview

This document describes GLX, the OpenGL extension to the X Window
System. It refers to concepts discussed in the OpenGL speci�cation, and
may be viewed as an X speci�c appendix to that document. Parts of the
document assume some acquaintance with both OpenGL and X.

In the X Window System, OpenGL rendering is made available as an
extension to X in the formal X sense: connection and authentication are
accomplished with the normal X mechanisms. As with other X extensions,
there is a de�ned network protocol for the OpenGL rendering commands
encapsulated within the X byte stream.

Since performance is critical in 3D rendering, there is a way for OpenGL
rendering to bypass the data encoding step, the data copying, and inter-
pretation of that data by the X server. This direct rendering is possible
only when a process has direct access to the graphics pipeline. Allowing
for parallel rendering has a�ected the design of the GLX interface. This
has resulted in an added burden on the client to explicitly prevent parallel
execution when such execution is inappropriate.

X and OpenGL have di�erent conventions for naming entry points and
macros. The GLX extension adopts those of OpenGL.

1

Version 1.3 - October 19, 1998

Chapter 2

GLX Operation

2.1 Rendering Contexts and Drawing Surfaces

The OpenGL speci�cation is intentionally vague on how a rendering context

(an abstract OpenGL state machine) is created. One of the purposes of
GLX is to provide a means to create an OpenGL context and associate it
with a drawing surface.

In X, a rendering surface is called a Drawable. X provides two types
of Drawables: Windows which are located onscreen and Pixmaps which are
maintained o�screen. The GLX equivalent to a Window is a GLXWindow

and the GLX equivalent to a Pixmap is a GLXPixmap. GLX introduces
a third type of drawable, called a GLXPbuffer, for which there is no X
equivalent. GLXPbuffers are used for o�screen rendering but they have
di�erent semantics than GLXPixmaps that make it easier to allocate them in
non-visible frame bu�er memory.

GLXWindows, GLXPixmaps and GLXPbuffers are created with respect to
a GLXFBConfig; the GLXFBConfig describes the depth of the color bu�er
components and the types, quantities and sizes of the ancillary bu�ers (i.e.,
the depth, accumulation, auxiliary, and stencil bu�ers). Double bu�ering
and stereo capability is also �xed by the GLXFBConfig.

Ancillary bu�ers are associated with a GLXDrawable, not with a ren-
dering context. If several rendering contexts are all writing to the same
window, they will share those bu�ers. Rendering operations to one window
never a�ect the unobscured pixels of another window, or the corresponding
pixels of ancillary bu�ers of that window. If an Expose event is received
by the client, the values in the ancillary bu�ers and in the back bu�ers for
regions corresponding to the exposed region become unde�ned.

2

Version 1.3 - October 19, 1998

2.2. USING RENDERING CONTEXTS 3

A rendering context can be used with any GLXDrawable that it is com-

patible with (subject to the restrictions discussed in the section on address
space and the restrictions discussed under glXCreatePixmap). A draw-
able and context are compatible if they

� support the same type of rendering (e.g., RGBA or color index)

� have color bu�ers and ancillary bu�ers of the same depth. For exam-
ple, a GLXDrawable that has a front left bu�er and a back left bu�er
with red, green and blue sizes of 4 would not be compatible with a
context that was created with a visual or GLXFBConfig that has only
a front left bu�er with red, green and blue sizes of 8. However, it would
be compatible with a context that was created with a GLXFBConfig

that has only a front left bu�er if the red, green and blue sizes are 4.

� were created with respect to the same X screen

As long as the compatibility constraint is satis�ed (and the address
space requirement is satis�ed), applications can render into the same
GLXDrawable, using di�erent rendering contexts. It is also possible to use a
single context to render into multiple GLXDrawables.

For backwards compatibility with GLX versions 1.2 and earlier, a render-
ing context can also be used to render into a Window. Thus, a GLXDrawable

is the union fGLXWindow, GLXPixmap, GLXPbuffer, Windowg. In X, Windows
are associated with a Visual. In GLX the de�nition of Visual has been ex-
tended to include the types, quantities and sizes of the ancillary bu�ers and
information indicating whether or not the Visual is double bu�ered. For
backwards compatibility, a GLXPixmap can also be created using a Visual.

2.2 Using Rendering Contexts

OpenGL de�nes both client state and server state. Thus a rendering context
consists of two parts: one to hold the client state and one to hold the server
state.

Each thread can have at most one current rendering context. In addition,
a rendering context can be current for only one thread at a time. The client
is responsible for creating a rendering context and a drawable.

Issuing OpenGL commands may cause the X bu�er to be ushed. In
particular, calling glFlush when indirect rendering is occurring, will ush
both the X and OpenGL rendering streams.

Version 1.3 - October 19, 1998

4 CHAPTER 2. GLX OPERATION

GLX Client
Xlib

Application
and Toolkit

GLX
(client state)

X Server
X Renderer

GL Renderer

(server state)

Dispatch

Framebuffer

Direct GL
Renderer

(server state)

Figure 2.1. Direct and Indirect Rendering Block Diagram.

Some state is shared between the OpenGL and X. The pixel values in
the X frame bu�er are shared. The X double bu�er extension (DBE) has a
de�nition for which bu�er is currently the displayed bu�er. This information
is shared with GLX. The state of which bu�er is displayed tracks in both
extensions, independent of which extension initiates a bu�er swap.

2.3 Direct Rendering and Address Spaces

One of the basic assumptions of the X protocol is that if a client can name
an object, then it can manipulate that object. GLX introduces the notion
of an Address Space. A GLX object cannot be used outside of the address
space in which it exists.

In a classic UNIX environment, each process is in its own address space.
In a multi-threaded environment, each of the threads will share a virtual
address space which references a common data region.

Version 1.3 - October 19, 1998

2.4. OPENGL DISPLAY LISTS 5

An OpenGL client that is rendering to a graphics engine directly con-
nected to the executing CPU may avoid passing the tokens through the X
server. This generalization is made for performance reasons. The model de-
scribed here speci�cally allows for such optimizations, but does not mandate
that any implementation support it.

When direct rendering is occurring, the address space of the OpenGL
implementation is that of the direct process; when direct rendering is not
being used (i.e., when indirect rendering is occurring), the address space
of the OpenGL implementation is that of the X server. The client has the
ability to reject the use of direct rendering, but there may be a performance
penalty in doing so.

In order to use direct rendering, a client must create a direct rendering
context (see �gure 2.1). Both the client context state and the server context
state of a direct rendering context exist in the client's address space; this
state cannot be shared by a client in another process. With indirect render-
ing contexts, the client context state is kept in the client's address space and
the server context state is kept in the address space of the X server. In this
case the server context state is stored in an X resource; it has an associated
XID and may potentially be used by another client process.

Although direct rendering support is optional, all implementations are
required to support indirect rendering.

2.4 OpenGL Display Lists

Most OpenGL state is small and easily retrieved using the glGet* com-
mands. This is not true of OpenGL display lists, which are used, for ex-
ample, to encapsulate a model of some physical object. First, there is no
mechanism to obtain the contents of a display list from the rendering con-
text. Second, display lists may be large and numerous. It may be desirable
for multiple rendering contexts to share display lists rather than replicating
that information in each context.

GLX provides for limited sharing of display lists. Since the lists are part
of the server context state they can be shared only if the server state for the
sharing contexts exists in a single address space. Using this mechanism, a
single set of lists can be used, for instance, by a context that supports color
index rendering and a context that supports RGBA rendering.

When display lists are shared between OpenGL contexts, the sharing
extends only to the display lists themselves and the information about which
display list numbers have been allocated. In particular, the value of the base

Version 1.3 - October 19, 1998

6 CHAPTER 2. GLX OPERATION

set with glListBase is not shared.

Note that the list named in a glNewList call is not created or superseded
until glEndList is called. Thus if one rendering context is sharing a display
list with another, it will continue to use the existing de�nition while the
second context is in the process of re-de�ning it. If one context deletes
a list that is being executed by another context, the second context will
continue executing the old contents of the list until it reaches the end.

A group of shared display lists exists until the last referencing rendering
context is destroyed. All rendering contexts have equal access to using lists
or de�ning new lists. Implementations sharing display lists must handle
the case where one rendering context is using a display list when another
rendering context destroys that list or rede�nes it.

In general, OpenGL commands are not guaranteed to be atomic. The
operation of glEndList and glDeleteLists are exceptions: modi�ca-
tions to the shared context state as a result of executing glEndList or
glDeleteLists are atomic.

2.5 Texture Objects

OpenGL texture state can be encapsulated in a named texture object. A
texture object is created by binding an unused name to one of the texture
targets (GL TEXTURE 1D, GL TEXTURE 2D or GL TEXTURE 3D) of a rendering con-
text. When a texture object is bound, OpenGL operations on the target to
which it is bound a�ect the bound texture object, and queries of the target
to which it is bound return state from the bound texture object.

Texture objects may be shared by rendering contexts, as long as the
server portion of the contexts share the same address space. (Like display
lists, texture objects are part of the server context state.) OpenGL makes
no attempt to synchronize access to texture objects. If a texture object is
bound to more than one context, then it is up to the programmer to ensure
that the contents of the object are not being changed via one context while
another context is using the texture object for rendering. The results of
changing a texture object while another context is using it are unde�ned.

All modi�cations to shared context state as a result of executing glBind-
Texture are atomic. Also, a texture object will not be deleted until it is no
longer bound to any rendering context.

Version 1.3 - October 19, 1998

2.6. ALIGNING MULTIPLE DRAWABLES 7

2.6 Aligning Multiple Drawables

A client can create one window in the overlay planes and a second in the
main planes and then move them independently or in concert to keep them
aligned. To keep the overlay and main plane windows aligned, the client can
use the following paradigm:

� Make the windows which are to share the same screen area children
of a single window (that will never be written). Size and position
the children to completely occlude their parent. When the window
combination must be moved or resized, perform the operation on the
parent.

� Make the subwindows have a background of None so that the X server
will not paint into the shared area when you restack the children.

� Select for device-related events on the parent window, not on the chil-
dren. Since device-related events with the focus in one of the child
windows will be inherited by the parent, input dispatching can be
done directly without reference to the child on top.

2.7 Multiple Threads

It is possible to create a version of the client side library that is protected
against multiple threads attempting to access the same connection. This
is accomplished by having appropriate de�nitions for LockDisplay and
UnlockDisplay. Since there is some performance penalty for doing the
locking, it is implementation-dependent whether a thread safe version, a
non-safe version, or both versions of the library are provided. Interrupt
routines may not share a connection (and hence a rendering context) with
the main thread. An application may be written as a set of co-operating
processes.

X has atomicity (between clients) and sequentiality (within a single
client) requirements that limit the amount of parallelism achievable when
interpreting the command streams. GLX relaxes these requirements. Se-
quentiality is still guaranteed within a command stream, but not between
the X and the OpenGL command streams. It is possible, for example, that
an X command issued by a single threaded client after an OpenGL command
might be executed before that OpenGL command.

The X speci�cation requires that commands are atomic:

Version 1.3 - October 19, 1998

8 CHAPTER 2. GLX OPERATION

If a server is implemented with internal concurrency, the overall
e�ect must be as if individual requests are executed to comple-
tion in some serial order, and requests from a given connection
must be executed in delivery order (that is, the total execution
order is a shu�e of the individual streams).

OpenGL commands are not guaranteed to be atomic. Some OpenGL ren-
dering commands might otherwise impair interactive use of the windowing
system by the user. For instance calling a deeply nested display list or
rendering a large texture mapped polygon on a system with no graphics
hardware could prevent a user from popping up a menu soon enough to be
usable.

Synchronization is in the hands of the client. It can be maintained
with moderate cost with the judicious use of the glFinish, glXWaitGL,
glXWaitX, and XSync commands. OpenGL and X rendering can be done
in parallel as long as the client does not preclude it with explicit synchro-
nization calls. This is true even when the rendering is being done by the
X server. Thus, a multi-threaded X server implementation may execute
OpenGL rendering commands in parallel with other X requests.

Some performance degradation may be experienced if needless switching
between OpenGL and X rendering is done. This may involve a round trip
to the server, which can be costly.

Version 1.3 - October 19, 1998

Chapter 3

Functions and Errors

3.1 Errors

Where possible, as in X, when a request terminates with an error, the request
has no side e�ects.

The error codes that may be generated by a request are described with
that request. The following table summarizes the GLX-speci�c error codes
that are visible to applications:

GLXBadContext A value for a Context argument does not name a Context.

GLXBadContextStateAn attempt was made to switch to another rendering
context while the current context was in glRenderMode GL FEEDBACK

or GL SELECT, or a call to glXMakeCurrent was made between a
glBegin and the corresponding call to glEnd.

GLXBadCurrentDrawable The current Drawable of the calling thread is a
window or pixmap that is no longer valid.

GLXBadCurrentWindow The current Window of the calling thread is a win-
dow that is no longer valid. This error is being deprecated in favor of
GLXBadCurrentDrawable.

GLXBadDrawable The Drawable argument does not name a Drawable con-
�gured for OpenGL rendering.

GLXBadFBConfig The GLXFBConfig argument does not name a
GLXFBConfig.

GLXBadPbuffer The GLXPbuffer argument does not name a GLXPbuffer.

9

Version 1.3 - October 19, 1998

10 CHAPTER 3. FUNCTIONS AND ERRORS

GLXBadPixmap The Pixmap argument does not name a Pixmap that is ap-
propriate for OpenGL rendering.

GLXUnsupportedPrivateRequest May be returned in response to either
a glXVendorPrivate request or a glXVendorPrivateWithReply

request.

GLXBadWindow The GLXWindow argument does not name a GLXWindow.

The following error codes may be generated by a faulty GLX implemen-
tation, but would not normally be visible to clients:

GLXBadContextTag A rendering request contains an invalid context tag.
(Context tags are used to identify contexts in the protocol.)

GLXBadRenderRequest A glXRender request is ill-formed.

GLXBadLargeRequest A glXRenderLarge request is ill-formed.

3.2 Events

GLX introduces one new event:

GLX PbufferClobberThe given pbu�er has been removed from framebu�er
memory and may no longer be valid. These events are generated as a
result of conicts in the framebu�er allocation between two drawables
when one or both of the drawables are pbu�ers.

3.3 Functions

GLX functions should not be called between glBegin and glEnd operations.
If a GLX function is called within a glBegin/glEnd pair, then the result
is unde�ned; however, no error is reported.

3.3.1 Initialization

To ascertain if the GLX extension is de�ned for an X server, use

Bool glXQueryExtension(Display *dpy, int

*error base, int *event base);

Version 1.3 - October 19, 1998

3.3. FUNCTIONS 11

dpy speci�es the connection to the X server. False is returned if the exten-
sion is not present. error base is used to return the value of the �rst error
code and event base is used to return the value of the �rst event code. The
constant error codes and event codes should be added to these base values
to get the actual value.

The GLX de�nition exists in multiple versions. Use

Bool glXQueryVersion(Display *dpy, int *major, int

*minor);

to discover which version of GLX is available. Upon success, major and
minor are �lled in with the major and minor versions of the extension im-
plementation. If the client and server both have the same major version
number then they are compatible and the minor version that is returned is
the minimum of the two minor version numbers.

major and minor do not return values if they are speci�ed as NULL.
glXQueryVersion returns True if it succeeds and False if it fails. If

it fails, major and minor are not updated.

3.3.2 GLX Versioning

The following functions are available only if the GLX version is 1.1 or later:

const char *glXQueryExtensionsString(Display *dpy,

int screen);

glXQueryExtensionsString returns a pointer to a string describing which
GLX extensions are supported on the connection. The string is zero-
terminated and contains a space-seperated list of extension names. The
extension names themselves do not contain spaces. If there are no exten-
sions to GLX, then the empty string is returned.

const char *glXGetClientString(Display *dpy, int

name);

glXGetClientString returns a pointer to a static, zero-terminated string
describing some aspect of the client library. The possible values for name

are GLX VENDOR, GLX VERSION, and GLX EXTENSIONS. If name is not set to one of
these values then NULL is returned. The format and contents of the vendor
string is implementation dependent, and the format of the extension string
is the same as for glXQueryExtensionsString. The version string is laid
out as follows:

Version 1.3 - October 19, 1998

12 CHAPTER 3. FUNCTIONS AND ERRORS

<major version.minor version><space><vendor-speci�c info>

Both the major and minor portions of the version number are of arbitrary
length. The vendor-speci�c information is optional. However, if it is present,
the format and contents are implementation speci�c.

const char* glXQueryServerString(Display *dpy, int

screen, int name);

glXQueryServerString returns a pointer to a static, zero-terminated
string describing some aspect of the server's GLX extension. The possible
values for name and the format of the strings is the same as for glXGet-
ClientString. If name is not set to a recognized value then NULL is returned.

3.3.3 Con�guration Management

A GLXFBConfig describes the format, type and size of the color bu�ers and
ancillary bu�ers for a GLXDrawable. When the GLXDrawable is a GLXWindow
then the GLXFBConfig that describes it has an associated X Visual; for
GLXPixmaps and GLXPbuffers there may or may not be an X Visual asso-
ciated with the GLXFBConfig.

The attributes for a GLXFBConfig are shown in Table 3.1. The constants
shown here are passed to glXGetFBCon�gs and glXChooseFBCon�g
to specify which attributes are being queried.

GLX BUFFER SIZE gives the total depth of the color bu�er in bits. For
GLXFBConfigs that correspond to a PseudoColor or StaticColor visual,
this is equal to the depth value reported in the core X11 Visual. For
GLXFBConfigs that correspond to a TrueColor or DirectColor visual,
GLX BUFFER SIZE is the sum of GLX RED SIZE, GLX GREEN SIZE, GLX BLUE SIZE,
and GLX ALPHA SIZE. Note that this value may be larger than the depth
value reported in the core X11 visual since it may include alpha planes
that may not be reported by X11. Also, for GLXFBConfigs that corre-
spond to a TrueColor visual, the sum of GLX RED SIZE, GLX GREEN SIZE, and
GLX BLUE SIZE may be larger than the maximum depth that core X11 can
support.

The attribute GLX RENDER TYPE has as its value a mask indicating what
type of GLXContext a drawable created with the corresponding GLXFBConfig
can be bound to. The following bit settings are supported: GLX RGBA BIT and
GLX COLOR INDEX BIT. If both of these bits are set in the mask then drawables
created with the GLXFBConfig can be bound to both RGBA and color index
rendering contexts.

Version 1.3 - October 19, 1998

3.3. FUNCTIONS 13

Attribute Type Notes

GLX FBCONFIG ID XID XID of GLXFBConfig

GLX BUFFER SIZE integer depth of the color bu�er

GLX LEVEL integer frame bu�er level

GLX DOUBLEBUFFER boolean True if color bu�ers
have front/back pairs

GLX STEREO boolean True if color bu�ers
have left/right pairs

GLX AUX BUFFERS integer no. of auxiliary color bu�ers

GLX RED SIZE integer no. of bits of Red in the color bu�er

GLX GREEN SIZE integer no. of bits of Green in the color bu�er

GLX BLUE SIZE integer no. of bits of Blue in the color bu�er

GLX ALPHA SIZE integer no. of bits of Alpha in the color bu�er

GLX DEPTH SIZE integer no. of bits in the depth bu�er

GLX STENCIL SIZE integer no. of bits in the stencil bu�er

GLX ACCUM RED SIZE integer no. Red bits in the accum. bu�er

GLX ACCUM GREEN SIZE integer no. Green bits in the accum. bu�er

GLX ACCUM BLUE SIZE integer no. Blue bits in the accum. bu�er

GLX ACCUM ALPHA SIZE integer no. of Alpha bits in the accum. bu�er

GLX RENDER TYPE bitmask which rendering modes are supported.

GLX DRAWABLE TYPE bitmask which GLX drawables are supported.

GLX X RENDERABLE boolean True if X can render to drawable

GLX X VISUAL TYPE integer X visual type of the associated visual

GLX CONFIG CAVEAT enum any caveats for the con�guration

GLX TRANSPARENT TYPE enum type of transparency supported

GLX TRANSPARENT INDEX VALUE integer transparent index value

GLX TRANSPARENT RED VALUE integer transparent red value

GLX TRANSPARENT GREEN VALUE integer transparent green value

GLX TRANSPARENT BLUE VALUE integer transparent blue value

GLX TRANSPARENT ALPHA VALUE integer transparent alpha value

GLX MAX PBUFFER WIDTH integer maximum width of GLXPbu�er

GLX MAX PBUFFER HEIGHT integer maximum height of GLXPbu�er

GLX MAX PBUFFER PIXELS integer maximum size of GLXPbu�er

GLX VISUAL ID integer XID of corresponding Visual

Table 3.1: GLXFBConfig attributes.

Version 1.3 - October 19, 1998

14 CHAPTER 3. FUNCTIONS AND ERRORS

GLX Token Name Description

GLX WINDOW BIT GLXFBConfig supports windows

GLX PIXMAP BIT GLXFBConfig supports pixmaps

GLX PBUFFER BIT GLXFBConfig supports pbu�ers

Table 3.2: Types of Drawables Supported by GLXFBConfig

GLX Token Name X Visual Type

GLX TRUE COLOR TrueColor

GLX DIRECT COLOR DirectColor

GLX PSEUDO COLOR PseudoColor

GLX STATIC COLOR StaticColor

GLX GRAY SCALE GrayScale

GLX STATIC GRAY StaticGray

GLX X VISUAL TYPE No associated Visual

Table 3.3: Mapping of Visual Types to GLX tokens.

The attribute GLX DRAWABLE TYPE has as its value a mask indicating the
drawable types that can be created with the corresponding GLXFBConfig

(the con�g is said to \support" these drawable types). The valid bit settings
are shown in Table 3.2.

For example, a GLXFBConfig for which the value of the GLX DRAWABLE TYPE

attribute is
GLX WINDOW BIT j GLX PIXMAP BIT j GLX PBUFFER BIT

can be used to create any type of GLX drawable, while a GLXFBConfig for
which this attribute value is GLX WINDOW BIT can not be used to create a
GLXPixmap or a GLXPbuffer.

GLX X RENDERABLE is a boolean indicating whether X can be used to render
into a drawable created with the GLXFBConfig. This attribute is True if the
GLXFBConfig supports GLX windows and/or pixmaps.

If a GLXFBConfig supports windows then it has an associated X Visual.
The value of the GLX VISUAL ID attribute speci�es the XID of the Visual

and the value of the GLX X VISUAL TYPE attribute speci�es the type of Visual.
The possible values are shown in Table 3.3. If a GLXFBConfig does not
support windows, then querying GLX VISUAL ID will return 0 and querying
GLX X VISUAL TYPE will return GLX NONE.

Note that RGBA rendering may be supported for any of the six Visual

Version 1.3 - October 19, 1998

3.3. FUNCTIONS 15

types but color index rendering is supported only for PseudoColor,
StaticColor, GrayScale, and StaticGray visuals (i.e., single-channel vi-
suals). If RGBA rendering is supported for a single-channel visual (i.e., if
the GLX RENDER TYPE attribute has the GLX RGBA BIT set), then the red com-
ponent maps to the color bu�er bits corresponding to the core X11 visual.
The green and blue components map to non-displayed color bu�er bits and
the alpha component maps to non-displayed alpha bu�er bits if their sizes
are nonzero, otherwise they are discarded.

The GLX CONFIG CAVEAT attribute may be set to one of the following
values: GLX NONE, GLX SLOW CONFIG or GLX NON CONFORMANT CONFIG. If the at-
tribute is set to GLX NONE then the con�guration has no caveats; if it is
set to GLX SLOW CONFIG then rendering to a drawable with this con�guration
may run at reduced performance (for example, the hardware may not sup-
port the color bu�er depths described by the con�guration); if it is set to
GLX NON CONFORMANT CONFIG then rendering to a drawable with this con�gu-
ration will not pass the required OpenGL conformance tests.

Servers are required to export at least one GLXFBConfig that sup-
ports RGBA rendering to windows and passes OpenGL conformance
(i.e., the GLX RENDER TYPE attribute must have the GLX RGBA BIT set, the
GLX DRAWABLE TYPE attribute must have the GLX WINDOW BIT set and the
GLX CONFIG CAVEAT attribute must not be set to GLX NON CONFORMANT CONFIG).
This GLXFBConfig must have at least one color bu�er, a stencil bu�er of at
least 1 bit, a depth bu�er of at least 12 bits, and an accumulation bu�er;
auxillary bu�ers are optional, and the alpha bu�er may have 0 bits. The
color bu�er size for this GLXFBConfigmust be as large as that of the deepest
TrueColor, DirectColor, PseudoColor, or StaticColor visual supported
on framebu�er level zero (the main image planes), and this con�guration
must be available on framebu�er level zero.

If the X server exports a PseudoColor or StaticColor visual on frame-
bu�er level 0, a GLXFBConfig that supports color index rendering to windows
and passes OpenGL conformance is also required (i.e., the GLX RENDER TYPE

attribute must have the GLX COLOR INDEX BIT set, the GLX DRAWABLE TYPE at-
tribute must have the GLX WINDOW BIT set, and the GLX CONFIG CAVEAT at-
tribute must not be set to GLX NON CONFORMANT CONFIG). This GLXFBConfig
must have at least one color bu�er, a stencil bu�er of at least 1 bit, and a
depth bu�er of at least 12 bits. It also must have as many color bitplanes as
the deepest PseudoColor or StaticColor visual supported on framebu�er
level zero, and the con�guration must be made available on level zero.

The attribute GLX TRANSPARENT TYPE indicates whether or not the con�g-
uration supports transparency, and if it does support transparency, what

Version 1.3 - October 19, 1998

16 CHAPTER 3. FUNCTIONS AND ERRORS

type of transparency is available. If the attribute is set to GLX NONE then
windows created with the GLXFBConfig will not have any transparent
pixels. If the attribute is GLX TRANSPARENT RGB or GLX TRANSPARENT INDEX

then the GLXFBConfig supports transparency. GLX TRANSPARENT RGB is
only applicable if the con�guration is associated with a TrueColor

or DirectColor visual: a transparent pixel will be drawn when
the red, green and blue values which are read from the framebu�er
are equal to GLX TRANSPARENT RED VALUE, GLX TRANSPARENT GREEN VALUE and
GLX TRANSPARENT BLUE VALUE, respectively. If the con�guration is associated
with a PseudoColor, StaticColor, GrayScale or StaticGray visual the
transparency mode GLX TRANSPARENT INDEX is used. In this case, a transpar-
ent pixel will be drawn when the value that is read from the framebu�er is
equal to GLX TRANSPARENT INDEX VALUE.

If GLX TRANSPARENT TYPE is GLX NONE or GLX TRANSPARENT RGB,
then the value for GLX TRANSPARENT INDEX VALUE is unde�ned. If
GLX TRANSPARENT TYPE is GLX NONE or GLX TRANSPARENT INDEX, then the
values for GLX TRANSPARENT RED VALUE, GLX TRANSPARENT GREEN VALUE,
and GLX TRANSPARENT BLUE VALUE are unde�ned. When de�ned,
GLX TRANSPARENT RED VALUE, GLX TRANSPARENT GREEN VALUE, and
GLX TRANSPARENT BLUE VALUE are integer framebu�er values between 0
and the maximum framebu�er value for the component. For example,
GLX TRANSPARENT RED VALUE will range between 0 and (2**GLX RED SIZE)-1.
(GLX TRANSPARENT ALPHA VALUE is for future use.)

GLX MAX PBUFFER WIDTH and GLX MAX PBUFFER HEIGHT indicate the maxi-
mum width and height that can be passed into glXCreatePbu�er and
GLX MAX PBUFFER PIXELS indicates the maximum number of pixels (width
times height) for a GLXPbuffer. Note that an implementation may return a
value for GLX MAX PBUFFER PIXELS that is less than the maximum width times
the maximum height. Also, the value for GLX MAX PBUFFER PIXELS is static
and assumes that no other pbu�ers or X resources are contending for the
framebu�er memory. Thus it may not be possible to allocate a pbu�er of
the size given by GLX MAX PBUFFER PIXELS.

Use

GLXFBConfig *glXGetFBCon�gs(Display *dpy, int

screen, int *nelements);

to get the list of all GLXFBConfigs that are available on the speci�ed screen.
The call returns an array of GLXFBConfigs; the number of elements in the
array is returned in nelements.

Version 1.3 - October 19, 1998

3.3. FUNCTIONS 17

Use

GLXFBConfig *glXChooseFBCon�g(Display *dpy, int

screen, const int *attrib list, int *nelements);

to get GLXFBConfigs that match a list of attributes.
This call returns an array of GLXFBConfigs that match the speci�ed

attributes (attributes are described in Table 3.1). The number of elements
in the array is returned in nelements.

If attrib list contains an unde�ned GLX attribute, screen is invalid, or
dpy does not support the GLX extension, then NULL is returned.

All attributes in attrib list, including boolean attributes, are immedi-
ately followed by the corresponding desired value. The list is terminated
with None. If an attribute is not speci�ed in attrib list, then the default
value (listed in Table 3.4) is used (it is said to be speci�ed implicitly). For
example, if GLX STEREO is not speci�ed then it is assumed to be False. If
GLX DONT CARE is speci�ed as an attribute value, then the attribute will not be
checked. GLX DONT CARE may be speci�ed for all attributes except GLX LEVEL.
If attrib list is NULL or empty (�rst attribute is None), then selection and sort-
ing of GLXFBConfigs is done according to the default criteria in Tables 3.4
and 3.1, as described below under Selection and Sorting.

Selection of GLXFBConfigs

Attributes are matched in an attribute-speci�c manner, as shown in Ta-
ble 3.4. The match criteria listed in the table have the following meanings:

Smaller GLXFBConfigs with an attribute value that meets or exceeds the
speci�ed value are returned.

Larger GLXFBConfigs with an attribute value that meets or exceeds the
speci�ed value are returned.

Exact Only GLXFBConfigs whose attribute value exactly matches the re-
quested value are considered.

Mask Only GLXFBConfigs for which the set bits of attribute include all the
bits that are set in the requested value are considered. (Additional
bits might be set in the attribute).

Some of the attributes, such as GLX LEVEL, must match the speci�ed
value exactly; others, such as GLX RED SIZEmust meet or exceed the speci�ed
minimum values.

Version 1.3 - October 19, 1998

18 CHAPTER 3. FUNCTIONS AND ERRORS

To retrieve an GLXFBConfig given its XID, use the GLX FBCONFIG ID at-
tribute. When GLX FBCONFIG ID is speci�ed, all other attributes are ignored,
and only the GLXFBConfig with the given XID is returned (NULL is returned
if it does not exist).

If GLX MAX PBUFFER WIDTH, GLX MAX PBUFFER HEIGHT,
GLX MAX PBUFFER PIXELS, or GLX VISUAL ID are speci�ed in attrib list,
then they are ignored (however, if present, these attributes must still be
followed by an attribute value in attrib list). If GLX DRAWABLE TYPE is spec-
i�ed in attrib list and the mask that follows does not have GLX WINDOW BIT

set, then the GLX X VISUAL TYPE attribute is ignored.

If GLX TRANSPARENT TYPE is set to GLX NONE in attrib list, then in-
clusion of GLX TRANSPARENT INDEX VALUE, GLX TRANSPARENT RED VALUE,
GLX TRANSPARENT GREEN VALUE, GLX TRANSPARENT BLUE VALUE, or
GLX TRANSPARENT ALPHA VALUE will be ignored.

If no GLXFBConfig matching the attribute list exists, then NULL is re-
turned. If exactly one match is found, a pointer to that GLXFBConfig is
returned.

Sorting of GLXFBConfigs

If more than one matching GLXFBConfig is found, then a list of
GLXFBConfigs, sorted according to the best match criteria, is returned. The
list is sorted according to the following precedence rules that are applied
in ascending order (i.e., con�gurations that are considered equal by lower
numbered rule are sorted by the higher numbered rule):

1. By GLX CONFIG CAVEAT where the precedence is GLX NONE,
GLX SLOW CONFIG, GLX NON CONFORMANT CONFIG.

2. Larger total number of RGBA color bits (GLX RED SIZE,
GLX GREEN SIZE, GLX BLUE SIZE, plus GLX ALPHA SIZE). If the re-
quested number of bits in attrib list for a particular color component
is 0 or GLX DONT CARE, then the number of bits for that component is
not considered.

3. Smaller GLX BUFFER SIZE.

4. Single bu�ered con�guration (GLX DOUBLE BUFFER being False) pre-
cedes a double bu�ered one.

5. Smaller GLX AUX BUFFERS.

Version 1.3 - October 19, 1998

3.3. FUNCTIONS 19

Attribute Default Selection Sort
and Sorting Priority
Criteria

GLX FBCONFIG ID GLX DONT CARE Exact

GLX BUFFER SIZE 0 Smaller 3

GLX LEVEL 0 Exact

GLX DOUBLEBUFFER GLX DONT CARE Exact 4

GLX STEREO False Exact

GLX AUX BUFFERS 0 Smaller 5

GLX RED SIZE 0 Larger 2

GLX GREEN SIZE 0 Larger 2

GLX BLUE SIZE 0 Larger 2

GLX ALPHA SIZE 0 Larger 2

GLX DEPTH SIZE 0 Larger 6

GLX STENCIL SIZE 0 Larger 7

GLX ACCUM RED SIZE 0 Larger 8

GLX ACCUM GREEN SIZE 0 Larger 8

GLX ACCUM BLUE SIZE 0 Larger 8

GLX ACCUM ALPHA SIZE 0 Larger 8

GLX RENDER TYPE GLX RGBA BIT Mask

GLX DRAWABLE TYPE GLX WINDOW BIT Mask

GLX X RENDERABLE GLX DONT CARE Exact

GLX X VISUAL TYPE GLX DONT CARE Exact 9

GLX CONFIG CAVEAT GLX DONT CARE Exact 1

GLX TRANSPARENT TYPE GLX NONE Exact

GLX TRANSPARENT INDEX VALUE GLX DONT CARE Exact

GLX TRANSPARENT RED VALUE GLX DONT CARE Exact

GLX TRANSPARENT GREEN VALUE GLX DONT CARE Exact

GLX TRANSPARENT BLUE VALUE GLX DONT CARE Exact

GLX TRANSPARENT ALPHA VALUE GLX DONT CARE Exact

Table 3.4: Default values and match criteria for GLXFBConfig attributes.

Version 1.3 - October 19, 1998

20 CHAPTER 3. FUNCTIONS AND ERRORS

6. Larger GLX DEPTH SIZE.

7. Smaller GLX STENCIL BITS.

8. Larger total number of accumulation bu�er color bits
(GLX ACCUM RED SIZE, GLX ACCUM GREEN SIZE, GLX ACCUM BLUE SIZE, plus
GLX ACCUM ALPHA SIZE). If the requested number of bits in attrib list for
a particular color component is 0 or GLX DONT CARE, then the number
of bits for that component is not considered.

9. By GLX X VISUAL TYPE where the precedence is GLX TRUE COLOR,
GLX DIRECT COLOR, GLX PSEUDO COLOR, GLX STATIC COLOR,
GLX GRAY SCALE, GLX STATIC GRAY.

Use XFree to free the memory returned by glXChooseFBCon�g.

To get the value of a GLX attribute for a GLXFBConfig use

int glXGetFBCon�gAttrib(Display *dpy, GLXFBConfig

config, int attribute, int *value);

If glXGetFBCon�gAttrib succeeds then it returns Success and the value
for the speci�ed attribute is returned in value; otherwise it returns one of
the following errors:

GLX BAD ATTRIBUTE attribute is not a valid GLX attribute.

Refer to Table 3.1 and Table 3.4 for a list of valid GLX attributes.

A GLXFBConfig has an associated X Visual only if the
GLX DRAWABLE TYPE attribute has the GLX WINDOW BIT bit set. To retrieve the
associated visual, call:

XVisualInfo *glXGetVisualFromFBCon�g(Display

*dpy, GLXFBConfig config);

If con�g is a valid GLXFBConfig and it has an associated X visual then
information describing that visual is returned; otherwise NULL is returned.
Use XFree to free the data returned.

Version 1.3 - October 19, 1998

3.3. FUNCTIONS 21

3.3.4 On Screen Rendering

To create an onscreen rendering area, �rst create an X Window with a visual
that corresponds to the desired GLXFBConfig, then call

GLXWindow glXCreateWindow(Display *dpy,

GLXFBConfig config, Window win, const int

*attrib list);

glXCreateWindow creates a GLXWindow and returns its XID. Any GLX
rendering context created with a compatible GLXFBConfig can be used to
render into this window.

attrib list speci�es a list of attributes for the window. The list has the
same structure as described for glXChooseFBCon�g. Currently no
attributes are recognized, so attrib listmust be NULL or empty (�rst attribute
of None).

If win was not created with a visual that corresponds to con�g, then
a BadMatch error is generated. (i.e., glXGetVisualFromFBCon�g must
return the visual corresponding to win when the GLXFBConfig parameter
is set to con�g.) If con�g does not support rendering to windows (the
GLX DRAWABLE TYPE attribute does not contain GLX WINDOW BIT), a BadMatch

error is generated. If con�g is not a valid GLXFBConfig, a GLXBadFBConfig

error is generated. If win is not a valid window XID, then a BadWindow

error is generated. If there is already a GLXFBConfig associated with win

(as a result of a previous glXCreateWindow call), then a BadAlloc error
is generated. Finally, if the server cannot allocate the new GLX window, a
BadAlloc error is generated.

A GLXWindow is destroyed by calling

glXDestroyWindow(Display *dpy, GLXWindow win);

This request deletes the association between the resource ID win and the
GLX window. The storage will be freed when it is not current to any client.

If win is not a valid GLX window then a GLXBadWindow error is generated.

3.3.5 O� Screen Rendering

GLX supports two types of o�screen rendering surfaces: GLXPixmaps and
GLXPbuffers. GLXPixmaps and GLXPbuffers di�er in the following ways:

1. GLXPixmaps have an associated X pixmap and can therefore be ren-
dered to by X. Since a GLXPbuffer is a GLX resource, it may not be
possible to render to it using X or an X extension other than GLX.

Version 1.3 - October 19, 1998

22 CHAPTER 3. FUNCTIONS AND ERRORS

2. The format of the color bu�ers and the type and size of any associ-
ated ancillary bu�ers for a GLXPbuffer can only be described with
a GLXFBConfig. The older method of using extended X Visuals to
describe the con�guration of a GLXDrawable cannot be used. (See
section 3.4 for more information on extended visuals.)

3. It is possible to create a GLXPbuffer whose contents may be asyn-
chronously lost at any time.

4. If the GLX implementation supports direct rendering, then it must
support rendering to GLXPbuffers via a direct rendering context. Al-
though some implementations may support rendering to GLXPixmaps
via a direct rendering context, GLX does not require this to be sup-
ported.

5. The intent of the pbu�er semantics is to enable implementations to
allocate pbu�ers in non-visible frame bu�er memory. Thus, the allo-
cation of a GLXPbuffer can fail if there is insu�cient framebu�er re-
sources. (Implementations are not required to virtualize pbu�er mem-
ory.) Also, clients should deallocate GLXPbuffers when they are no
longer using them { for example, when the program is iconi�ed.

To create a GLXPixmap o�screen rendering area, �rst create an X Pixmap

of the depth speci�ed by the desired GLXFBConfig, then call

GLXPixmap glXCreatePixmap(Display *dpy, GLXFBConfig

config, Pixmap pixmap, const int *attrib list);

glXCreatePixmap creates an o�screen rendering area and returns its XID.
Any GLX rendering context created with a GLXFBConfig that is compatible
with con�g can be used to render into this o�screen area.

pixmap is used for the RGB planes of the front-left bu�er of the resulting
GLX o�screen rendering area. GLX pixmaps may be created with a con�g

that includes back bu�ers and stereoscopic bu�ers. However, glXSwap-
Bu�ers is ignored for these pixmaps.

attrib list speci�es a list of attributes for the pixmap. The list has the
same structure as described for glXChooseFBCon�g. Currently no at-
tributes are recognized, so attrib list must be NULL or empty (�rst attribute
of None).

A direct rendering context might not be able to be made current with a
GLXPixmap.

Version 1.3 - October 19, 1998

3.3. FUNCTIONS 23

If pixmap was not created with respect to the same screen as con�g,
then a BadMatch error is generated. If con�g is not a valid GLXFBConfig

or if it does not support pixmap rendering then a GLXBadFBConfig error is
generated. If pixmap is not a valid Pixmap XID, then a BadPixmap error
is generated. Finally, if the server cannot allocate the new GLX pixmap, a
BadAlloc error is generated.

A GLXPixmap is destroyed by calling

glXDestroyPixmap(Display *dpy, GLXPixmap pixmap);

This request deletes the association between the XID pixmap and the GLX
pixmap. The storage for the GLX pixmap will be freed when it is not current
to any client. To free the associated X pixmap, call XFreePixmap.

If pixmap is not a valid GLX pixmap then a GLXBadPixmap error is
generated.

To create a GLXPbuffer call

GLXPbuffer glXCreatePbu�er(Display *dpy,

GLXFBConfig config, const int *attrib list);

This creates a single GLXPbuffer and returns its XID. Like other drawable
types, GLXPbuffers are shared; any client which knows the associated XID
can use a GLXPbuffer.

attrib list speci�es a list of attributes for the pbu�er. The list
has the same structure as described for glXChooseFBCon�g. Cur-
rently only four attributes can be speci�ed in attrib list: GLX PBUFFER WIDTH,
GLX PBUFFER HEIGHT, GLX PRESERVED CONTENTS and GLX LARGEST PBUFFER.

attrib list may be NULL or empty (�rst attribute of None), in which case
all the attributes assume their default values as described below.

GLX PBUFFER WIDTH and GLX PBUFFER HEIGHT specify the pixel width and
height of the rectangular pbu�er. The default values for GLX PBUFFER WIDTH

and GLX PBUFFER HEIGHT are zero.

Use GLX LARGEST PBUFFER to get the largest available pbu�er when the
allocation of the pbu�er would otherwise fail. The width and height
of the allocated pbu�er will never exceed the values of GLX PBUFFER WIDTH

and GLX PBUFFER HEIGHT, respectively. Use glXQueryDrawable to retrieve
the dimensions of the allocated pbu�er. By default, GLX LARGEST PBUFFER is
False.

If the GLX PRESERVED CONTENTS attribute is set to False in attrib list, then
an unpreserved pbu�er is created and the contents of the pbu�er may be lost

Version 1.3 - October 19, 1998

24 CHAPTER 3. FUNCTIONS AND ERRORS

at any time. If this attribute is not speci�ed, or if it is speci�ed as True in
attrib list, then when a resource conict occurs the contents of the pbu�er
will be preserved (most likely by swapping out portions of the bu�er from
the framebu�er to main memory). In either case, the client can register to
receive a pbu�er clobber event which is generated when the pbu�er contents
have been preserved or have been damaged. (See glXSelectEvent in
section 3.3.8 for more information.)

The resulting pbu�er will contain color bu�ers and ancillary bu�ers as
speci�ed by con�g. It is possible to create a pbu�er with back bu�ers and
to swap the front and back bu�ers by calling glXSwapBu�ers. Note that
pbu�ers use framebu�er resources so applications should consider deallocat-
ing them when they are not in use.

If a pbu�er is created with GLX PRESERVED CONTENTS set to False, then
portions of the bu�er contents may be lost at any time due to frame bu�er
resource conicts. Once the contents of a unpreserved pbu�er have been
lost it is considered to be in a damaged state. It is not an error to render to
a pbu�er that is in this state but the e�ect of rendering to it is the same
as if the pbu�er were destroyed: the context state will be updated, but the
frame bu�er state becomes unde�ned. It is also not an error to query the
pixel contents of such a pbu�er, but the values of the returned pixels are
unde�ned. Note that while this speci�cation allows for unpreserved pbu�ers
to be damaged as a result of other pbu�er activity, the intent is to have
only the activity of visible windows damage pbu�ers.

Since the contents of a unpreserved pbu�er can be lost at anytime with
only asynchronous noti�cation (via the pbu�er clobber event), the only way
a client can guarantee that valid pixels are read back with glReadPixels is
by grabbing the X server. (Note that this operation is potentially expensive
and should not be done frequently. Also, since this locks out other X clients,
it should be done only for short periods of time.) Clients that don't wish
to do this can check if the data returned by glReadPixels is valid by
calling XSync and then checking the event queue for pbu�er clobber events
(assuming that these events had been pulled o� of the queue prior to the
glReadPixels call).

When glXCreatePbu�er fails to create a GLXPbuffer due to insuf-
�cient resources, a BadAlloc error is generated. If con�g is not a valid
GLXFBConfig then a GLXBadFBConfig error is generated; if con�g does not
support GLXPbuffers then a BadMatch error is generated.

A GLXPbuffer is destroyed by calling:

Version 1.3 - October 19, 1998

3.3. FUNCTIONS 25

void glXDestroyPbu�er(Display *dpy, GLXPbuffer

pbuf);

The XID associated with the GLXPbuffer is destroyed. The storage for the
GLXPbuffer will be destroyed once it is no longer current to any client.

If pbuf is not a valid GLXPbuffer then a GLXBadPbuffer error is gener-
ated.

3.3.6 Querying Attributes

To query an attribute associated with a GLXDrawable call:

void glXQueryDrawable(Display *dpy, GLXDrawable

draw, int attribute, unsigned int *value);

attribute must be set to one of GLX WIDTH, GLX HEIGHT,
GLX PRESERVED CONTENTS, GLX LARGEST PBUFFER, or GLX FBCONFIG ID.

To get the GLXFBConfig for a GLXDrawable, �rst retrieve the XID for
the GLXFBConfig and then call glXChooseFBCon�g.

If draw is not a valid GLXDrawable then a GLXBadDrawable error is
generated. If draw is a GLXWindow or GLXPixmap and attribute is set to
GLX PRESERVED CONTENTS or GLX LARGEST PBUFFER, then the contents of value
are unde�ned.

3.3.7 Rendering Contexts

To create an OpenGL rendering context, call

GLXContext glXCreateNewContext(Display *dpy,

GLXFBConfig config, int render type, GLXContext

share list, Bool direct);

glXCreateNewContext returns NULL if it fails. If glXCreateNewCon-
text succeeds, it initializes the rendering context to the initial OpenGL
state and returns a handle to it. This handle can be used to render to GLX
windows, GLX pixmaps and GLX pbu�ers.

If render type is set to GLX RGBA TYPE then a context that supports RGBA
rendering is created; if render type is set to GLX COLOR INDEX TYPE then a
context that supports color index rendering is created.

If share list is not NULL, then all display lists and texture objects except
texture objects named 0 will be shared by share list and the newly created

Version 1.3 - October 19, 1998

26 CHAPTER 3. FUNCTIONS AND ERRORS

rendering context. An arbitrary number of GLXContexts can share a
single display list and texture object space. The server context state for all
sharing contexts must exist in a single address space or a BadMatch error is
generated.

If direct is true, then a direct rendering context will be created if the
implementation supports direct rendering and the connection is to an X
server that is local. If direct is False, then a rendering context that renders
through the X server is created.

Direct rendering contexts may be a scarce resource in some implementa-
tions. If direct is true, and if a direct rendering context cannot be created,
then glXCreateNewContext will attempt to create an indirect context
instead.

glXCreateNewContext can generate the following errors:
GLXBadContext if share list is neither zero nor a valid GLX rendering
context; GLXBadFBConfig if con�g is not a valid GLXFBConfig; BadMatch if
the server context state for share list exists in an address space that cannot
be shared with the newly created context or if share list was created on a
di�erent screen than the one referenced by con�g; BadAlloc if the server
does not have enough resources to allocate the new context; BadValue if
render type does not refer to a valid rendering type.

To determine if an OpenGL rendering context is direct, call

Bool glXIsDirect(Display *dpy, GLXContext ctx);

glXIsDirect returns True if ctx is a direct rendering context, False other-
wise. If ctx is not a valid GLX rendering context, a GLXBadContext error is
generated.

An OpenGL rendering context is destroyed by calling

void glXDestroyContext(Display *dpy, GLXContext

ctx);

If ctx is still current to any thread, ctx is not destroyed until it is no longer
current. In any event, the associated XID will be destroyed and ctx cannot
subsequently be made current to any thread.

glXDestroyContext will generate a GLXBadContext error if ctx is not
a valid rendering context.

To make a context current, call

Bool glXMakeContextCurrent(Display *dpy,

GLXDrawable draw, GLXDrawable read, GLXContext

ctx);

Version 1.3 - October 19, 1998

3.3. FUNCTIONS 27

glXMakeContextCurrent binds ctx to the current rendering thread and
to the draw and read drawables. draw is used for all OpenGL operations
except:

� Any pixel data that are read based on the value of GL READ BUFFER.
Note that accumulation operations use the value of GL READ BUFFER,
but are not allowed unless draw is identical to read.

� Any depth values that are retrieved by glReadPixels or glCopyP-
ixels.

� Any stencil values that are retrieved by glReadPixels or glCopyP-
ixels.

These frame bu�er values are taken from read. Note that the same
GLXDrawable may be speci�ed for both draw and read.

If the calling thread already has a current rendering context, then that
context is ushed and marked as no longer current. ctx is made the current
context for the calling thread.

If draw or read are not compatible with ctx a BadMatch error is generated.
If ctx is current to some other thread, then glXMakeContextCurrent will
generate a BadAccess error. GLXBadContextState is generated if there is
a current rendering context and its render mode is either GL FEEDBACK or
GL SELECT. If ctx is not a valid GLX rendering context, GLXBadContext

is generated. If either draw or read are not a valid GLX drawable, a
GLXBadDrawable error is generated. If the X Window underlying either
draw or read is no longer valid, a GLXBadWindow error is generated. If the
previous context of the calling thread has unushed commands, and the
previous drawable is no longer valid, GLXBadCurrentDrawable is generated.
Note that the ancillary bu�ers for draw and read need not be allocated until
they are needed. A BadAlloc error will be generated if the server does not
have enough resources to allocate the bu�ers.

In addition, implementations may generate a BadMatch error under the
following conditions: if draw and read cannot �t into framebu�er memory
simultaneously; if draw or read is a GLXPixmap and ctx is a direct rendering
context; if draw or read is a GLXPixmap and ctx was previously bound to a
GLXWindow or GLXPbuffer; if draw or read is a GLXWindow or GLXPbuffer
and ctx was previously bound to a GLXPixmap.

Other errors may arise when the context state is inconsistent with the
drawable state, as described in the following paragraphs. Color bu�ers are

Version 1.3 - October 19, 1998

28 CHAPTER 3. FUNCTIONS AND ERRORS

treated specially because the current GL DRAW BUFFER and GL READ BUFFER con-
text state can be inconsistent with the current draw or read drawable (for ex-
ample, when GL DRAW BUFFER is GL BACK and the drawable is single bu�ered).

No error will be generated if the value of GL DRAW BUFFER in ctx indicates
a color bu�er that is not supported by draw. In this case, all rendering
will behave as if GL DRAW BUFFER was set to NONE. Also, no error will be
generated if the value of GL READ BUFFER in ctx does not correspond to a valid
color bu�er. Instead, when an operation that reads from the color bu�er is
executed (e.g., glReadPixels or glCopyPixels), the pixel values used will
be unde�ned until GL READ BUFFER is set to a color bu�er that is valid in read.
Operations that query the value of GL READ BUFFER or GL DRAW BUFFER (i.e.,
glGet, glPushAttrib) use the value set last in the context, independent
of whether it is a valid bu�er in read or draw.

Note that it is an error to later call glDrawBu�er and/or glRead-
Bu�er (even if they are implicitly called via glPopAttrib or glXCopy-
Context) and specify a color bu�er that is not supported by draw or read.
Also, subsequent calls to glReadPixels or glCopyPixels that specify an
unsupported ancillary bu�er will result in an error.

If draw is destroyed after glXMakeContextCurrent is called, then
subsequent rendering commands will be processed and the context state
will be updated, but the frame bu�er state becomes unde�ned. If read
is destroyed after glXMakeContextCurrent then pixel values read from
the framebu�er (e.g., as result of calling glReadPixels, glCopyPixels or
glCopyColorTable) are unde�ned. If the X Window underlying the
GLXWindow draw or read drawable is destroyed, rendering and readback are
handled as above.

To release the current context without assigning a new one, set ctx to
NULL and set draw and read to None. If ctx is NULL and draw and read are
not None, or if draw or read are set to None and ctx is not NULL, then a
BadMatch error will be generated.

The �rst time ctx is made current, the viewport and scissor dimensions
are set to the size of the draw drawable (as though glViewport(0, 0, w,
h) and glScissor(0, 0, w, h) were called, where w and h are the width and
height of the drawable, respectively). However, the viewport and scissor
dimensions are not modi�ed when ctx is subsequently made current; it is
the clients responsibility to reset the viewport and scissor in this case.

Note that when multiple threads are using their current contexts to
render to the same drawable, OpenGL does not guarantee atomicity of frag-
ment update operations. In particular, programmers may not assume that
depth-bu�ering will automatically work correctly; there is a race condition

Version 1.3 - October 19, 1998

3.3. FUNCTIONS 29

between threads that read and update the depth bu�er. Clients are respon-
sible for avoiding this condition. They may use vendor-speci�c extensions
or they may arrange for separate threads to draw in disjoint regions of the
framebu�er, for example.

To copy OpenGL rendering state from one context to another, use

void glXCopyContext(Display *dpy, GLXContext

source, GLXContext dest, unsigned long mask);

glXCopyContext copies selected groups of state variables from source to
dest. mask indicates which groups of state variables are to be copied; it
contains the bitwise OR of the symbolic names for the attribute groups.
The symbolic names are the same as those used by glPushAttrib, described
in the OpenGL Speci�cation. Also, the order in which the attributes are
copied to dest as a result of the glXCopyContext operation is the same
as the order in which they are popped o� of the stack when glPopAttrib
is called. The single symbolic constant GL ALL ATTRIB BITS can be used to
copy the maximum possible portion of the rendering state. It is not an error
to specify mask bits that are unde�ned.

Not all GL state values can be copied. For example, client side state such
as pixel pack and unpack state, vertex array state and select and feedback
state cannot be copied. Also, some server state such as render mode state,
the contents of the attribute and matrix stacks, display lists and texture
objects, cannot be copied. The state that can be copied is exactly the state
that is manipulated by glPushAttrib.

If source and dest were not created on the same screen or if the server
context state for source and dest does not exist in the same address space,
a BadMatch error is generated (source and dest may be based on di�erent
GLXFBConfigs and still share an address space; glXCopyContext will work
correctly in such cases). If the destination context is current for some thread
then a BadAccess error is generated. If the source context is the same
as the current context of the calling thread, and the current drawable of
the calling thread is no longer valid, a GLXBadCurrentDrawable error is
generated. Finally, if either source or dest is not a valid GLX rendering
context, a GLXBadContext error is generated.

glXCopyContext performs an implicit glFlush if source is the current
context for the calling thread.

Only one rendering context may be in use, or current, for a particular
thread at a given time. The minimum number of current rendering contexts
that must be supported by a GLX implementation is one. (Supporting a

Version 1.3 - October 19, 1998

30 CHAPTER 3. FUNCTIONS AND ERRORS

Attribute Type Description

GLX FBCONFIG ID XID XID of GLXFBConfig associated with context

GLX RENDER TYPE int type of rendering supported

GLX SCREEN int screen number

Table 3.5: Context attributes.

larger number of current rendering contexts is essential for general-purpose
systems, but may not be necessary for turnkey applications.)

To get the current context, call

GLXContext glXGetCurrentContext(void);

If there is no current context, NULL is returned.
To get the XID of the current drawable used for rendering, call

GLXDrawable glXGetCurrentDrawable(void);

If there is no current draw drawable, None is returned.
To get the XID of the current drawable used for reading, call

GLXDrawable glXGetCurrentReadDrawable(void);

If there is no current read drawable, None is returned.
To get the display associated with the current context and drawable, call

Display *glXGetCurrentDisplay(void);

If there is no current context, NULL is returned.
To obtain the value of a context's attribute, use

int glXQueryContext(Display *dpy, GLXContext ctx,

int attribute, int *value);

glXQueryContext returns through value the value of attribute for ctx. It
may cause a round trip to the server.

The values and types corresponding to each GLX context attribute are
listed in Table 3.5.

glXQueryContext returns GLX BAD ATTRIBUTE if attribute is not a valid
GLX context attribute and Success otherwise. If ctx is invalid and a round
trip to the server is involved, a GLXBadContext error is generated.

glXGet* calls retrieve client-side state and do not force a round trip
to the X server. Unlike most X calls (including the glXQuery* calls) that
return a value, these calls do not ush any pending requests.

Version 1.3 - October 19, 1998

3.3. FUNCTIONS 31

3.3.8 Events

GLX events are returned in the X11 event stream. GLX and X11 events
are selected independently; if a client selects for both, then both may be
delivered to the client. The relative order of X11 and GLX events is not
speci�ed.

A client can ask to receive GLX events on a GLXWindow or a GLXPbuffer
by calling

void glXSelectEvent(Display *dpy, GLXDrawable draw,

unsigned long event mask);

Calling glXSelectEvent overrides any previous event mask that was set
by the client for draw. Note that the GLX event mask is private to GLX
(separate from the core X11 event mask), and that a separate GLX event
mask is maintained in the server state for each client for each drawable.

If draw is not a valid GLXPbuffer or a valid GLXWindow, a
GLXBadDrawable error is generated.

To �nd out which GLX events are selected for a GLXWindow or
GLXPbuffer call

void glXGetSelectedEvent(Display *dpy, GLXDrawable

draw, unsigned long *event mask);

If draw is not a GLX window or pbu�er then a GLXBadDrawable error is
generated.

Currently only one GLX event can be selected, by setting event mask to
GLX PBUFFER CLOBBER MASK. The data structure describing a pbu�er clobber
event is:

typedef struct f
int event type; /* GLX DAMAGED or GLX SAVED */
int draw type; /* GLX WINDOW or GLX PBUFFER */
unsigned long serial; /* number of last request processed by server */
Bool send event; /* event was generated by a SendEvent request */
Display *display; /* display the event was read from */
GLXDrawable drawable; /* XID of Drawable */
unsigned int buffer mask; /* mask indicating which bu�ers are a�ected */
unsigned int aux buffer; /* which aux bu�er was a�ected */
int x, y;

int width, height;

Version 1.3 - October 19, 1998

32 CHAPTER 3. FUNCTIONS AND ERRORS

Bitmask Corresponding bu�er

GLX FRONT LEFT BUFFER BIT Front left color bu�er

GLX FRONT RIGHT BUFFER BIT Front right color bu�er

GLX BACK LEFT BUFFER BIT Back left color bu�er

GLX BACK RIGHT BUFFER BIT Back right color bu�er

GLX AUX BUFFERS BIT Auxillary bu�er

GLX DEPTH BUFFER BIT Depth bu�er

GLX STENCIL BUFFER BIT Stencil bu�er

GLX ACCUM BUFFER BIT Accumulation bu�er

Table 3.6: Masks identifying clobbered bu�ers.

int count; /* if nonzero, at least this many more */
g GLXPbufferClobberEvent;

If an implementation doesn't support the allocation of pbu�ers, then it
doesn't need to support the generation of GLXPbufferClobberEvents.

A single X server operation can cause several pbu�er clobber events to
be sent (e.g., a single pbu�er may be damaged and cause multiple pbu�er
clobber events to be generated). Each event speci�es one region of the
GLXDrawable that was a�ected by the X Server operation. bu�er mask

indicates which color or ancillary bu�ers were a�ected; the bits that may be
present in the mask are listed in Table 3.6. All the pbu�er clobber events
generated by a single X server action are guaranteed to be contiguous in the
event queue. The conditions under which this event is generated and the
value of event type varies, depending on the type of the GLXDrawable.

When the GLX AUX BUFFERS BIT is set in bu�er mask, then aux bu�er is
set to indicate which bu�er was a�ected. If more than one aux bu�er was
a�ected, then additional events are generated as part of the same contiguous
event group. Each additional event will have only the GLX AUX BUFFERS BIT

set in bu�er mask, and the aux bu�er �eld will be set appropriately. For non-
stereo drawables, GLX FRONT LEFT BUFFER BIT and GLX BACK LEFT BUFFER BIT

are used to specify the front and back color bu�ers.
For preserved pbu�ers, a pbu�er clobber event, with event type

GLX SAVED, is generated whenever the contents of a pbu�er has to be moved to
avoid being damaged. The event(s) describes which portions of the pbu�er
were a�ected. Clients who receive many pbu�er clobber events, referring to
di�erent save actions, should consider freeing the pbu�er resource in order

Version 1.3 - October 19, 1998

3.3. FUNCTIONS 33

to prevent the system from thrashing due to insu�cient resources.
For an unpreserved pbu�er a pbu�er clobber event, with event type

GLX DAMAGED, is generated whenever a portion of the pbu�er becomes invalid.
For GLX windows, pbu�er clobber events with event type GLX SAVED oc-

cur whenever an ancillary bu�er, associated with the window, gets moved
out of o�screen memory. The event contains information indicating which
color or ancillary bu�ers, and which portions of those bu�ers, were a�ected.
GLX windows don't generate pbu�er clobber events when clobbering each
others' ancillary bu�ers, only standard X11 damage events

3.3.9 Synchronization Primitives

To prevent X requests from executing until any outstanding OpenGL ren-
dering is done, call

void glXWaitGL(void);

OpenGL calls made prior to glXWaitGL are guaranteed to be executed
before X rendering calls made after glXWaitGL. While the same result
can be achieved using glFinish, glXWaitGL does not require a round trip
to the server, and is therefore more e�cient in cases where the client and
server are on separate machines.

glXWaitGL is ignored if there is no current rendering context. If the
drawable associated with the calling thread's current context is no longer
valid, a GLXBadCurrentDrawable error is generated.

To prevent the OpenGL command sequence from executing until any
outstanding X requests are completed, call

void glXWaitX(void);

X rendering calls made prior to glXWaitX are guaranteed to be executed
before OpenGL rendering calls made after glXWaitX. While the same re-
sult can be achieved using XSync, glXWaitX does not require a round
trip to the server, and may therefore be more e�cient.

glXWaitX is ignored if there is no current rendering context. If the
drawable associated with the calling thread's current context is no longer
valid, a GLXBadCurrentDrawable error is generated.

3.3.10 Double Bu�ering

For drawables that are double bu�ered, the contents of the back bu�er can
be made potentially visible (i.e., become the contents of the front bu�er) by
calling

Version 1.3 - October 19, 1998

34 CHAPTER 3. FUNCTIONS AND ERRORS

void glXSwapBu�ers(Display *dpy, GLXDrawable

draw);

The contents of the back bu�er then become unde�ned. This operation is
a no-op if draw was created with a non-double-bu�ered GLXFBConfig, or if
draw is a GLXPixmap.

All GLX rendering contexts share the same notion of which are front
bu�ers and which are back bu�ers for a given drawable. This notion is also
shared with the X double bu�er extension (DBE).

When multiple threads are rendering to the same drawable, only one of
them need call glXSwapBu�ers and all of them will see the e�ect of the
swap. The client must synchronize the threads that perform the swap and
the rendering, using some means outside the scope of GLX, to insure that
each new frame is completely rendered before it is made visible.

If dpy and draw are the display and drawable for the calling thread's cur-
rent context, glXSwapBu�ers performs an implicit glFlush. Subsequent
OpenGL commands can be issued immediately, but will not be executed
until the bu�er swapping has completed, typically during vertical retrace of
the display monitor.

If draw is not a valid GLX drawable, glXSwapBu�ers generates a
GLXBadDrawable error. If dpy and draw are the display and drawable as-
sociated with the calling thread's current context, and if draw is a window
that is no longer valid, a GLXBadCurrentDrawable error is generated. If
the X Window underlying draw is no longer valid, a GLXBadWindow error is
generated.

3.3.11 Access to X Fonts

A shortcut for using X fonts is provided by the command

void glXUseXFont(Font font, int first, int count,

int list base);

count display lists are de�ned starting at list base, each list consisting of a
single call on glBitmap. The de�nition of bitmap list base + i is taken from
the glyph �rst + i of font. If a glyph is not de�ned, then an empty display
list is constructed for it. The width, height, xorig, and yorig of the con-
structed bitmap are computed from the font metrics as rbearing-lbearing,
ascent+descent, -lbearing, and descent respectively. xmove is taken
from the width metric and ymove is set to zero.

Version 1.3 - October 19, 1998

3.4. BACKWARDS COMPATIBILITY 35

Note that in the direct rendering case, this requires that the bitmaps be
copied to the client's address space.

glXUseXFont performs an implicit glFlush.

glXUseXFont is ignored if there is no current GLX rendering context.
BadFont is generated if font is not a valid X font id. GLXBadContextState is
generated if the current GLX rendering context is in display list construction
mode. GLXBadCurrentDrawable is generated if the drawable associated with
the calling thread's current context is no longer valid.

3.4 Backwards Compatibility

GLXFBConfigs were introduced in GLX 1.3. Also, new functions for man-
aging drawable con�gurations, creating pixmaps, destroying pixmaps, cre-
ating contexts and making a context current were introduced. The 1.2
versions of these functions are still available and are described in this sec-
tion. Even though these older function calls are supported their use is not
recommended.

3.4.1 Using Visuals for Con�guration Management

In order to maintain backwards compatibility, visuals continue to be over-
loaded with information describing the ancillary bu�ers and color bu�ers
for GLXPixmaps and Windows. Note that Visuals cannot be used to create
GLXPbuffers. Also, not all con�guration attributes are exported through
visuals (e.g., there is no visual attribute to describe which drawables are
supported by the visual.)

The set of extended Visuals is �xed at server start up time. Thus
a server can export multiple Visuals that di�er only in the extended at-
tributes. Implementors may choose to export fewer GLXDrawable con�gu-
rations through visuals than through GLXFBConfigs.

The X protocol allows a single VisualID to be instantiated at multi-
ple depths. Since GLX allows only one depth for any given VisualID, an
XVisualInfo is used by GLX functions. An XVisualInfo is a fVisual,
Screen, Depthg triple and can therefore be interpreted unambiguously.

The constants shown in Table 3.7 are passed to glXGetCon�g and
glXChooseVisual to specify which attributes are being queried.

To obtain a description of an OpenGL attribute exported by a Visual

use

Version 1.3 - October 19, 1998

36 CHAPTER 3. FUNCTIONS AND ERRORS

Attribute Type Notes

GLX USE GL boolean True if OpenGL rendering supported

GLX BUFFER SIZE integer depth of the color bu�er

GLX LEVEL integer frame bu�er level

GLX RGBA boolean True if RGBA rendering supported

GLX DOUBLEBUFFER boolean True if color bu�ers have front/back pairs

GLX STEREO boolean True if color bu�ers have left/right pairs

GLX AUX BUFFERS integer number of auxiliary color bu�ers

GLX RED SIZE integer number of bits of Red in the color bu�er

GLX GREEN SIZE integer number of bits of Green in the color bu�er

GLX BLUE SIZE integer number of bits of Blue in the color bu�er

GLX ALPHA SIZE integer number of bits of Alpha in the color bu�er

GLX DEPTH SIZE integer number of bits in the depth bu�er

GLX STENCIL SIZE integer number of bits in the stencil bu�er

GLX ACCUM RED SIZE integer number Red bits in the accumulation bu�er

GLX ACCUM GREEN SIZE integer number Green bits in the accumulation bu�er

GLX ACCUM BLUE SIZE integer number Blue bits in the accumulation bu�er

GLX ACCUM ALPHA SIZE integer number Alpha bits in the accumulation bu�er

GLX FBCONFIG ID integer XID of most closely associated GLXFBConfig

Table 3.7: GLX attributes for Visuals.

Version 1.3 - October 19, 1998

3.4. BACKWARDS COMPATIBILITY 37

int glXGetCon�g(Display *dpy, XVisualInfo *visual,

int attribute, int *value);

glXGetCon�g returns through value the value of the attribute of visual.

glXGetCon�g returns one of the following error codes if it fails, and
Success otherwise:

GLX NO EXTENSION dpy does not support the GLX extension.

GLX BAD SCREEN screen of visual does not correspond to a screen.

GLX BAD ATTRIBUTE attribute is not a valid GLX attribute.

GLX BAD VISUAL visual does not support GLX and an attribute other than
GLX USE GL was speci�ed.

GLX BAD VALUE parameter invalid

A GLX implementation may export many visuals that support OpenGL.
These visuals support either color index or RGBA rendering. RGBA render-
ing can be supported only by Visuals of type TrueColor or DirectColor
(unless GLXFBConfigs are used), and color index rendering can be supported
only by Visuals of type PseudoColor or StaticColor.

glXChooseVisual is used to �nd a visual that matches the client's
speci�ed attributes.

XVisualInfo *glXChooseVisual(Display *dpy, int

screen, int *attrib list);

glXChooseVisual returns a pointer to an XVisualInfo structure describ-
ing the visual that best matches the speci�ed attributes. If no matching
visual exists, NULL is returned.

The attributes are matched in an attribute-speci�c manner, as shown in
Table 3.8. The de�nitions for the selection criteria Smaller, Larger, and
Exact are given in section 3.3.3.

If GLX RGBA is in attrib list then the resulting visual will be TrueColor

or DirectColor. If all other attributes are equivalent, then a TrueColor

visual will be chosen in preference to a DirectColor visual.

If GLX RGBA is not in attrib list then the returned visual will be
PseudoColor or StaticColor. If all other attributes are equivalent then
a PseudoColor visual will be chosen in preference to a StaticColor visual.

Version 1.3 - October 19, 1998

38 CHAPTER 3. FUNCTIONS AND ERRORS

Attribute Default Selection Criteria

GLX USE GL True Exact

GLX BUFFER SIZE 0 Smaller

GLX LEVEL 0 Exact

GLX RGBA False Exact

GLX DOUBLEBUFFER False Exact

GLX STEREO False Exact

GLX AUX BUFFERS 0 Smaller

GLX RED SIZE 0 Larger

GLX GREEN SIZE 0 Larger

GLX BLUE SIZE 0 Larger

GLX ALPHA SIZE 0 Larger

GLX DEPTH SIZE 0 Larger

GLX STENCIL SIZE 0 Smaller

GLX ACCUM RED SIZE 0 Larger

GLX ACCUM GREEN SIZE 0 Larger

GLX ACCUM BLUE SIZE 0 Larger

GLX ACCUM ALPHA SIZE 0 Larger

Table 3.8: Defaults and selection criteria used by glXChooseVisual.

Version 1.3 - October 19, 1998

3.4. BACKWARDS COMPATIBILITY 39

If GLX FBCONFIG ID is speci�ed in attrib list, then it is ignored (however,
if present, it must still be followed by an attribute value).

If an attribute is not speci�ed in attrib list, then the default value is
used. See Table 3.8 for a list of defaults.

Default speci�cations are superseded by the attributes included in at-

trib list. Integer attributes are immediately followed by the corresponding
desired value. Boolean attributes appearing in attrib list have an implicit
True value; such attributes are never followed by an explicit True or False
value. The list is terminated with None.

To free the data returned, use XFree.
NULL is returned if an unde�ned GLX attribute is encountered.

3.4.2 O� Screen Rendering

A GLXPixmap can be created using by calling

GLXPixmap glXCreateGLXPixmap(Display *dpy,

XVisualInfo *visual, Pixmap pixmap);

Calling glXCreateGLXPixmap(dpy, visual, pixmap) is equivalent to call-
ing glXCreatePixmap(dpy, con�g, pixmap, NULL) where con�g is the
GLXFBConfig identi�ed by the GLX FBCONFIG ID attribute of visual. Before
calling glXCreateGLXPixmap, clients must �rst create an X Pixmap

of the depth speci�ed by visual. The GLXFBConfig identi�ed by the
GLX FBCONFIG ID attribute of visual is associated with the resulting pixmap.
Any compatible GLX rendering context can be used to render into this
o�screen area.

If the depth of pixmap does not match the depth value reported by core
X11 for visual, or if pixmap was not created with respect to the same screen
as visual, then a BadMatch error is generated. If visual is not valid (e.g., if
GLX does not support it), then a BadValue error is generated. If pixmap is
not a valid pixmap id, then a BadPixmap error is generated. Finally, if the
server cannot allocate the new GLX pixmap, a BadAlloc error is generated.

A GLXPixmap created by glXCreateGLXPixmap can be destroyed by
calling

void glXDestroyGLXPixmap(Display *dpy, GLXPixmap

pixmap);

This function is equivalent to glXDestroyPixmap; however, GLXPixmaps
created by calls other than glXCreateGLXPixmap should not be passed
to glXDestroyGLXPixmap.

Version 1.3 - October 19, 1998

40 CHAPTER 3. FUNCTIONS AND ERRORS

3.5 Rendering Contexts

An OpenGL rendering context may be created by calling

GLXContext glXCreateContext(Display *dpy,

XVisualInfo *visual, GLXContext share list, Bool

direct);

Calling glXCreateContext(dpy, visual, share list, direct) is equivalent to
calling glXCreateNewContext(dpy, con�g, render type, share list, direct)
where con�g is the GLXFBConfig identi�ed by the GLX FBCONFIG ID attribute
of visual. If visual's GLX RGBA attribute is True then render type is taken as
GLX RGBA TYPE, otherwise GLX COLOR INDEX TYPE. The GLXFBConfig identi�ed
by the GLX FBCONFIG ID attribute of visual is associated with the resulting
context.

glXCreateContext can generate the following errors: GLXBadContext
if share list is neither zero nor a valid GLX rendering context; BadValue
if visual is not a valid X Visual or if GLX does not support it; BadMatch
if share list de�nes an address space that cannot be shared with the newly
created context or if share list was created on a di�erent screen than the one
referenced by visual; BadAlloc if the server does not have enough resources
to allocate the new context.

To make a context current, call

Bool glXMakeCurrent(Display *dpy, GLXDrawable

draw, GLXContext ctx);

Calling glXMakeCurrent(dpy, draw, ctx) is equivalent to calling glX-
MakeContextCurrent(dpy, draw, draw, ctx). Note that draw will be used
for both the draw and read drawable.

If ctx and draw are not compatible then a BadMatch error will be gen-
erated. Some implementations may enforce a stricter rule and generate a
BadMatch error if ctx and draw were not created with the same XVisualInfo.

If ctx is current to some other thread, then glXMakeCurrent will
generate a BadAccess error. GLXBadContextState is generated if there
is a current rendering context and its render mode is either GL FEEDBACK

or GL SELECT. If ctx is not a valid GLX rendering context, GLXBadContext
is generated. If draw is not a valid GLXPixmap or a valid Window, a
GLXBadDrawable error is generated. If the previous context of the calling
thread has unushed commands, and the previous drawable is a window that
is no longer valid, GLXBadCurrentWindow is generated. Finally, note that

Version 1.3 - October 19, 1998

3.5. RENDERING CONTEXTS 41

the ancillary bu�ers for draw need not be allocated until they are needed. A
BadAlloc error will be generated if the server does not have enough resources
to allocate the bu�ers.

To release the current context without assigning a new one, use NULL for
ctx and None for draw. If ctx is NULL and draw is not None, or if draw is None
and ctx is not NULL, then a BadMatch error will be generated.

Version 1.3 - October 19, 1998

Chapter 4

Encoding on the X Byte

Stream

In the remote rendering case, the overhead associated with interpreting the
GLX extension requests must be minimized. For this reason, all commands
have been broken up into two categories: OpenGL and GLX commands that
are each implemented as a single X extension request and OpenGL rendering
requests that are batched within a GLXRender request.

4.1 Requests that hold a single extension request

Each of the commands from <glx.h> (that is, the glX* commands) is en-
coded by a separate X extension request. In addition, there is a separate
X extension request for each of the OpenGL commands that cannot be put
into a display list. That list consists of all the glGet* commands plus

glAreTexturesResident

glDeleteLists

glDeleteTextures

glEndList

glFeedbackBu�er

glFinish

glFlush

glGenLists

glGenTextures
glIsEnabled

glIsList

42

Version 1.3 - October 19, 1998

4.2. REQUEST THAT HOLDS MULTIPLE OPENGL COMMANDS 43

GLX

Render

GLXCore
X

data
single

data cmd data cmd data

Figure 4.1. GLX byte stream.

glIsTexture

glNewList

glPixelStoref

glPixelStorei
glReadPixels

glRenderMode

glSelectBu�er

The two PixelStore commands (glPixelStorei and glPixelStoref) are
exceptions. These commands are issued to the server only to allow it to set
its error state appropriately. Pixel storage state is maintained entirely on the
client side. When pixel data is transmitted to the server (by glDrawPixels,
for example), the pixel storage information that describes it is transmitted
as part of the same protocol request. Implementations may not change
this behavior, because such changes would cause shared contexts to behave
incorrectly.

4.2 Request that holds multiple OpenGL com-

mands

The remaining OpenGL commands are those that may be put into display
lists. Multiple occurrences of these commands are grouped together into
a single X extension request (GLXRender). This is diagrammed in Fig-
ure 4.1.

The grouping minimizes dispatching within the X server. The library
packs as many OpenGL commands as possible into a single X request (with-
out exceeding the maximum size limit). No OpenGL command may be split
across multiple GLXRender requests.

For OpenGL commands whose encoding is longer than the maximum

Version 1.3 - October 19, 1998

44 CHAPTER 4. ENCODING ON THE X BYTE STREAM

X request size, a series of GLXRenderLarge commands are issued. The
structure of the OpenGL command within GLXRenderLarge is the same
as for GLXRender.

Note that it is legal to have a glBegin in one request, followed by glVer-
tex commands, and eventually the matching glEnd in a subsequent request.
A command is not the same as an OpenGL primitive.

4.3 Wire representations and byte swapping

Unsigned and signed integers are represented as they are represented in
the core X protocol. Single and double precision oating point numbers
are sent and received in IEEE oating point format. The X byte stream
and network speci�cations make it impossible for the client to assure that
double precision oating point numbers will be naturally aligned within the
transport bu�ers of the server. For those architectures that require it, the
server or client must copy those oating point numbers to a properly aligned
bu�er before using them.

Byte swapping on the encapsulated OpenGL byte stream is performed
by the server using the same rule as the core X protocol. Single precision
oating point values are swapped in the same way that 32-bit integers are
swapped. Double precision oating point values are swapped across all 8
bytes.

4.4 Sequentiality

There are two sequences of commands: the X stream, and the OpenGL
stream. In general these two streams are independent: Although the com-
mands in each stream will be processed in sequence, there is no guarantee
that commands in the separate streams will be processed in the order in
which they were issued by the calling thread.

An exception to this rule arises when a single command appears in both

streams. This forces the two streams to rendezvous.

Because the processing of the two streams may take place at di�erent
rates, and some operations may depend on the results of commands in a
di�erent stream, we distinguish between commands assigned to each of the
X and OpenGL streams.

The following commands are processed on the client side and therefore
do not exist in either the X or the OpenGL stream:

Version 1.3 - October 19, 1998

4.4. SEQUENTIALITY 45

glXGetClientString

glXGetCurrentContext

glXGetCurrentDisplay

glXGetCurrentDrawable
glXGetCurrentReadDrawable

glXGetCon�g

glXGetFBCon�gAttrib

glXGetFBCon�gs

glXGetSelectedEvent

glXGetVisualFromFBCon�g

The following commands are in the X stream and obey the sequentiality
guarantees for X requests:

glXChooseFBCon�g
glXChooseVisual

glXCreateContext

glXCreateGLXPixmap

glXCreateNewContext

glXCreatePbu�er

glXCreatePixmap

glXCreateWindow

glXDestroyContext

glXDestroyGLXPixmap

glXDestroyPbu�er

glXDestroyPixmap
glXDestroyWindow

glXMakeContextCurrent

glXMakeCurrent

glXIsDirect

glXQueryContext

glXQueryDrawable

glXQueryExtension

glXQueryExtensionsString

glXQueryServerString

glXQueryVersion

glXSelectEvent
glXWaitGL

glXSwapBu�ers (see below)

Version 1.3 - October 19, 1998

46 CHAPTER 4. ENCODING ON THE X BYTE STREAM

glXCopyContext (see below)

glXSwapBu�ers is in the X stream if and only if the display and draw-
able are not those belonging to the calling thread's current context; other-
wise it is in the OpenGL stream. glXCopyContext is in the X stream
alone if and only if its source context di�ers from the calling thread's cur-
rent context; otherwise it is in both streams.

Commands in the OpenGL stream, which obey the sequentiality guar-
antees for OpenGL requests are:

glXWaitX

glXSwapBu�ers (see below)
All OpenGL Commands

glXSwapBu�ers is in the OpenGL stream if and only if the display
and drawable are those belonging to the calling thread's current context;
otherwise it is in the X stream.

Commands in both streams, which force a rendezvous, are:

glXCopyContext (see below)
glXUseXFont

glXCopyContext is in both streams if and only if the source context
is the same as the current context of the calling thread; otherwise it is in
the X stream only.

Version 1.3 - October 19, 1998

Chapter 5

Extending OpenGL

OpenGL implementors may extend OpenGL by adding new OpenGL com-
mands or additional enumerated values for existing OpenGL commands.
When a new vendor-speci�c command is added, GLX protocol must also be
de�ned. If the new command is one that cannot be added to a display list,
then protocol for a new glXVendorPrivate or glXVendorPrivateWith-

Reply request is required; otherwise protocol for a new rendering command
that can be sent to the X Server as part of a glXRender or glXRender-
Large request is required.

The OpenGL Architectural Review Board maintains a registry of vendor-
speci�c enumerated values; opcodes for vendor private requests, vendor pri-
vate with reply requests, and OpenGL rendering commands; and vendor-
speci�c error codes and event codes.

New names for OpenGL functions and enumerated types must clearly
indicate whether some particular feature is in the core OpenGL or is vendor
speci�c. To make a vendor-speci�c name, append a company identi�er (in
upper case) and any additional vendor-speci�c tags (e.g. machine names).
For instance, SGI might add new commands and manifest constants of the
form glNewCommandSGI and GL NEW DEFINITION SGI. If two or more li-
censees agree in good faith to implement the same extension, and to make
the speci�cation of that extension publicly available, the procedures and
tokens that are de�ned by the extension can be su�xed by EXT.

Implementors may also extend GLX. As with OpenGL, the new names
must indicate whether or not the feature is vendor-speci�c. (e.g., SGI
might add new GLX commands and constants of the form glXNewCom-
mandSGI and GLX NEW DEFINITION SGI). When a new GLX command is
added, protocol for a new glXVendorPrivate or glXVendorPrivate-

47

Version 1.3 - October 19, 1998

48 CHAPTER 5. EXTENDING OPENGL

WithReply request is required.

Version 1.3 - October 19, 1998

Chapter 6

GLX Versions

Each version of GLX supports all versions of OpenGL up to the version
shown in Table 6.1 corresponding to the given GLX version.

6.1 New Commands in GLX Version 1.1

The following GLX commands were added in GLX Version 1.1:

glXQueryExtensionsString

glXGetClientString

glXQueryServerString

6.2 New Commands in GLX Version 1.2

The following GLX commands were added in GLX Version 1.2:

GLX Version Highest OpenGL
Version Supported

GLX 1.0 OpenGL 1.0

GLX 1.1 OpenGL 1.0

GLX 1.2 OpenGL 1.1

GLX 1.3 OpenGL 1.2

Table 6.1: Relationship of OpenGL and GLX versions.

49

Version 1.3 - October 19, 1998

50 CHAPTER 6. GLX VERSIONS

glXGetCurrentDisplay

6.3 New Commands in GLX Version 1.3

The following GLX commands were added in GLX Version 1.3:

glXChooseFBCon�g

glXGetFBCon�gAttrib
glXGetVisualFromFBCon�g

glXCreateWindow

glXDestroyWindow

glXCreatePixmap

glXDestroyPixmap

glXCreatePbu�er

glXDestroyPbu�er

glXQueryDrawable

glXCreateNewContext

glXMakeContextCurrent

glXGetCurrentReadDrawable
glXQueryContext

glXSelectEvent

glXGetSelectedEvent

Version 1.3 - October 19, 1998

Chapter 7

Glossary

Address Space the set of objects or memory locations accessible through
a single name space. In other words, it is a data region that one or
more processes may share through pointers.

Client an X client. An application communicates to a server by some path.
The application program is referred to as a client of the window system
server. To the server, the client is the communication path itself. A
program with multiple connections is viewed as multiple clients to
the server. The resource lifetimes are controlled by the connection
lifetimes, not the application program lifetimes.

Compatible an OpenGL rendering context is compatible with (may be
used to render into) a GLXDrawable if they meet the constraints spec-
i�ed in section 2.1.

Connection a bidirectional byte stream that carries the X (and GLX) pro-
tocol between the client and the server. A client typically has only one
connection to a server.

(Rendering) Context a OpenGL rendering context. This is a virtual
OpenGL machine. All OpenGL rendering is done with respect to a
context. The state maintained by one rendering context is not a�ected
by another except in case of shared display lists and textures.

GLXContext a handle to a rendering context. Rendering contexts consist
of client side state and server side state.

Similar a potential correspondence among GLXDrawables and rendering
contexts. Windows and GLXPixmaps are similar to a rendering context

51

Version 1.3 - October 19, 1998

52 CHAPTER 7. GLOSSARY

are similar if, and only if, they have been created with respect to the
same VisualID and root window.

Thread one of a group of processes all sharing the same address space.
Typically, each thread will have its own program counter and stack
pointer, but the text and data spaces are visible to each of the threads.
A thread that is the only member of its group is equivalent to a process.

Version 1.3 - October 19, 1998

Index of GLX Commands

BadAccess, 27, 29, 40

BadAlloc, 21, 23, 24, 26, 27, 39{41
BadFont, 35

BadMatch, 21, 23, 24, 26{29, 39{41
BadPixmap, 23, 39

BadValue, 26, 39, 40
BadWindow, 21

GL ALL ATTRIB BITS, 29
GL BACK, 28

GL DRAW BUFFER, 28
GL FEEDBACK,9,27, 40

GL NEW DEFINITION SGI, 47
GL READ BUFFER,27, 28

GL SELECT,9,27, 40
GL TEXTURE 1D, 6
GL TEXTURE 2D, 6

GL TEXTURE 3D, 6
glAreTexturesResident, 42

glBegin, 9, 10, 44
glBindTexture, 6

glBitmap, 34
glCopyColorTable, 28

glCopyPixels, 27, 28
glDeleteLists, 6, 42

glDeleteTextures, 42
glDrawBu�er, 28

glDrawPixels, 43
glEnd, 9, 10, 44

glEndList, 6, 42
glFeedbackBu�er, 42
glFinish, 8, 33, 42

glFlush, 3, 29, 34, 35, 42
glGenLists, 42

glGenTextures, 42
glGet, 28

glGet*, 5, 42

glIsEnabled, 42

glIsList, 42

glIsTexture, 43

glListBase, 6

glNewCommandSGI, 47

glNewList, 6, 43

glPixelStoref, 43

glPixelStorei, 43

glPopAttrib, 28, 29

glPushAttrib, 28, 29

glReadBu�er, 28

glReadPixels, 24, 27, 28, 43

glRenderMode, 9, 43

glScissor, 28

glSelectBu�er, 43

glVertex, 44

glViewport, 28

glX*, 42

GLX ACCUM ALPHA SIZE,13,19,
20,36, 38

GLX ACCUM BLUE SIZE,13,19,
20,36, 38

GLX ACCUM BUFFER BIT, 32

GLX ACCUM GREEN SIZE,13,19,
20,36, 38

GLX ACCUM RED SIZE,13,19,20,
36, 38

GLX ALPHA SIZE,12,13,18,19,36,
38

GLX AUX BUFFERS,13,18,19,36,
38

GLX AUX BUFFERS BIT, 32

GLX BACK LEFT BUFFER BIT,
32

53

Version 1.3 - October 19, 1998

54 INDEX

GLX BACK RIGHT BUFFER BIT,
32

GLX BAD ATTRIBUTE,20,30, 37

GLX BAD SCREEN, 37

GLX BAD VALUE, 37

GLX BAD VISUAL, 37

GLX BLUE SIZE,12,13,18,19,36, 38

GLX BUFFER SIZE,12,13,18,19,36,
38

GLX COLOR INDEX BIT,12, 15

GLX COLOR INDEX TYPE,25, 40

GLX CONFIG CAVEAT,13,15,18,

19

GLX DAMAGED,31, 33

GLX DEPTH BUFFER BIT, 32

GLX DEPTH SIZE,13,19,20,36, 38

GLX DIRECT COLOR,14, 20

GLX DONT CARE, 17{20

GLX DOUBLE BUFFER, 18

GLX DOUBLEBUFFER,13,19,36,
38

GLX DRAWABLE TYPE,13--15,
18{21

GLX EXTENSIONS, 11

GLX FBCONFIG ID,13,18,19,25,
30,36,39, 40

GLX FRONT LEFT BUFFER BIT,
32

GLX FRONT RIGHT BUFFER
BIT, 32

GLX GRAY SCALE,14, 20

GLX GREEN SIZE,12,13,18,19,36,
38

GLX HEIGHT, 25

GLX LARGEST PBUFFER,23, 25

GLX LEVEL,13,17,19,36, 38

GLX MAX PBUFFER HEIGHT,13,
16, 18

GLX MAX PBUFFER PIXELS,13,
16, 18

GLX MAX PBUFFER WIDTH,13,
16, 18

GLX NEW DEFINITION SGI, 47

GLX NO EXTENSION, 37

GLX NON CONFORMANT
CONFIG,15, 18

GLX NONE,14--16,18, 19
GLX PBUFFER, 31
GLX PBUFFER BIT, 14
GLX PBUFFER CLOBBER

MASK, 31
GLX PBUFFER HEIGHT, 23
GLX PBUFFER WIDTH, 23

GLX Pbu�erClobber, 10
GLX PIXMAP BIT, 14
GLX PRESERVED CONTENTS,

23{25
GLX PSEUDO COLOR,14, 20

GLX RED SIZE,12,13,16--19,36, 38
GLX RENDER TYPE,12,13,15,19,

30
GLX RGBA,36--38, 40
GLX RGBA BIT,12,15, 19

GLX RGBA TYPE,25, 40
GLX SAVED, 31{33
GLX SCREEN, 30
GLX SLOW CONFIG,15, 18
GLX STATIC COLOR,14, 20

GLX STATIC GRAY,14, 20
GLX STENCIL BITS, 20
GLX STENCIL BUFFER BIT, 32
GLX STENCIL SIZE,13,19,36, 38
GLX STEREO,13,17,19,36, 38

GLX TRANSPARENT ALPHA
VALUE,13,16,18, 19

GLX TRANSPARENT BLUE
VALUE,13,16,18, 19

GLX TRANSPARENT GREEN
VALUE,13,16,18, 19

GLX TRANSPARENT INDEX, 16
GLX TRANSPARENT INDEX

VALUE,13,16,18, 19
GLX TRANSPARENT RED

VALUE,13,16,18, 19
GLX TRANSPARENT RGB, 16
GLX TRANSPARENT TYPE,13,

15,16,18, 19
GLX TRUE COLOR,14, 20
GLX USE GL, 36{38

Version 1.3 - October 19, 1998

INDEX 55

GLX VENDOR, 11
GLX VERSION, 11
GLX VISUAL ID,13,14, 18
GLX WIDTH, 25

GLX WINDOW, 31
GLX WINDOW BIT,14,15, 18{21
GLX X RENDERABLE,13,14, 19
GLX X VISUAL TYPE,13,14, 18{

20
GLXBadContext, 9, 26, 27, 29, 30, 40
GLXBadContextState, 9, 27, 35, 40
GLXBadContextTag, 10
GLXBadCurrentDrawable, 9, 27, 29,

33{35

GLXBadCurrentWindow, 9, 40
GLXBadDrawable, 9, 25, 27, 31, 34,

40
GLXBadFBCon�g, 9, 23, 24, 26
GLXBadLargeRequest, 10
GLXBadPbu�er, 9, 25

GLXBadPixmap, 10, 23
GLXBadRenderRequest, 10
GLXBadWindow, 10, 21, 27, 34
glXChooseFBCon�g, 12, 17, 20{23,

25, 45, 50
glXChooseVisual, 35, 37, 38, 45
GLXContext, 12
glXCopyContext, 28, 29, 46
glXCreateContext, 40, 45
glXCreateGLXPixmap, 39, 45

glXCreateNewContext, 25, 26, 40, 45,
50

glXCreatePbu�er, 16, 23, 24, 45, 50

glXCreatePixmap, 3, 22, 39, 45, 50
glXCreateWindow, 21, 45, 50
glXDestroyContext, 26, 45
glXDestroyGLXPixmap, 39, 45
glXDestroyPbu�er, 25, 45, 50
glXDestroyPixmap, 23, 39, 45, 50

glXDestroyWindow, 21, 45, 50
GLXDrawable, 2, 3, 12, 22, 25, 27,

31, 32, 35, 51

GLXFBCon�g, 2, 3, 9, 12{26, 29, 30,
34{37, 39, 40

GLXFBCon�gs, 17, 18

glXGet*, 30
glXGetClientString, 11, 12, 45, 49

glXGetCon�g, 35, 37, 45
glXGetCurrentContext, 30, 45

glXGetCurrentDisplay, 30, 45, 50
glXGetCurrentDrawable, 30, 45

glXGetCurrentReadDrawable, 30, 45,
50

glXGetFBCon�gAttrib, 20, 45, 50
glXGetFBCon�gs, 12, 16, 45

glXGetSelectedEvent, 31, 45, 50
glXGetVisualFromFBCon�g, 20, 21,

45, 50
glXIsDirect, 26, 45
glXMakeContextCurrent, 26{28, 40,

45, 50

glXMakeCurrent, 9, 40, 45
glXNewCommandSGI, 47
GLXPbu�er, 2, 3, 9, 12, 14, 16, 21{

25, 27, 31, 35

GLXPbu�erClobberEvent, 32
GLXPixmap, 2, 3, 12, 14, 21{23, 25,

27, 34, 35, 39, 40, 51
glXQuery*, 30
glXQueryContext, 30, 45, 50

glXQueryDrawable, 23, 25, 45, 50
glXQueryExtension, 10, 45

glXQueryExtensionsString, 11, 45, 49
glXQueryServerString, 12, 45, 49

glXQueryVersion, 11, 45
GLXRender, 42

glXSelectEvent, 24, 31, 45, 50

glXSwapBu�ers, 22, 24, 34, 45, 46
GLXUnsupportedPrivateRequest, 10

glXUseXFont, 34, 35, 46
glXWaitGL, 8, 33, 45

glXWaitX, 8, 33, 46
GLXWindow, 2, 3, 10, 12, 21, 25, 27,

28, 31

None, 17, 21{23, 28, 30, 39, 41

PixelStore, 43

Screen, 35

Version 1.3 - October 19, 1998

56 INDEX

Success, 20, 30, 37

Visual, 3, 12, 14, 20, 22, 35{37, 40
VisualID, 35

Window, 2, 3, 9, 21, 27, 28, 34, 40
Windows, 35

XFree, 20, 39
XFreePixmap, 23
XSync, 8, 24, 33
XVisualInfo, 35

The OpenGL Machine
R

The OpenGL graphics system diagram, Version 1.1. Copyright 1996 Silicon Graphics, Inc. All rights reserved.

C
C
C
C
C
CC
C
C
C
CC
CC
CC
CC
CC
CC
CC
CC

CC
CC
CC
CC
CC
CC

C
C
C
C

C
C

C
C

C
C
C

C
C
C
C

TexCoord1

TexCoord2

TexCoord3

TexCoord4

Color3

Color4
Convert

RGBA to float

Index Convert

index to float

Current

Texture

Coordinates

Current

RGBA

Color

Current

Color

Index

Current

Normal
Normal3

Vertex2

RasterPos2

Vertex3

RasterPos3

Vertex4

RasterPos4
b

M
M*b

Model View

Matrix

Stack

OBJECT
COORDINATES

EYE
COORDINATES

M

Matrix

Control

MatrixMode

PushMatrix

PopMatrix

LoadIdentity

LoadMatrix

N
M

M*N

Matrix

Generators

Translate

Scale

Rotate

Frustum

Ortho

EdgeFlag

Current

Edge

Flag

Current

Raster

Position

CullFace

Polygon

Rasterization

Line

Segment

Rasterization

Point

Rasterization

Bitmap

Rasterization

Pixel

Rasterization

Polygon

Culling
Polygon

Mode

PolygonMode

PointSize

Enable/Disable
(Antialiasing/Stipple)

Unpack

Pixels

Bitmap

DrawPixels

TexImage

PolygonStipple

Pixel

Transfer

PixelZoom

PixelTransfer

PixelStore

Texel

Generation

Texture

Memory

TexParameter

Texture

Application
Fog

TexEnv Fog

Enable/Disable Enable/Disable

Masking

ColorMask

IndexMask

DepthMask

StencilMask

Pack

Pixels

Coverage

(antialiasing)

Application

Pixel

Ownership

Test

Alpha

Test

(RGBA only)

Scissor

Test

Stencil

Test

Depth

Buffer

Test

Clear

Values

Clear

Control
Clear

ClearColor

ClearIndex

ClearDepth

ClearStencil

Blending

(RGBA only)
Dithering Logic Op

Frame Buffer

Scissor AlphaFunc

StencilOp

StencilFunc

Enable/Disable
Enable/Disable Enable/Disable Enable/Disable Enable/Disable Enable/Disable Enable/Disable

Enable/Disable

DepthFunc BlendFunc LogicOp

Frame Buffer

Control

DrawBuffer

Readback

Control

ReadBufferReadPixels

MultMatrix

Masking

b
M

M*b Normalize

Enable/Disable

TexGen
OBJECT_LINEAR

TexGen
EYE_LINEAR

TexGen
SPHERE_MAP

Enable/Disable

b
A

A*b

Texture

Matrix

Stack

Material

Parameters

Control

ColorMaterial

Material

Enable/Disable

Light

Parameters

RGBA Lighting Equation

Color Index Lighting Equation

Material

Parameters

Light Model

Parameters

Light

Enable/Disable

LightModel

M

M−T
Enable/Disable

Clamp to

[0,1]

Mask to

[0,2
n−1

]

Primitive

Assembly

Begin/End

TexGen

(Lighting)

EvalMesh

EvalPoint

EvalCoord

MapGrid

Map

Grid

Application

Map

Evaluation

Divide

Vertex

Coordinates

by

w

Apply

Viewport

DepthRange

Viewport

Flatshading

POINTS
RASTER POS.

LINE
SEGMENTS

POLYGONS

ShadeModel

Line

Clipping

Polygon

Clipping

Point

Culling

Clip

Planes

ClipPlane

Mb

b

b

(Vertex

Only)

Line

View Volume

Clipping

Polygon

View Volume

Clipping

Point

View Volume

Culling

M*b

Projection

Matrix

Stack

M
M

−T
b

b

Feedback

Encoding

FeedbackBuffer

PassThrough

Selection

Control

SelectBuffer

RenderMode

Evaluator

Control

Rectangle

Generation
Rect

M*b

M*b

FrontFace

FrontFace

LineStipple

Enable/Disable
(Antialiasing)

PixelMap

Selection

Name

Stack

Selection

Encoding

InitNames

PopName
PushName

LoadName

Notes:
1. Commands (and constants) are shown without the
 gl (or GL_) prefix.
2. The following commands do not appear in this
 diagram: glAccum, glClearAccum , glHint ,
 display list commands, texture object commands,
 commands for obtaining OpenGL state
 (glGet commands and glIsEnabled), and
 glPushAttrib and glPopAttrib . Utility library
 routines are not shown.
3. After their exectution, glDrawArrays and
 glDrawElements leave affected current values
 indeterminate.
4. This diagram is schematic; it may not directly
 correspond to any actual OpenGL implementation.

Convert

normal coords

 to float

Enable/Disable

TexSubImage

CopyPixels

CopyTexImage

CopyTexSubImage

PolygonOffset

LineWidth

Enable/Disable
(Antialiasing)

CC
CC
CC
CC
CC
CC
CC
CC
CC
CC
CC

CC
CC
CC
CC
CC
CC

CC
CC
CC
CC
CC

CC
CC
CC
CC
CC
CC

CCC
CCC
CCC
CCC
CCC
CCC
CCC
CCC
CCC
CCC
CCC
CCC
CCC
CCC
CCC
CCC
CCC
CCC
CCC
CCC
CCC
CCC
CCC
CCC

EdgeFlagPointer

TexCoordPointer

ColorPointer

IndexPointer

NormalPointer

VertexPointer

InterLeavedArrays

 EnableClientState

DisableClientState

DrawElements

ArrayElement

Vertex

Array

Control

CCCC
CCCC
CCCC
CCCC
CCCC
CCCC
CCCC
CCCC
CCCC
CCCC
CCCC
CCCC
CCCC
CCCC
CCCC
CCCC
CCCC
CCCC
CCCC
CCCC
CCCC

CC
CC
CC
CC
CC
CC
CC
CC
CC
CC
CC
CC

CC
CC
CC
CC
CC
CC

CC
CC
CC
CC
CC

CC
CC
CC
CC
CC
CC

CC
CC
CC
CC
CC
CC
CC
CC
CC
CC
CC

t 0

r 0

q 1

A 1

z 0

w 1

Key to OpenGL Operations

Primitives Fragments

Vertices

Feedback
&

Selection

Input
Conversion

&
Current
Values

Texture Coordinate
Generation

Evaluators
&

Vertex Arrays

Lighting

Matrix
Control

Clipping, Perspective,
and

Viewport Application
Rasteriz−

ation Texturing,
Fog,
and

Antialiasing

Per−Fragment Operations

Frame Buffer
&

Frame Buffer ControlPixels

DrawArrays

SIGGRAPH '97

Course 24: OpenGL and Window System Integration

OpenGL Performance Optimization

Contents

l 1. Hardware vs. Software
l 2. Application Organization

¡ 2.1 High Level Organization
¡ 2.2 Low Level Organization

l 3. OpenGL Optimization
¡ 3.1 Traversal
¡ 3.2 Transformation
¡ 3.3 Rasterization
¡ 3.4 Texturing
¡ 3.5 Clearing
¡ 3.6 Miscellaneous
¡ 3.7 Window System Integration
¡ 3.8 Mesa-specific

l 4. Evaluation and tuning
¡ 4.1 Pipeline tuning
¡ 4.2 Double buffering
¡ 4.3 Test on several implementations

1. Hardware vs. Software

OpenGL may be implemented by any combination of hardware and software. At the high-end, hardware may implement
virtually all of OpenGL while at the low-end, OpenGL may be implemented entirely in software. In between are
combination software/hardware implementations. More money buys more hardware and better performance.

Intro-level workstation hardware and the recent PC 3-D hardware typically implement point, line, and polygon
rasterization in hardware but implement floating point transformations, lighting, and clipping in software. This is a good
strategy since the bottleneck in 3-D rendering is usually rasterization and modern CPU's have sufficient floating point
performance to handle the transformation stage.

OpenGL developers must remember that their application may be used on a wide variety of OpenGL implementations.
Therefore one should consider using all possible optimizations, even those which have little return on the development
system, since other systems may benefit greatly.

From this point of view it may seem wise to develop your application on a low-end system. There is a pitfall however;
some operations which are cheep in software may be expensive in hardware. The moral is: test your application on a
variety of systems to be sure the performance is dependable.

2. Application Organization

At first glance it may seem that the performance of interactive OpenGL applications is dominated by the performance of
OpenGL itself. This may be true in some circumstances but be aware that the organization of the application is also
significant.

OpenGL Performance Optimization

Page 1 of 13

2.1 High Level Organization

Multiprocessing

Some graphical applications have a substantial computational component other than 3-D rendering. Virtual reality
applications must compute object interactions and collisions. Scientific visualization programs must compute analysis
functions and graphical representations of data.

One should consider multiprocessing in these situations. By assigning rendering and computation to different threads
they may be executed in parallel on multiprocessor computers.

For many applications, supporting multiprocessing is just a matter of partitioning the render and compute operations into
separate threads which share common data structures and coordinate with synchronization primitives.

SGI's Performer is an example of a high level toolkit designed for this purpose.

Image quality vs. performance

In general, one wants high-speed animation and high-quality images in an OpenGL application. If you can't have both at
once a reasonable compromise may be to render at low complexity during animation and high complexity for static
images.

Complexity may refer to the geometric or rendering attributes of a database. Here are a few examples.

l During interactive rotation (i.e. mouse button held down) render a reduced-polygon model. When drawing a static
image draw the full polygon model.

l During animation, disable dithering, smooth shading, and/or texturing. Enable them for the static image.
l If texturing is required, use GL_NEAREST sampling and glHint(GL_PERSPECTIVE_CORRECTION_HINT,

GL_FASTEST).
l During animation, disable antialiasing. Enable antialiasing for the static image.
l Use coarser NURBS/evaluator tesselation during animation. Use glPolygonMode(GL_FRONT_AND_BACK,

GL_LINE) to inspect tesselation granularity and reduce if possible.

Level of detail management and culling

Objects which are distant from the viewer may be rendered with a reduced complexity model. This strategy reduces the
demands on all stages of the graphics pipeline. Toolkits such as Inventor and Performer support this feature
automatically.

Objects which are entirely outside of the field of view may be culled. This type of high level cull testing can be done
efficiently with bounding boxes or spheres and have a major impact on performance. Again, toolkits such as Inventor and
Performer have this feature.

2.2 Low Level Organization

The objects which are rendered with OpenGL have to be stored in some sort of data structure. Some data structures are
more efficient than others with respect to how quickly they can be rendered.

Basically, one wants data structures which can be traversed quickly and passed to the graphics library in an efficient
manner. For example, suppose we need to render a triangle strip. The data structure which stores the list of vertices may
be implemented with a linked list or an array. Clearly the array can be traversed more quickly than a linked list. The way
in which a vertex is stored in the data structure is also significant. High performance hardware can process vertexes
specified by a pointer more quickly than those specified by three separate parameters.

An Example

Suppose we're writing an application which involves drawing a road map. One of the components of the database is a list
of cities specified with a latitude, longitude and name. The data structure describing a city may be:

 struct city {

OpenGL Performance Optimization

Page 2 of 13

 float latitute, longitude; /* city location */
 char *name; /* city's name */
 int large_flag; /* 0 = small, 1 = large */
 };

A list of cities may be stored as an array of city structs.

Our first attempt at rendering this information may be:

 void draw_cities(int n, struct city citylist[])
 {
 int i;
 for (i=0; i < n; i++) {
 if (citylist[i].large_flag) {
 glPointSize(4.0);
 }
 else {
 glPointSize(2.0);
 }
 glBegin(GL_POINTS);
 glVertex2f(citylist[i].longitude, citylist[i].latitude);
 glEnd();
 glRasterPos2f(citylist[i].longitude, citylist[i].latitude);
 glCallLists(strlen(citylist[i].name),
 GL_BYTE,
 citylist[i].name);
 }
 }

This is a poor implementation for a number of reasons:

l glPointSize is called for every loop iteration.
l only one point is drawn between glBegin and glEnd
l the vertices aren't being specified in the most efficient manner

Here's a better implementation:

 void draw_cities(int n, struct city citylist[])
 {
 int i;
 /* draw small dots first */
 glPointSize(2.0);
 glBegin(GL_POINTS);
 for (i=0; i < n ;i++) {
 if (citylist[i].large_flag==0) {
 glVertex2f(citylist[i].longitude, citylist[i].latitude);
 }
 }
 glEnd();
 /* draw large dots second */
 glPointSize(4.0);
 glBegin(GL_POINTS);
 for (i=0; i < n ;i++) {
 if (citylist[i].large_flag==1) {
 glVertex2f(citylist[i].longitude, citylist[i].latitude);
 }
 }
 glEnd();
 /* draw city labels third */
 for (i=0; i < n ;i++) {
 glRasterPos2f(citylist[i].longitude, citylist[i].latitude);
 glCallLists(strlen(citylist[i].name),
 GL_BYTE,
 citylist[i].name);
 }
 }

OpenGL Performance Optimization

Page 3 of 13

In this implementation we're only calling glPointSize twice and we're maximizing the number of vertices specified
between glBegin and glEnd.

We can still do better, however. If we redesign the data structures used to represent the city information we can improve
the efficiency of drawing the city points. For example:

 struct city_list {
 int num_cities; /* how many cities in the list */
 float *position; /* pointer to lat/lon coordinates */
 char **name; /* pointer to city names */
 float size; /* size of city points */
 };

Now cities of different sizes are stored in separate lists. Position are stored sequentially in a dynamically allocated array.
By reorganizing the data structures we've eliminated the need for a conditional inside the glBegin/glEnd loops. Also,
we can render a list of cities using the GL_EXT_vertex_array extension if available, or at least use a more efficient
version of glVertex and glRasterPos.

 /* indicates if server can do GL_EXT_vertex_array: */
 GLboolean varray_available;

 void draw_cities(struct city_list *list)
 {
 int i;
 GLboolean use_begin_end;

 /* draw the points */
 glPointSize(list->size);

 #ifdef GL_EXT_vertex_array
 if (varray_available) {
 glVertexPointerEXT(2, GL_FLOAT, 0, list->num_cities, list->position);
 glDrawArraysEXT(GL_POINTS, 0, list->num_cities);
 use_begin_end = GL_FALSE;
 }
 else
 #else
 {
 use_begin_end = GL_TRUE;
 }
 #endif

 if (use_begin_end) {
 glBegin(GL_POINTS);
 for (i=0; i < list->num_cities; i++) {
 glVertex2fv(&position[i*2]);
 }
 glEnd();
 }

 /* draw city labels */
 for (i=0; i < list->num_cities ;i++) {
 glRasterPos2fv(list->position[i*2]);
 glCallLists(strlen(list->name[i]),
 GL_BYTE, list->name[i]);
 }
 }

As this example shows, it's better to know something about efficient rendering techniques before designing the data
structures. In many cases one has to find a compromize between data structures optimized for rendering and those
optimized for clarity and convenience.

In the following sections the techniques for maximizing performance, as seen above, are explained.

OpenGL Performance Optimization

Page 4 of 13

3. OpenGL Optimization

There are many possibilities to improving OpenGL performance. The impact of any single optimization can vary a great
deal depending on the OpenGL implementation. Interestingly, items which have a large impact on software renderers
may have no effect on hardware renderers, and vice versa! For example, smooth shading can be expensive in software
but free in hardware While glGet* can be cheap in software but expensive in hardware.

After each of the following techniques look for a bracketed list of symbols which relates the significance of the
optimization to your OpenGL system:

l H - beneficial for high-end hardware
l L - beneficial for low-end hardware
l S - beneficial for software implementations
l all - probably beneficial for all implementations

3.1 Traversal

Traversal is the sending of data to the graphics system. Specifically, we want to minimize the time taken to specify
primitives to OpenGL.

Use connected primitives
Connected primitives such as GL_LINES, GL_LINE_LOOP, GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN , and
GL_QUAD_STRIP require fewer vertices to describe an object than individual line, triangle, or polygon primitives.
This reduces data transfer and transformation workload. [all]

Use the vertex array extension
On some architectures function calls are somewhat expensive so replacing many
glVertex/glColor/glNormal calls with the vertex array mechanism may be very beneficial. [all]

Store vertex data in consecutive memory locations
When maximum performance is needed on high-end systems it's good to store vertex data in contiguous memory
to maximize through put of data from host memory to graphics subsystem. [H,L]

Use the vector versions of glVertex, glColor, glNormal and glTexCoord
The glVertex, glColor, etc. functions which take a pointer to their arguments such as glVertex3fv(v) may
be much faster than those which take individual arguments such as glVertex3f(x,y,z) on systems with
DMA-driven graphics hardware. [H,L]

Reduce quantity of primitives
Be careful not to render primitives which are over-tesselated. Experiment with the GLU primitives, for example,
to determine the best compromise of image quality vs. tesselation level. Textured objects in particular may still be
rendered effectively with low geometric complexity. [all]

Display lists
Use display lists to encapsulate frequently drawn objects. Display list data may be stored in the graphics
subsystem rather than host memory thereby eliminating host-to-graphics data movement. Display lists are also
very beneficial when rendering remotely. [all]

Don't specify unneeded per-vertex information
If lighting is disabled don't call glNormal. If texturing is disabled don't call glTexCoord, etc.

Minimize code between glBegin/glEnd
For maximum performance on high-end systems it's extremely important to send vertex data to the graphics
system as fast as possible. Avoid extraneous code between glBegin/glEnd.

Example:

 glBegin(GL_TRIANGLE_STRIP);
 for (i=0; i < n; i++) {
 if (lighting) {

OpenGL Performance Optimization

Page 5 of 13

 glNormal3fv(norm[i]);
 }
 glVertex3fv(vert[i]);
 }
 glEnd();

This is a very bad construct. The following is much better:

 if (lighting) {
 glBegin(GL_TRIANGLE_STRIP);
 for (i=0; i < n ;i++) {
 glNormal3fv(norm[i]);
 glVertex3fv(vert[i]);
 }
 glEnd();
 }
 else {
 glBegin(GL_TRIANGLE_STRIP);
 for (i=0; i < n ;i++) {
 glVertex3fv(vert[i]);
 }
 glEnd();
 }

Also consider manually unrolling important rendering loops to maximize the function call rate.

3.2 Transformation

Transformation includes the transformation of vertices from glVertex to window coordinates, clipping and lighting.

Lighting
l Avoid using positional lights, i.e. light positions should be of the form (x,y,z,0) [L,S]
l Avoid using spotlights. [all]
l Avoid using two-sided lighting. [all]
l Avoid using negative material and light color coefficients [S]
l Avoid using the local viewer lighting model. [L,S]
l Avoid frequent changes to the GL_SHININESS material parameter. [L,S]
l Some OpenGL implementations are optimized for the case of a single light source.
l Consider pre -lighting complex objects before rendering, ala radiosity. You can get the effect of lighting by

specifying vertex colors instead of vertex normals. [S]

Two sided lighting
If you want both the front and back of polygons shaded the same try using two light sources instead of two -sided
lighting. Position the two light sources on opposite sides of your object. That way, a polygon will always be lit
correctly whether it's back or front facing. [L,S]

Disable normal vector normalization when not needed
glEnable/Disable(GL_NORMALIZE) controls whether normal vectors are scaled to unit length before lighting.
If you do not use glScale you may be able to disable normalization without ill effects. Normalization is disabled
by default. [L,S]

Use connected primitives
Connected primitives such as GL_LINES, GL_LINE_LOOP, GL_TRIANGLE_STRIP , GL_TRIANGLE_FAN, and
GL_QUAD_STRIP decrease traversal and transformation load.

glRect usage
If you have to draw many rectangles consider using glBegin(GL_QUADS) ... glEnd() instead. [all]

3.3 Rasterization

Rasterization is the process of generating the pixels which represent points, lines, polygons, bitmaps and the writing of

OpenGL Performance Optimization

Page 6 of 13

those pixels to the frame buffer. Rasterization is often the bottleneck in software implementations of OpenGL.

Disable smooth shading when not needed
Smooth shading is enabled by default. Flat shading doesn't require interpolation of the four color components and
is usually faster than smooth shading in software implementations. Hardware may perform flat and smooth-
shaded rendering at the same rate though there's at least one case in which smooth shading is faster than flat
shading (E&S Freedom). [S]

Disable depth testing when not needed
Background objects, for example, can be drawn without depth testing if they're drawn first. Foreground objects
can be drawn without depth testing if they're drawn last. [L,S]

Disable dithering when not needed
This is easy to forget when developing on a high -end machine. Disabling dithering can make a big difference in
software implementations of OpenGL on lower-end machines with 8 or 12-bit color buffers. Dithering is enabled
by default. [S]

Use back-face culling whenever possible.
If you're drawing closed polyhedra or other objects for which back facing polygons aren't visible there's probably
no point in drawing those polygons. [all]

The GL_SGI_cull_vertex extension
SGI's Cosmo GL supports a new culling extension which looks at vertex normals to try to improve the speed of
culling.

Avoid extra fragment operations
Stenciling, blending, stippling, alpha testing and logic ops can all take extra time during rasterization. Be sure to
disable the operations which aren't needed. [all]

Reduce the window size or screen resolution
A simple way to reduce rasterization time is to reduce the number of pixels drawn. If a smaller window or
reduced display resolution are acceptable it's an easy way to improve rasterization speed. [L,S]

3.4 Texturing

Texture mapping is usually an expensive operation in both hardware and software. Only high-end graphics hardware can
offer free to low-cost texturing. In any case there are several ways to maximize texture mapping performance.

Use efficient image formats
The GL_UNSIGNED_BYTE component format is typically the fastest for specifying texture images. Experiment
with the internal texture formats offered by the GL_EXT_texture extension. Some formats are faster than others
on some systems (16 -bit texels on the Reality Engine, for example). [all]

Encapsulate texture maps in texture objects or display lists
This is especially important if you use several texture maps. By putting textures into display lists or texture
objects the graphics system can manage their storage and minimize data movement between the client and
graphics subsystem. [all]

Use smaller texture maps
Smaller images can be moved from host to texture memory faster than large images. More small texture can be
stored simultaneously in texture memory, reducing texture memory swapping. [all]

Use simpler sampling functions
Experiment with the minification and magnification texture filters to determine which performs best while giving
acceptable results. Generally, GL_NEAREST is fastest and GL_LINEAR is second fastest. [all]

Use the same sampling function for minification and magnification
If both the minification and magnification filters are GL_NEAREST or GL_LINEAR then there's no reason OpenGL
has to compute the lambda value which determines whether to use minification or magnification sampling for
each fragment. Avoiding the lambda calculation can be a good performace improvement.

OpenGL Performance Optimization

Page 7 of 13

Use a simpler texture environment function
Some texture environment modes may be faster than others. For example, the GL_DECAL or GL_REPLACE_EXT
functions for 3 component textures is a simple assignment of texel samples to fragments while GL_MODULATE is a
linear interpolation between texel samples and incoming fragments. [S,L]

Combine small textures
If you are using several small textures consider tiling them together as a larger texture and modify your texture
coordinates to address the subtexture you want. This technique can eliminate texture bindings.

Use glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_FASTEST)
This hint can improve the speed of texturing when perspective - correct texture coordinate interpolation isn't
needed, such as when using a glOrtho() projection.

Animated textures
If you want to use an animated texture, perhaps live video textures, don't use glTexImage2D to repeatedly
change the texture. Use glTexSubImage2D or glTexCopyTexSubImage2D . These functions are standard in
OpenGL 1.1 and available as extensions to 1.0.

3.5 Clearing

Clearing the color, depth, stencil and accumulation buffers can be time consuming, especially when it has to be done in
software. There are a few tricks which can help.

Use glClear carefully [all]
Clear all relevant color buffers with one glClear.

Wrong:

 glClear(GL_COLOR_BUFFER_BIT);
 if (stenciling) {
 glClear(GL_STENCIL_BUFFER_BIT);
 }

Right:

 if (stenciling) {
 glClear(GL_COLOR_BUFFER_BIT | GL_STENCIL_BUFFER_BIT);
 }
 else {
 glClear(GL_COLOR_BUFFER_BIT);
 }

Disable dithering
Disable dithering before clearing the color buffer. Visually, the difference between dithered and undithered clears
is usually negligable.

Use scissoring to clear a smaller area
If you don't need to clear the whole buffer use glScissor() to restrict clearing to a smaller area. [L].

Don't clear the color buffer at all
If the scene you're drawing opaquely covers the entire window there is no reason to clear the color buffer.

Eliminate depth buffer clearing
If the scene you're drawing covers the entire window there is a trick which let's you omit the depth buffer clear.
The idea is to only use half the depth buffer range for each frame and alternate between using GL_LESS and
GL_GREATER as the depth test function.

Example:

 int EvenFlag;

 /* Call this once during initialization and whenever the window

OpenGL Performance Optimization

Page 8 of 13

 * is resized.
 */
 void init_depth_buffer(void)
 {
 glClearDepth(1.0);
 glClear(GL_DEPTH_BUFFER_BIT);
 glDepthRange(0.0, 0.5);
 glDepthFunc(GL_LESS);
 EvenFlag = 1;
 }

 /* Your drawing function */
 void display_func(void)
 {
 if (EvenFlag) {
 glDepthFunc(GL_LESS);
 glDepthRange(0.0, 0.5);
 }
 else {
 glDepthFunc(GL_GREATER);
 glDepthRange(1.0, 0.5);
 }
 EvenFlag = !EvenFlag;

 /* draw your scene */
 }

Avoid glClearDepth(d) where d!=1.0
Some software implementations may have optimized paths for clearing the depth buffer to 1.0. [S]

3.6 Miscellaneous

Avoid "round-trip" calls
Calls such as glGetFloatv, glGetIntegerv, glIsEnabled, glGetError, glGetString require a
slow, round trip transaction between the application and renderer. Especially avoid them in your main rendering
code.

Note that software implementations of OpenGL may actually perform these operations faster than hardware
systems. If you're developing on a low-end system be aware of this fact. [H,L]

Avoid glPushAttrib
If only a few pieces of state need to be saved and restored it's often faster to maintain the information in the client
program. glPushAttrib(GL_ALL_ATTRIB_BITS) in particular can be very expensive on hardware systems.
This call may be faster in software implementations than in hardware. [H,L]

Check for GL errors during development
During development call glGetError inside your rendering/event loop to catch errors. GL errors raised during
rendering can slow down rendering speed. Remove the glGetError call for production code since it's a "round
trip" command and can cause delays. [all]

Use glColorMaterial instead of glMaterial
If you need to change a material property on a per vertex basis, glColorMaterial may be faster than
glMaterial. [all]

glDrawPixels
¡ glDrawPixels often performs best with GL_UNSIGNED_BYTE color components [all]
¡ Disable all unnecessary raster operations before calling glDrawPixels. [all]
¡ Use the GL_EXT_abgr extension to specify color components in alpha, blue, green, red order on systems which

were designed for IRIS GL. [H,L].

Avoid using viewports which are larger than the window
Software implementations may have to do additional clipping in this situation. [S]

Alpha planes

OpenGL Performance Optimization

Page 9 of 13

Don't allocate alpha planes in the color buffer if you don't need them. Specifically, they are not needed for
transparency effects. Systems without hardware alpha planes may have to resort to a slow software
implementation. [L,S]

Accumulation, stencil, overlay planes
Do not allocate accumulation, stencil or overlay planes if they are not needed. [all]

Be aware of the depth buffer's depth
Your OpenGL may support several different sizes of depth buffers- 16 and 24-bit for example. Shallower depth
buffers may be faster than deep buffers both for software and hardware implementations. However, the precision
of of a 16-bit depth buffer may not be sufficient for some applications. [L,S]

Transparency may be implemented with stippling instead of blending
If you need simple transparent objects consider using polygon stippling instead of alpha blending. The later is
typically faster and may actually look better in some situations. [L,S]

Group state changes together
Try to mimimize the number of GL state changes in your code. When GL state is changed, internal state may
have to be recomputed, introducing delays. [all]

Avoid using glPolygonMode
If you need to draw many polygon outlines or vertex points use glBegin with GL_POINTS, GL_LINES,
GL_LINE_LOOP or GL_LINE_STRIP instead as it can be much faster. [all]

3.7 Window System Integration

Minimize calls to the make current call
The glXMakeCurrent call, for example, can be expensive on hardware systems because the context switch may
involve moving a large amount of data in and out of the hardware.

Visual / pixel format performance
Some X visuals or pixel formats may be faster than others. On PCs for example, 24-bit color buffers may be
slower to read/write than 12 or 8-bit buffers. There is often a tradeoff between performance and quality of frame
buffer configurations. 12-bit color may not look as nice as 24 -bit color. A 16-bit depth buffer won't have the
precision of a 24-bit depth buffer.

The GLX_EXT_visual_rating extension can help you select visuals based on performance or quality. GLX
1.2's visual caveat attribute can tell you if a visual has a performance penalty associated with it.

It may be worthwhile to experiment with different visuals to determine if there's any advantage of one over
another.

Avoid mixing OpenGL rendering with native rendering
OpenGL allows both itself and the native window system to render into the same window. For this to be done
correctly synchronization is needed. The GLX glXWaitX and glXWaitGL functions serve this purpose.

Synchronization hurts performance. Therefore, if you need to render with both OpenGL and native window
system calls try to group the rendering calls to minimize synchronization.

For example, if you're drawing a 3-D scene with OpenGL and displaying text with X, draw all the 3-D elements
first, call glXWaitGL to synchronize, then call all the X drawing functions.

Don't redraw more than necessary
Be sure that you're not redrawing your scene unnecissarily. For example, expose/repaint events may come in
batches describing separate regions of the window which must be redrawn. Since one usually redraws the whole
window image with OpenGL you only need to respond to one expose/repaint event. In the case of X, look at the
count field of the XExposeEvent structure. Only redraw when it is zero.

Also, when responding to mouse motion events you should skip extra motion events in the input queue.
Otherwise, if you try to process every motion event and redraw your scene there will be a noticable delay between
mouse input and screen updates.

OpenGL Performance Optimization

Page 10 of 13

It can be a good idea to put a print statement in your redraw and event loop function so you know exactly what
messages are causing your scene to be redrawn, and when.

SwapBuffer calls and graphics pipe blocking
On systems with 3-D graphics hardware the SwapBuffers call is synchronized to the monitor's vertical retrace.
Input to the OpenGL command queue may be blocked until the buffer swap has completed. Therefore, don't put
more OpenGL calls immediately after SwapBuffers. Instead, put application computation instructions which can
overlap with the buffer swap delay.

3.8 Mesa-specific

Mesa is a free library which implements most of the OpenGL API in a compatible manner. Since it is a software library,
performance depends a great deal on the host computer. There are several Mesa-specific features to be aware of which
can effect performance.

Double buffering
The X driver supports two back color buffer implementations: Pixmaps and XImages. The
MESA_BACK_BUFFER environment variable controls which is used. Which of the two that's faster depends on
the nature of your rendering. Experiment.

X Visuals
As described above, some X visuals can be rendered into more quickly than others. The MESA_RGB_VISUAL
environment variable can be used to determine the quickest visual by experimentation.

Depth buffers
Mesa may use a 16 or 32-bit depth buffer as specified in the src/config.h configuration file. 16-bit depth buffers
are faster but may not offer the precision needed for all applications.

Flat-shaded primitives
If one is drawing a number of flat-shaded primitives all of the same color the glColor command should be put
before the glBegin call.

Don't do this:

 glBegin(...);
 glColor(...);
 glVertex(...);
 ...
 glEnd();

Do this:

 glColor(...);
 glBegin(...);
 glVertex(...);
 ...
 glEnd();

glColor*() commands
The glColor[34]ub[v] are the fastest versions of the glColor command.

Avoid double precision valued functions
Mesa does all internal floating point computations in single precision floating point. API functions which take
double precision floating point values must convert them to single precision. This can be expensive in the case of
glVertex, glNormal, etc.

4. Evaluation and Tuning

OpenGL Performance Optimization

Page 11 of 13

To maximize the performance of an OpenGL applications one must be able to evaluate an application to learn what is
limiting its speed. Because of the hardware involved it's not sufficient to use ordinary profiling tools. Several different
aspects of the graphics system must be evaluated.

Performance evaluation is a large subject and only the basics are covered here. For more information see "OpenGL on
Silicon Graphics Systems".

4.1 Pipeline tuning

The graphics system can be divided into three subsystems for the purpose of performance evaluation:

l CPU subsystem - application code which drives the graphics subsystem
l Geometry subsystem - transformation of vertices, lighting, and clipping
l Rasterization subsystem - drawing filled polygons, line segments and per-pixel processing

At any given time, one of these stages will be the bottleneck. The bottleneck must be reduced to improve performance.
The strategy is to isolate each subsystem in turn and evaluate changes in performance. For example, by decreasing the
workload of the CPU subsystem one can determine if the CPU or graphics system is limiting performance.

4.1.1 CPU subsystem

To isosulate the CPU subsystem one must reduce the graphics workload while presevering the application's execution
characteristics. A simple way to do this is to replace glVertex() and glNormal calls with glColor calls. If
performance does not improve then the CPU stage is the bottleneck.

4.1.2 Geometry subsystem

To isoslate the geometry subsystem one wants to reduce the number of primitives processed, or reduce the transformation
work per primitive while producing the same number of pixels during rasterization. This can be done by replacing many
small polygons with fewer large ones or by simply disabling lighting or clipping. If performance increases then your
application is bound by geometry/transformation speed.

4.1.3 Rasterization subsystem

A simple way to reduce the rasterization workload is to make your window smaller. Other ways to reduce rasterization
work is to disable per-pixel processing such as texturing, blending, or depth testing. If performance increases, your
program is fill limited.

After bottlenecks have been identified the techniques outlined in section 3 can be applied. The process of identifying and
reducing bottlenecks should be repeated until no further improvements can be made or your minimum performance
threshold has been met.

4.2 Double buffering

For smooth animation one must maintain a high, constant frame rate. Double buffering has an important effect on this.
Suppose your application needs to render at 60Hz but is only getting 30Hz. It's a mistake to think that you must reduce
rendering time by 50% to achive 60Hz. The reason is the swap-buffers operation is synchronized to occur during the
display's vertical retrace period (at 60Hz for example). It may be that your application is taking only a tiny bit too long to
meet the 1/60 second rendering time limit for 60Hz.

Measure the performance of rendering in single buffer mode to determine how far you really are from your target frame
rate.

4.3 Test on several implementations

The performance of OpenGL implementations varies a lot. One should measure performance and test OpenGL
applications on several different systems to be sure there are no unexpected problems.

OpenGL Performance Optimization

Page 12 of 13

Last edited on May 16, 1997 by Brian Paul.

OpenGL Performance Optimization

Page 13 of 13

Mark J. Kilgard
mjk@nvidia.com

NVIDIA Corporation

Copyright 1998, 1999 by Mark J. Kilgard.
Commercial publication in written, electronic, or other forms without expressed written permission is prohibited.

Electronic redistribution for educational or private use is permitted.

Every software engineer who has programmed long enough has a war story about some insidious bug that induced head
scratching, late night debugging, and probably even schedule delays. More often than we programmers care to admit, the
bug turns out to be self-inflicted. The difference between an experienced programmer and a novice is knowing the good
practices to use and the bad practices to avoid so those self-inflicted bugs are kept to a minimum.

A programming interface pitfall is a self-inflicted bug that is the result of a misunderstanding about how a particular
programming interface behaves. The pitfall may be the fault of the programming interface itself or its documentation, but it
is often simply a failure on the programmer's part to fully appreciate the interface's specified behavior. Often the same set
of basic pitfalls plagues novice programmers because they simply have not yet learned the intricacies of a new
programming interface.

You can learn about the programming interface pitfalls in two ways: The hard way and the easy way. The hard way is to
experience them one by one, late at night, and with a deadline hanging over your head. As a wise main once explained,
"Experience is a good teacher, but her fees are very high." The easy way is to benefit from the experience of others.

This is your opportunity to learn how to avoid 16 software pitfalls common to beginning and intermediate OpenGL
programmers. This is your chance to spend a bit of time reading now to avoid much grief and frustration down the line. I
will be honest; many of these pitfalls I learned the hard way instead of the easy way. If you program OpenGL seriously, I
am confident that the advice below will make you a better OpenGL programmer.

If you are a beginning OpenGL programmer, some of the discussion below might be about topics that you have not yet
encountered. This is not the place for a complete introduction to some of the more complex OpenGL topics covered such
as mipmapped texture mapping or OpenGL's pixel transfer modes. Feel free to simply skim over sections that may be too
advanced. As you develop as an OpenGL programmer, the advice will become more worthwhile.

1. Improperly Scaling Normals for Lighting

Enabling lighting in OpenGL is a way to make your surfaces appear more realistic. Proper use of OpenGL's lighting model
provides subtle clues to the viewer about the curvature and orientation of surfaces in your scene.

When you render geometry with lighting enabled, you supply normal vectors that indicate the orientation of the surface at
each vertex. Surface normals are used when calculating diffuse and specular lighting effects. For example, here is a single
rectangular patch that includes surface normals:

glBegin(GL_QUADS);
 glNormal3f(0.181636,-0.25,0.951057);
 glVertex3f(0.549,-0.756,0.261);
 glNormal3f(0.095492,-0.29389,0.95106);
 glVertex3f(0.288,-0.889,0.261);
 glNormal3f(0.18164,-0.55902,0.80902);
 glVertex3f(0.312,-0.962,0.222);
 glNormal3f(0.34549,-0.47553,0.80902);
 glVertex3f(0.594,-0.818,0.222);
glEnd();

The x, y, and z parameters for each glNormal3f call specify a direction vector. If you do the math, you will find that the
length of each normal vector above is essentially 1.0. Using the first glNormal3f call as an example, observe that:

sqrt(0.1816362 + -0.252 + 0.9510572) ≈ 1.0

For OpenGL's lighting equations to operate properly, the assumption OpenGL makes by default is that the normals passed
to it are vectors of length 1.0.

Avoiding 16 Common OpenGL Pitfalls

Avoiding 16 Common OpenGL Pitfalls

Page 1 of 16

However, consider what happens if before executing the above OpenGL primitive, glScalef is used to shrink or enlarge
subsequent OpenGL geometric primitives. For example:

glMatrixMode(GL_MODELVIEW);
glScalef(3.0, 3.0, 3.0);

The above call causes subsequent vertices to be enlarged by a factor of three in each of the x, y, and z directions by
scaling OpenGL's modelview matrix. glScalef can be useful for enlarging or shrinking geometric objects, but you must
be careful because OpenGL transforms normals using a version of the modelview matrix called the inverse transpose
modelview matrix. Any enlarging or shrinking of vertices during the modelview transformation also changes the length of
normals.

Here is the pitfall: Any modelview scaling that occurs is likely to mess up OpenGL's lighting equations. Remember, the
lighting equations assume that normals have a length of 1.0. The symptom of incorrectly scaled normals is that the lit
surfaces appear too dim or too bright depending on whether the normals enlarged or shrunk.

The simplest way to avoid this pitfall is by calling:

glEnable(GL_NORMALIZE);

This mode is not enabled by default because it involves several additional calculations. Enabling the mode forces OpenGL
to normalize transformed normals to be of unit length before using the normals in OpenGL's lighting equations. While this
corrects potential lighting problems introduced by scaling, it also slows OpenGL's vertex processing speed since
normalization requires extra operations, including several multiplies and an expensive reciprocal square root operation.
While you may argue whether this mode should be enabled by default or not, OpenGL's designers thought it better to
make the default case be the fast one. Once you are aware of the need for this mode, it is easy to enable when you know
you need it.

There are two other ways to avoid problems from scaled normals that may let you avoid the performance penalty of
enabling GL_NORMALIZE. One is simply to not use glScalef to scale vertices. If you need to scale vertices, try scaling
the vertices before sending them to OpenGL. Referring to the above example, if the application simply multiplied each
glVertex3f by 3, you could eliminate the need for the above glScalef without having the enable the GL_NORMALIZE
mode.

Note that while glScalef is problematic, you can safely use glTranslatef and glRotatef because these routines
change the modelview matrix transformation without introducing any scaling effects. Also, be aware that glMatrixMultf
can also be a source of normal scaling problems if the matrix you multiply by introduces scaling effects.

The other option is to adjust the normal vectors passed to OpenGL so that after the inverse transpose modelview
transformation, the resulting normal will become a unit vector. For example, if the earlier glScalef call tripled the vertex
coordinates, we could correct for this corresponding thirding effect on the transformed normals by pre-multiplying each
normal component by 3.

OpenGL 1.2 adds a new glEnable mode called GL_RESCALE_NORMAL that is potentially more efficient than the
GL_NORMALIZE mode. Instead of performing a true normalization of the transformed normal vector, the transformed
normal vector is scaled based on a scale factor computed from the inverse modelview matrixâs diagonal terms.
GL_RESCALE_NORMAL can be used when the modelview matrix has a uniform scaling factor.

2. Poor Tessellation Hurts Lighting

OpenGL's lighting calculations are done per-vertex . This means that the shading calculations due to light sources
interacting with the surface material of a 3D object are only calculated at the object's vertices. Typically, OpenGL just
interpolates or smooth shades between vertex colors. OpenGL's per-vertex lighting works pretty well except when a
lighting effect such as a specular highlight or a spotlight is lost or blurred because the effect is not sufficiently sampled by
an object's vertices. Such under -sampling of lighting effects occurs when objects are coarsely modeled to use a minimal
number of vertices.

Figure 1 shows an example of this problem. The top left and top right cubes each have an identically configured OpenGL
spotlight light source shining directly on each cube. The left cube has a nicely defined spotlight pattern; the right cube
lacks any clearly defined spotlight pattern. The key difference between the two models is the number of vertices used to
model each cube. The left cube models each surface with over 120 distinct vertices; the right cube has only 4 vertices.

Avoiding 16 Common OpenGL Pitfalls

Page 2 of 16

Figure 1: Two cubes rendered with identical OpenGL spotlight enabled.
(The lines should all be connected but are not due to resampling in the image above.)

At the extreme, if you tessellate the cube to the point that each polygon making up the cube is no larger than a pixel, the
lighting effect will essentially become per -pixel. The problem is that the rendering will probably no longer be interactive.
One good thing about per-vertex lighting is that you decide how to trade off rendering speed for lighting fidelity.

Smooth shading between lit vertices helps when the color changes are gradual and fairly linear. The problem is that
effects such as spotlights, specular highlights, and non-linear light source attenuation are often not gradual. OpenGL's
lighting model only does a good job capturing these effects if the objects involved are reasonably tessellated.

Novice OpenGL programmers are often tempted to enable OpenGL's spotlight functionality and shine a spotlight on a wall
modeled as a single huge polygon. Unfortunately, no sharp spotlight pattern will appear as the novice intended; you
probably will not see any spotlight affect at all. The problem is that the spotlight's cutoff means that the extreme corners of
the wall where the vertices are specified get no contribution from the spotlight and since those are the only vertices the
wall has, there will be no spotlight pattern on the wall.

If you use spotlights, make sure that you have sufficiently tessellated the lit objects in your scene with enough vertices to
capture the spotlight effect. There is a speed/quality tradeoff here: More vertices mean better lighting effects, but also
increases the amount of vertex transformation required to render the scene.

Specular highlights (such as the bright spot you often see on a pool ball) also require sufficiently tessellated objects to
capture the specular highlight well.

Keep in mind that if you use more linear lighting effects such as ambient and diffuse lighting effects where there are
typically not sharp lighting changes, you can get good lighting effects with even fairly coarse tessellation.

If you do want both high quality and high -speed lighting effects, one option is to try using multi-pass texturing techniques
to texture specular highlights and spotlight patterns onto objects in your scene. Texturing is a per -fragment operation so
you can correctly capture per -fragment lighting effects. This can be involved, but such techniques can deliver fast, high-
quality lighting effects when used effectively.

3. Remember Your Matrix Mode

OpenGL has a number of 4 by 4 matrices that control the transformation of vertices, normals, and texture coordinates. The
core OpenGL standard specifies the modelview matrix, the projection matrix, and the texture matrix.

Avoiding 16 Common OpenGL Pitfalls

Page 3 of 16

Most OpenGL programmers quickly become familiar with the modelview and projection matrices. The modelview matrix
controls the viewing and modeling transformations for your scene. The projection matrix defines the view frustum and
controls the how the 3D scene is projected into a 2D image. The texture matrix may be unfamiliar to some; it allows you to
transform texture coordinates to accomplish effects such as projected textures or sliding a texture image across a
geometric surface.

A single set of matrix manipulation commands controls all types of OpenGL matrices: glScalef, glTranslatef,
glRotatef, glLoadIdentity, glMultMatrixf, and several other commands. For efficient saving and restoring of
matrix state, OpenGL provides the glPushMatrix and glPopMatrix commands; each matrix type has its own a stack
of matrices.

None of the matrix manipulation commands have an explicit parameter to control which matrix they affect. Instead,
OpenGL maintains a current matrix mode that determines which matrix type the previously mentioned matrix manipulation
commands actually affects. To change the matrix mode, use the glMatrixMode command. For example:

glMatrixMode(GL_PROJECTION);
/* Now update the projection matrix. */
glLoadIdentity();
glFrustum(-1, 1, -1, 1, 0.0, 40.0);
glMatrixMode(GL_MODELVIEW);
/* Now update the modelview matrix. */
glPushMatrix();
 glRotatef(45.0, 1.0, 1.0, 1.0);
 render();
glPopMatrix();

A common pitfall is forgetting the current setting of the matrix mode and performing operations on the wrong matrix stack.
If later code assumes the matrix mode is set to a particular state, you both fail to update the matrix you intended and
screw up whatever the actual current matrix is.

If this can trip up the unwary programmer, why would OpenGL have a matrix mode? Would it not make sense for each
matrix manipulation routine to also pass in the matrix that it should manipulate? The answer is simple: lower overhead.
OpenGL's design optimizes for the common case. In real programs, matrix manipulations occur more often than matrix
mode changes. The common case is a sequence of matrix operations all updating the same matrix type. Therefore, typical
OpenGL usage is optimized by controlling which matrix is manipulated based on the current matrix mode. When you call
glMatrixMode, OpenGL configures the matrix manipulation commands to efficiently update the current matrix type. This
saves time compared to deciding which matrix to update every time a matrix manipulation is performed.

In practice, because a given matrix type does tend to be updated repeatedly before switching to a different matrix, the
lower overhead for matrix manipulation more than makes up for the programmer's burden of ensuring the matrix mode is
properly set before matrix manipulation.

A simple program-wide policy for OpenGL matrix manipulation helps avoid pitfalls when manipulating matrices. Such a
policy would require any code manipulating a matrix to first call glMatrixMode to always update the intended matrix.
However in most programs, the modelview matrix is manipulated quite frequently during rendering and the other matrices
change considerably less frequently overall. If this is the case, a better policy is that routines can assume the matrix mode
is set to update the modelview matrix. Routines that need to update a different matrix are responsible to switch back to the
modelview matrix after manipulating one of the other matrices.

Here is an example of how OpenGL's matrix mode can get you into trouble. Consider a program written to keep a constant
aspect ratio for an OpenGL-rendered scene in a window. Maintaining the aspect ratio requires updating the projection
matrix whenever the window is resized. OpenGL programs typically also adjust the OpenGL viewport in response to a
window resize so the code to handle a window resize notification might look like this:

void
doResize(int newWidth, int newHieght)
{
 GLfloat aspectRatio = (GLfloat)newWidth / (GLfloat)newHeight;

 glViewport(0, 0, newWidth, newHeight);
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluPerspective(60.0, aspectRatio, 0.1, 40.0);
 /* WARNING: matrix mode left as projection! */
}

If this code fragment is from a typical OpenGL program, doResize is one of the few times or even only time the projection

Avoiding 16 Common OpenGL Pitfalls

Page 4 of 16

matrix gets changed after initialization. This means that it makes sense to add to a final glMatrixMode
(GL_MODELVIEW)call to doResize to switch back to the modelview matrix. This allows the window's redraw code safely
assume the current matrix mode is set to update the modelview matrix and eliminate a call to glMatrixMode. Since
window redraws often repeatedly update the modelview matrix, and redraws occur considerably more frequently than
window resizes, this is generally a good approach.

A tempting approach might be to call glGetIntegerv to retrieve the current matrix mode state and then only change the
matrix mode when it was not what you need it to be. After performing its matrix manipulations, you could even restore the
original matrix mode state.

This is however almost certainly a bad approach. OpenGL is designed for fast rendering and setting state; retrieving
OpenGL state is often considerably slower than simply setting the state the way you require. As a rule, glGetIntegerv
and related state retrieval routines should only be used for debugging or retrieving OpenGL implementation limits. They
should never be used in performance critical code. On faster OpenGL implementations where much of OpenGL's state is
maintained within the graphics hardware, the relative cost of state retrieval commands is considerably higher than in
largely software-based OpenGL implementations. This is because state retrieval calls must stall the graphics hardware to
return the requested state. When users run OpenGL programs on high-performance expensive graphics hardware and do
not see the performance gains they expect, in many cases the reason is invocations of state retrieval commands that end
up stalling the hardware to retrieve OpenGL state.

In cases where you do need to make sure that you restore the previous matrix mode after changing it, try using
glPushAttrib with the GL_TRANSFORM_BIT bit set and then use glPopAttrib to restore the matrix mode as needed.
Pushing and popping attributes on the attribute stack can be more efficient than reading back the state and later restoring
it. This is because manipulating the attribute stack can completely avoid stalling the hardware if the attribute stack exists
within the hardware. Still the attribute stack is not particularly efficient since all the OpenGL transform state (including
clipping planes and the normalize flag) must also be pushed and popped.

The advice in this section is focused on the matrix mode state, but pitfalls that relate to state changing and restoring are
common in OpenGL. OpenGL's explicit state model is extremely well suited to the stateful nature of graphics hardware,
but can be an unwelcome burden for programmers not used to managing graphics state. With a little experience though,
managing OpenGL state becomes second nature and helps ensure good hardware utilization.

The chief advantage of OpenGL's stateful approach is that well-written OpenGL rendering code can minimize state
changes so that OpenGL can maximize rendering performance. A graphics- interface that tries to hide the inherently
stateful nature of well-designed graphics hardware ends up either forcing redundant state changes or adds extra overhead
by trying to eliminate such redundant state changes. Both approaches give up performance for convenience. A smarter
approach is relying on the application or a high-level graphics library to manage graphics state. Such a high -level
approach is typically more efficient in its utilization of fast graphics hardware when compared to attempts to manage
graphics state in a low-level library without high-level knowledge of how the operations are being used.

If you want more convenient state management, consider using a high-level graphics library such as Open Inventor or
IRIS Performer that provide both a convenient programming model and efficient high-level management of OpenGL state
changes.

4. Overflowing the Projection Matrix Stack

OpenGL's glPushMatrix and glPopMatrix commands make it very easy to perform a set of cumulative matrix
operations, do rendering, and then restore the matrix state to that before the matrix operations and rendering. This is very
handy when doing hierarchical modeling during rendering operations.

For efficiency reasons and to permit the matrix stacks to exist within dedicated graphics hardware, the size of OpenGL's
various matrix stacks are limited. OpenGL mandates that all implementations must provide at least a 32-entry modelview
matrix stack, a 2-entry projection matrix stack, and a 2-entry texture matrix stack. Implementations are free to provide
larger stacks, and glGetIntergerv provides a means to query an implementation's actual maximum depth.

Calling glPushMatrix when the current matrix mode stack is already at its maximum depth generates a
GL_STACK_UNDERFLOW error and the responsible glPushMatrix is ignored. OpenGL applications guaranteed to run
correctly on all OpenGL implementations should respect the minimum stack limits cited above (or better yet, query the
implementation's true stack limit and respect that).

This can become a pitfall when software-based OpenGL implementations implement stack depth limits that exceed the
minimum limits. Because these stacks are maintained in general purpose memory and not within dedicated graphics
hardware, there is no substantial expense to permitting larger or even unlimited matrix stacks as there is when the matrix
stacks are implemented in dedicated hardware. If you write your OpenGL program and test it against such
implementations with large or unlimited stack sizes, you may not notice that you exceeded a matrix stack limit that would
exist on an OpenGL implementation that only implemented OpenGL's mandated minimum stack limits.

Avoiding 16 Common OpenGL Pitfalls

Page 5 of 16

The 32 required modelview stack entries will not be exceeded by most applications (it can still be done so be careful).
However, programmers should be on guard not to exceed the projection and texture matrix stack limits since these stacks
may have as few as 2 entries. In general, situations where you actually need a projection or texture matrix that exceed two
entries are quite rare and generally avoidable.

Consider this example where an application uses two projection matrix stack entries for updating a window:

void
renderWindow(void)
{
 render3Dview();
 glPushMatrix();
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 glMatrixMode(GL_PROJECTION);
 glPushMatrix();
 glLoadIdentity();
 gluOrtho2D(0, 1, 0, 1);
 render2Doverlay();
 glPopMatrix();
 glPopMatrix();
 glMatrixMode(GL_MODELVIEW);
}

The window renders a 3D scene with a 3D perspective projection matrix (initialization not shown), then switches to a
simple 2D orthographic projection matrix to draw a 2D overlay.

Be careful because if the render2Doverlay tries to push the projection matrix again, the projection matrix stack will
overflow on some machines. While using a matrix push, cumulative matrix operations, and a matrix pop is a natural means
to accomplish hierarchical modeling, the projection and texture matrices rarely require this capability. In general, changes
to the projection matrix are to switch to an entirely different view (not to make a cumulative matrix change to later be
undone). A simple matrix switch (reload) does not need a push and pop stack operation.

If you find yourself attempting to push the projection or texture matrices beyond two entries, consider if there is a simpler
way to accomplish your manipulations that will not overflow these stacks. If not, you are introducing a latent interoperability
problem when you program is run on high-performance hardware-intensive OpenGL implementations that implement
limited projection and texture matrix stacks.

5. Not Setting All Mipmap Levels

When you desire high-quality texture mapping, you will typically specify a mipmapped texture filter. Mipmapping lets you
specify multiple levels of detail for a texture image. Each level of detail is half the size of the previous level of detail in each
dimension. So if your initial texture image is an image of size 32x32, the lower levels of detail will be of size 16x16, 8x8,
4x4, 2x2, and 1x1. Typically, you use the gluBuild2DMipmaps routine to automatically construct the lower levels of
details from you original image. This routine re-samples the original image at each level of detail so that the image is
available at each of the various smaller sizes.

Mipmap texture filtering means that instead of applying texels from a single high -resolution texture image, OpenGL
automatically selects from the best pre-filtered level of detail. Mipmapping avoids distracting visual artifacts that occur
when a distant textured object under-samples its associated texture image. With a mipmapped minimization filter enabled,
instead of under-sampling a single high resolution texture image, OpenGL will automatically select the most appropriate
levels of detail.

One pitfall to be aware of is that if you do not specify every necessary level of detail, OpenGL will silently act as if texturing
is not enabled. The OpenGL specification is very clear about this: "If texturing is enabled (and TEXTURE_MIN_FILTER is
one that requires a mipmap) at the time a primitive is rasterized and if the set of arrays 0 through n is incomplete, based
on the dimensions of array 0, then it is as if texture mapping were disabled."

The pitfall typically catches you when you switch from using a non -mipmapped texture filter (like GL_LINEAR) to a
mipmapped filter, but you forget to build complete mipmap levels. For example, say you enabled non -mipmapped texture
mapping like this:

glEnable(GL_TEXTURE_2D);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexImage2D(GL_TEXTURE_2D, 3, width, height, GL_RGB, GL_UNSIGNED_BYTE,
imageData);

Avoiding 16 Common OpenGL Pitfalls

Page 6 of 16

At this point, you could render non-mipmapped textured primitives. Where you could get tripped up is if you naively simply
enabled a mipmapped minification filter. For example:

glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);

The problem is that you have changed the minification filter, but not supplied a complete set of mipmap levels. Not only do
you not get the filtering mode you requested, but also subsequent rendering happens as if texture mapping were not even
enabled.

The simple way to avoid this pitfall is to use gluBuild2DMipmaps (or gluBuild1DMipmaps for 1D texture mapping)
whenever you are planning to use a mipmapped minification filter. So this works:

glEnable(GL_TEXTURE_2D);
glTexParameterf(GL_TEXTURE_2D,
GL_TEXTURE_MIN_FILTER,
GL_LINEAR_MIPMAP_LINEAR);
gluBuild2DMipmaps(GL_TEXTURE_2D, depth, width, height, GL_RGB,
GL_UNSIGNED_BYTE, imageData);

The above code uses a mipmap filter and uses gluBuild2DMipmaps to make sure all the levels are populated correctly.
Subsequent rendering is not just textured, but properly uses mipmapped filtering.

Also, understand that OpenGL considers the mipmap levels incomplete not simply because you have not specified all the
mipmap levels, but also if the various mipmap levels are inconsistent. This means that you must consistently specify
border pixels and each successive level must be half the size of the previous level in each dimension.

6. Reading Back Luminance Pixels

You can use OpenGL's glReadPixels command to read back rectangular regions of a window into your program's
memory space. While reading back a color buffer as RGB or RGBA values is straightforward, OpenGL also lets you read
back luminance values, but it can a bit tricky to get what you probably expect. Retrieving luminance values is useful if you
want to generate a grayscale image.

When you read back luminance values, the conversion to luminance is done as a simple addition of the distinct red, green,
and blue components with result clamped between 0.0 and 1.0. There is a subtle catch to this. Say the pixel you are
reading back is 0.5 red, 0.5 green, and 0.5 blue. You would expect the result to then be a medium gray value. However,
just adding these components would give 1.5 that would be clamped to 1.0. Instead of being a luminance value of 0.5, as
you would expect, you get pure white.

A naive reading of luminance values results in a substantially brighter image than you would expect with a high likelihood
of many pixels being saturated white.

The right solution would be to scale each red, green, and blue component appropriately. Fortunately, OpenGL's pixel
transfer operations allow you to accomplish this with a great deal of flexibility. OpenGL lets you scale and bias each
component separately when you send pixel data through OpenGL.

For example, if you wanted each color component to be evenly averaged during pixel read back, you would change
OpenGL's default pixel transfer state like this:

glPixelTransferf(GL_RED_SCALE,0.3333);
glPixelTransferf(GL_GREEN_SCALE,0.3334);
glPixelTransferf(GL_BLUE_SCALE,0.3333);

With OpenGL's state set this way, glReadPixels will have cut each color component by a third before adding the
components during luminance conversion. In the previous example of reading back a pixel composed of 0.5 red, 0.5
green, and 0.5 blue, the resulting luminance value is 0.5.

However, as you may be aware, your eye does not equally perceive the contribution of the red, green, and blue color
components. A standard linear weighting for combining red, green, and blue into luminance was defined by the National
Television Standard Committee (NTSC) when the US color television format was standardized. These weightings are
based on the human eye's sensitivity to different wavelengths of visible light and are based on extensive research. To set
up OpenGL to convert RGB to luminance according to the NTSC standard, you would change OpenGL's default pixel
transfer state like this:

glPixelTransferf(GL_RED_SCALE, 0.299);

Avoiding 16 Common OpenGL Pitfalls

Page 7 of 16

glPixelTransferf(GL_GREEN_SCALE, 0.587);
glPixelTransferf(GL_BLUE_SCALE, 0.114);

If you are reading back a luminance version of an RGB image that is intended for human viewing, you probably will want
to use the NTSC scale factors.

Something to appreciate in all this is how OpenGL itself does not mandate a particular scale factor or bias for combining
color components into a luminance value; instead, OpenGL's flexible pixel path capabilities give the application control.
For example, you could easily read back a luminance image where you had suppressed any contribution from the green
color component if that was valuable to you by setting the green pixel transfer scale to be 0.0 and re-weighting red and
blue appropriately.

You could also use the biasing capability of OpenGL's pixel transfer path to enhance the contribution of red in your image
by adding a bias like this:

glPixelTransferf(GL_RED_BIAS, 0.1);

That will add 0.1 to each red component as it is read back.Please note that the default scale factor is 1.0 and the default
bias is 0.0. Also be aware that these same modes are not simply used for the luminance read back case, but all pixel or
texture copying, reading, or writing. If you program changes the scales and biases for reading luminance values, it will
probably want to restore the default pixel transfer modes when downloading textures.

7. Watch Your Pixel Store Alignment

OpenGL's pixel store state controls how a pixel rectangle or texture is read from or written to your application's memory.
Consider what happens when you call glDrawPixels. You pass a pointer to the pixel rectangle to OpenGL. But how
exactly do pixels in your application's linear address space get turned into an image?

The answer sounds like it should be straightforward. Since glDrawPixels takes a width and height in pixels and a
(that implies some number of bytes per pixel), you could just assume the pixels were all packed in a tight array based on
the parameters passed to glDrawPixels. Each row of pixels would immediately follow the previous row.

In practice though, applications often need to extract a sub-rectangle of pixels from a larger packed pixel rectangle. Or for
performance reasons, each row of pixels is setup to begin on some regular byte alignment. Or the pixel data was read
from a file generated on a machine with a different byte order (Intel and DEC processors are little -endian; Sun, SGI, and
Motorola processors are big-endian).

Figure 2: Relationship of the image layout pixel store modes.

So OpenGL's pixel store state determines how bytes in your application's address space get unpacked from or packed to
OpenGL images. Figure 2 shows how the pixel state determines the image layout. In addition to the image layout, other
pixel store state determines the byte order and bit ordering for pixel data.

One likely source of surprise for OpenGL programmers is the default state of the GL_PACK_ALIGNMENT and
GL_UNPACK_ALIGNMENT values. Instead of being 1, meaning that pixels are packed into rows with no extra bytes
between rows, the actual default for these modes is 4.

Avoiding 16 Common OpenGL Pitfalls

Page 8 of 16

Say that your application needs to read back an 11 by 8 pixel area of the screen as RGB pixels (3

bytes per pixel, one byte per color component). The following glReadPixels call would read the pixels:

glReadPixels(x, y, 11, 8, GL_RGB, GL_UNSIGNED_BYTE, pixels);

How large should the pixels array need to be to store the image? Assume that the GL_UNPACK_ALIGNMENT state is still 4
(the initial value). Naively, your application might call:

pixels = (GLubyte*) malloc(3 * 11 * 8); /* Wrong! */

Unfortunately, the above code is wrong since it does not account for OpenGL's default 4-byte row alignment. Each row of
pixels will be 33 bytes wide, but then each row is padded to be 4 byte aligned. The effective row width in bytes is then 36.
The above malloc call will not allocate enough space; the result is that glReadPixels will write several pixels beyond
the allocated range and corrupt memory.

With a 4 byte row alignment, the actual space required is not simply BytesPerPixel × Width × Height, but instead
((BytesPerPixel × Width + 3) >> 2) << 2) × Height. Despite the fact that OpenGL's initial pack and unpack alignment state
is 4, most programs should not use a 4 byte row alignment and instead request that OpenGL tightly pack and unpack pixel
rows. To avoid the complications of excess bytes at the end of pixel rows for alignment, change OpenGL's row alignment
state to be "tight" like this:

glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
glPixelStorei(GL_PACK_ALIGNMENT, 1);

Be extra cautious when your program is written assuming a 1 byte row alignment because bugs caused by OpenGL's
initial 4 byte row alignment can easily go unnoticed. For example, if such a program is tested only with images and
textures of width divisible by 4, no memory corruption problem is noticed since the test images and textures result in a
tight row packing. And because lots of textures and images, by luck or design, have a width divisible by 4, such a bug can
easily slip by your testing. However, the memory corruption bug is bound to surface as soon as a customer tries to load a
37 pixel width image.

Unless you really want a row alignment of 4, be sure you change this state when using pixel rectangles, 2D and 1D
textures, bitmaps, and stipple patterns. And remember that there is a distinct pack and unpack row alignment.

8. Know Your Pixel Store State

Keep in mind that your pixel store state gets used for textures, pixel rectangles, stipple patterns, and bitmaps. Depending
on what sort of 2D image data you are passing to (or reading back from) OpenGL, you may need to load the pixel store
unpack (or pack) state.

Not properly configuring the pixel store state (as described in the previous section) is one common pitfall. Yet another
pitfall is changing the pixel store modes to those needed by a particular OpenGL commands and later issuing some other
OpenGL commands requiring the original pixel store mode settings. To be on the safe side, it is usually a good idea to
save and restore the previous pixel store modes when you need to change them.

Here is an example of such a save and restore. The following code saves the pixel store unpack modes:

GLint swapbytes, lsbfirst, rowlength, skiprows, skippixels, alignment;

/* Save current pixel store state. */
glGetIntegerv(GL_UNPACK_SWAP_BYTES, &swapbytes);
glGetIntegerv(GL_UNPACK_LSB_FIRST, &lsbfirst);
glGetIntegerv(GL_UNPACK_ROW_LENGTH, &rowlength);
glGetIntegerv(GL_UNPACK_SKIP_ROWS, &skiprows);
glGetIntegerv(GL_UNPACK_SKIP_PIXELS, &skippixels);
glGetIntegerv(GL_UNPACK_ALIGNMENT, &alignment);

/* Set desired pixel store state. */
glPixelStorei(GL_UNPACK_SWAP_BYTES, GL_FALSE);
glPixelStorei(GL_UNPACK_LSB_FIRST, GL_FALSE);
glPixelStorei(GL_UNPACK_ROW_LENGTH, 0);
glPixelStorei(GL_UNPACK_SKIP_ROWS, 0);
glPixelStorei(GL_UNPACK_SKIP_PIXELS, 0);

Avoiding 16 Common OpenGL Pitfalls

Page 9 of 16

glPixelStorei(GL_UNPACK_ALIGNMENT, 1);

Then, this code restores the pixel store unpack modes:

/* Restore current pixel store state. */
glPixelStorei(GL_UNPACK_SWAP_BYTES, swapbytes);
glPixelStorei(GL_UNPACK_LSB_FIRST, lsbfirst);
glPixelStorei(GL_UNPACK_ROW_LENGTH, rowlength);
glPixelStorei(GL_UNPACK_SKIP_ROWS, skiprows);
glPixelStorei(GL_UNPACK_SKIP_PIXELS, skippixels);
glPixelStorei(GL_UNPACK_ALIGNMENT, alignment);

Similar code could be written to save and restore OpenGL's pixel store pack modes (change UNPACK to PACK in the code
above).

With OpenGL 1.1, the coding effort to save and restore these modes is simpler. To save, the pixel store state, you can
call:

glPushClientAttrib(GL_CLIENT_PIXEL_STORE_BIT);

Then, this code restores the pixel store unpack modes:

glPopClientAttrib(GL_CLIENT_PIXEL_STORE_BIT);

The above routines (introduced in OpenGL 1.1) save and restore the pixel store state by pushing and popping the state
using a stack maintained within the OpenGL library.

Observant readers may wonder why glPushClientAttrib is used instead of the shorter glPushAttrib routine. The
answer involves the difference between OpenGL client-side and server-side state. It is worth clearly understanding the
practical considerations that surround the distinction between OpenGL's server-side and client-side state.

There is not actually the option to use glPushAttrib to push the pixel store state because glPushAttrib and
glPopAttrib only affects the server -state attribute stack and the pixel pack and unpack pixel store state is client-side
OpenGL state.

Think of your OpenGL application as a client of the OpenGL rendering service provided by the host computer's OpenGL
implementation.

The pixel store modes are client-side state. However, most of OpenGL's state is server-side. The term server-side state
refers to the fact that the state actually resides within the OpenGL implementation itself, possibly within the graphics
hardware itself. Server-side OpenGL state is concerned with how OpenGL commands are rendered, but client-side
OpenGL state is concerned with how image or vertex data is extracted from the application address space.

Server-side OpenGL state is often expensive to retrieve because the state may reside only within the graphics hardware.
To return such hardware-resident state (for example with glGetIntegerv) requires all preceding graphics commands to
be issued before the state is retrievable. While OpenGL makes it possible to read back nearly all OpenGL server-side
state, well-written programs should always avoid reading back OpenGL server-side state in performance sensitive
situations.

Client-side state however is not state that will ever reside only within the rendering hardware. This means that using
glGetIntegerv to read back pixel store state is relatively inexpensive because the state is client-side. This is why the
above code that explicitly reads back each pixel store unpack mode can be recommended. Similar OpenGL code that tried
to save and restore server-side state could severely undermine OpenGL rendering performance.

Consider that whether it is better to use glGetIntegerv and glPixelStorei to explicitly save and restore the modes
or whether you use OpenGL 1.1's glPushClientAttrib and glPopClientAttrib will depend on your situation.
When pushing and popping the client attribute stack, you do have to be careful not to overflow the stack. An advantage to
pushing and popping the client attribute state is that both the pixel store and vertex array client-side state can be pushed
or popped with a single call. Still, you may find that only the pack or only the unpack modes need to be saved and restored
and sometimes only one or two of the modes. If that is the case, an explicit save and restore may be faster.

9. Careful Updating that Raster Position

OpenGL's raster position determines where pixel rectangles and bitmaps will be rasterized. The glRasterPos2f family

Avoiding 16 Common OpenGL Pitfalls

Page 10 of 16

of commands specifies the coordinates for the raster position. The raster position gets transformed just as if it was a
vertex. This symmetry makes it easy to position images or text within a scene along side 3D geometry. Just like a vertex,
the raster position is logically an (x,y,z,w) coordinate. It also means that when the raster position is specified, OpenGLâs
modelview and projection matrix transformations, lighting, clipping, and even texture coordinate generation are all
performed on the raster position vertex in exactly the same manner as a vertex coordinate passed to OpenGL via
glVertex3f.

While this is all very symmetric, it rarely if ever makes sense to light or generate a texture coordinate for the raster
position. It can even be quite confusing when you attempt to render a bitmap based on the current color and find out that
because lighting is enabled, the bitmap color gets determined by lighting calculations. Similarly, if you draw a pixel
rectangle with texture mapping enabled, your pixel rectangle may end up being modulated with the single texel determined
by the current raster texture coordinate.

Still another symmetric, but generally unexpected result of OpenGL's identical treatment of vertices and the raster position
is that, just like a vertex, the raster position can be clipped. This means if you specify a raster position outside (even
slightly outside) the view frustum, the raster position is clipped and marked "invalid". When the raster position is invalid,
OpenGL simply discards the pixel data specified by the glBitmap, glDrawPixels, and glCopyPixls commands.

Figure 3: The enclosing box represents the view frustum and viewport. Each line of text is preceded by a dot indicating where
the raster position is set before rendering the line of text. The dotted underlining shows the pixels that will actually be

rasterized from each line of text. Notice that none of the pixels in the lowest line of text are rendered because the line's raster
position is invalid.

Consider how this can surprise you. Say you wanted to draw a string of text with each character rendered with glBitmap.
Figure 3 shows a few situations. The point to notice is that the text renders as expected in the first two cases, but in the
last case, the raster position's placement is outside the view frustum so no pixels from the last text string are drawn.

It would appear that there is no way to begin rendering of a string of text outside the bounds of the viewport and view
frustum and render at least the ending portion of the string. There is a way to accomplish what you want; it is just not very
obvious. The glBitmap command both draws a bitmap and then offsets the raster position in relative window
coordinates. You can render the final line of text if you first position the raster position within the view frustum (so that the
raster position is set valid), and then you offset the raster position by calling glBitmap with relative raster position offsets.
In this case, be sure to specify a zero-width and zero-height bitmap so no pixels are actually rendered.

Here is an example of this:

glRasterPos2i(0, 0);
glBitmap(0, 0, 0, 0, xoffset, yoffset, NULL);
drawString("Will not be clipped.");

This code fragment assumes that the glRasterPos2i call will validate the raster position at the origin. The code to setup
the projection and modelview matrix to do that is not show (setting both matrices to the identity matrix would be sufficient).

Avoiding 16 Common OpenGL Pitfalls

Page 11 of 16

Figure 4: Various raster position scenarios. A, raster position is within the view frustum and the image is totally with the
viewport. B, raster position is within the view frustum but the image is only partially within the viewport; still fragments are

generated outside the viewport. C, raster position is invalid (due to being placed outside the view frustum); no pixels are
rasterized. D, like case B except glPixelZoom(1,-1) has inverted the Y pixel rasterization direction so the image renders

top to bottom.

10. The Viewport Does Not Clip or Scissor

It is a very common misconception that pixels cannot be rendered outside the OpenGL viewport. The viewport is often
mistaken for a type of scissor. In fact, the viewport simply defines a transformation from normalized device coordinates
(that is, post-projection matrix coordinates with the perspective divide applied) to window coordinates. The OpenGL
specification makes no mention of clipping or culling when describing the operation of OpenGL âs viewport.

Part of the confusion comes from the fact that, most of the time, the viewport is set to be the windowâs rectangular extent
and pixels are clipped to the windowâs rectangular extent. But do not confuse window ownership clipping with anything
the viewport is doing because the viewport does not clip pixels.

Another reason that it seems like primitives are clipped by the viewport is that vertices are indeed clipped against the view
frustum. OpenGLâs view frustum clipping does guarantee that no vertex (whether belonging to a geometric primitive or the
raster position) can fall outside the viewport.

So if vertices cannot fall outside the view frustum and hence cannot be outside the viewport, how do pixels get rendered
outside the viewport? Might it be an idle statement to say that the viewport does not act as a scissor if indeed you cannot
generate pixels outside the viewport? Well, you can generate fragments that fall outside the viewport rectangle so it is not
an idle statement.

The last section has already hinted at one way. While the raster position vertex must be specified to be within the view
frustum to validate the raster position, once valid, the raster position (the state of which is maintained in window
coordinates) can be moved outside the viewport with the glBitmap callâs raster position offset capability. But you do not
even have to move the raster position outside the viewport to update pixels outside of the viewport rectangle. You can just
render a large enough bitmap or image so that the pixel rectangle exceeds the extent of the viewport rectangle. Figure 4
demonstrates image rendering outside the viewport.

The other case where fragments can be generated outside the viewport is when rasterizing wide lines and points or
smooth points, lines, and polygons. While the actual vertices for wide and smooth primitives will be clipped to fall within
the viewport during transformation, at rasterization time, the widened rasterization footprint of wide or smooth primitives
may end up generating fragments outside the boundaries of the viewport rectangle.

Indeed, this can turn into a programming pitfall. Say your application renders a set of wide points that slowly wander
around on the screen. Your program configures OpenGL like this:

glViewport(0, 0, windowWidth, windowHeight);
glLineWidth(8.0);

What happens when a point slowly slides off the edge of the window? If the viewport matches the windowâs extents as
indicated by the glViewport call above, you will notice that a point will disappear suddenly at the moment its center is
outside the window extent. If you expected the wide point to gradually slide of the screen, that is not what happens!

Avoiding 16 Common OpenGL Pitfalls

Page 12 of 16

Keep in mind that the extra pixels around a wide or antialiased point are generated at rasterization time, but if the pointâs
vertex (at its center) is culled during vertex transformation time due to view frustum clipping, the widened rasterization
never happens. You can fix the problem by widening the viewport to reflect the fact that a pointâs edge can be up to four
pixels (half of 8.0) from the pointâs center and still generate fragments within the window âs extent. Change the
glViewport call to:

glViewport(-4, -4, windowWidth+4, windowHeight+4);

With this new viewport, wide points can still be rasterized even if the hang off the window edge. Note that this will also
slightly narrow your rectangular region of view, so if you want the identical view as before, you need to compensate by
also expanding the view frustum specified by the projection matrix.

Note that if you really do require a rectangular 2D scissor in your application, OpenGL does provide a true window space
scissor. See glEnable(GL_SCISSOR_TEST)andglScissor.

10. Setting the Raster Color

Before you specify a vertex, you first specify the normal, texture coordinate, material, and color and then only when
glVertex3f (or its ilk) is called will a vertex actually be generated based on the current per -vertex state. Calling
glColor3f just sets the current color state. glColor3f does not actually create a vertex or any perform any rendering.
The glVertex3f call is what binds up all the current per-vertex state and issues a complete vertex for transformation.

The raster position is updated similarly. Only when glRasterPos3f (or its ilk) is called does all the current per -vertex
state get transformed and assigned to the raster position.

A common pitfall is attempting to draw a string of text with a series of glBitmap calls where different characters in the
string are different colors. For example:

 glColor3f(1.0, 0.0, 0.0); /* RED */
 glRasterPos2i(20, 15);
 glBitmap(w, h, 0, 0, xmove, ymove, red_bitmap);

glColor3f(0.0, 1.0, 0.0); /* GREEN */
glBitmap(w, h, 0, 0, xmove, ymove, green_bitmap);
/* WARNING: Both bitmaps render red. */

Unfortunately, glBitmapâs relative offset of the raster position just updates the raster position location. The raster color
(and the other remaining raster state values) remain unchanged.

The designers of OpenGL intentionally specified that glBitmap should not latch into place the current per-vertex state
when the raster position is repositioned by glBitmap. Repeated glBitmap calls are designed for efficient text rendering
with mono-chromatic text being the most common case. Extra processing to update per -vertex state would slow down the
intended most common usage for glBitmap.

If you do want to switch the color of bitmaps rendered with glBitmap, you will need to explicitly call glRasterPos3f (or
its ilk) to lock in a changed current color.

12. OpenGL's Lower Left Origin

Given a sheet of paper, people write from the top of the page to the bottom. The origin for writing text is at the upper left-
hand margin of the page (at least in European languages). However, if you were to ask any decent math student to plot a
few points on an X-Y graph, the origin would certainly be at the lower left-hand corner of the graph. Most 2D rendering
APIs mimic writers and use a 2D coordinate system where the origin is in the upper left-hand corner of the screen or
window (at least by default). On the other hand, 3D rendering APIs adopt the mathematically minded convention and
assume a lower left-hand origin for their 3D coordinate systems.

If you are used to 2D graphics APIs, this difference of origin location can trip you up. When you specify 2D coordinates in
OpenGL, they are generally based on a lower left-hand coordinate system. Keep this in mind when using glViewport,
glScissor, glRasterPos2i, glBitmap, glTexCoord2f, glReadPixels, glCopyPixels, glCopyTexImage2D,
glCopyTexSubImage2D, gluOrtho2D , and related routines.

Another common pitfall related to 2D rendering APIs having an upper left-hand coordinate system is that 2D image file
formats start the image at the top scan line, not the bottom scan line. OpenGL assumes images start at the bottom scan
line by default. If you do need to flip an image when rendering, you can use glPixelZoom(1,-1) to flip the image in the

Avoiding 16 Common OpenGL Pitfalls

Page 13 of 16

Y direction. Note that you can also flip the image in the X direction. Figure 4 demonstrates using glPixelZoom to flip an
image.

Note that glPixelZoom only works when rasterizing image rectangles with glDrawPixels or glCopyPixels. It does
not work with glBitmap or glReadPixels. Unfortunately, OpenGL does not provide an efficient way to read an image
from the frame buffer into memory starting with the top scan line.

13. Setting Your Raster Position to a Pixel Location

A common task in OpenGL programming is to render in window coordinates. This is often needed when overlaying text or
blitting images onto precise screen locations. Often having a 2D window coordinate system with an upper left-hand origin
matching the window systemâs default 2D coordinate system is useful.

Here is code to configure OpenGL for a 2D window coordinate system with an upper left-hand origin where w and h are
the windowâs width and height in pixels:

glViewport(0, 0, w, h);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(0, w, h, 0, -1, 1);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();

Note that the bottom and top parameters (the 3 rd and 4 th parameters) to glOrtho specify the window height as the top
and zero as the bottom . This flips the origin to put the origin at the windowâs upper left-hand corner.

Now, you can safely set the raster position at a pixel position in window coordinates like this

glVertex2i(x, y);
glRasterPos2i(x, y);

One pitfall associated with setting up window coordinates is that switching to window coordinates involves loading both the
modelview and projection matrices. If you need to "get back" to what was there before, use glPushMatrix and
glPopMatrix (but remember the pitfall about assuming the projection matrix stack has more than two entries).

All this matrix manipulation can be a lot of work just to do something like place the raster position at some window
coordinate. Brian Paul has implemented a freeware version of the OpenGL API called Mesa. Mesa implements an
OpenGL extension called MESA_window_pos that permits direct efficient setting of the raster position without disturbing
any other OpenGL state. The calls are:

glWindowPos4fMESA(x,y,z,w);
glWindowPos2fMESA(x,y)

Here is the equivalent implementation of these routines in unextended OpenGL:

void
glWindowPos4fMESAemulate(GLfloat x,GLfloat y,GLfloat z,GLfloat w)
{
 GLfloat fx, fy;

 /* Push current matrix mode and viewport attributes. */
 glPushAttrib(GL_TRANSFORM_BIT | GL_VIEWPORT_BIT);

 /* Setup projection parameters. */
 glMatrixMode(GL_PROJECTION);
 glPushMatrix();
 glLoadIdentity();
 glMatrixMode(GL_MODELVIEW);
 glPushMatrix();
 glLoadIdentity();
 glDepthRange(z, z);
 glViewport((int) x - 1, (int) y - 1, 2, 2);
 /* Set the raster (window) position. */
 fx = x - (int) x;

Avoiding 16 Common OpenGL Pitfalls

Page 14 of 16

 fy = y - (int) y;
 glRasterPos4f(fx, fy, 0.0, w);
 /* Restore matrices, viewport and matrix mode. */
 glPopMatrix();
 glMatrixMode(GL_PROJECTION);
 glPopMatrix();
 glPopAttrib();
}

void
glWindowPos2fMESAemulate(GLfloat x, GLfloat y)
{
 glWindowPos4fMESAemulate(x, y, 0, 1);
}

Note all the extra work the emulation routines go through to ensure that no OpenGL state is disturbed in the process of
setting the raster position. Perhaps commercial OpenGL vendors will consider implementing this extension.

14. Careful Enabling Color Material

OpenGL's color material feature provides a less expensive way to change material parameters. With color material
enabled, material colors track the current color. This means that instead of using the relatively expensive glMaterialfv
routine, you can use the glColor3f routine.

Here is an example using the color material feature to change the diffuse color for each vertex of a triangle:

glColorMaterial(GL_FRONT, GL_DIFFUSE);
glEnable(GL_COLOR_MATERIAL);
glBegin(GL_TRIANGLES);
 glColor3f(0.2, 0.5, 0.8);
 glVertex3f(1.0, 0.0, 0.0);
 glColor3f(0.3, 0.5, 0.6);
 glVertex3f(0.0, 0.0, 0.0);
 glColor3f(0.4, 0.2, 0.2);
 glVertex3f(1.0, 1.0, 0.0);
glEnd();

Consider the more expensive code sequence needed if glMaterialfv is used explicitly:

GLfloat d1 = { 0.2, 0.5, 0.8, 1.0 };
GLfloat d2 = { 0.3, 0.5, 0.6, 1.0 };
GLfloat d3 = { 0.4, 0.2, 0.2, 1.0 };

glBegin(GL_TRIANGLES);
 glMaterialfv(GL_FRONT,GL_DIFFUSE,d1);
 glVertex3f(1.0, 0.0, 0.0);
 glMaterialfv(GL_FRONT,GL_DIFFUSE,d2);
 glVertex3f(0.0, 0.0, 0.0);
 glMaterialfv(GL_FRONT,GL_DIFFUSE,d3);
 glVertex3f(1.0, 1.0, 0.0);
glEnd();

If you are rendering objects that require frequent simple material changes, try to use the color material mode. However, there is a
common pitfall encountered when enabling the color material mode. When color material is enabled, OpenGL immediately changes
the material colors controlled by the color material state. Consider the following piece of code to initialize a newly create OpenGL
rendering context:

GLfloat a[] = { 0.1, 0.1, 0.1, 1.0 };
glColor4f(1.0, 1.0, 1.0, 1.0);

glMaterialfv(GL_FRONT, GL_AMBIENT, a);
glEnable(GL_COLOR_MATERIAL);
/* WARNING: Ambient and diffuse material latch immediately to the current
color. */
glColorMaterial(GL_FRONT, GL_DIFFUSE);
glColor3f(0.3, 0.5, 0.6);

Avoiding 16 Common OpenGL Pitfalls

Page 15 of 16

What state will the front ambient and diffuse material colors be after executing the above code fragment? While the
programmer may have intended the ambient material state to be (0.1, 0.1, 0.1, 1.0) and the diffuse material state to be
(0.3, 0.5, 0.6, 1.0), that is not quite what happens.

The resulting diffuse material state is what the programmer intended, but the resulting ambient material state is rather
unexpectedly (1.0, 1.0, 1.0, 1.0). How did that happen? Well, remember that the color material mode immediately begins
tracking the current color when enabled. The initial value for the color material settings is GL_FRONT_AND_BACK and
GL_AMBIENT_AND_DIFFUSE (probably not what you expected!).

Since enabling the color material mode immediately begins tracking the current color, both the ambient and diffuse
material states are updated to be (1.0, 1.0, 1.0, 1.0). Note that the effect of the initial glMaterialfv is lost. Next, the
color material state is updated to just change the front diffuse material. Lastly, the glColor3f invocation changes the
diffuse material to (0.3, 0.5, 0.6, 1.0). The ambient material state ends up being (1.0, 1.0, 1.0, 1.0).

The problem in the code fragment above is that the color material mode is enabled before calling glColorMaterial.
The color material mode is very effective for efficient simple material changes, but to avoid the above pitfall, always be
careful to set glColorMaterialbefore you enable GL_COLOR_MATERIAL.

15. Much OpenGL State Affects All Primitives

A fragment is OpenGLâs term for the bundle of state used to update a given pixel on the screen. When a primitive such as
a polygon or image rectangle is rasterized, the result is a set of fragments that are used to update the pixels that the
primitive covers. Keep in mind that all OpenGL rendering operations share the same set of per-fragment operations. The
same applies to OpenGLâs fog and texturing rasterization state.

For example, if you enabled depth testing and blending when you render polygons in your application, keep in mind that
when you overlay some 2D text indicating the applicationâs status that you probably want to disable depth testing and
blending. It is easy to forget that this state also affects images drawn and copied with glDrawPixels and
glCopyPixels.

You will quickly notice when this shared state screws up your rendering, but also be aware that sometimes you can leave
a mode enabled such as blending without noticing the extra expense involved. If you draw primitives with a constant alpha
of 1.0, you may not notice that the blending is occurring and simply slowing you down.

This issue is not unique to the per-fragment and rasterization state. The pixel path state is shared by the draw pixels
(glDrawPixels), read pixels (glReadPixels), copy pixels (glCopyPixels), and texture download (glTexImage2D)
paths. If you are not careful, it is easy to get into situations where a texture download is screwed up because the pixel path
was left configured for a pixel read back.

16. Be Sure to Allocate Ancillary Buffers that You Use

If you intend to use an ancillary buffer such as a depth, stencil, or accumulation buffer, be sure that you application
actually requests all the ancillary buffers that you intend to use. A common interoperability issue is developing an OpenGL
application on a system with only a few frame buffer configurations that provide all the ancillary buffers that you use. For
example, your system has no frame buffer configuration that advertises a depth buffer without a stencil buffer. So on your
development system, you "get away with" not explicitly requesting a stencil buffer.

The problem comes when you take your supposedly debugged application and run it on a new fancy hardware
accelerated OpenGL system only to find out that the application fails miserably when attempting to use the stencil buffer.
Consider that the fancy hardware may support extra color resolution if you do not request a stencil buffer. If you
application does not explicitly request the stencil buffer that it uses, the fancy hardware accelerated OpenGL
implementation determines that the frame buffer configuration with no stencil but extra color resolution is the better choice
for your application. If your application would have correctly requested a stencil buffer things would be fine. Make sure that
you allocate what you use.

Conclusion

I hope that this review of various OpenGL pitfalls saves you much time and debugging grief. I wish that I could have simply
read about these pitfalls instead of learning most of them the hard way.

Visualization has always been the key to enlightenment. If computer graphics changes the world for the better, the
fundamental reason why is that computer graphics makes visualization easier.

Avoiding 16 Common OpenGL Pitfalls

Page 16 of 16

Table of Contents

OpenGL FAQ and Troubleshooting Guide v1.2000.10.15..1

1 About the FAQ...13

2 Getting Started ..17

3 GLUT..32

4 GLU...35

5 Microsoft Windows Specifics..38

6 Windows, Buffers, and Rendering Contexts...45

7 Interacting with the Window System, Operating System, and Input Devices..46

8 Using Viewing and Camera Transforms, and gluLookAt()...48

9 Transformations...52

10 Clipping, Culling, and Visibility Testing...61

11 Color..65

12 The Depth Buffer...67

13 Drawing Lines over Polygons and Using Polygon Offset...71

14 Rasterization and Operations on the Framebuffer...74

15 Transparency, Translucency, and Blending..79

16 Display Lists and Vertex Arrays..82

17 Using Fonts...85

18 Lights and Shadows...87

19 Curves, Surfaces, and Using Evaluators..92

20 Picking and Using Selection..93

21 Texture Mapping...96

22 Performance...101

23 Extensions and Versions..105

 OpenGL FAQ and Troubleshooting Guide

i

Table of Contents

24 Miscellaneous..109

Appendix A Microsoft OpenGL Information ..114
Windows Driver Development Kits..114

Preliminary Windows 2000 DDK..114
Windows Driver and Hardware Development..114
Fluff articles...114
MSDN Library...115

Platform SDK..115
OpenGL technical articles..117
Useful other articles..118

Knowledge Base..119
Current..119
Archive..121

Appendix B Source Code Index...124

 OpenGL FAQ and Troubleshooting Guide

ii

OpenGL FAQ and Troubleshooting Guide v1.2000.10.15

1 About the FAQ 15 Transparency, Translucency, and Blending

2 Getting Started 16 Display Lists and Vertex Arrays

3 GLUT 17 Using Fonts

4 GLU 18 Lights and Shadows

5 Microsoft Windows Specifics 19 Curves, Surfaces, and Using Evaluators

6 Windows, Buffers, and Rendering Contexts 20 Picking and Using Selection

7 Interacting with the Window System, Operating
System, and Input Devices

21 Texture Mapping

8 Using Viewing and Camera Transforms, and
gluLookAt()

22 Performance

9 Transformations 23 Extensions and Versions

10 Clipping, Culling, and Visibility Testing 24 Miscellaneous

11 Color Appendix A Microsoft OpenGL Information

12 The Depth Buffer Appendix B Source code index

13 Drawing Lines over Polygons and Using Polygon
Offset

German Translation: OpenGL häufig gestellte
fragen

14 Rasterization and Operations on the Framebuffer
Japanese
Translation:

1 About the FAQ

1.010 Introduction

1.020 How to contribute, and the contributors

1.030 Download the entire FAQ as a Zip file

1.031 Printing the PDF FAQ

1.040 Change Log

2 Getting Started

2.005 Where can I find 3D graphics info?

2.010 Where can I find examples, tutorials, documentation, and other OpenGL information?

2.020 What OpenGL books are available?

2.030 What OpenGL chat rooms and newsgroups are available?

2.040 What OpenGL implementations come with source code?

2.050 What compiler can I use?

OpenGL FAQ and Troubleshooting Guide v1.2000.10.15 1

http://www.3dsource.de/faq/index.htm
http://www.3dsource.de/faq/index.htm
http://www.3dsource.de/faq/index.htm
http://www.nk-exa.co.jp/~andoh/opengl/tmp/oglfaq/index.htm
http://www.nk-exa.co.jp/~andoh/opengl/tmp/oglfaq/index.htm
http://www.nk-exa.co.jp/~andoh/opengl/tmp/oglfaq/index.htm

2.060 What do I need to compile and run OpenGL programs?

2.070 Why am I getting compile, link, and runtime errors?

2.080 How do I initialize my windows, create contexts, etc.?

2.090 How do I create a full−screen window?

2.100 What is the general form of an OpenGL program?

2.110 My window is blank. What should I do?

2.120 My first frame renders correctly, but subsequent frames are incorrect or further away
or I just get a blank screen. What's going on?

2.130 What is the AUX library?

2.140 What support for OpenGL does {Open,Net,Free}BSD or Linux provide?

2.150 Where is OpenGL 1.2?

2.160 What are the OpenGL Conformance Tests?

3 GLUT

3.010 What is GLUT? How is it different from OpenGL?

3.020 Should I use GLUT?

3.030 I need to set up different tasks for left and right mouse button motion. However, I can
only set one glutMotionFunc() callback, which doesn't pass the button as a parameter.

3.040 How does GLUT do…?

3.050 How can I perform animations with GLUT?

3.060 Is it possible to change a window's size *after* it's opened (i.e., after I call
glutInitWindowSize(); and glutCreateWindow();)?

3.070 I have a GLUT program that allocates memory at startup. How do I deallocate this
memory when the program exits?

3.080 How can I make my GLUT program detect that the user has closed the window?

3.090 How can I make glutMainLoop() return to my calling program?

3.100 How do I get rid of the console window in a Windows GLUT application?

3.110 My GLUT question isn't answered here. Where can I get more info?

4 GLU

 OpenGL FAQ and Troubleshooting Guide

OpenGL FAQ and Troubleshooting Guide v1.2000.10.15 2

4.010 What is GLU? How is it different from OpenGL?

4.020 How does GLU render sphere, cylinder, and disk primitives?

4.030 How does gluPickMatrix work?

4.040 How do I use GLU tessellation routines?

4.050 Why aren't my tessellation callback routines called?

4.060 How do I use GLU NURBS routines?

4.070 How do I use gluProject and gluUnProject?

5 Microsoft Windows Specifics

5.010 What's a good source for Win32 OpenGL programming information?

5.020 I'm looking for a Wintel OpenGL card in a specific price range, any suggestions?

5.030 How do I enable and disable hardware rendering on a Wintel card?

5.040 How do I know my program is using hardware acceleration on a Wintel card?

5.050 Where can I get the OpenGL ICD for a Wintel card?

5.060 I'm using a Wintel card and an OpenGL feature doesn't seem to work. What's going on?

5.070 Can I use OpenGL with DirectDraw?

5.080 Is it ok to use DirectDraw to change the screen resolution or desktop pixel depth?

5.090 My card supports OpenGL, but I don't get acceleration regardless of which pixel
format I try.

5.100 How do I get hardware acceleration?

5.110 Why doesn't OpenGL hardware acceleration work with multiple monitors?

5.120 Why does my MFC window flash, even though I'm using d

5.121 Why does my double buffered window appear incomplete or contain black stripes?

5.130 What's the difference between opengl.dll and opengl32.dll?

5.140 Should I use Direct3D or OpenGL?

5.150 What do I need to know to use OpenGL with MFC?

5.160 How can I use OpenGL with MFC?

 OpenGL FAQ and Troubleshooting Guide

OpenGL FAQ and Troubleshooting Guide v1.2000.10.15 3

5.170 Is OpenGL inherently slower when used with MFC?

5.180 Where can I find MFC examples?

5.190 What do I need to know about mixing WGL and GDI calls?

5.200 Why does my code crash under Windows NT or 2000 but run fine under 9x?

5.210 How do I properly use WGL functions?

6 Windows, Buffers, and Rendering Contexts

6.010 How do I use overlay planes?

7 Interacting with the Window System, Operating System, and Input Devices

7.010 How do I obtain the window width and height or screen max width and height?

7.020 What user interface system should I use?

7.030 How can I use multiple monitors?

8 Using Viewing and Camera Transforms, and gluLookAt()

8.010 How does the camera work in OpenGL?

8.020 How can I move my eye, or camera, in my scene?

8.030 Where should my camera go, the ModelView or projection matrix?

8.040 How do I implement a zoom operation?

8.050 Given the current ModelView matrix, how can I determine the object−space location
of the camera?

8.060 How do I make the camera "orbit" around a point in my scene?

8.070 How can I automatically calculate a view that displays my entire model? I know the
bounding sphere and up vector.

8.080 Why doesn't gluLookAt work?

8.090 How do I get a specified point (XYZ) to appear at the center of the scene?

8.100 I put my gluLookAt() call on my Projection matrix and now fog, lighting, and texture
mapping don't work correctly. What happened?

8.110 How can I create a stereo view?

9 Transformations

 OpenGL FAQ and Troubleshooting Guide

OpenGL FAQ and Troubleshooting Guide v1.2000.10.15 4

9.001 I can't get transformations to work. Where can I learn more about matrices?

9.005 Are OpenGL matrices column−major or row−major?

9.010 What are OpenGL coordinate units?

9.011 How are coordinates transformed? What are the different coordinate spaces?

9.020 How do I transform only one object in my scene or give each object its own transform?

9.030 How do I draw 2D controls over my 3D rendering?

9.040 How do I bypass OpenGL matrix transformations and send 2D coordinates directly for
rasterization?

9.050 What are the pros and cons of using absolute versus relative coordinates?

9.060 How can I draw more than one view of the same scene?

9.070 How do I transform my objects around a fixed coordinate system rather than the
object's local coordinate system?

9.080 What are the pros and cons of using glFrustum() versus gluPerspective()? Why would I
want to use one over the other?

9.085 How can I make a call to glFrustum() that matches my call to gluPerspective()?

9.090 How do I draw a full−screen quad?

9.100 How can I find the screen coordinates for a given object−space coordinate?

9.110 How can I find the object−space coordinates for a pixel on the screen?

9.120 How do I find the coordinates of a vertex transformed only by the ModelView matrix?

9.130 How do I calculate the object−space distance from the viewer to a given point?

9.140 How do I keep my aspect ratio correct after a window resize?

9.150 Can I make OpenGL use a left−handed coordinate space?

9.160 How can I transform an object so that it points at or follows another object or point in
my scene?

9.162 How can I transform an object with a given yaw, pitch, and roll?

9.170 How can I render a mirror?

9.180 How can I do my own perspective scaling?

10 Clipping, Culling, and Visibility Testing

 OpenGL FAQ and Troubleshooting Guide

OpenGL FAQ and Troubleshooting Guide v1.2000.10.15 5

#tran0005
#tran0005
#tran0005

10.010 How do I tell if a vertex has been clipped or not?

10.020 How do I perform occlusion or visibility testing?

10.030 How do I render to a nonrectangular viewport?

10.040 When an OpenGL primitive moves placing one vertex outside the window, suddenly
the color or texture mapping is incorrect. What's going on?

10.050 I know my geometry is inside the view volume. How can I turn off OpenGL's
view−volume clipping to maximize performance?

10.060 When I move the viewpoint close to an object, it starts to disappear. How can I
disable OpenGL's zNear clipping plane?

10.070 How do I draw glBitmap or glDrawPixels primitives that have an initial glRasterPos
outside the window's left or bottom edge?

10.080 Why doesn't glClear work for areas outside the scissor rectangle?

10.090 How does face culling work? Why doesn't it use the surface normal?

11 Color

11.010 My texture map colors reverse blue and red, yellow and cyan, etc. What's going on?

11.020 How do I render a color index into an RGB window or vice versa?

11.030 The colors are almost entirely missing when I render in Microsoft Windows. What's
happening?

11.040 How do I specify an exact color for a primitive?

11.050 How do I render each primitive in a unique color?

12 The Depth Buffer

12.010 How do I make depth buffering work?

12.020 Depth buffering doesn't work in my perspective rendering. What's going on?

12.030 How do I write a previously stored depth image to the depth buffer?

12.040 Depth buffering seems to work, but polygons seem to bleed through polygons that are
in front of them. What's going on?

12.050 Why is my depth buffer precision so poor?

12.060 How do I turn off the zNear clipping plane?

12.070 Why is there more precision at the front of the depth buffer?

 OpenGL FAQ and Troubleshooting Guide

OpenGL FAQ and Troubleshooting Guide v1.2000.10.15 6

12.080 There is no way that a standard−sized depth buffer will have enough precision for my
astronomically large scene. What are my options?

13 Drawing Lines over Polygons and Using Polygon Offset

13.010 What are the basics for using polygon offset?

13.020 What are the two parameters in a glPolygonOffset() call and what do they mean?

13.030 What's the difference between the OpenGL 1.0 polygon−offset extension and
OpenGL 1.1 (and later) polygon−offset interfaces?

13.040 Why doesn't polygon offset work when I draw line primitives over filled primitives?

13.050 What other options do I have for drawing coplanar primitives when I don't want to
use polygon offset?

14 Rasterization and Operations on the Framebuffer

14.010 How do I obtain the address of the OpenGL framebuffer, so that I might write
directly to it?

14.015 How do I use glDrawPixels() and glReadPixels()?

14.020 How do I change between double− and single−buffered mode in an existing window?

14.030 How do I read back a single pixel?

14.040 How do I obtain the Z value for a rendered primitive?

14.050 How do I draw a pattern into the stencil buffer?

14.060 How do I copy from the front buffer to the back buffer and vice versa?

14.070 Why don't I get valid pixel data for an overlapped area, when I call glReadPixels
where part of the window is overlapped by another window?

14.080 Why does the appearance of my smooth−shaded quad change when I view it with
different transformations?

14.090 How do I obtain exact pixelization of lines?

14.100 How do I turn on wide−line endpoint capping or mitering?

14.110 How do I render rubber band lines?

14.120 If I draw a quad in fill mode and again in line mode, why don't the lines hit the same
pixels as the filled quad?

14.130 How do I draw a full−screen quad?

 OpenGL FAQ and Troubleshooting Guide

OpenGL FAQ and Troubleshooting Guide v1.2000.10.15 7

14.140 How do I initialize or clear a buffer without calling glClear()?

14.150 How can I make line or polygon antialiasing work?

14.160 How do I achieve full−scene antialiasing?

15 Transparency, Translucency, and Using Blending

15.010 What is the difference between transparent, translucent, and blended primitives?

15.020 How can I achieve a transparent effect?

15.030 How can I create screen door transparency?

15.040 How can I render glass with OpenGL?

15.050 Do I need to render my primitives from back to front for correct rendering of
translucent primitives to occur?

15.060 I want to use blending but can't get destination alpha to work. Can I blend or create a
transparency effect without destination alpha?

15.070 If I draw a translucent primitive and draw another primitive behind it, I expect the
second primitive to show through the first, but it's not there at all. Why not?

15.080 How can I make part of my texture maps transparent or translucent?

16 Display Lists and Vertex Arrays

16.010 Why does a display list take up so much memory?

16.020 How can I share display lists between different contexts?

16.030 How does display list nesting work? Is the called list copied into the calling list?

16.040 How can I do a particular function while a display list is called?

16.050 How can I change an OpenGL function call in a display list that contains many other
OpenGL function calls?

16.060 How can I obtain a list of function calls and the OpenGL call parameters from a
display list?

16.070 I've converted my program to use display lists, and it doesn't run any faster! Why not?

16.080 To save space, should I convert all my coordinates to short before storing them in a
display list?

16.090 Will putting textures in a display list make them run faster?

16.100 Will putting vertex arrays in a display list make them run faster?

 OpenGL FAQ and Troubleshooting Guide

OpenGL FAQ and Troubleshooting Guide v1.2000.10.15 8

16.110 When sharing display lists between contexts, what happens when I delete a display
list in one context? Do I have to delete it in all the contexts to make it really go away?

16.120 How many display lists can I create?

16.130 How much memory does a display list use?

16.140 How will I know if the memory a display list uses is freed?

16.150 How can I use vertex arrays to share vertices?

17 Using Fonts

17.010 How can I add fonts to my OpenGL scene?

17.020 How can I use TrueType fonts in my OpenGL scene?

17.030 How can I make 3D letters that I can light, shade, and rotate?

18 Lights and Shadows

18.010 What should I know about lighting in general?

18.020 Why are my objects all one flat color and not shaded and illuminated?

18.030 How can I make OpenGL automatically calculate surface normals?

18.040 Why can I only get flat shading when I light my model?

18.050 How can I make my light move or not move and control the light position?

18.060 How can I make a spotlight work?

18.070 How can I create more lights than GL_MAX_LIGHTS?

18.080 Which is faster: making glMaterial*() calls or using glColorMaterial()?

18.090 Why is the lighting incorrect after I scale my scene to change its size?

18.100 After I turn on lighting, everything is lit. How can I light only some of the objects?

18.110 How can I use light maps (e.g., Quake−style) in OpenGL?

18.120 How can I achieve a refraction lighting effect?

18.130 How can I render caustics?

18.140 How can I add shadows to my scene?

19 Curves, Surfaces, and Using Evaluators

 OpenGL FAQ and Troubleshooting Guide

OpenGL FAQ and Troubleshooting Guide v1.2000.10.15 9

19.010 How can I use OpenGL evaluators to create a B−spline surface?

19.020 How can I retrieve the geometry values produced by evaluators?

20 Picking and Using Selection

20.010 How can I know which primitive a user has selected with the mouse?

20.020 What do I need to know to use selection?

20.030 Why doesn't selection work?

20.040 How can I debug my picking code?

20.050 How can I perform pick highlighting the way PHIGS and PEX provided?

21 Texture Mapping

21.010 What are the basic steps for performing texture mapping?

21.020 I'm trying to use texture mapping, but it doesn't work. What's wrong?

21.030 Why doesn't lighting work when I turn on texture mapping?

21.040 Lighting and texture mapping work pretty well, but why don't I see specular
highlighting?

21.050 How can I automatically generate texture coordinates?

21.060 Should I store texture maps in display lists?

21.070 How do texture objects work?

21.080 Can I share textures between different rendering contexts?

21.090 How can I apply multiple textures to a surface?

21.100 How can I perform light mapping?

21.110 How can I turn my files, such as GIF, JPG, BMP, etc. into a texture map?

21.120 How can I render into a texture map?

21.130 What's the maximum size texture map my device will render hardware accelerated?

21.140 How can I texture map a sphere, cylinder, or any other object with multiple facets?

22 Performance

22.010 What do I need to know about performance?

 OpenGL FAQ and Troubleshooting Guide

OpenGL FAQ and Troubleshooting Guide v1.2000.10.15 10

22.020 How can I measure my application's performance?

22.030 Which primitive type is the fastest?

22.040 What's the cost of redundant calls?

22.050 I have (n) lights on, and when I turned on (n+1), suddenly performance dramatically
dropped. What happened?

22.060 I'm using (n) different texture maps and when I started using (n+1) instead,
performance drastically dropped. What happened?

22.070 Why are glDrawPixels() and glReadPixels() so slow?

22.080 Is it faster to use absolute coordinates or to use relative coordinates?

22.090 Are display lists or vertex arrays faster?

22.100 How do I make triangle strips out of triangles?

23 Extensions and Versions

23.010 Where can I find information on different OpenGL extensions?

23.020 How will I know which OpenGL version my program is using?

23.030 What is the difference between OpenGL 1.0, 1.1, and 1.2?

23.040 How can I code for different versions of OpenGL?

23.050 How can I find which extensions are supported?

23.060 How can I code for extensions that may not exist on a target platform?

23.070 How can I call extension routines on Microsoft Windows?

23.080 How can I call extension routines on Linux?

23.090 Where can I find extension enumerants and function prototypes?

24 Miscellaneous

24.010 How can I render a wireframe scene with hidden lines removed?

24.020 How can I render rubber−band lines?

24.030 My init code calls glGetString() to find information about the OpenGL
implementation, but why doesn't it return a string?

24.039 Where can I find 3D model files?

 OpenGL FAQ and Troubleshooting Guide

OpenGL FAQ and Troubleshooting Guide v1.2000.10.15 11

24.040 How can I load geometry files, such as 3DS, OBJ, DEM, etc. and render them with
OpenGL?

24.050 How can I save my OpenGL rendering as an image file, such as GIF, TIF, JPG, BMP,
etc.? How can I read these image files and use them as texture maps?

24.060 Can I use a BSP tree with OpenGL?

24.070 Can I use an octree with OpenGL?

24.080 Can I do radiosity with OpenGL?

24.090 Can I raytrace with OpenGL?

24.100 How can I perform CSG with OpenGL?

24.110 How can I perform collision detection with OpenGL?

24.120 I understand OpenGL might cache commands in an internal buffer. Can I perform an
abort operation, so these buffers are simply emptied instead of executed?

24.130 What's the difference between glFlush() and glFinish() and why would I want to use
these routines?

24.140 How can I print with OpenGL?

24.150 Can I capture or log the OpenGL calls an application makes?

24.160 How can I render red−blue stereo pairs?

Appendix A Microsoft OpenGL Information

Appendix B Source Code Index

 OpenGL FAQ and Troubleshooting Guide

OpenGL FAQ and Troubleshooting Guide v1.2000.10.15 12

1 About the FAQ
1.010 Introduction

The OpenGL Technical FAQ and Troubleshooting Guide will answer some basic technical
questions and explain frequently misunderstood topics, features, and concepts.

All text, example code, and code snippets in this FAQ are in the public domain. The text,
example code, and code snippets can be used and copied freely. Hyperlinks to text and
example code not contained in this FAQ may or may not be public domain, and their usage
may be restricted accordingly.

1.020 How to contribute, and the contributors

This FAQ is maintained by Paul Martz (paul_martz@hp.com).

Contribute to the FAQ by contacting Paul Martz, the FAQ maintainer. Suggestions, topics,
corrections, information, and pointers to information are welcome.

The following people have explicitly contributed written material to this FAQ: Brian Bailey,
Brett Johnson, Paul Martz, Samuel Paik, Joel Parris, and Thant Tessman.

Several people have unwittingly contributed information through conversations with the
FAQ maintainer and/or their several informative postings to the comp.graphics.api.opengl
newsgroup. A partial list includes: Darren Adams, Stephane Albi, Mark B. Allan, Pierre
Alliez, Steve Baker, Konstantin Baumann, Ron Bielaski, Kevin Bjorke, Lars Blaabjerg,
Frans Bouma, Michael Brooks, Jeff Burrell, Won Chun, Mike Coplien, Bart De Lathouwer,
Angus Dorbie, Bob Ellison, Glenn Forney, Ron Fosner, Phil Frisbie Jr, Michael I. Gold, Paul
Groves, Charles E. Hardwidge, Jason Harrison, Michael S. Harrison, Mike Heck, Chris
Hecker, Scott Heiman, Helios, Blaine Hodge, Steve Humphreys, Michael Kennedy, Marco
Klemm, Mark Kilgard, Oliver Kurowski, Michael Kurth, Bruce Lamming, Robert Lansdale,
Jon Leech, Stuart Levy, Barthold Lichtenbelt, Mike Lischke, Ben Loftin, Jean−Luc Martinez,
Steve McAndrewSmith, Phil McRevis, David Melinosky, Reed Mideke, Teri Morrison,
Duncan Murdoch, Doug Newlin, Geert Poels, David Poon, Lev Povalahev, Dirk Reiners,
Stephane Routelous, Schneide, Shaleh, Dave Shreiner, Hal Snyder, Andrew F. Vesper, Jon
White, Lucian Wischik, Mitch Wolberg, and Zed.

Jeff Molofee's OpenGL code was the inspiration for Brian Bailey's MFC example (accessible
from question 5.160). Jeff maintains the NeHe Web page.

Special thanks to Yukio Andoh for the Japanese translation, and Thomas Kern for the
German translation.

1.030 Download the entire FAQ as a Zip file

Download the entire FAQ in a single zip file (~180KB).

1.031 Printing the PDF FAQ

The entire FAQ is available as a single PDF file for easy printing.

1 About the FAQ 13

mailto:paul_martz@hp.com
http://nehe.gamedev.net/
http://www.nk-exa.co.jp/~andoh/opengl/tmp/oglfaq/index.htm
http://www.3dsource.de/faq/index.htm
ftp://ftp.frii.com/pub/martz/outgoing/oglfaq.zip

PDF FAQ (~610KB)
Zipped PDF FAQ (~324KB)

1.040 Change Log

Date Notes

October 15,
2000

Table of Contents: Version is now present in masthead.
Table of Contents: Corrected Kanji characters.
7.030: Added more information on multiple monitor support.
17.010, 17.030: Repaired or removed broken links.

October 8,
2000

source.htm: New file, a consolidated index to FAQ source code.
Table of Contents: Added links to German and Japanese translations.
Table of Contents: Added link to source.htm as Appendix B.
2.005: Fixed broken link.
2.010: Added information.
2.110: Added information.
5.030: Added information on disabling hardware rendering.
5.070: Added information.
5.080: Added information.
5.121: New question, "Why does my double buffered window appear
incomplete or contain black stripes?"
5.160: Fixed HTML.
5.180: New question, "Where can I find MFC examples?"
5.190: New question, "What do I need to know about mixing WGL and
GDI calls?"
5.200: New question, "Why does my code crash under Windows NT or
2000 but run fine under 9x?"
5.210: New question, "How do I properly use WGL functions?"
7.030: New question, "How can I use multiple monitors?"
8.110: New question, "How can I create a stereo view?"
9.005: Added information.
9.162: New question, "How can I transform an object with a given yaw,
pitch, and roll?"
10.020: Added information.
18.140: Added information.
24.160: Added information.
viewcull.c: Fixed bug with incorrect matrix mode.

August 24,
2000

Table of Contents: Added access to mslinks.htm as an appendix in the
main table of contents
1.031: New question, "Printing the PDF FAQ"
lookat.cpp: Fix comment typo.

August 1,
2000

mslinks.htm: New file, contains links to OpenGL information on
Microsoft Web sites.
2.005: Added information.
2.010: Added link to mslinks.htm.
2.050: Added information.

 OpenGL FAQ and Troubleshooting Guide

1 About the FAQ 14

ftp://ftp.frii.com/pub/martz/outgoing/faq.pdf
ftp://ftp.frii.com/pub/martz/outgoing/pdf.zip
ftp://ftp.frii.com/pub/martz/outgoing/pdf.zip
ftp://ftp.frii.com/pub/martz/outgoing/pdf.zip

2.080: Fixed incorrect parameters to XCreateWindow().
2.160: New question, "What are the OpenGL Conformance Tests?"
3.020: Fixed typo.
5.010: Added link to mslinks.htm.
5.050: Added information.
5.150 New question, "What do I need to know to use OpenGL with
MFC?"
5.160: New question, "How can I use OpenGL with MFC?"
5.170: New question, "Is OpenGL inherently slower when used with
MFC?"
6.010: New question, "How do I use overlay planes?"
7.020: Added information.
9.001: Fixed hyperlink.
17.010: Removed broken hyperlink.
23.010: Added information.
23.090: Added information.
24.050: Fixed hyperlink.

July 6, 2000

2.005: Added information.
2.020: Added hyperlink to online OpenGL Reference Manual.
3.030: Corrected code snippet.
3.070: Added information.
3.090: Added information.
4.020: Added hyperlink to GLE web site.
5.040: Added information.
7.020 New question, "What user interface system should I use?"
9.011 New question, "How are coordinates transformed? What are the
different coordinate spaces?"
16.150: New question, "How can I use vertex arrays to share vertices?"
17.010: Added information.
17.030: Added additional links to GLTT.
21.090: Added information.
21.110: Added link to source for using TGA files as texture maps.
Corrected bogus hyperlink.
22.020: Added information.
22.100 New question, "How doI make triangle strips out of triangles?"
23.070: Added link to modified glext.h for hiding function pointers.
23.090: Added direct links to glext.h, wglext.h, and glxext.h.
24.040: Added information.
24.050: Added information.
24.150: Added link to Intel's GPT.
viewcull.c: Comment tweak.

June 6, 2000 Added a link to GLTT in question 17.030.

June 3, 2000 Updated with miscellaneous corrections and additional information.

May 30, 2000 Fixed HTML problems in index.htm, and sections 1 and 2.

 OpenGL FAQ and Troubleshooting Guide

1 About the FAQ 15

May 29, 2000 Updated with miscellaneous corrections..

May 28, 2000
Version 1.0. Significant changes include a full technical edit for
hyperlinks, notational conventions, grammar, and spelling. Filled in many
holes. Corrected lots of incorrect information.

April 16, 2000 Beta version.

March 19,
2000

Updated with miscellaneous corrections, additions, and changes.

March 12,
2000

Alpha version.

 OpenGL FAQ and Troubleshooting Guide

1 About the FAQ 16

2 Getting Started
2.005 Where can I find 3D graphics info?

The comp.graphics.algorithms FAQ contains 3D graphics information that isn't specific to
OpenGL.

For general OpenGL and 3D graphics information, Advanced Graphics Programming
Techniques Using OpenGL is a good online source of information.

An excellent general computer graphics text is Computer Graphics: Principles and Practice,
Second Edition, by James Foley, et al. ISBN 0−201−12110−7. This book may be out of print,
however, some online book retailers still seem to have it for sale. Try amazon.com. There
may be a third edition planned for release in January 2001

Delphi code for performing basic vector, matrix, and quaternion operations can be found here.

Here's another source for linear algebra source code.

2.010 Where can I find examples, tutorials, documentation, and other OpenGL information?

OpenGL is the most extensively documented 3D graphics API to date. Information is all over
the Web and in print. It would be impossible to exhaustively list all sources of OpenGL
information. This FAQ therefore provides links to large storehouses of information and sites
that maintain many links to other OpenGL sites.

OpenGL Organization Web Page

SGI's OpenGL Web site and (apparently) SGI's other OpenGL Web site.

HP's OpenGL subject index.

OpenGL Basics FAQ

OpenGL Game Developer's FAQ. In addition to information on OpenGL, the OpenGL Game
Developer's FAQ has information on subscribing to the OpenGL Game Developer's mailing
list.

The EFnet #OpenGL FAQ

Samuel Paik has created a large repository of links to OpenGL information on Microsoft
Web sites.

The OpenGL org web site has the current OpenGL specification and manual pages. You can
view the OpenGL spec v1.1 online as a Web page.

A repository of OpenGL implementations for several platforms

The GLUT source code distribution contains several informative OpenGL examples and
demos.

2 Getting Started 17

http://www.exaflop.org/docs/cgafaq
http://reality.sgi.com/blythe/sig99/advanced99/notes
http://reality.sgi.com/blythe/sig99/advanced99/notes
http://reality.sgi.com/blythe/sig99/advanced99/notes
http://www.amazon.com/exec/obidos/ASIN/0201848406/qid=959476111/sr=1-1/002-6578442-8430439
http://www.lischke-online.de/Graphics.html
http://www.lischke-online.de/Graphics.html
http://www.lischke-online.de/Graphics.html
http://www.animats.com/topics/developers.html
http://www.animats.com/topics/developers.html
http://www.opengl.org/
http://reality.sgi.com/opengl/
http://www.sgi.com/software/opengl/
http://www.sgi.com/software/opengl/
http://www.hp.com/visualize/support/library/opengl/
http://www.hp.com/visualize/support/library/opengl/
http://www.opengl.org/About/FAQs.html
http://www.opengl.org/About/FAQs.html
http://www.3dgamedev.com/resources/openglfaq.txt
http://www.3dgamedev.com/resources/openglfaq.txt
http://www.geocities.com/SiliconValley/Park/5625/opengl/
http://www.geocities.com/SiliconValley/Park/5625/opengl/
http://www.opengl.org/Documentation/Specs.html
http://www.opengl.org/Documentation/Specs.html
http://trant.sgi.com/opengl/docs/Specs/glspec1.1/node1.html
http://trant.sgi.com/opengl/docs/Specs/glspec1.1/node1.html
http://www.fortunecity.com/skyscraper/nuclear/274/
http://www.fortunecity.com/skyscraper/nuclear/274/
http://reality.sgi.com/opengl/glut3/glut3.html

Codeguru maintains a small, but growing list, of useful OpenGL sample code.

Lucian Wischik's Web page at http://www.wischik.com/lu/programmer/wingl.html contains
excellent information on Microsoft Windows OpenGL, especially with 3dfx hardware.

The NeHe Web page has many links to other sites and plenty of useful tutorials. Many
people have found this site useful.

See Blaine Hodge's Web page for info on Win32 OpenGL programming.

An interactive OpenGL tutorial can be found here.

Check gamedev.net for OpenGL tutorials and articles.

2.020 What OpenGL books are available?

There are several books on OpenGL, but the two most revered are the "red" and "blue"
books:

OpenGL Programming Guide, Third Edition, Mason Woo et al.
ISBN 0−201−60458−2 (aka the red book)

OpenGL Reference Manual, Third Edition, Dave Shreiner (Editor), et al.
ISBN 0−201−65765−1 (aka the blue book)

The third edition of these books describes OpenGL 1.2. The original and second editions
describe 1.0 and 1.1, respectively.

The OpenGL red book is online.

For the OpenGL Reference Manual, here are two sources:

HP's Web−browsable OpenGL Reference Manual, Second Edition (for OpenGL 1.1).
Manual pages similar to the OpenGL Reference Manual.

In addition to the red and blue books, see the green book for X Windows programming, and the white book
for Microsoft Windows programming. You can obtain a more exhaustive list of OpenGL books by visiting
the www.opengl.org Web site.

2.030 What OpenGL chat rooms and newsgroups are available?

The Usenet newsgroup, devoted to OpenGL programming, is comp.graphics.api.opengl.

The #OpenGL IRC channel is devoted to OpenGL discussion.

2.040 What OpenGL implementations come with source code?

The Mesa library is an OpenGL look−alike. It has an identical interface to OpenGL. The only
reason it can't be called "OpenGL" is because its creator hasn't purchased a license from the
OpenGL ARB.

 OpenGL FAQ and Troubleshooting Guide

2 Getting Started 18

http://www.codeguru.com/opengl/index.shtml
http://www.wischik.com/lu/programmer/wingl.html
http://nehe.gamedev.net/
http://www.geocities.com/SiliconValley/Code/1219/opengl32.html
http://www.geocities.com/SiliconValley/Code/1219/opengl32.html
http://www.cs.uwm.edu/~grafix2/
http://www.cs.uwm.edu/~grafix2/
http://www.gamedev.net/reference/docs/refarticlelistuser.asp?catid=31
http://www.gamedev.net/reference/docs/refarticlelistuser.asp?catid=31
http://www.amazon.com/exec/obidos/ASIN/0201604582/o/qid=953692283/sr=2-1/103-7677730-4077408
http://www.amazon.com/exec/obidos/ASIN/0201604582/o/qid=953692283/sr=2-1/103-7677730-4077408
http://www.amazon.com/exec/obidos/ASIN/0201657651/ref=sim_books/103-7677730-4077408
http://www.amazon.com/exec/obidos/ASIN/0201657651/ref=sim_books/103-7677730-4077408
http://ask.ii.uib.no/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/
http://ask.ii.uib.no/ebt-bin/nph-dweb/dynaweb/SGI_Developer/OpenGL_PG/
http://www.hp.com/visualize/support/library/opengl/Reference.html
http://www.hp.com/visualize/support/library/opengl/Reference.html
http://www.eecs.tulane.edu/www/graphics/doc/OpenGL-Man-Pages/opengl_index_spec.html
http://www.eecs.tulane.edu/www/graphics/doc/OpenGL-Man-Pages/opengl_index_spec.html
http://www.eecs.tulane.edu/www/graphics/doc/OpenGL-Man-Pages/opengl_index_spec.html
http://www.opengl.org/
http://www.mesa3d.org/

The OpenGL Sample Implementation is also available.

2.050 What compiler can I use?

OpenGL programs are typically written in C and C++. You can also program OpenGL from
Delphi (a Pascal−like language), Basic, Fortran, Ada, and others.

Borland

Programming OpenGL with Borland compilers is the same as with any other compiler, with
one exception: OpenGL apps can produce floating point exceptions at run time. To disable
these harmless errors, add the following to your app before you call an OpenGL function:

_control87(MCW_EM, MCW_EM);

Borland users need to be aware that versions prior to 4.0 only support OpenGL 1.0 out of the box. Download
the OpenGL SDK from Microsoft to use OpenGL v1.1, or v1.2 when it becomes available.

Use Borland's implib utility to generate Borland−compatible .LIB export libraries from
Microsoft−compatible .DLL libraries. If you accidently link with Microsoft−format .LIB files, you will
receive a linker error like the following:

C:\BORLAND\BCC55\LIB\GLUT32.LIB' contains invalis OMF record, type 0x21 (possibly COOF)

The bornews.borland.com Usenet news server has two newsgroups that pertain to graphics:
borland.public.delphi.graphics and borland.public.cppbuilder.graphics.

The Borland Community is an online source of FAQs that address Borland compiler issues.

For information on how to use OpenGL through the commercial version of Borland C++ Builder, visit Scott
Heiman's Web page. For information on the free version, go here.

The book Delphi Developer's Guide to OpenGL by Jon Jacobs is available. The author maintains a web page
for this book.

Information on using OpenGL from Delphi can be found here and at the Delphi3D web page. Code and
utilities for using OpenGL through Delphi are available.

Visual Basic

Here are three sites with info on how to use OpenGL through Visual Basic:

http://www.softoholic.bc.ca/opengl/down.htm
http://www.weihenstephan.de/~syring/ActiveX/
http://www.ieighty.net/~davepamn/colorcube.html.

2.060 What do I need to compile and run OpenGL programs?

The following applies specifically to C/C++ usage.

To compile and link OpenGL programs, you'll need OpenGL header files and libraries. To

 OpenGL FAQ and Troubleshooting Guide

2 Getting Started 19

http://oss.sgi.com/
http://community.borland.com/cpp/0,1419,2,00.html
http://community.borland.com/cpp/0,1419,2,00.html
http://www.gnt.net/~heiman
http://www.gnt.net/~heiman
http://home.clara.net/paulyg/compfree.htm
http://home.clara.net/paulyg/compfree.htm
http://home1.gte.net/jqjacobs/index.htm
http://home1.gte.net/jqjacobs/index.htm
http://home1.gte.net/jqjacobs/index.htm
http://www.lischke-online.de/Graphics.html
http://www.lischke-online.de/Graphics.html
http://www.gamedeveloper.org/delphi3d/
http://www.gamedeveloper.org/delphi3d/
http://glscene.cjb.net/
http://glscene.cjb.net/
http://www.softoholic.bc.ca/opengl/down.htm
http://www.weihenstephan.de/~syring/ActiveX/
http://www.ieighty.net/~davepamn/colorcube.html

run OpenGL programs you may need shared or dynamically loaded OpenGL libraries, or a
vendor−specific OpenGL Installable Client Driver (ICD) specific to your device. Also, you
may need include files and libraries for the GLU and GLUT libraries. Where you get these
files and libraries will depend on which OpenGL system platform you're using.

The OpenGL Organization maintains a list of links to OpenGL developer and end−user files.
You can download most of what you need from there.

Under Microsoft Windows 9x, NT, and 2000:

If you're using Visual C++, your compiler comes with include files for OpenGL and GLU, as
well as .lib files to link with.

For GLUT, download these files. Install glut.h in your compiler's include directory,
glut32.lib in your compiler's lib directory, and glut32.dll in your Windows system directory
(c:\windows\system for Windows 9x, or c:\winnt\system32 for Windows NT/2000).

In summary, a fully installed Windows OpenGL development environment will look like this:

File Location

gl.h
glut.h
glu.h

[compiler]\include\gl

Opengl32.lib
glut32.lib
glu32.lib

[compiler]\lib

Opengl32.dll
glut32.dll
glu32.dll

[system]

where [compiler] is your compiler directory (such as c:\Program Files\Microsoft Visual
Studio\VC98) and [system] is your Windows 9x/NT/2000 system directory (such as
c:\winnt\system32 or c:\windows\system).

If you're on a hardware platform that accelerates OpenGL, you'll need to install the ICD for
your device. This may have shipped with your hardware, or you can download it from your
hardware vendor's Web page. Your vendor may also provide a replacement or addition for
gl.h, which provides definitions and declarations for vendor−specific OpenGL extensions.
See the extensions section in this FAQ for more information.

If you see files such as opengl.lib and glut.lib, these are SGI's unsupported libraries for
Microsoft Windows. They should not be used. To use hardware acceleration, the Microsoft
libraries are recommended. More info on the SGI libraries can be found here. Always link
with either all Microsoft libraries (e.g., glu32.lib, glut32.lib, and opengl32.lib) or all SGI
libraries (e.g., glu.lib, glut.lib, and opengl.lib). You can't use a combination of both Microsoft
libarires and SGI libraries. However, you can install both sets of libraries on the same

 OpenGL FAQ and Troubleshooting Guide

2 Getting Started 20

http://www.opengl.org/Downloads/Downloads.html
http://www.opengl.org/Downloads/Downloads.html

system. If you use SGI's .lib files, you'll need the corresponding .dll files installed in your
system folder. (i.e., linking against opengl.lib requires that opengl.dll is installed at run time).

You'll need to instruct your compiler to link with the OpenGL, GLU, and GLUT libraries. In
Visual C++ 6.0, you can accomplish this with the Project menu's Settings dialog box. Scroll
to the Link tab. In the Object/library modules edit box, add glut32.lib, glu32.lib, and
opengl32.lib to the end of any text that is present.

For UNIX or UNIX−like operating systems:

If you don't find the header files and libraries that you need to use in standard locations, you
need to point the compiler and linker to their location with the appropriate −I and −L options.
The libraries you link with must be specified at link time with the −l option; −lglut −lGLU
−lGL −lXmu −lX11 is typical.

If you want to use GLUT, you need to download it. If you can't find the precompiled
binaries, you'll want to download the source and compile it. GLUT builds easily on many
platforms, and comes with many README files explaining how to do a build. The GLUT
compiler uses the imake utility, which makes it easy to build GLUT on new platforms.

For Linux, Macintosh, and other systems:

Mesa is a free OpenGL−like library that is available on a number of platforms. You might
also check the Developer section at The OpenGL Organization's Web page for information
about OpenGL for your specific platform.

2.070 Why am I getting compile, link, and runtime errors?

Most compile and link errors stem from either a system that doesn't have the OpenGL
development environment installed correctly, or failure to instruct the compiler where to find
the include and library files.

If you are encountering these problems in the Windows 9x/NT/2000 environment, read
question 2.060 above to ensure that you've installed all files in their correct locations, and
that you've correctly instructed the linker to find the .lib files.

Also, note that you'll need to put an #include <windows.h> statement before the
#include<GL/gl.h>. Microsoft requires system DLLs to use a specific calling convention that
isn't the default calling convention for most Win32 C compilers, so they've annotated the
OpenGL calls in gl.h with some macros that expand to nonstandard C syntax. This causes
Microsoft's C compilers to use the system calling convention. One of the include files
included by windows.h defines the macros.

Another caveat for Win32 developers: With Microsoft Visual C++ (and probably most other
Win32 C compilers), the standard Win32 application entry point is WinMain with four
parameters, rather than main(int argc, char **argv). Visual C++ has an option to include
code to parse the standard Win32 application entry, and call main with a parsed command
line; this is called a console application instead of a Win32 application. If you download
code from the Net and try to build it, make sure you've configured your compiler to build the
right kind of application, either console or Win32. This can be controlled with linker options
or pragmas. Microsoft Visual C++ supports the following pragmas for controlling the entry

 OpenGL FAQ and Troubleshooting Guide

2 Getting Started 21

http://www.mesa3d.org/
http://www.opengl.org/
http://www.opengl.org/

point and application type:

// Use one of:
#pragma comment (linker, "/ENTRY:mainCRTStartup")
#pragma comment (linker, "/ENTRY:wmainCRTStartup")
#pragma comment (linker, "/ENTRY:WinMainCRTStartup")
#pragma comment (linker, "/ENTRY:wWinMainCRTStartup")
// Use one of:
#pragma comment (linker, "/SUBSYSTEM:WINDOWS")
#pragma comment (linker, "/SUBSYSTEM:CONSOLE")

The following is a table of errors and their possible causes and solutions. It is targeted toward
Microsoft Visual C++ users, but the types of errors can apply, in general, to any platform.

Example error text Possible cause and solution

d:\c++\file.c(20) : warning C4013:
'glutDestroyWindow' undefined;
assuming extern returning int
d:\c++\file.c(71) : warning C4013:
'glMatrixMode' undefined;
assuming extern returning int
d:\c++\file.c(71) : error C2065:
'GL_MODELVIEW' : undeclared
identifier

Didn't #include gl.h, glu.h, or glut.h

A GLUT source file should:
#include <GL/glut.h>
Non−GLUT source files should:
#include <GL/glu.h>
#include <GL/gl.h>

c:\program files\microsoft visual
studio\vc98\include\gl\gl.h(1152) :
error C2054: expected '(' to follow
'WINGDIAPI'
c:\program files\microsoft visual
studio\vc98\include\gl\gl.h(1152) :
error C2085: 'APIENTRY' : not in
formal parameter list

Didn't #include windows.h or included it after gl.h.

Source files that use neither GLUT nor MFC, but which make calls to
OpenGL, should:
#include <windows.h>
#include <GL/gl.h>

d:c++\file.c(231) : warning
C4305: 'initializing' : truncation
from 'const double ' to 'float '

Floating−point constants (e.g., 1.0) default to type double. This is a
harmless warning that can be disabled in Visual C++ with:
#ifdef WIN32
#pragma warning(disable : 4305)
#endif
at the top of the source file.

file.obj : error LNK2001:
unresolved external symbol
__imp__glMatrixMode@4
file.obj : error LNK2001:
unresolved external symbol
__imp__glViewport@16
file.obj : error LNK2001:
unresolved external symbol
__imp__glLoadIdentity@0

Didn't link with opengl32.lib, glu32.lib, or glut32.lib.

Section 2.060 above describes how to inform the Visual C++ 6 linker
about the location of the .lib files.

 OpenGL FAQ and Troubleshooting Guide

2 Getting Started 22

The dynamic link library
OPENGL.dll could not be found
in the specified path..

Failure to correctly install .dll files. See section 2.060 above for
information on where these files should be installed for your
Windows system.

Nothing renders, just a blank
window.

Mixed linkage against .lib files from both Microsoft and SGI can
cause this. Make sure you specify either glut32.lib, glu32.lib
opengl32.lib or glut.lib, glu.lib, and opengl.lib to the linker, but not a
combination of the files from these two file sets.

LIBCD.lib(wincrt0.obj) : error
LNK2001: unresolved external
symbol _WinMain@16
Debug/test.exe : fatal error
LNK1120: 1 unresolved externals
Error executing link.exe.

Not an OpenGL question per se, but definitely a FAQ on
comp.graphics.api.opengl due to the way GLUT works in Microsoft
Windows.

You should instruct your compiler to build a console application. It's
trying to find the Win32 entry point, but your code wasn't written as a
Win32 application.

Multiple access violations appear
when running a Microsoft
OpenGL MFC−based application.

Set the CS_OWNDC style in the PreCreate*() routines in the view
class.

Floating−point exceptions occur at
runtime. The application was built
with Borland C.

Add the following to your app before you call any OpenGL functions:

_control87(MCW_EM, MCW_EM);

This is from Borland's own FAQ article #17197.

2.080 How do I initialize my windows, create contexts, etc.?

It depends on your windowing system. Here's some basic info, but for more details, refer to
the documentation for your specific windowing system or a newsgroup devoted to
programming in it.

GLUT

The basic code for creating an RGB window with a depth buffer, and an OpenGL rendering
context, is as follows:

#include <GL/glut.h>

int main(int argc, char** argv)
{
 glutInit(&argc,argv);
 glutInitDisplayMode(GLUT_RGB | GLUT_DEPTH);
 glutInitWindowSize(500,500);
 glutInitWindowPosition(0,0);
 glutCreateWindow("Simple");

 /* ... */
}

 OpenGL FAQ and Troubleshooting Guide

2 Getting Started 23

The calls to set the window size and position are optional, and GLUT uses a default size and
location if they are left out.

X Windows

You can create an RGB window with a depth buffer in X Windows using the following code
(taken from the OpenGL Reference Manual):

#include <GL/glx.h>
#include <GL/gl.h>

static Bool WaitForNotify(Display *d, XEvent *e, char *arg)
{
 return (e−>type == MapNotify) && (e−>xmap.window == (Window) arg);
}

static int sAttribList[] = {
 GLX_RGBA,
 GLX_RED_SIZE, 1,
 GLX_GREEN_SIZE, 1,
 GLX_BLUE_SIZE, 1,
 None };

int main(void)
{
 Display *dpy;
 XVisualInfo *vi;
 XSetWindowAttributes swa;
 Window win;
 GLXContext cx;
 XEvent event;
 int swap_flag = GL_FALSE;

 dpy = XOpenDisplay(0);

 if ((vi = glXChooseVisual(dpy, DefaultScreen(dpy), sAttribList)) == NULL) {
 fprintf(stderr, "ERROR: Can't find suitable visual!\n");
 return 0;
 }

 cx = glXCreateContext(dpy, vi, 0, GL_TRUE);

 swa.colormap = XCreateColormap(dpy, RootWindow(dpy, vi−>screen),
 vi−>visual, AllocNone);
 swa.border_pixel = 0;
 swa.event_mask = StructureNotifyMask;
 win = XCreateWindow(dpy, RootWindow(dpy, vi−>screen), 0, 0, 100, 100, 0,
 vi−>depth, InputOutput,
 vi−>visual,
 CWBorderPixel | CWColormap | CWEventMask,
 &swa);

 XMapWindow(dpy, win);

 XIfEvent(dpy, &event, WaitForNotify, (char *)win);

 glXMakeCurrent(dpy, win, cx);

 /* ... */

 OpenGL FAQ and Troubleshooting Guide

2 Getting Started 24

}

Microsoft Windows 9x/NT/2000

The window must be created with the following bits OR'd into the window style:
WS_CLIPCHILDREN | WS_CLIPSIBLINGS. Do this either when CreateWindow is called
(in a typical Win32 app) or during the PreCreateWindow function (in an MFC app).

Once the window is created (when a WM_CREATE message arrives or in the
OnInitialUpdate callback), use the following code to set the pixel format, create a rendering
context, and make it current to the DC.

// Assume:
// HWND hWnd;

HDC hDC = GetDC (hWnd);
PIXELFORMATDESCRIPTOR pfd;

memset(&pfd, 0, sizeof(PIXELFORMATDESCRIPTOR));
pfd.nSize = sizeof(PIXELFORMATDESCRIPTOR);
pfd.nVersion = 1;
pfd.dwFlags = PFD_SUPPORT_OPENGL | PFD_DRAW_TO_WINDOW;
pfd.iPixelType = PFD_TYPE_RGBA;
pfd.cColorBits = 24;
pfd.cDepthBits = 32;
pfd.iLayerType = PFD_MAIN_PLANE;

int pixelFormat = ChoosePixelFormat(hDC, &pfd);
if (pixelFormat == 0) {
 // Handle error here
}

BOOL err = SetPixelFormat (hDC, pixelFormat, &pfd);
if (!err) {
 // Handle error here
}

hRC = wglCreateContext(hDC);
if (!hRC) {
 // Handle error here
}

err = wglMakeCurrent (hDC, hRC);
if (!err) {
 // Handle error here
}

You can then make the rendering context noncurrent, and release the DC with the following
calls:

WglMakeCurrent(NULL,NULL);
ReleaseDC (hWnd, hDC);

2.090 How do I create a full−screen window?

Prior to GLUT 3.7, you can generate a full−screen window using a call to
glutFullScreen(void). With GLUT 3.7 and later, a more flexible interface was added.

 OpenGL FAQ and Troubleshooting Guide

2 Getting Started 25

With glutGameModeString(), an application can specify a desired full−screen width and
height, as well as the pixel depth and refresh rate. You specify it with an ASCII character
string of the form [width]x[height]:[depth]@[hertz]. An application can use this mode if it's
available with a call to glutEnterGameMode(void). Here's an example:

glutInit(&argc, argv);
glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE | GLUT_DEPTH);
glutGameModeString("640x480:16@60");
glutEnterGameMode();

Also, see the "Full Screen Rendering" section in the OpenGL game developer's FAQ.

2.100 What is the general form of an OpenGL program?

There are no hard and fast rules. The following pseudocode is generally recognized as good
OpenGL form.

program_entrypoint
{
 // Determine which depth or pixel format should be used.
 // Create a window with the desired format.
 // Create a rendering context and make it current with the window.
 // Set up initial OpenGL state.
 // Set up callback routines for window resize and window refresh.
}

handle_resize
{
 glViewport(...);
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 // Set projection transform with glOrtho, glFrustum, gluOrtho2D, gluPerspective, etc.
}

handle_refresh
{
 glClear(...);

 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 // Set view transform with gluLookAt or equivalent

 // For each object (i) in the scene that needs to be rendered:
 // Push relevant stacks, e.g., glPushMatrix, glPushAttrib.
 // Set OpenGL state specific to object (i).
 // Set model transform for object (i) using glTranslatef, glScalef, glRotatef, and/or equivalent.
 // Issue rendering commands for object (i).
 // Pop relevant stacks, (e.g., glPopMatrix, glPopAttrib.)
 // End for loop.

 // Swap buffers.
}

2.110 My window is blank. What should I do?

A number of factors can cause a blank window when you're expecting a rendering. A blank
window is generally caused by insufficient knowledge of 3D graphics fundamentals,
insufficient knowledge of basic OpenGL mechanisms, or simply a mistake in the code.

 OpenGL FAQ and Troubleshooting Guide

2 Getting Started 26

http://www.3dgamedev.com/resources/openglfaq.txt
http://www.3dgamedev.com/resources/openglfaq.txt

There are a number of OpenGL books and online resources as well.

What follows is a list some of the more common causes of the dreaded "Black Window
Syndrome" and what to do to fix it.

♦ Your application may have made an erroneous call to OpenGL. Make liberal calls to
glGetError(). You might create a macro or inline function, which does the following:

{
 GLint err = glGetError();
 if (err != GL_NO_ERROR) DisplayErrorMessage();
}

Place this code block after suspect groups of OpenGL function calls, and take advantage of
the preprocessor, which will ensure that the calls can be eliminated easily in a production
compile (i.e., #ifdef DEBUG...#endif).

glGetError() is the only way to tell whether you've issued an erroneous function call at
runtime. If an OpenGL function generates an error, OpenGL won't process the offending
function. This is often the cause of incorrect renderings or blank windows.

♦ Incorrect placement of zFar and zNear clipping planes with respect to the geometry
can cause a blank window. The geometry is clipped and nothing is rendered. zFar
and zNear clipping planes are parameters to the glOrtho(), gluOrtho2D(),
glFrustum(), and gluPerspective() calls. For glFrustum() and gluPerspective(), it's
important to remember that the zNear and zFar clipping planes are specified as
distances in front of the eye. So, for example, if your eye is at (0,0,0), which it is in
OpenGL eye coordinate space, and the zNear clipping plane is at 2.0 and all of your
geometry is in a unit cube centered at the origin, the zNear plane will clip all of it
and render nothing. You'll need to specify a ModelView transform to push your
geometry back, such as a call to glTranslatef(0,0,−3).

Similarly, the zFar clipping plane might be a problem if it is placed at, for example, 10.0,
and all of your geometry is further than 10.0 units from the eye.

♦ Incorrect transforms in general can cause a blank window. Your code is attempting
to set the view and modeling transform correctly, but due to some problem, the net
transformation is incorrect, and the geometry doesn't fall within the view volume.
This is usually caused by a bug in the code or a lack of understanding of how
OpenGL transforms work.

It's usually best to start simple and work your way to more complex transformations. Make
code changes slowly, checking as you go, so you'll see where your mistakes came from.

♦ Another cause of the blank window is a failure to call glEnd() or failure to call
glBegin(). Geometry that you specify with one of the glVertex*() routines must be
wrapped with a glBegin()/glEnd() pair to be processed by OpenGL. If you leave out
both glBegin() and glEnd(), you won't get an error, but nothing will render.

If you call glBegin(), but fail to call glEnd() after your geometry, you're not guaranteed that
anything will render. However, you should start to see OpenGL errors once you call
functions (e.g., glFlush()) that can't be called within a glBegin()/glEnd() pair. If you call

 OpenGL FAQ and Troubleshooting Guide

2 Getting Started 27

glEnd() but fail to call glBegin(), the glEnd() call will generate an error. Checking for errors
is always a good idea.

♦ Failure to swap buffers in a double−buffered window can cause blank windows.
Your primitives are drawn into the back buffer, but the window on the screen is
blank. You need to swap buffers at the end of each frame with a call to SwapBuffers,
glXSwapBuffers, or glutSwapBuffers.

♦ Failure to glClear() the buffers, in particular the depth buffer, is yet another cause.
Call glClear() at the start of every frame to remedy this failue.

♦ Some OpenGL implementations have bugs that can cause blank windows or other
incorrect rendering. Try your application on another implementation. Correct
behavior on one or more other implementations is strong evidence of a bug in the
first implementation.

2.120 The first frame is rendered correctly, but subsequent frames are incorrect or further away or I just
get a blank screen. What's going on?

This is often caused by a failure to realize that OpenGL matrix commands multiply, rather
than load over the top of the current matrix.

Most OpenGL programs start rendering a frame by setting the ModelView matrix to the
identity with a call to glLoadIdentity(). The view transform is then multiplied against the
identity matrix with, for example, a call to gluLookAt(). Many new programmers assume the
gluLookAt() call will load itself onto the current matrix and therefore fail to initialize the
matrix with the glLoadIdentity() call. Rendering successive frames in this manner causes
successive camera transforms to multiply onto each other, which normally results in an
incorrect rendering.

2.130 What is the AUX library?

Very important: Don't use AUX. Use GLUT instead.

The AUX library was developed by SGI early in OpenGL's life to ease creation of small
OpenGL demonstration programs. It's currently neither supported nor maintained.
Developing OpenGL programs using AUX is strongly discouraged. Use the GLUT instead.
It's more flexible and powerful and is available on a wide range of platforms.

For related information, see the GLUT Section and SGI's GLUT FAQ.

2.140 What support for OpenGL does {Open,Net,Free}BSD or Linux provide?

The X Windows implementation, XFree86 4.0, includes support for OpenGL using Mesa or
the OpenGL Sample Implementation. XFree86 is released under the XFree86 license.
http://www.xfree86.org/

SGI has released the OpenGL Sample Implementation as open source. It can be built as an X
server GLX implementation. It has been released under SGI Free Software License B.
http://oss.sgi.com/projects/ogl−sample/

The Mesa 3D Graphics Library is an OpenGL clone that runs on many platforms, including

 OpenGL FAQ and Troubleshooting Guide

2 Getting Started 28

http://reality.sgi.com/mjk/glut3/glut-faq.html
http://reality.sgi.com/mjk/glut3/glut-faq.html
http://www.xfree86.org/
http://oss.sgi.com/projects/ogl-sample/

MS−DOS, Win32, *BSD and Linux. On PC UNIX platforms Mesa can be built to use GGI,
X Windows, and as an X server GLX implementation. Mesa is hardware accelerated for a
number of 3D graphics accelerators. Mesa 3.1 and later was released under an
XFree86−style license. Versions prior to 3.1 were released under GPL.
http://mesa3d.sourceforge.net/

Utah−GLX is a hardware accelerated GLX implementation for the Matrox MGA−G200 and
G−400, ATI 3D RAGE PRO, Intel i810, NVIDIA RIVA, and S3 ViRGE. Utah−GLX is
based on Mesa. It is not clear what license Utah−GLX is released under.
http://utah−glx.sourceforge.net/

Metro Link OpenGL and Extreme 3D are GLX extensions for Metro Link X servers. Metro
Link OpenGL is a software implementation that can use accelerated X operations to gain a
performance advantage over other software implementations. Metro Link Extreme 3D is a
hardware−accelerated implementation for REALimage, GLINT GMX 1000, 2000, GLINT
DMX, GLINT MX, GLINT TX, and Permedia 2 and 3. http://www.metrolink.com/

Xi Graphics 3D Accelerated−X is an X server with GLX support. Supported devices include:
ATI Xpert 2000, ATI Rage Fury Pro, ATI Rage Fury, ATI Rage Magnum, ATI
All−in−Wonder 128 (all ATI RAGE 128 I believe), 3Dlabs Oxygen VX1, 3Dlabs Permedia
3 Create! (Permedia 3), Diamond Stealth III S540, Diamond Stealth III S540 Extreme,
Creative Labs 3D Blaster Savage4 (S3 Savage4), Number Nine SR9, 3Dfx Voodoo 3000,
3Dfx Voodoo 3500 software.

2.150 Where is OpenGL 1.2?

When this was written (early 2000), few OpenGL 1.2 implementations are available. Sun and
IBM are shipping OpenGL 1.2. The OpenGL−like Mesa library also supports 1.2. The
OpenGL Sample Implementation is also available.

Microsoft hasn't released OpenGL 1.2 yet. As of their most recent official announcement, it
is to be included in a later Windows 2000 service pack. Once Microsoft releases OpenGL
1.2, you'll probably need a new driver to take advantage of its features.

Many OpenGL vendors running on Microsoft already support OpenGL 1.2 functionality
through extensions to OpenGL 1.1.

OpenGL vendors that run on OS other than Microsoft will release OpenGL 1.2 on their own
schedules.

The OpenGL 1.2 specification is available from http://www.opengl.org. The red and blue
books have recently been revised to cover OpenGL 1.2 functionality.

2.160 What are the OpenGL Conformance Tests?

The OpenGL Conformance Tests are a suite of tests that the OpenGL ARB uses to certify an
OpenGL implementation conforms to the OpenGL spec, and, after paying the licensing fee,
is therefore entitled to call itself "OpenGL". The source code for the conformance tests can
be licensed from the OpenGL ARB.

 OpenGL FAQ and Troubleshooting Guide

2 Getting Started 29

http://mesa3d.sourceforge.net/
http://utah-glx.sourceforge.net/
http://www.metrolink.com/
http://www.xig.com/
http://www.mesa3d.org/
http://www.opengl.org/

The conformance tests were recently upgraded to test the full OpenGL 1.2 functionality.
They do not exercise extension entry points. They will, however, report the full list of
extensions that an implementation claims to support.

covogl is a special conformance test that simply calls every standard entry point. It is a
"coverage" test, meant to ensure that all entry points exist and don't crash. All the other tests
are intended to test spec conformance for a specific rendering task.

The test mustpass.c tests a defined core of functionality that all OpenGL implementations
must support. (You must be able to render a line," etc.) Vendors that fail other tests are still
allowed to use the name "OpenGL", but they must be able to show that they understand the
bugs, and are working to resolve the issue in a future release.

The ability to push and pop state is thoroughly tested. Each test that runs is of the form:

push state
change state
run test
pop state
check all state values (via glGet*()) to make sure they have returned to the default values.

Some tests have some built−in error that allows for some variation from the OpenGL specification. For
example, OpenGL spec states that when rasterizing a triangle, the center of each rendered pixel must be
within the mathematical boundary of the triangle. However, the conformance test for rasterizing triangles
allows pixels to be as much as 1/2 pixel outside this boundary without reporting an error.

Conversely, some tests appear to test for more than the spec calls for. For example, the test for alpha test
requires 10 percent (between 4 and 5 bits) precision to pass, whereas the spec calls for only a single bit of
precision.

Some tests don't make sense if you are not intimately familiar with the spec. For example, the spec says it's
perfectly OK to not antialias polygons when the user has requested it, and the conformance tests allow this.
Another example is dithering; the spec allows for a great deal of implementation variety, including no
dithering at all, and as a consequence, the conformance tests won't display an error if your implementation
doesn't dither.

All tests support path levels that execute the same tests with a variety of state settings that should still
produce the same result. For example, rendering a triangle with polygon stipple disabled should produce the
same result as rendering it with polygon stipple enabled and a stipple pattern of all 1 bits. Again, this should
be identical to rendering with blending enabled and a blend function of (GL_ONE,GL_ZERO). A number of
path levels are available, each testing more and more complex combinations of state settings.

All tests are run on all available pixel formats or visual types, including (if available) color index.

All tests verify correct rendering with glReadPixels(). Some tests read the entire test window, while other
read only a few key pixels. In general, the tests use GL_RGBA and GL_FLOAT as the type and format.
However, the readpix.c test thoroughly tests all type and format combinations. If glReadPixels() is broken, all
tests could fail.

If glReadPixels() is slow, the conformance tests can take a long time to run. Furthermore, since all tests run at
all path levels on all available pixel formats and visuals, it could take several days of serial compute time to

 OpenGL FAQ and Troubleshooting Guide

2 Getting Started 30

run the entire test suite.

The conformance tests find many bugs. However, they don't guarantee a bug−free implementation. An
implementation that passes the full suite of conformance tests might still be so buggy that many applications
won't be able to run.

 OpenGL FAQ and Troubleshooting Guide

2 Getting Started 31

3 GLUT
3.010 What is GLUT? How is it different from OpenGL?

Because OpenGL doesn't provide routines for interfacing with a windowing system or input
devices, an application must use a variety of other platform−specific routines for this
purpose. The result is nonportable code.

Furthermore, these platform−specific routines tend to be full−featured, which complicates
construction of small programs and simple demos.

GLUT is a library that addresses these issues by providing a platform−independent interface
to window management, menus, and input devices in a simple and elegant manner. Using
GLUT comes at the price of some flexibility.

A large amount of information on GLUT is at the GLUT FAQ:
http://reality.sgi.com/mjk/glut3/glut−faq.html.

3.020 Should I use GLUT?

Your application might need to do things that GLUT doesn't allow, or it may need to use
platform−specific libraries to accomplish nongraphical tasks. In this case, consider not using
GLUT for your application's windowing and input needs, and instead use platform−specific
libraries .

Ask yourself the following questions:

♦ Will my application run only on one platform?
♦ Do I need to use more than one rendering context?
♦ Do I need to share display lists or texture objects between rendering contexts?
♦ Do I need to use input devices that GLUT doesn't provide an interface for?
♦ Do I need to use platform−specific libraries for other tasks, such as sound or text?

If you answered yes to any of these questions, you need to evaluate whether GLUT is the
right choice for your application.

3.030 I need to set up different tasks for left and right mouse button motion. However, I can only set one
glutMotionFunc() callback, which doesn't pass the button as a parameter.

You can easily set up different tasks depending on the state of the SHIFT, ALT, and CTRL
keys by checking their state with glutGetModifiers().

To set up different tasks for the left and right mouse buttons, you need to swap the motion
function depending on which mouse button is in use. You can do this with a mouse function
callback that you set with glutMouseFunc(). The first parameter to this routine will indicate
which button caused the event (GLUT_LEFT, GLUT_MIDDLE, or GLUT_RIGHT). The
second parameter indicates the button state (GLUT_UP or GLUT_DOWN).

To illustrate, here's an example glutMouseFunc() callback routine:

3 GLUT 32

http://reality.sgi.com/mjk/glut3/glut-faq.html

/* Declarations for our motion functions */
static void leftMotion (int x, int y);
static void rightMotion (int x, int y);
static void mouseCallback (int mouse, int state, int x, int y)

{
 if (state==GLUT_DOWN) {
 /* A button is being pressed. Set the correct motion function */
 if (button==GLUT_LEFT)
 glutMotionFunc (leftMotion);
 else if (button==GLUT_RIGHT)
 glutMotionFunc (rightButton);
 }
}

3.040 How does GLUT do…?

It is often desirable to find out how glut creates windows, handles input devices, displays
menus, or any of a number of other tasks. The best way to find out how GLUT does
something is to download the GLUT source and see how it is written.

3.050 How can I perform animations with GLUT?

GLUT allows your application to specify a callback routine for rendering a frame. You can
force executing this routine by calling glutPostRedisplay() from another callback routine, and
returning control to glutMainLoop().

To create an animation that runs as fast as possible, you need to set an idle callback with
glutIdleFunc(). The callback you pass as a parameter will be executed by glutMainLoop()
whenever nothing else is happening. From this callback, you call glutPostRedisplay().

To create a timed animation, use glutTimerFunc() instead of glutIdleFunc(). glutTimerFunc()
will call your callback only after the specified time elapses. This callback disables itself, so
for continuous updates, your callback must call both glutPostRedisplay(), then
glutTimerFunc() again to reset the timer.

3.060 Is it possible to change a window's size *after* it's opened (i.e., after i called glutInitWindowSize();
and glutCreateWindow();)?

Once your code enters the glutMainLoop() and one of your callback routines is called, you
can call glutReshapeWindow(int width, int height).

Note that glutReshapeWindow() doesn't instantly resize your window. It merely sends a
message to GLUT to resize the window. This message is processed once you return to
glutMainLoop().

3.070 I have a GLUT program that allocates memory at startup. How do I deallocate this memory when
the program exits?

If the user exits your program through some input that you can catch, such as a key press or
menu selection, the answer is trivial. Simply free the resources in the appropriate input event
handler.

 OpenGL FAQ and Troubleshooting Guide

3 GLUT 33

http://reality.sgi.com/opengl/glut3/glut3.html

Usually, this question comes up because the user has killed the program through window
frame controls, such as the Microsoft Windows Close Window icon in the upper right corner
of the title bar. In this case, your program won't get a GLUT event indicating the program is
exiting. In fact, when the window is destroyed, glutMainLoop() simply calls exit(0).

For simple resources such as memory deallocation, this should not be a problem. The OS will
free any memory that the process was using.

Of greater concern is prompting the user to save work or flushing data held in software
buffers to files.

When using C++, the simplest solution to this problem is to wrap your GLUT application
inside of a C++ class and create it with global scope. The C++ language guarantees that the
class' destructor is called when the object goes out of scope.

Another option is to use the ANSI C/C++ atexit() call to specify the address of a function to
execute when the program exits. You need to declare your buffers and data pointers with
global scope so they're acccessible to the atexit() callback routine. More information can be
found in any ANSI C/C++ reference. atexit() is only available with C/C++.

One final option is to hack the GLUT source, and add an explicit callback to your code when
glutMainLoop() catches the destroy window event/message. This is distasteful, for it means
you must now include the entire hacked glutMainLoop() function in your application.

 3.080 How can I make my GLUT program detect that the user has closed the window?

The same way as the previous section 3.070 shows.

3.090 How can I make glutMainLoop() return to my calling program?

glutMainLoop() isn't designed to return to the calling routine. GLUT was designed around
the idea of an event−driven application, with the exit method being captured through an input
event callback routine, such as a GLUT menu or keyboard callback handler.

If you insist on returning to your program from glutMainLoop(), there is only one way to do
so. You need to download the GLUT source and hack gluMainLoop() to do what you want it
to. Then compile and link into your program this hacked version of glutMainLoop(). Steve
Baker has a Web site with the details on how to hack glutMainLoop() to eliminate this
problem.

3.100 How do I get rid of the console window in a Windows GLUT application?

With Visual C++ 6.0, go to the Project menu, Settings… dialog. Select the Link tab. In the
Project options edit box, add /SUBSYSTEM:WINDOWS /ENTRY:mainCRTStartup to the
end of the present text. Link options are similar for other Windows compilers.

3.110 My GLUT question isn't answered here. Where can I get more info?

SGI's GLUT FAQ is an excellent source of information on GLUT.

 OpenGL FAQ and Troubleshooting Guide

3 GLUT 34

http://web2.airmail.net/sjbaker1/software/glut_hack.html
http://web2.airmail.net/sjbaker1/software/glut_hack.html
http://web2.airmail.net/sjbaker1/software/glut_hack.html
http://web2.airmail.net/sjbaker1/software/glut_hack.html
http://web2.airmail.net/sjbaker1/software/glut_hack.html
http://reality.sgi.com/mjk/glut3/glut-faq.html

4 GLU
4.010 What is GLU? How is it different from OpenGL?

If you think of OpenGL as a low−level 3D graphics library, think of GLU as adding some
higher−level functionality not provided by OpenGL. Some of GLU's features include:

♦ Scaling of 2D images and creation of mipmap pyramids
♦ Transformation of object coordinates into device coordinates and vice versa
♦ Support for NURBS surfaces
♦ Support for tessellation of concave or bow tie polygonal primitives
♦ Specialty transformation matrices for creating perspective and orthographic

projections, positioning a camera, and selection/picking
♦ Rendering of disk, cylinder, and sphere primitives
♦ Interpreting OpenGL error values as ASCII text

The best source of information on GLU is the OpenGL red and blue books and the GLU
specification, which you can obtain from the OpenGL org Web page.

4.020 How does GLU render sphere, cylinder, and disk primitives?

There is nothing special about how GLU generates these primitives. You can easily write
routines that do what GLU does. You can also download the Mesa source, which contains a
GLU distribution, and see what these routines are doing.

The GLU routines approximate the specified primitive using normal OpenGL primitives,
such as quad strips and triangle fans. The surface is approximated according to user
parameters. The vertices are generated using calls to the sinf() and cosf() math library
functions.

If you are interested in rendering cylinders and tubes, you'll want to examine the GLE
library. GLE comes as part of the GLUT distribution.

4.030 How does gluPickMatrix() work?

It simply translates and scales so that the specified pick region fills the viewport. When
specified on the projection matrix stack, prior to multiplying on a normal projection matrix
(such as gluPerspective(), glFrustum(), glOrtho(), or gluOrtho2D()), the result is that the
view volume is constrained to the pick region. This way only primitives that intersect the
pick region will fall into the view volume. When glRenderMode() is set to GL_SELECT,
these primitives will be returned.

4.040 How do I use GLU tessellation routines?

GLU provides tessellation routines to let you render concave polygons, self−intersecting
polygons, and polygons with holes. The tessellation routines break these complex primitives
up into (possibly groups of) simpler, convex primitives that can be rendered by the OpenGL
API. This is done by providing the data of the simpler primitives to your application from
callback routines that your application must provide. Your app can then send the data to
OpenGL using normal API calls.

4 GLU 35

http://www.opengl.org/Documentation/Specs.html
http://www.mesa3d.org/
http://linas.org/gle/
http://linas.org/gle/

An example program is available in the GLUT distribution under progs/redbook/tess.c.
(Download the GLUT distribution).

The usual steps for using tessellation routines are:

1. Allocate a new GLU tessellation object:

GLUtesselator *tess = gluNewTess();

2. Assign callbacks for use with this tessellation object:

gluTessCallback (tess, GLU_TESS_BEGIN, tcbBegin);
gluTessCallback (tess, GLU_TESS_VERTEX, tcbVertex);
gluTessCallback (tess, GLU_TESS_END, tcbEnd);

2a. If your primitive is self−intersecting, you must also specify a callback to create new vertices:

gluTessCallback (tess, GLU_TESS_COMBINE, tcbCombine);

3. Send the complex primitive data to GLU:

// Assumes:
// GLdouble data[numVerts][3];
// ...and assumes the array has been filled with 3D vertex data.

gluTessBeginPolygon (tess, NULL);
gluTessBeginContour (tess);
for (i=0; i<sizeof(data)/(sizeof(GLdouble)*3);i++)
 gluTessVertex (tess, data[i], data[i]);
gluTessEndContour (tess);
gluEndPolygon (tess);

4. In your callback routines, make the appropriate OpenGL calls:

void tcbBegin (GLenum prim);
{
 glBegin (prim);
}

void tcbVertex (void *data)
{
 glVertex3dv ((GLdouble *)data);
}

void tcbEnd ();
{
 glEnd ();
}

void tcbCombine (GLdouble c[3], void *d[4], GLfloat w[4], void **out)
{
 GLdouble *nv = (GLdouble *) malloc(sizeof(GLdouble)*3);

 nv[0] = c[0];
 nv[1] = c[1];
 nv[2] = c[2];
 *out = nv;
}

 OpenGL FAQ and Troubleshooting Guide

4 GLU 36

http://reality.sgi.com/opengl/glut3/glut3.html

The above list of steps and code segments is a bare−bones example and is not intended to
demonstrate the full capabilities of the tessellation routines. By providing
application−specific data as parameters to gluTessBeginPolygon() and gluTessVertex() and
handling the data in the appropriate callback routines, your application can color and texture
map these primitives as it would a normal OpenGL primitive.

4.050 Why aren't my tessellation callback routines called?

Normally your tessellation callback routines are executed when you call gluEndPolygon(). If
they are not being called, an error has occurred. Typically this is caused when you haven't
defined a GLU_TESS_COMBINE* callback for a self−intersecting primitive.

You might try defining a callback for GLU_TESS_ERROR to see if it's called.

4.060 How do I use GLU NURBS routines?

The GLU NURBS interface converts the B−Spline basis control points into Bezier basis
equivalents and calls directly to the OpenGL Evaluator routines to render the surface.

An example program is available in the GLUT distribution under progs/redbook/surface.c.
(Download the GLUT distribution).

4.070 How do I use gluProject() and gluUnProject()?

Both routines take a ModelView matrix, Projection matrix, and OpenGL Viewport as
parameters.

gluProject() also takes an XYZ−object space coordinate. It returns the transformed XYZ
window (or device) coordinate equivalent.

gluUnProject() does the opposite. It takes an XYZ window coordinate and returns the
back−transformed XYZ object coordinate equivalent.

The concept of window space Z is often confusing. It's the depth buffer value expressed as a
GLdouble in the range 0.0 to 1.0. Assuming a default glDepthRange(), a window coordinate
with a Z value of 0.0 corresponds to an eye coordinate located on the zNear clipping plane.
Similarly, a window space Z value of 1.0 corresponds to an eye space coordinate located on
the zFar plane. You can obtain any window space Z value by reading the depth buffer with
glReadPixels().

 OpenGL FAQ and Troubleshooting Guide

4 GLU 37

http://reality.sgi.com/opengl/glut3/glut3.html

5 Microsoft Windows Specifics
5.010 What's a good source for Win32 OpenGL programming information?

Samuel Paik has created a large repository of links to OpenGL information on Microsoft
Web sites.

See Blaine Hodge's web page. Be aware that some examples on this page use the AUX
library, which is not recommended.

5.020 I'm looking for a Wintel OpenGL card in a specific price range, any suggestions?

The consumer−level 3D graphics marketplace moves fast. Any information placed in this
FAQ would be soon outdated.

You might post a query on this topic to the comp.graphics.api.opengl newsgroup, or one of
the many newsgroups devoted to Wintel−based 3D games. You might also do a Web search.

Tom's Hardware Guide and Fast Graphics have a lot of information on current graphics cards.

5.030 How do I enable and disable hardware rendering on a Wintel card?

Currently, OpenGL doesn't contain a switch to enable or disable hardware acceleration.
Some vendors might provide this capability with an environment variable or software switch.

If you install your graphics card, but don't see hardware accelerated rendering check for the
following:

♦ Did you install the device driver / OpenGL Installable Client Driver (ICD)? (How do
I do that?)

♦ Is your desktop in a supported color depth? (Usually 16− and 32−bit color are
accelerated. See your device vendor for details.)

♦ Did your application select an accelerated pixel format?

You might also have acceleration problems if you're trying to set up a multimonitor
configuration. Hardware accelerated rendering might not be supported on all (or any) devices
in this configuration.

To force software rendering from your application, choose a pixel format that is not hardware
accelerated. To do this, you can not use ChoosePixelFormat(), which always selects a
hardware accelerated pixel format when one is available. Instead, use DescribePixelFormat()
to iterate through the list of available pixel formats. Any format with the
PFD_GENERIC_FORMAT attribute bit set will not be hardware accelerated.

An example of iterating over available pixel formats can be found here.

A less tasteful method to disable hardware acceleration is to move or rename your OpenGL
ICD.

Also, check your device's documentation to see if your device driver supports disabling

5 Microsoft Windows Specifics 38

http://www.geocities.com/SiliconValley/Code/1219/opengl32.html
http://www6.tomshardware.com/
http://www6.tomshardware.com/
http://www.fastgraphics.com/
http://www.wischik.com/lu/programmer/wingl.html#accelerated
http://www.wischik.com/lu/programmer/wingl.html#accelerated

hardware acceleration by a dialog box.

5.040 How do I know my program is using hardware acceleration on a Wintel card?

OpenGL doesn't provide a direct query to determine hardware acceleration usage. However,
this can usually be inferred by using indirect methods.

If you are using the Win32 interface (as opposed to GLUT), call DescribePixelFormat() and
check the returned dwFlags bitfield. If PFD_GENERIC_ACCELERATED is clear and
PFD_GENERIC_FORMAT is set, then the pixel format is only supported by the generic
implementation. Hardware acceleration is not possible for this format. For hardware
acceleration, you need to choose a different format.

If glGetString(GL_VENDOR) returns something other than "Microsoft Corporation", it
means you're using the board's ICD. If it returns "Microsoft Corporation", this implies you
chose a pixel format that your device can't accelerate. However, glGetString(GL_VENDOR)
also returns this if your device has an MCD instead of an ICD, which means you might still
be hardware accelerated in this case.

Another way to check for hardware acceleration is to temporarily remove or rename the ICD,
so it can't be loaded. If performance drops, it means you were hardware accelerated before.
Don't forget to restore the ICD to its original location or name. (To find your ICD file name,
run the regedit utility and search for a key named "OpenGLdrivers".)

You can also gather performance data by rendering into the back buffer and comparing the
results against known performance statistics for your device. This method is particularly
useful for devices that revert to software rendering for some state combinations or OpenGL
features. See the section on performance for more information.

5.050 Where can I get the OpenGL ICD for a Wintel card?

If your device supports OpenGL, the manufacturer should provide an ICD (commonly
referred to as the device driver) for it. After you install the ICD, your OpenGL application
can use the device's hardware capabilities.

If your device didn't come with an ICD on disk, you'll need to check the manufacturer's Web
page to see where you can download the latest drivers. The chip manufacturer will probably
have a more current ICD than the board manufacturer. Find the device driver download page,
get the latest package for your device, and install it per the instructions provided.

Check Reactor Critical for nVidia device drivers. They often have more current and better
performing OpenGL device drivers than nVidia makes available from their web page.

GLsetup, a free utility, is available. According to the GLsetup Web page, it "detects a user's
3D graphics hardware and installs the correct device drivers." Windows 2000 device drivers
might not be supported. You can get it from http://www.glsetup.com.

5.060 I'm using a Wintel card, and an OpenGL feature doesn't seem to work. What's going on?

It could simply be a bug in your code. However, if the same code works fine on another
OpenGL implementation, this implies the problem is in your graphics device or its ICD. See

 OpenGL FAQ and Troubleshooting Guide

5 Microsoft Windows Specifics 39

http://www.reactorcritical.com
http://www.glsetup.com

the previous question for information on obtaining the latest ICD for your device.

5.070 Can I use OpenGL with DirectDraw?

Moxing OpenGL rendering calls with rendering calls from other APIs (such as DirectDraw)
in the same window won't work on some drivers, and is therefore unportable. I don't
recommended it.

5.080 Can I use use DirectDraw to change the screen resolution or desktop pixel depth?

You can create a window and use DirectDraw to change the display resolution and/or pixel
depth. Then, get the window's DC and create an OpenGL context from it. This is known to
work on some devices.

While we're on the subject, Microsoft doesn't require, and consequently does not test for, the
ability to render OpenGL into a DirectDraw surface. Just because you can get a surface's DC
does not mean that OpenGL rendering is supported. Always check for error returns when
creating contexts or maiing them current.

5.090 My card supports OpenGL, but I don't get acceleration regardless of which pixel format I use.

Are you in 8bpp? There are few 3D accelerators for PCs that support acceleration in 8bpp.

5.100 How do I get hardware acceleration?

The pixel format selects hardware acceleration. Pay attention to the flags
GENERIC_FORMAT and GENERIC_ACCELERATED. You want both of them on if
you're using a 3D−DDI or an MCD and neither on if you are using an ICD. You may have
to iterate using DescribePixelFormat() instead of only using ChoosePixelFormat().

5.110 Why doesn't OpenGL hardware acceleration work with multiple monitors?

In Windows 98, Microsoft decided to disable OpenGL hardware acceleration when multiple
monitors are enabled. In Windows NT 4.0, some drivers support multiple monitors when
using identical (or nearly identical) cards. I don't believe multiple monitors and hardware
accelerated OpenGL work with different types of cards. I don't know the story with
Windows 2000, but it's likely to be similar to Windows NT 4.0.

5.120 Why does my MFC window flash, even though I'm using double buffering?

Your view class should have an OnEraseBkgnd() event handler. You can eliminate flashing
by overriding this function and returning TRUE. This tells Windows that you've cleared the
window. Of course, you didn't really clear the window. However, overriding the function
keeps Microsoft from trying to do it for you, and should prevent flashing.

5.121 Why does my double buffered window appear incomplete or contain black stripes?

This is a problem with MS OpenGL. The bug is in the generic code, or possibly in MS
Windows itself, because it occurs even with pure software rendering. To work around the
bug, try one of these two methids:

 OpenGL FAQ and Troubleshooting Guide

5 Microsoft Windows Specifics 40

♦ Create the OpenGL drawing window, but don't make it visible immediately. Get
the screen size and set the window's size to be the same as the screen. Now set the
pixel format and create the HGLRC. Set the window's size back to whatever it
should be and make the window visible. This hack is invisible to the user, but doesn't
always work.

♦ When the window is resized larger, destroy and re−create the window. This is
really ugly and visible to the user, but it seems to always work.

5.130 What's the difference between opengl.dll and opengl32.dll?

According to OpenGL Reference Manual editor Dave Shreiner:

"Unless there's an absolutely compelling reason ... I really would suggest using opengl32.dll,
and letting the old opengl.dll thing die.

"opengl.dll comes from the now totally unsupported OpenGL for Windows release of
OpenGL for Microsoft Windows by SGI. We stopped supporting that release over two
years −− like no one ever touches the code. ...

"Now, why use opengl32.dll? For the most part, SGI provides Microsoft with the ICD kit,
sample drivers, and software OpenGL implementation that you find there. Its really the
same code base (with fixes and new features) as the opengl.dll, its only that we got Microsoft
to ship and support it (in a manner of speaking)."

More information on linking with opengl.dll can be found here.

5.140 Should I use Direct3D or OpenGL?

A good comparison of the two can be found here.

5.150 What do I need to know to use OpenGL with MFC?

You need to be familiar with both OpenGL and the Microsoft Foundation Class (MFC). An
online MFC reference is available, the MFC FAQ. You don't need to be an MFC guru to add
OpenGL to an MFC application. Familiarity with C++ can make mastering MFC easier, and
the more you know about MFC, the more you can concentrate on your OpenGL code. If you
have only a rudimentary knowledge of MFC, look at the downloadable source code example
below, and look at the steps necessary to recreate it.

Samuel Paik's repository of links to OpenGL information on Microsoft Web sites also has
information on using OpenGL and MFC.

Here's a list of books that might be helpful.

OpenGL Programming for Windows 95 and Windows NT, by Ron Fosner. This is also known
as the white book. It contains good information on using OpenGL in Microsoft Windows.
Much of the information in it can be found on the MSDN Web site, but the book presents the
information in a more logical and easily digestable format, and comes with good demos.

Opengl Superbible: The Complete Guide to Opengl Programming for Windows NT and
Windows 95, by Richard S. Wright and Michael Sweet. This book contains a chapter on

 OpenGL FAQ and Troubleshooting Guide

5 Microsoft Windows Specifics 41

http://www.xmission.com/~legalize/d3d-vs-opengl.html
http://mfcfaq.stingray.com/
http://mfcfaq.stingray.com/

OpenGL and MFC.

MFC Programming with Visual C++ 6 Unleashed, by David White, et al. The book contains
a short chapter on OpenGL and focuses more on DirectX.

5.160 How can I use OpenGL with MFC?

To add OpenGL to an MFC application, you need to do at least the following:

♦ Add glu32.lib opengl32.lib to the list of object/library modules to link with.
♦ When your View class's OnInitialUpdate() function is called, set the pixel format and

create a rendering context as you would for a Win32 application.
♦ Render your OpenGL scene when the View needs to be updated, or add a Run

message handler to your Application class that updates when idle.

You can render OpenGL into any CWnd object, including frame windows, dialog boxes, and
controls.

Download this example, which demonstrates OpenGL in a CStatic form control. This code
uses a CGlView class that takes any CWnd as a parameter to its constructor. Rather than
create a View derived from a CFormView, you could just as easily create an SDI application,
and pass "this" (an instantiation of a CView) as a parameter to the constructor. Follow these
steps to recreate this sample code using Microsoft Visual C++ v6.0:

1. If you haven't done so already, download the example. You'll need to borrow code
from it in the steps that follow.

2. Create an MFC application using the AppWizard. Use defaults, except derive your
View class from a CFormView. The project will open in the resource editor. Add a
FORM control to the open CFormView. Call it IDC_OPENGLWIN.

3. Select Project−>Settings...−>Link, and add glu32.lib opengl32.lib to the list of
objects/library modules.

4. Select Project−>Add To Peoject−>Files... and add the CGlView.cpp OpenGL view
class source file from the above example code.

5. From the class view, right click your application's View class and select Add
Member Variable... Set the variable type to CGlView *, the name to m_pclGLView,
and the access to Private.

6. In your application's View class header file, add #include "CGlView.h" just before
the class definition.

7. Find the global declaration of "theApp". Immediately after this declaration, add two
new global variables:

CGlView *g_pclGLView = NULL;
MSG msg;

• In the wizard bar, set the application's View class, set the filter to All Class Members, and select the
OnInitialUpdate member function.

• For the CGlView class to work, it needs a CWnd to initialize OpenGL for that window. For this example, our
CWnd is the CStatic FORM control we added in step 1. After the existing code in this function, add the
following:

CStatic pclStatic = (CStatic *)GetDlgItem(IDC_OPENGLWIN);
m_pclGLView = new CGlView(pclStatic);

 OpenGL FAQ and Troubleshooting Guide

5 Microsoft Windows Specifics 42

ftp://ftp.frii.com/pub/martz/outgoing/GlView.zip
ftp://ftp.frii.com/pub/martz/outgoing/GlView.zip

• Open the class wizard with View−>ClassWizard. From the message map tab, select your project's
Application class. Add a function handler for the Run message. Replace the generated code with the Run
message handler from the downloaded example.

5.170 Is OpenGL inherently slower when used with MFC?

Nothing in MFC guarantees a slow−running OpenGL application. However, some poorly
written MFC applications might run slowly. This is a possibility in any development
environment and is not specific to OpenGL. Here are some things to look out for:

1. Build the application as Release instead of Debug. Disable the TRACE debugging
feature.

2. Avoid MFC classes such as CArray, CMap, and CList that perform inefficient data
copies.

3. You may be able to improve performance by avoiding the WM_PAINT message.
See the question above for example source that does this.

4. MFC classes are general purpose. For maximum performance, write a tuned
implementation of an MFC class.

5. Use standard efficient programming techniques such as avoiding redundant calls, etc.

5.180 Where can I find MFC examples?

This FAQ contains an example.

Alan Oursland, Using OpenGL in Visual C++ Version 4.x, DevCentral Learning Center,
http://devcentral.iftech.com/learning/tutorials/mfc−win32/opengl/. This is good but dated. It
will get you started with a SDI MFC OpenGL application.

Mahesh Venkitachalam, OpenGL Code, http://home.att.net/~bighesh/ogl.html. Mahesh
presents OpenGL in a no application wizard, minimal MFC program along with some
OpenGL techniques.

Roman Podobedov, Skeleton of OpenGL program for Windows (MFC).
http://madli.ut.ee/~romka/opengl/demos/win32_eng.htm. This is a minimal MFC program
with no controls or application wizard.

Paul Martz, Generating Random Fractal Terrain.
http://www.gameprogrammer.com/fractal.html. This is a good example of the MFC SDI
approach. However, the primary focus of the example is terrain, to which OpenGL and MFC
take a back seat.

[5] Pierre Alliez, Starting OpenGL in a Dialog.
http://codeguru.earthweb.com/opengl/texture_mapping.shtml.

Pierre Alliez, Starting Rendering Modes. http://www.codeguru.com/opengl/start.shtml. This
is a splitter window example.

Pierre Alliez, How to snap an OpenGL client and send it to the clipboard,
http://codeguru.earthweb.com/opengl/snap.shtml.

Pierre Alliez, A small VRML viewer using OpenGL and MFC.

 OpenGL FAQ and Troubleshooting Guide

5 Microsoft Windows Specifics 43

http://devcentral.iftech.com/learning/tutorials/mfc-win32/opengl/
http://home.att.net/~bighesh/ogl.html
http://madli.ut.ee/~romka/opengl/demos/win32_eng.htm
http://www.gameprogrammer.com/fractal.html
http://codeguru.earthweb.com/opengl/texture_mapping.shtml
http://www.codeguru.com/opengl/start.shtml
http://codeguru.earthweb.com/opengl/snap.shtml

http://www.codeproject.com/opengl/wrl_viewer.asp.

Uwe Kotyczka, Enu.zip, http://ws56.tinst.uni−jena.de/opengl_en.html. This rather large and
impressive MFC contribution demonstrates, multiple OpenGL views, rubber banding, color
ramp, mouse trackball type control, OpenGL printing, etc., in a MFC MDI and SDI
framework. This was built with VC++ 6.0 (SP4) .

5.190 What do I need to know about mixing WGL and GDI calls?
5.200 Why does my code crash under Windows NT or 2000 but run fine under 9x?
5.210 How do I properly use WGL functions?

Charles E. Hardwidge has tutorial articles and examples for download that address these
issues. The idea is to use WGL, GDI, and OpenGL functions such that the Microsoft
OpenGL ICD mechanism isn't assumed.

 OpenGL FAQ and Troubleshooting Guide

5 Microsoft Windows Specifics 44

http://www.codeproject.com/opengl/wrl_viewer.asp
http://ws56.tinst.uni-jena.de/opengl_en.html
http://www.hardwidge.org.uk

6 Windows, Buffers, and Rendering Contexts
6.010 How do I use overlay planes?

Overlays planes allow layered rendering. They support a transparent color to let rendering in
underlying planes show through. Any combination of overlay and underlay planes are
possible, but a typical implementation consists of a single overlay plane along with the main
framebuffer plane. It's common for overlay planes to be available only in color index mode,
though RGB overlays are available on some devices. The transparent color is normally
(0,0,0) for RGB overlays and index 0 for color index overlays. Rendering to the overlay
plane is non−destructive to the main plane and vice versa.

How you access overlay planes depends on the windowing system interface. While GLUT
3.7 has entry points defined for the use of overlays, currently the entry points are disabled.
To use overlays, your application needs to use WGL, GLX, or another platform−specific
interface.

For both WGL and GLX, the basic idea is the same: Create two rendering contexts, one for
the main plane and another for the overlay planes. Once they're created, make either context
current, depending on whether your application needs to render to the overlay or the main
plane.

In WGL, use ChoosePixelFormat() to select a pixel format with an overlay or underlay plane.
When your application calls this function, use the bReserved field of the
PIXELFORMATDESCRIPTOR to indicate the desired overlay or underlay plane. A value of
1 indicates one overlay plane. The iLayerType field needs to be set to PFD_MAIN_PLANE.

After setting the pixel format, create the rendering context for the main plane as usual, then
create a second rendering context for the overlay plane as follows:

HGLRC hORC;
hORC = wglCreateLayerContext (hDC, a);

Check the return value the same way you would for a call to wglCreateContext(). A value of NULL indicates
failure.

In GLX, use glXChooseVisual() to obtain a list of visuals with overlays. Add GLX_LEVEL to the attribute
list, followed by the fullword indication of the desired level. Positive values indicate overlay; negative values
indicate underlay. A value of 0 indicates the main plane, which is the default. A typical application will call
glXChooseVisual() twice, once with GLX_LEVEL set to 0, and again with GLX_LEVEL set to 1. After each
call, choose one of the returned visuals to create a rendering context.

When your application can't find a pixel format or visual that supports overlay, there are two common causes.
Overlay might not be available on your platform, or you could be asking for an RGB overlay when only color
index is available.

6 Windows, Buffers, and Rendering Contexts 45

7 Interacting with the Window System, Operating
System, and Input Devices
7.010 How do I obtain the window width and height or screen max width and height?

To obtain the window size on Win32, use the following code:

RECT rect;
HWND hwnd;
GetClientRect(hwnd, &rect);
/* rect.top and rect.left will always be 0, 0, respectively.
 The width and height are in rect.right and rect.bottom. */

For the screen size in pixels on Win32:

int width = GetSystemMetrics(SM_CXSCREEN);
int height = GetSystemMetrics(SM_CYSCREEN);

To obtaining the screen and window width and height using GLUT:

int screenWidth, screenHeight, windowWidth, windowHeight;

screenWidth = glutGet(GLUT_SCREEN_WIDTH);
screenHeight = glutGet(GLUT_SCREEN_HEIGHT);
windowWidth = glutGet(GLUT_WINDOW_WIDTH);
windowHeight = glutGet(GLUT_WINDOW_HEIGHT);

7.020 What user interface system should I use?

Most user interface (UI) systems, such as Motif, are restricted to a subset of operating
systems that support OpenGL. GLUT is available on a variety of windowing systems, and it
supports hierarchical menus. However, this fills the UI requirements of only simple
applications.

The GLUI toolkit implements buttons, checkboxes, radio buttons, and spinners, which are
layered on top of GLUT. Therefore, this UI is window system independent. Go to
http://www.cs.unc.edu/~rademach/glui/ for more details.

7.030 How can I use multiple monitors?

Many OpenGL implementations support multiple monitor configurations. These come in a
variety of different flavors:

♦ One display is hardware accelerated, the rest are not.
♦ All heads are accelerated as long as OpenGL windows do not span display

boundaries.
♦ As above, with support for OpenGL windows that span multiple displays.
♦ All of the above, with support for stereo.
♦ All of the above, with support for heterogeneous graphics cards vendors.

Some Macintosh configurations, such as the ATI Rage 128 Mobility, allow dual displays.
However, hardware acceleration is disabled if the OpenGL window spans both displays. If

7 Interacting with the Window System, Operating System, and Input Devices 46

http://www.cs.unc.edu/~rademach/glui/

the window lies completely on one display or the other, full hardware acceleration is
available.

Microsoft operating systems allow two OpenGL devices in a single system, but only the
primary device is hardware accelerated. To work around this issue, many vendors have
provided their own multiple monitor solutions, so that hardware acceleration is available on
both displays.

3Dlabs supports multi−head on GVX1, GVX210 and GVX420. The latter two cards are a
single AGP card with dual monitor output. The GVX1 supports one display per device, and
comes in both AGP and PCI versions to support signle−AGP slot systems.

HP Visualize Center and Visualize Workgroup allow full hardware acceleration in windows
spanning two or more displays under HP−UX. Visualize Center blends multiple projector
displays seamlessly on a wall−sized screen. Stereo is supported to produce a completely
immersive environment.

Matrox under Linux and Microsoft operating systems supports DualHead, digital flat panel,
and TV out for the G400, DualHead for the G450, and multiple monitors for the G200 series.
. In addition to supporting a single logical display, their Microsoft Windows device drivers
also support a dual desktop mode.

The NVIDIA Quadro2 MXR and GeForce2 GTS devices both support two displays from a
single card. Under Miscrosoft Windows operating systems, the Display Properties dialog
features a TwinView tab that allows the user to configure the displays. In Vertical Span
mode, a single logical desktop spans both monitors. In this configuration, an application that
creates a window the size of the screen will automatically create a window that fills both
monitors. No change to the application is required, and both displays are accelerated in
hardware. NVIDIA Linux drivers do not currently support hardware accelerated rendering,
according to the NVIDIA Linux FAQ.

All versions of Sun OpenGL for Solaris on SPARC support accelerated multihead
configurations provided the display is OpenGL accelerated. With Solaris 8 and Sun OpenGL
1.2.1 an accelerated OpenGL window can span multiple heads provided the display devices
are the same and the device is OpenGL accelerated. Sun OpenGL is available from:
http://sun.com/software/graphics/opengl

 OpenGL FAQ and Troubleshooting Guide

7 Interacting with the Window System, Operating System, and Input Devices 47

http://www.nvidia.com/Products/Drivers.nsf/Linux.html
http://www.nvidia.com/Products/Drivers.nsf/Linux.html
http://sun.com/software/graphics/opengl

8 Using Viewing and Camera Transforms, and
gluLookAt()
8.010 How does the camera work in OpenGL?

As far as OpenGL is concerned, there is no camera. More specifically, the camera is always
located at the eye space coordinate (0., 0., 0.). To give the appearance of moving the camera,
your OpenGL application must move the scene with the inverse of the camera transformation.

8.020 How can I move my eye, or camera, in my scene?

OpenGL doesn't provide an interface to do this using a camera model. However, the GLU
library provides the gluLookAt() function, which takes an eye position, a position to look at,
and an up vector, all in object space coordinates. This function computes the inverse camera
transform according to its parameters and multiplies it onto the current matrix stack.

8.030 Where should my camera go, the ModelView or Projection matrix?

The GL_PROJECTION matrix should contain only the projection transformation calls it
needs to transform eye space coordinates into clip coordinates.

The GL_MODELVIEW matrix, as its name implies, should contain modeling and viewing
transformations, which transform object space coordinates into eye space coordinates.
Remember to place the camera transformations on the GL_MODELVIEW matrix and never
on the GL_PROJECTION matrix.

Think of the projection matrix as describing the attributes of your camera, such as field of
view, focal length, fish eye lens, etc. Think of the ModelView matrix as where you stand
with the camera and the direction you point it.

The game dev FAQ has good information on these two matrices.

Read Steve Baker's article on projection abuse. This article is highly recommended and
well−written. It's helped several new OpenGL programmers.

8.040 How do I implement a zoom operation?

A simple method for zooming is to use a uniform scale on the ModelView matrix. However,
this often results in clipping by the zNear and zFar clipping planes if the model is scaled too
large.

A better method is to restrict the width and height of the view volume in the Projection
matrix.

For example, your program might maintain a zoom factor based on user input, which is a
floating−point number. When set to a value of 1.0, no zooming takes place. Larger values
result in greater zooming or a more restricted field of view, while smaller values cause the
opposite to occur. Code to create this effect might look like:

8 Using Viewing and Camera Transforms, and gluLookAt() 48

http://www.3dgamedev.com/resources/openglfaq.txt
http://web2.airmail.net/sjbaker1/projection_abuse.html

static float zoomFactor; /* Global, if you want. Modified by user input. Initially 1.0 */

/* A routine for setting the projection matrix. May be called from a resize
 event handler in a typical application. Takes integer width and height
 dimensions of the drawing area. Creates a projection matrix with correct
 aspect ratio and zoom factor. */
void setProjectionMatrix (int width, int height)
{
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluPerspective (50.0*zoomFactor, (float)width/(float)height, zNear, zFar);
 /* ...Where 'zNear' and 'zFar' are up to you to fill in. */
}

Instead of gluPerspective(), your application might use glFrustum(). This gets tricky, because the left,
right, bottom, and top parameters, along with the zNear plane distance, also affect the field of view.
Assuming you desire to keep a constant zNear plane distance (a reasonable assumption), glFrustum() code
might look like this:

glFrustum(left*zoomFactor, right*zoomFactor,
 bottom*zoomFactor, top*zoomFactor,
 zNear, zFar);

glOrtho() is similar.

8.050 Given the current ModelView matrix, how can I determine the object−space location of the camera?

The "camera" or viewpoint is at (0., 0., 0.) in eye space. When you turn this into a vector [0 0
0 1] and multiply it by the inverse of the ModelView matrix, the resulting vector is the
object−space location of the camera.

OpenGL doesn't let you inquire (through a glGet* routine) the inverse of the ModelView
matrix. You'll need to compute the inverse with your own code.

8.060 How do I make the camera "orbit" around a point in my scene?

You can simulate an orbit by translating/rotating the scene/object and leaving your camera in
the same place. For example, to orbit an object placed somewhere on the Y axis, while
continuously looking at the origin, you might do this:

gluLookAt(camera[0], camera[1], camera[2], /* look from camera XYZ */
 0, 0, 0, /* look at the origin */
 0, 1, 0); /* positive Y up vector */
glRotatef(orbitDegrees, 0.f, 1.f, 0.f);/* orbit the Y axis */
/* ...where orbitDegrees is derived from mouse motion */

glCallList(SCENE); /* draw the scene */

If you insist on physically orbiting the camera position, you'll need to transform the current camera position
vector before using it in your viewing transformations.

In either event, I recommend you investigate gluLookAt() (if you aren't using this routine already).

8.070 How can I automatically calculate a view that displays my entire model? (I know the bounding
sphere and up vector.)

 OpenGL FAQ and Troubleshooting Guide

8 Using Viewing and Camera Transforms, and gluLookAt() 49

The following is from a posting by Dave Shreiner on setting up a basic viewing system:

First, compute a bounding sphere for all objects in your scene. This should provide you with
two bits of information: the center of the sphere (let (c.x, c.y, c.z) be that point) and its
diameter (call it "diam").

Next, choose a value for the zNear clipping plane. General guidelines are to choose
something larger than, but close to 1.0. So, let's say you set

zNear = 1.0;
zFar = zNear + diam;

Structure your matrix calls in this order (for an Orthographic projection):

GLdouble left = c.x − diam;
GLdouble right = c.x + diam;
GLdouble bottom c.y − diam;
GLdouble top = c.y + diam;

glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(left, right, bottom, top, zNear, zFar);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();

This approach should center your objects in the middle of the window and stretch them to fit (i.e., its
assuming that you're using a window with aspect ratio = 1.0). If your window isn't square, compute left, right,
bottom, and top, as above, and put in the following logic before the call to glOrtho():

GLdouble aspect = (GLdouble) windowWidth / windowHeight;

if (aspect < 1.0) { // window taller than wide
 bottom /= aspect;
 top /= aspect;
} else {
 left *= aspect;
 right *= aspect;
}

The above code should position the objects in your scene appropriately. If you intend to manipulate (i.e.
rotate, etc.), you need to add a viewing transform to it.

A typical viewing transform will go on the ModelView matrix and might look like this:

GluLookAt (0., 0., 2.*diam,
 c.x, c.y, c.z,
 0.0, 1.0, 0.0);

8.080 Why doesn't gluLookAt work?

This is usually caused by incorrect transformations.

Assuming you are using gluPerspective() on the Projection matrix stack with zNear and zFar
as the third and fourth parameters, you need to set gluLookAt on the ModelView matrix
stack, and pass parameters so your geometry falls between zNear and zFar.

 OpenGL FAQ and Troubleshooting Guide

8 Using Viewing and Camera Transforms, and gluLookAt() 50

It's usually best to experiment with a simple piece of code when you're trying to understand
viewing transformations. Let's say you are trying to look at a unit sphere centered on the
origin. You'll want to set up your transformations as follows:

glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluPerspective(50.0, 1.0, 3.0, 7.0);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
gluLookAt(0.0, 0.0, 5.0,
 0.0, 0.0, 0.0,
 0.0, 1.0, 0.0);

It's important to note how the Projection and ModelView transforms work together.

In this example, the Projection transform sets up a 50.0−degree field of view, with an aspect ratio of 1.0. The
zNear clipping plane is 3.0 units in front of the eye, and the zFar clipping plane is 7.0 units in front of the
eye. This leaves a Z volume distance of 4.0 units, ample room for a unit sphere.

The ModelView transform sets the eye position at (0.0, 0.0, 5.0), and the look−at point is the origin in the
center of our unit sphere. Note that the eye position is 5.0 units away from the look at point. This is
important, because a distance of 5.0 units in front of the eye is in the middle of the Z volume that the
Projection transform defines. If the gluLookAt() call had placed the eye at (0.0, 0.0, 1.0), it would produce a
distance of 1.0 to the origin. This isn't long enough to include the sphere in the view volume, and it would be
clipped by the zNear clipping plane.

Similarly, if you place the eye at (0.0, 0.0, 10.0), the distance of 10.0 to the look at point will result in the unit
sphere being 10.0 units away from the eye and far behind the zFar clipping plane placed at 7.0 units.

If this has confused you, read up on transformations in the OpenGL red book or OpenGL Specification. After
you understand object coordinate space, eye coordinate space, and clip coordinate space, the above should
become clear. Also, experiment with small test programs. If you're having trouble getting the correct
transforms in your main application project, it can be educational to write a small piece of code that tries to
reproduce the problem with simpler geometry.

8.090 How do I get a specified point (XYZ) to appear at the center of the scene?

gluLookAt() is the easiest way to do this. Simply set the X, Y, and Z values of your point as
the fourth, fifth, and sixth parameters to gluLookAt().

8.100 I put my gluLookAt() call on my Projection matrix and now fog, lighting, and texture mapping don't
work correctly. What happened?

Look at question 8.030 for an explanation of this problem.

8.110 How can I create a stereo view?

Paul Bourke has assembled information on stereo OpenGL viewing.

♦ 3D Stereo Rendering Using OpenGL
♦ Calculating Stereo Pairs
♦ Creating Anaglyphs using OpenGL

 OpenGL FAQ and Troubleshooting Guide

8 Using Viewing and Camera Transforms, and gluLookAt() 51

http://www.swin.edu.au/astronomy/pbourke/opengl/stereogl/
http://www.swin.edu.au/astronomy/pbourke/opengl/stereogl/
http://www.swin.edu.au/astronomy/pbourke/stereographics/stereorender/
http://www.swin.edu.au/astronomy/pbourke/stereographics/stereorender/
http://www.swin.edu.au/astronomy/pbourke/opengl/redblue/
http://www.swin.edu.au/astronomy/pbourke/opengl/redblue/

9 Transformations
9.001 I can't get transformations to work. Where can I learn more about matrices?

A thorough explanation of basic matrix math and linear algebra is beyond the scope of this
FAQ. These concepts are taught in high school math classes in the United States.

If you understand the basics, but just get confused (a common problem even for the
experienced!), read through Steve Baker's review of matrix concepts and his article on Euler
angles.

Delphi code for performing basic vector, matrix, and quaternion operations can be found here.

9.005 Are OpenGL matrices column−major or row−major?

For programming purposes, OpenGL matrices are 16−value arrays with base vectors laid out
contiguously in memory. The translation components occupy the 13th, 14th, and 15th
elements of the 16−element matrix.

Column−major versus row−major is purely a notational convention. Note that
post−multiplying with column−major matrices produces the same result as pre−multiplying
with row−major matrices. The OpenGL Specification and the OpenGL Reference Manual
both use column−major notation. You can use any notation, as long as it's clearly stated.

Sadly, the use of column−major format in the spec and blue book has resulted in endless
confusion in the OpenGL programming community. Column−major notation suggests that
matrices are not laid out in memory as a programmer would expect.

A summary of Usetnet postings on the subject can be found here.

9.010 What are OpenGL coordinate units?

The short answer: Anything you want them to be.

Depending on the contents of your geometry database, it may be convenient for your
application to treat one OpenGL coordinate unit as being equal to one millimeter or one
parsec or anything in between (or larger or smaller).

OpenGL also lets you specify your geometry with coordinates of differing values. For
example, you may find it convenient to model an airplane's controls in centimeters, its
fuselage in meters, and a world to fly around in kilometers. OpenGL's ModelView matrix
can then scale these different coordinate systems into the same eye coordinate space.

It's the application's responsibility to ensure that the Projection and ModelView matrices are
constructed to provide an image that keeps the viewer at an appropriate distance, with an
appropriate field of view, and keeps the zNear and zFar clipping planes at an appropriate
range. An application that displays molecules in micron scale, for example, would probably
not want to place the viewer at a distance of 10 feet with a 60 degree field of view.

9.011 How are coordinates transformed? What are the different coordinate spaces?

9 Transformations 52

http://web2.airmail.net/sjbaker1/matrices_can_be_your_friends.html
http://web2.airmail.net/sjbaker1/matrices_can_be_your_friends.html
http://web2.airmail.net/sjbaker1/eulers_are_evil.html
http://web2.airmail.net/sjbaker1/eulers_are_evil.html
http://web2.airmail.net/sjbaker1/eulers_are_evil.html
http://www.lischke-online.de/Graphics.html
http://www.lischke-online.de/Graphics.html
http://www.lischke-online.de/Graphics.html
http://research.microsoft.com/~hollasch/cgindex/math/matrix/column-vec.html
http://research.microsoft.com/~hollasch/cgindex/math/matrix/column-vec.html

Object Coordinates are transformed by the ModelView matrix to produce Eye Coordinates.

Eye Coordinates are transformed by the Projection matrix to produce Clip Coordinates.

Clip Coordinate X, Y, and Z are divided by Clip Coordinate W to produce Normalized
Device Coordinates.

Normalized Device Coordinates are scaled and translated by the viewport parameters to
produce Window Coordinates.

Object coordinates are the raw coordinates you submit to OpenGL with a call to glVertex*()
or glVertexPointer(). They represent the coordinates of your object or other geometry you
want to render.

Many programmers use a World Coordinate system. Objects are often modeled in one
coordinate system, then scaled, translated, and rotated into the world you're constructing.
World Coordinates result from transforming Object Coordinates by the modelling transforms
stored in the ModelView matrix. However, OpenGL has no concept of World Coordinates.
World Coordinates are purely an application construct.

Eye Coordinates result from transforming Object Coordinates by the ModelView matrix. The
ModelView matrix contains both modelling and viewing transformations that place the
viewer at the origin with the view direction aligned with the negative Z axis.

Clip Coordinates result from transforming Eye Coordinates by the Projection matrix. Clip
Coordinate space ranges from −Wc to Wc in all three axes, where Wc is the Clip Coordinate
W value. OpenGL clips all coordinates outside this range.

Perspective division performed on the Clip Coordinates produces Normalized Device
Coordinates, ranging from −1 to 1 in all three axes.

Window Coordinates result from scaling and translating Normalized Device Coordinates by
the viewport. The parameters to glViewport() and glDepthRange() control this
transformation. With the viewport, you can map the Normalized Device Coordinate cube to
any location in your window and depth buffer.

For more information, see the OpenGL Specification, Figure 2.6.

9.020 How do I transform only one object in my scene or give each object its own transform?

OpenGL provides matrix stacks specifically for this purpose. In this case, use the ModelView
matrix stack.

A typical OpenGL application first sets the matrix mode with a call to
glMatrixMode(GL_MODELVIEW) and loads a viewing transform, perhaps with a call to
gluLookAt().More information is available on gluLookAt().

Then the code renders each object in the scene with its own transformation by wrapping the
rendering with calls to glPushMatrix() and glPopMatrix(). For example:

glPushMatrix();

 OpenGL FAQ and Troubleshooting Guide

9 Transformations 53

glRotatef(90., 1., 0., 0.);
gluCylinder(quad,1,1,2,36,12);
glPopMatrix();

The above code renders a cylinder rotated 90 degrees around the X−axis. The ModelView matrix is restored
to its previous value after the glPopMatrix() call. Similar call sequences can render subsequent objects in the
scene.

9.030 How do I draw 2D controls over my 3D rendering?

The basic strategy is to set up a 2D projection for drawing controls. You can do this either on
top of your 3D rendering or in overlay planes. If you do so on top of a 3D rendering, you'll
need to redraw the controls at the end of every frame (immediately before swapping buffers).
If you draw into the overlay planes, you only need to redraw the controls if you're updating
them.

To set up a 2D projection, you need to change the Projection matrix. Normally, it's
convenient to set up the projection so one world coordinate unit is equal to one screen pixel,
as follows:

glMatrixMode (GL_PROJECTION);
glLoadIdentity ();
gluOrtho2D (0, windowWidth, 0, windowHeight);

gluOrtho2D() sets up a Z range of −1 to 1, so you need to use one of the glVertex2*() functions to ensure
your geometry isn't clipped by the zNear or zFar clipping planes.

Normally, the ModelView matrix is set to the identity when drawing 2D controls, though you may find it
convenient to do otherwise (for example, you can draw repeated controls with interleaved translation
matrices).

If exact pixelization is required, you might want to put a small translation in the ModelView matrix, as shown
below:

glMatrixMode (GL_MODELVIEW);
glLoadIdentity ();
glTranslatef (0.375, 0.375, 0.);

If you're drawing on top of a 3D−depth buffered image, you'll need to somehow disable depth testing while
drawing your 2D geometry. You can do this by calling glDisable(GL_DEPTH_TEST) or glDepthFunc
(GL_ALWAYS). Depending on your application, you might also simply clear the depth buffer before starting
the 2D rendering. Finally, drawing all 2D geometry with a minimum Z coordinate is also a solution.

After the 2D projection is established as above, you can render normal OpenGL primitives to the screen,
specifying their coordinates with XY pixel addresses (using OpenGL−centric screen coordinates, with (0,0)
in the lower left).

9.040 How do I bypass OpenGL matrix transformations and send 2D coordinates directly for rasterization?

There isn't a mode switch to disable OpenGL matrix transformations. However, if you set
either or both matrices to the identity with a glLoadIdentity() call, typical OpenGL
implementations are intelligent enough to know that an identity transformation is a no−op
and will act accordingly.

 OpenGL FAQ and Troubleshooting Guide

9 Transformations 54

More detailed information on using OpenGL as a rasterization−only API is in the OpenGL
Game Developer’s FAQ.

9.050 What are the pros and cons of using absolute versus relative coordinates?

Some OpenGL applications may need to render the same object in multiple locations in a
single scene. OpenGL lets you do this two ways:

1) Use “absolute coordinates". Maintain multiple copies of each object, each with its own
unique set of vertices. You don't need to change the ModelView matrix to render the object
at the desired location.

2) Use “relative coordinates". Keep only one copy of the object, and render it multiple times
by pushing the ModelView matrix stack, setting the desired transform, sending the geometry,
and popping the stack. Repeat these steps for each object.

In general, frequent changes to state, such as to the ModelView matrix, can negatively
impact your application’s performance. OpenGL can process your geometry faster if you
don't wrap each individual primitive in a lot of changes to the ModelView matrix.

However, sometimes you need to weigh this against the memory savings of replicating
geometry. Let's say you define a doorknob with high approximation, such as 200 or 300
triangles, and you're modeling a house with 50 doors in it, all of which have the same
doorknob. It's probably preferable to use a single doorknob display list, with multiple unique
transform matrices, rather than use absolute coordinates with 10−15K triangles in memory.

As with many computing issues, it's a trade−off between processing time and memory that
you'll need to make on a case−by−case basis.

9.060 How can I draw more than one view of the same scene?

You can draw two views into the same window by using the glViewport() call. Set
glViewport() to the area that you want the first view, set your scene’s view, and render. Then
set glViewport() to the area for the second view, again set your scene’s view, and render.

You need to be aware that some operations don't pay attention to the glViewport, such as
SwapBuffers and glClear(). SwapBuffers always swaps the entire window. However, you
can restrain glClear() to a rectangular window by using the scissor rectangle.

Your application might only allow different views in separate windows. If so, you need to
perform a MakeCurrent operation between the two renderings. If the two windows share a
context, you need to change the scene’s view as described above. This might not be
necessary if your application uses separate contexts for each window.

9.070 How do I transform my objects around a fixed coordinate system rather than the object's local
coordinate system?

If you rotate an object around its Y−axis, you'll find that the X− and Z−axes rotate with the
object. A subsequent rotation around one of these axes rotates around the newly transformed
axis and not the original axis. It's often desirable to perform transformations in a fixed
coordinate system rather than the object’s local coordinate system.

 OpenGL FAQ and Troubleshooting Guide

9 Transformations 55

http://www.3dgamedev.com/resources/openglfaq.txt
http://www.3dgamedev.com/resources/openglfaq.txt
http://www.3dgamedev.com/resources/openglfaq.txt

The OpenGL Game Developer’s FAQ contains information on using quaternions to store
rotations, which may be useful in solving this problem.

The root cause of the problem is that OpenGL matrix operations postmultiply onto the matrix
stack, thus causing transformations to occur in object space. To affect screen space
transformations, you need to premultiply. OpenGL doesn't provide a mode switch for the
order of matrix multiplication, so you need to premultiply by hand. An application might
implement this by retrieving the current matrix after each frame. The application multiplies
new transformations for the next frame on top of an identity matrix and multiplies the
accumulated current transformations (from the last frame) onto those transformations using
glMultMatrix().

You need to be aware that retrieving the ModelView matrix once per frame might have a
detrimental impact on your application’s performance. However, you need to benchmark this
operation, because the performance will vary from one implementation to the next.

9.080 What are the pros and cons of using glFrustum() versus gluPerspective()? Why would I want to use
one over the other?

glFrustum() and gluPerspective() both produce perspective projection matrices that you can
use to transform from eye coordinate space to clip coordinate space. The primary difference
between the two is that glFrustum() is more general and allows off−axis projections, while
gluPerspective() only produces symmetrical (on−axis) projections. Indeed, you can use
glFrustum() to implement gluPerspective(). However, aside from the layering of function
calls that is a natural part of the GLU interface, there is no performance advantage to using
matrices generated by glFrustum() over gluPerspective().

Since glFrustum() is more general than gluPerspective(), you can use it in cases when
gluPerspective() can't be used. Some examples include projection shadows, tiled renderings,
and stereo views.

Tiled rendering uses multiple off−axis projections to render different sections of a scene. The
results are assembled into one large image array to produce the final image. This is often
necessary when the desired dimensions of the final rendering exceed the OpenGL
implementation's maximum viewport size.

In a stereo view, two renderings of the same scene are done with the view location slightly
shifted. Since the view axis is right between the “eyes”, each view must use a slightly
off−axis projection to either side to achieve correct visual results.

9.085 How can I make a call to glFrustum() that matches my call to gluPerspective()?

The field of view (fov) of your glFrustum() call is:

fov*0.5 = arctan ((top−bottom)*0.5 / near)

Since bottom == −top for the symmetrical projection that gluPerspective() produces, then:

top = tan(fov*0.5) * near
bottom = −top

 OpenGL FAQ and Troubleshooting Guide

9 Transformations 56

http://www.3dgamedev.com/resources/openglfaq.txt
http://www.3dgamedev.com/resources/openglfaq.txt

The left and right parameters are simply functions of the top, bottom, and aspect:

left = aspect * bottom
right = aspect * top

The OpenGL Reference Manual (where do I get this?) shows the matrices produced by both functions.

9.090 How do I draw a full−screen quad?

This question usually means, "How do I draw a quad that fills the entire OpenGL viewport?"
There are many ways to do this.

The most straightforward method is to set the desired color, set both the Projection and
ModelView matrices to the identity, and call glRectf() or draw an equivalent GL_QUADS
primitive. Your rectangle or quad's Z value should be in the range of –1.0 to 1.0, with –1.0
mapping to the zNear clipping plane, and 1.0 to the zFar clipping plane.

As an example, here's how to draw a full−screen quad at the zNear clipping plane:

glMatrixMode (GL_MODELVIEW);
glPushMatrix ();
glLoadIdentity ();
glMatrixMode (GL_PROJECTION);
glPushMatrix ();
glLoadIdentity ();

glBegin (GL_QUADS);
glVertex3i (−1, −1, −1);
glVertex3i (1, −1, −1);
glVertex3i (1, 1, −1);
glVertex3i (−1, 1, −1);
glEnd ();

glPopMatrix ();
glMatrixMode (GL_MODELVIEW);
glPopMatrix ();

Your application might want the quad to have a maximum Z value, in which case 1 should be used for the Z
value instead of −1.

When painting a full−screen quad, it might be useful to mask off some buffers so that only specified buffers
are touched. For example, you might mask off the color buffer and set the depth function to GL_ALWAYS,
so only the depth buffer is painted. Also, you can set masks to allow the stencil buffer to be set or any
combination of buffers.

9.100 How can I find the screen coordinates for a given object−space coordinate?

You can use the GLU library gluProject() utility routine if you only need to find it for a few
vertices. For a large number of coordinates, it can be more efficient to use the Feedback
mechanism.

To use gluProject(), you'll need to provide the ModelView matrix, projection matrix,
viewport, and input object space coordinates. Screen space coordinates are returned for X, Y,
and Z, with Z being normalized (0 <= Z <= 1).

 OpenGL FAQ and Troubleshooting Guide

9 Transformations 57

9.110 How can I find the object−space coordinates for a pixel on the screen?

The GLU library provides the gluUnProject() function for this purpose.

You'll need to read the depth buffer to obtain the input screen coordinate Z value at the X,Y
location of interest. This can be coded as follows:

GLdouble z;

glReadPixels (x, y, 1, 1, GL_DEPTH_COMPONENT, GL_DOUBLE, &z);

Note that x and y are OpenGL−centric with (0,0) in the lower−left corner.

You'll need to provide the screen space X, Y, and Z values as input to gluUnProject() with the ModelView
matrix, Projection matrix, and viewport that were current at the time the specific pixel of interest was
rendered.

9.120 How do I find the coordinates of a vertex transformed only by the ModelView matrix?

It's often useful to obtain the eye coordinate space value of a vertex (i.e., the object space
vertex transformed by the ModelView matrix). You can obtain this by retrieving the current
ModelView matrix and performing simple vector / matrix multiplication.

9.130 How do I calculate the object−space distance from the viewer to a given point?

Transform the point into eye−coordinate space by multiplying it by the ModelView matrix.
Then simply calculate its distance from the origin. (If this doesn't work, you may have
incorrectly placed the view transform on the Projection matrix stack.)

9.140 How do I keep my aspect ratio correct after a window resize?

It depends on how you are setting your projection matrix. In any case, you'll need to know
the new dimensions (width and height) of your window. How to obtain these depends on
which platform you're using. In GLUT, for example, the dimensions are passed as parameters
to the reshape function callback.

The following assumes you're maintaining a viewport that's the same size as your window. If
you are not, substitute viewportWidth and viewportHeight for windowWidth and
windowHeight.

If you're using gluPerspective() to set your Projection matrix, the second parameter controls
the aspect ratio. When your program catches a window resize, you'll need to change your
Projection matrix as follows:

glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluPerspective(fov, (float)windowWidth/(float)windowHeight, zNear, zFar);

If you're using glFrustum(), the aspect ratio varies with the width of the view volume to the height of the
view volume. You might maintain a 1:1 aspect ratio with the following window resize code:

float cx, halfWidth = windowWidth*0.5f;

 OpenGL FAQ and Troubleshooting Guide

9 Transformations 58

float aspect = (float)windowWidth/(float)windowHeight;

glMatrixMode(GL_PROJECTION);
glLoadIdentity();
/* cx is the eye space center of the zNear plane in X */
glFrustum(cx−halfWidth*aspect, cx+halfWidth*aspect, bottom, top, zNear, zFar);

glOrtho() and gluOrtho2D() are similar to glFrustum().

9.150 Can I make OpenGL use a left−handed coordinate space?

OpenGL doesn't have a mode switch to change from right− to left−handed coordinates.
However, you can easily obtain a left−handed coordinate system by multiplying a negative Z
scale onto the ModelView matrix. For example:

glMatrixMode (GL_MODELVIEW);
glLoadIdentity ();
glScalef (1., 1., −1.);
/* multiply view transforms as usual... */
/* multiply model transforms as usual... */

9.160 How can I transform an object so that it points at or follows another object or point in my scene?

You need to construct a matrix that transforms from your object's local coordinate system
into a coordinate system that faces in the desired direction. See this example code to see how
this type of matrix is created.

If you merely want to render an object so that it always faces the viewer, you might consider
simply rendering it in eye−coordinate space with the ModelView matrix set to the identity.

9.162 How can I transform an object with a given yaw, pitch, and roll?

The upper left 3x3 portion of a transformation matrix is composed of the new X, Y, and Z
axes of the post−transformation coordinate space.

If the new transform is a roll, compute new local Y and X axes by rotating them "roll"
degrees around the local Z axis. Do similar calculations if the transform is a pitch or yaw.
Then simply construct your transformation matrix by inserting the new local X, Y, and Z
axes into the upper left 3x3 portion of an identity matrix. This matrix can be passed as a
parameter to glMultMatrix().

Further rotations should be computed around the new local axes. This will inevitably require
rotation about an arbitrary axis, which can be confusing to inexperienced 3D programmers.
This is a basic concept in linear algebra.

Many programmers apply all three transformations −− yaw, pitch, and roll −− at once as
successive glRotate() calls about the X, Y, and Z axes. This has the disadvantage of creating
gimbal lock, in which the result depends on the order of glRotate() calls.

9.170 How do I render a mirror?

Render your scene twice, once as it is reflected in the mirror, then once from the normal
(non−reflected) view. Example code demonstrates this technique.

 OpenGL FAQ and Troubleshooting Guide

9 Transformations 59

lookat.cpp
mirror.c

For axis−aligned mirrors, such as a mirror on the YZ plane, the reflected scene can be
rendered with a simple scale and translate. Scale by −1.0 in the axis corresponding to the
mirror's normal, and translate by twice the mirror's distance from the origin. Rendering the
scene with these transforms in place will yield the scene reflected in the mirror. Use the
matrix stack to restore the view transform to its previous value.

Next, clear the depth buffer with a call to glClear(GL_DEPTH_BUFFER_BIT). Then render
the mirror. For a perfectly reflecting mirror, render into the depth buffer only. Real mirrors
are not perfect reflectors, as they absorb some light. To create this effect, use blending to
render a black mirror with an alpha of 0.05.
glBlendFunc(GL_SRC_ALPHA,GL_ONE_MINUS_SRC_ALPHA) is a good blending
function for this purpose.

Finally, render the non−reflected scene. Since the entire reflected scene exists in the color
buffer, and not just the portion of the reflected scene in the mirror, you will need to touch all
pixels to overwrite areas of the reflected scene that should not be visible.

9.180 How can I do my own perspective scaling?

OpenGL multiplies your coordinates by the ModelView matrix, then by the Projection matrix
to get clip coordinates. It then performs the perspective divide to obtain normalized device
coordinates. It's the perspective division step that creates a perspective rendering, with
geometry in the distance appearing smaller than the geometry in the foreground. The
perspective division stage is accomplished by dividing your XYZ clipping coordinate values
by the clipping coordinate W value, such as:

Xndc = Xcc/Wcc
Yndc = Ycc/Wcc
Zndc = Zcc/Wcc

To do your own perspective correction, you need to obtain the clipping coordinate W value. The feedback
buffer provides homogenous coordinates with XYZ in device coordinates and W in clip coordinates. You
might also glGetFloatv(GL_CURRENT_RASTER_POSITION,…) and the W value will again be in clipping
coordinates, while XYZ are in device coordinates.

 OpenGL FAQ and Troubleshooting Guide

9 Transformations 60

10 Clipping, Culling, and Visibility Testing
10.010 How do I tell if a vertex has been clipped or not?

You can use the OpenGL Feedback feature to determine if a vertex will be clipped or not.
After you're in Feedback mode, simply send the vertex in question as a GL_POINTS
primitive. Then switch back to GL_RENDER mode and check the size of the Feedback
buffer. A size of zero indicates a clipped vertex.

Typically, OpenGL implementations don't provide a fast feedback mechanism. It might be
faster to perform the clip test manually. To do so, construct six plane equations
corresponding to the clip−coordinate view volume and transform them into object space by
the current ModelView matrix. A point is clipped if it violates any of the six plane equations.

Here's a GLUT example that shows how to calculate the object−space view−volume planes
and clip test bounding boxes against them.

10.020 How do I perform occlusion or visibility testing?

OpenGL provides no direct support for determining whether a given primitive will be visible
in a scene for a given viewpoint. At worst, an application will need to perform these tests
manually. The previous question contains information on how to do this.

The code example from question 10.010 was combined with Nate Robins' excellent viewing
tutorial to produce this view culling example code.

Higher−level APIs, such as Fahernheit Large Model, may provide this feature.

HP OpenGL platforms support an Occlusion Culling extension. To use this extension, enable
the occlusion test, render some bounding geometry, and call glGetBooleanv() to obtain the
visibility status of the geometry.

10.030 How do I render to a nonrectangular viewport?

OpenGL's stencil buffer can be used to mask the area outside of a non−rectangular viewport.
With stencil enabled and stencil test appropriately set, rendering can then occur in the
unmasked area. Typically an application will write the stencil mask once, and then render
repeated frames into the unmasked area.

As with the depth buffer, an application must ask for a stencil buffer when the window and
context are created.

An application will perform such a rendering as follows:

/* Enable stencil test and leave it enabled throughout */
glEnable (GL_STENCIL_TEST);

/* Prepare to write a single bit into the stencil buffer in the area outside the viewport */
glStencilFunc (GL_ALWAYS, 0x1, 0x1);

/* Render a set of geometry corresponding to the area outside the viewport here */

10 Clipping, Culling, and Visibility Testing 61

viewcull.c
http://lynx.inertiagames.com/~michael/OPENGLTUTORS.zip

/* The stencil buffer now has a single bit painted in the area outside the viewport */

/* Prepare to render the scene in the viewport */
glStencilFunc (GL_EQUAL, 0x0, 0x1);

/* Render the scene inside the viewport here */

/* ...render the scene again as needed for animation purposes */

After a single bit is painted in the area outside the viewport, an application may render
geometry to either the area inside or outside the viewport. To render to the inside area, use
glStencilFunc(GL_EQUAL,0x0,0x1), as the code above shows. To render to the area outside
the viewport, use glStencilFunc(GL_EQUAL,0x1,0x1).

You can obtain similar results using only the depth test. After rendering a 3D scene to a
rectangular viewport, an app can clear the depth buffer and render the nonrectangular frame.

10.040 When an OpenGL primitive moves placing one vertex outside the window, suddenly the color or
texture mapping is incorrect. What's going on?

There are two potential causes for this.

When a primitive lies partially outside the window, it often crosses the view volume
boundary. OpenGL must clip any primitive that crosses the view volume boundary. To clip a
primitive, OpenGL must interpolate the color values, so they're correct at the new clip vertex.
This interpolation is perspective correct. However, when a primitive is rasterized, the color
values are often generated using linear interpolation in window space, which isn't perspective
correct. The difference in generated color values means that for any given barycentric
coordinate location on a filled primitive, the color values may be different depending on
whether the primitive is clipped. If the color values generated during rasterization were
perspective correct, this problem wouldn't exist.

For some OpenGL implementations, texture coordinates generated during rasterization aren't
perspective correct. However, you can usually make them perspective correct by calling
glHint(GL_PERSPECTIVE_CORRECTION_HINT,GL_NICEST);. Colors generated at the
rasterization stage aren't perspective correct in almost every OpenGL implementation, and
can't be made so. For this reason, you're more likely to encounter this problem with colors
than texture coordinates.

A second reason the color or texture mapping might be incorrect for a clipped primitive is
because the color values or texture coordinates are nonplanar. Color values are nonplanar
when the three color components at each vertex don't lie in a plane in 3D color space. 2D
texture coordinates are always planar. However, in this context, the term nonplanar is used
for texture coordinates that look up a texel area that isn't congruent in shape to the primitive
being textured.

Nonplanar colors or texture coordinates aren't a problem for triangular primitives, but the
problem may occur with GL_QUADS, GL_QUAD_STRIP and GL_POLYGON primitives.
When using nonplanar color values or texture coordinates, there isn't a correct way to
generate new values associated with clipped vertices. Even perspective−correct interpolation
can create differences between clipped and nonclipped primitives. The solution to this
problem is to not use nonplanar color values and texture coordinates.

 OpenGL FAQ and Troubleshooting Guide

10 Clipping, Culling, and Visibility Testing 62

10.050 I know my geometry is inside the view volume. How can I turn off OpenGL's view−volume clipping
to maximize performance?

Standard OpenGL doesn't provide a mechanism to disable the view−volume clipping test;
thus, it will occur for every primitive you send.

Some implementations of OpenGL support the GL_EXT_clip_volume_hint extension. If the
extension is available, a call to
glHint(GL_CLIP_VOLUME_CLIPPING_HINT_EXT,GL_FASTEST) will inform OpenGL
that the geometry is entirely within the view volume and that view−volume clipping is
unnecessary. Normal clipping can be resumed by setting this hint to GL_DONT_CARE.
When clipping is disabled with this hint, results are undefined if geometry actually falls
outside the view volume.

10.060 When I move the viewpoint close to an object, it starts to disappear. How can I disable OpenGL's
zNear clipping plane?

You can't. If you think about it, it makes sense: What if the viewpoint is in the middle of a
scene? Certainly some geometry is behind the viewer and needs to be clipped. Rendering it
will produce undesirable results.

For correct perspective and depth buffer calculations to occur, setting the zNear clipping
plane to 0.0 is also not an option. The zNear clipping plane must be set at a positive
(nonzero) distance in front of the eye.

To avoid the clipping artifacts that can otherwise occur, an application must track the
viewpoint location within the scene, and ensure it doesn't get too close to any geometry. You
can usually do this with a simple form of collision detection. This FAQ contains more
information on collision detection with OpenGL.

If you're certain that your geometry doesn't intersect any of the view−volume planes, you
might be able to use an extension to disable clipping. See the previous question for more
information.

10.070 How do I draw glBitmap() or glDrawPixels() primitives that have an initial glRasterPos() outside
the window's left or bottom edge?

When the raster position is set outside the window, it's often outside the view volume and
subsequently marked as invalid. Rendering the glBitmap and glDrawPixels primitives won't
occur with an invalid raster position. Because glBitmap/glDrawPixels produce pixels up and
to the right of the raster position, it appears impossible to render this type of primitive
clipped by the left and/or bottom edges of the window.

However, here's an often−used trick: Set the raster position to a valid value inside the view
volume. Then make the following call:

glBitmap (0, 0, 0, 0, xMove, yMove, NULL);

This tells OpenGL to render a no−op bitmap, but move the current raster position by
(xMove,yMove). Your application will supply (xMove,yMove) values that place the raster
position outside the view volume. Follow this call with the glBitmap() or glDrawPixels() to

 OpenGL FAQ and Troubleshooting Guide

10 Clipping, Culling, and Visibility Testing 63

do the rendering you desire.

10.080 Why doesn't glClear() work for areas outside the scissor rectangle?

The OpenGL Specification states that glClear() only clears the scissor rectangle when the
scissor test is enabled. If you want to clear the entire window, use the code:

glDisable (GL_SCISSOR_TEST);
glClear (...);
glEnable (GL_SCISSOR_TEST);

10.090 How does face culling work? Why doesn't it use the surface normal?

OpenGL face culling calculates the signed area of the filled primitive in window coordinate
space. The signed area is positive when the window coordinates are in a counter−clockwise
order and negative when clockwise. An app can use glFrontFace() to specify the ordering,
counter−clockwise or clockwise, to be interpreted as a front−facing or back−facing primitive.
An application can specify culling either front or back faces by calling glCullFace(). Finally,
face culling must be enabled with a call to glEnable(GL_CULL_FACE); .

OpenGL uses your primitive's window space projection to determine face culling for two
reasons. To create interesting lighting effects, it's often desirable to specify normals that
aren't orthogonal to the surface being approximated. If these normals were used for face
culling, it might cause some primitives to be culled erroneously. Also, a dot−product culling
scheme could require a matrix inversion, which isn't always possible (i.e., in the case where
the matrix is singular), whereas the signed area in DC space is always defined.

However, some OpenGL implementations support the GL_EXT_ cull_vertex extension. If
this extension is present, an application may specify a homogeneous eye position in object
space. Vertices are flagged as culled, based on the dot product of the current normal with a
vector from the vertex to the eye. If all vertices of a primitive are culled, the primitive isn't
rendered. In many circumstances, using this extension results in faster rendering, because it
culls faces at an earlier stage of the rendering pipeline.

 OpenGL FAQ and Troubleshooting Guide

10 Clipping, Culling, and Visibility Testing 64

11 Color
11.010 My texture map colors reverse blue and red, yellow and cyan, etc. What's happening?

Your texture image has the reverse byte ordering of what OpenGL is expecting. One way to
handle this is to swap bytes within your code before passing the data to OpenGL.

Under OpenGL 1.2, you may specify GL_BGR or GL_BGRA as the "format" parameter to
glDrawPixels(), glGetTexImage(), glReadPixels(), glTexImage1D(), glTexImage2D(), and
glTexImage3D(). In previous versions of OpenGL, this functionality might be available in
the form of the EXT_bgra extension (using GL_BGR_EXT and GL_BGRA_EXT as the
"format" parameter).

11.020 How do I render a color index into an RGB window or vice versa?

There isn't a way to do this. However, you might consider opening an RGB window with a
color index overlay plane, if it works in your application.

If you have an array of color indices that you want to use as a texture map, you might want to
consider using GL_EXT_paletted_texture, which lets an application specify a color index
texture map with a color palette.

11.030 The colors are almost entirely missing when I render in Microsoft Windows. What's happening?

The most probable cause is that the Windows display is set to 256 colors. To change it, you
can increase the color depth by clicking the right mouse button on the desktop, then select
Properties, the Settings tab, and change the number of colors in the Color Palette to a higher
number.

11.040 How do I specify an exact color for a primitive?

First, you'll need to know the depth of the color buffer you are rendering to. For an RGB
color buffer, you can obtain these values with the following code:

GLint redBits, greenBits, blueBits;

glGetIntegerv (GL_RED_BITS, &redBits);
glGetIntegerv (GL_GREEN_BITS, &greenBits);
glGetIntegerv (GL_BLUE_BITS, &blueBits);

If the depth value for each component is at least as large as your required color precision,
you can specify an exact color for your primitives. Specify the color you want to use into the
most significant bits of three unsigned integers and use glColor3ui() to specify the color.

If your color buffer isn't deep enough to accurately represent the color you desire, you'll need
a fallback strategy. Trimming off the least significant bits of each color component is an
acceptable alternative. Again, use glColor3ui() (or glColor3us(), etc.) to specify the color
with your values stored in the most significant bits of each parameter.

In either event, you'll need to ensure that any state that could affect the final color has been
disabled. The following code will accomplish this:

11 Color 65

glDisable (GL_BLEND);
glDisable (GL_DITHER);
glDisable (GL_FOG);
glDisable (GL_LIGHTING);
glDisable (GL_TEXTURE_1D);
glDisable (GL_TEXTURE_2D);
glDisable (GL_TEXTURE_3D);
glShadeModel (GL_FLAT);

11.050 How do I render each primitive in a unique color?

You need to know the depth of each component in your color buffer. The previous question
contains the code to obtain these values. The depth tells you the number of unique color
values you can render. For example, if you use the code from the previous question, which
retrieves the color depth in redBits, greenBits, and blueBits, the number of unique colors
available is 2^(redBits+greenBits+blueBits).

If this number is greater than the number of primitives you want to render, there is no
problem. You need to use glColor3ui() (or glColor3us(), etc) to specify each color, and store
the desired color in the most significant bits of each parameter. You can code a loop to
render each primitive in a unique color with the following:

/*
 Given: numPrims is the number of primitives to render.
 Given void renderPrimitive(unsigned long) is a routine to render the primitive specified by the given parameter index.
 Given GLuint makeMask (GLint) returns a bit mask for the number of bits specified.
 */

GLuint redMask = makeMask(redBits) << (greenBits + blueBits);
GLuint greenMask = makeMask(greenBits) << blueBits;
GLuint blueMask = makeMask(blueBits);
int redShift = 32 − (redBits+greenBits+blueBits);
int greenShift = 32 − (greenBits+blueBits);
int blueShift = 32 − blueBits;
unsigned long indx;

for (indx=0; indx<numPrims, indx++) {
 glColor3ui (indx & redMask << redShift,
 indx & greenMask << greenShift,
 indx & blueMask << blueShift);
 renderPrimitive (indx);
}

Also, make sure you disable any state that could alter the final color. See the question
above for a code snippet to accomplish this.

If you're using this for picking instead of the ususal Selection feature, any color subsequently
read back from the color buffer can easily be converted to the indx value of the primitive
rendered in that color.

 OpenGL FAQ and Troubleshooting Guide

11 Color 66

12 The Depth Buffer
12.010 How do I make depth buffering work?

Your application needs to do at least the following to get depth buffering to work:

1. Ask for a depth buffer when you create your window.
2. Place a call to glEnable (GL_DEPTH_TEST) in your program's initialization routine,

after a context is created and made current.
3. Ensure that your zNear and zFar clipping planes are set correctly and in a way that

provides adequate depth buffer precision.
4. Pass GL_DEPTH_BUFFER_BIT as a parameter to glClear, typically bitwise OR'd

with other values such as GL_COLOR_BUFFER_BIT.

There are a number of OpenGL example programs available on the Web, which use depth
buffering. If you're having trouble getting depth buffering to work correctly, you might
benefit from looking at an example program to see what is done differently. This FAQ
contains links to several web sites that have example OpenGL code.

12.020 Depth buffering doesn't work in my perspective rendering. What's going on?

Make sure the zNear and zFar clipping planes are specified correctly in your calls to
glFrustum() or gluPerspective().

A mistake many programmers make is to specify a zNear clipping plane value of 0.0 or a
negative value which isn't allowed. Both the zNear and zFar clipping planes are positive (not
zero or negative) values that represent distances in front of the eye.

Specifying a zNear clipping plane value of 0.0 to gluPerspective() won't generate an OpenGL
error, but it might cause depth buffering to act as if it's disabled. A negative zNear or
zFar clipping plane value would produce undesirable results.

A zNear or zFar clipping plane value of zero or negative, when passed to glFrustum(), will
produce an error that you can retrieve by calling glGetError(). The function will then act as a
no−op.

12.030 How do I write a previously stored depth image to the depth buffer?

Use the glDrawPixels() command, with the format parameter set to
GL_DEPTH_COMPONENT. You may want to mask off the color buffer when you do this,
with a call to glColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE); .

12.040 Depth buffering seems to work, but polygons seem to bleed through polygons that are in front of
them. What's going on?

You may have configured your zNear and zFar clipping planes in a way that severely limits
your depth buffer precision. Generally, this is caused by a zNear clipping plane value that's
too close to 0.0. As the zNear clipping plane is set increasingly closer to 0.0, the effective
precision of the depth buffer decreases dramatically. Moving the zFar clipping plane further
away from the eye always has a negative impact on depth buffer precision, but it's not one as

12 The Depth Buffer 67

dramatic as moving the zNear clipping plane.

The OpenGL Reference Manual description for glFrustum() relates depth precision to the
zNear and zFar clipping planes by saying that roughly log2(zFar/zNear) bits of precision are
lost. Clearly, as zNear approaches zero, this equation approaches infinity.

While the blue book description is good at pointing out the relationship, it's somewhat
inaccurate. As the ratio (zFar/zNear) increases, less precision is available near the back of
the depth buffer and more precision is available close to the front of the depth buffer. So
primitives are more likely to interact in Z if they are further from the viewer.

It's possible that you simply don't have enough precision in your depth buffer to render your
scene. See the last question in this section for more info.

It's also possible that you are drawing coplanar primitives. Round−off errors or differences in
rasterization typically create "Z fighting" for coplanar primitives. Here are some options to
assist you when rendering coplanar primitives.

12.050 Why is my depth buffer precision so poor?

The depth buffer precision in eye coordinates is strongly affected by the ratio of zFar to
zNear, the zFar clipping plane, and how far an object is from the zNear clipping plane.

You need to do whatever you can to push the zNear clipping plane out and pull the zFar
plane in as much as possible.

To be more specific, consider the transformation of depth from eye coordinates

xe, ye, ze, we

to window coordinates

xw, yw, zw

with a perspective projection matrix specified by

glFrustum(l, r, b, t, n, f);

and assume the default viewport transform. The clip coordinates of zc and wc are

zc = −ze* (f+n)/(f−n) − we* 2*f*n/(f−n)

wc = −ze

Why the negations? OpenGL wants to present to the programmer a right−handed coordinate system before
projection and left−handed coordinate system after projection.

and the ndc coordinate:

zndc = z c / wc = [−ze * (f+n)/(f−n) − we * 2*f*n/(f−n)] / −ze

 OpenGL FAQ and Troubleshooting Guide

12 The Depth Buffer 68

= (f+n)/(f−n) + (we / ze) * 2*f*n/(f−n)

The viewport transformation scales and offsets by the depth range (Assume it to be [0, 1]) and then scales by
s = (2n−1) where n is the bit depth of the depth buffer:

zw = s * [(we / ze) * f*n/(f−n) + 0.5 * (f+n)/(f−n) + 0.5]

Let's rearrange this equation to express ze / we as a function of zw

ze / we = f*n/(f−n) / ((zw / s) − 0.5 * (f+n)/(f−n) − 0.5)

= f * n / ((zw / s) * (f−n) − 0.5 * (f+n) − 0.5 * (f−n))

= f * n / ((zw / s) * (f−n) − f) [*]

Now let's look at two points, the zNear clipping plane and the zFar clipping plane:

zw = 0 => ze / we = f * n / (−f) = −n

zw = s => ze / we = f * n / ((f−n) − f) = −f

In a fixed−point depth buffer, zw is quantized to integers. The next representable z buffer depth away from
the clip planes are 1 and s−1:

zw = 1 => ze / we = f * n / ((1/s) * (f−n) − f)

zw = s−1 => ze / we = f * n / (((s−1)/s) * (f−n) − f)

Now let's plug in some numbers, for example, n = 0.01, f = 1000 and s = 65535 (i.e., a 16−bit depth buffer)

zw = 1 => ze / we = −0.01000015

zw = s−1 => ze / we = −395.90054

Think about this last line. Everything at eye coordinate depths from −395.9 to −1000 has to map into either
65534 or 65535 in the z buffer. Almost two thirds of the distance between the zNear and zFar clipping planes
will have one of two z−buffer values!

To further analyze the z−buffer resolution, let's take the derivative of [*] with respect to zw

d (ze / we) / d zw = − f * n * (f−n) * (1/s) / ((zw / s) * (f−n) − f)2

Now evaluate it at zw = s

d (ze / we) / d zw = − f * (f−n) * (1/s) / n

= − f * (f/n−1) / s [**]

If you want your depth buffer to be useful near the zFar clipping plane, you need to keep this value to less
than the size of your objects in eye space (for most practical uses, world space).

 OpenGL FAQ and Troubleshooting Guide

12 The Depth Buffer 69

12.060 How do I turn off the zNear clipping plane?

See this question in the Clipping section.

12.070 Why is there more precision at the front of the depth buffer?

After the projection matrix transforms the clip coordinates, the XYZ−vertex values are
divided by their clip coordinate W value, which results in normalized device coordinates.
This step is known as the perspective divide. The clip coordinate W value represents the
distance from the eye. As the distance from the eye increases, 1/W approaches 0. Therefore,
X/W and Y/W also approach zero, causing the rendered primitives to occupy less screen
space and appear smaller. This is how computers simulate a perspective view.

As in reality, motion toward or away from the eye has a less profound effect for objects that
are already in the distance. For example, if you move six inches closer to the computer
screen in front of your face, it's apparent size should increase quite dramatically. On the other
hand, if the computer screen were already 20 feet away from you, moving six inches closer
would have little noticeable impact on its apparent size. The perspective divide takes this into
account.

As part of the perspective divide, Z is also divided by W with the same results. For objects
that are already close to the back of the view volume, a change in distance of one coordinate
unit has less impact on Z/W than if the object is near the front of the view volume. To put it
another way, an object coordinate Z unit occupies a larger slice of NDC−depth space close to
the front of the view volume than it does near the back of the view volume.

In summary, the perspective divide, by its nature, causes more Z precision close to the front
of the view volume than near the back.

A previous question in this section contains related information.

12.080 There is no way that a standard−sized depth buffer will have enough precision for my
astronomically large scene. What are my options?

The typical approach is to use a multipass technique. The application might divide the
geometry database into regions that don't interfere with each other in Z. The geometry in
each region is then rendered, starting at the furthest region, with a clear of the depth buffer
before each region is rendered. This way the precision of the entire depth buffer is made
available to each region.

 OpenGL FAQ and Troubleshooting Guide

12 The Depth Buffer 70

13 Drawing Lines over Polygons and Using Polygon
Offset
13.010 What are the basics for using polygon offset?

It's difficult to render coplanar primitives in OpenGL for two reasons:

♦ Given two overlapping coplanar primitives with different vertices, floating point
round−off errors from the two polygons can generate different depth values for
overlapping pixels. With depth test enabled, some of the second polygon's pixels will
pass the depth test, while some will fail.

♦ For coplanar lines and polygons, vastly different depth values for common pixels can
result. This is because depth values from polygon rasterization derive from the
polygon's plane equation, while depth values from line rasterization derive from
linear interpolation.

Setting the depth function to GL_LEQUAL or GL_EQUAL won't resolve the problem. The
visual result is referred to as stitching, bleeding, or Z fighting.

Polygon offset was an extension to OpenGL 1.0, and is now incorporated into OpenGL 1.1.
It allows an application to define a depth offset, which can apply to filled primitives, and
under OpenGL 1.1, it can be separately enabled or disabled depending on whether the
primitives are rendered in fill, line, or point mode. Thus, an application can render coplanar
primitives by first rendering one primitive, then by applying an offset and rendering the
second primitive.

While polygon offset can alter the depth value of filled primitives in point and line mode,
under no circumstances will polygon offset affect the depth values of GL_POINTS,
GL_LINES, GL_LINE_STRIP, or GL_LINE_LOOP primitives. If you are trying to render
point or line primitives over filled primitives, use polygon offset to push the filled primitives
back. (It can't be used to pull the point and line primitives forward.)

Because polygon offset alters the correct Z value calculated during rasterization, the resulting
Z value, which is stored in the depth buffer will contain this offset and can adversely affect
the resulting image. In many circumstances, undesirable "bleed−through" effects can result.
Indeed, polygon offset may cause some primitives to pass the depth test entirely when they
normally would not, or vice versa. When models intersect, polygon offset can cause an
inaccurate rendering of the intersection point.

13.020 What are the two parameters in a glPolygonOffset() call and what do they mean?

Polygon offset allows the application to specify a depth offset with two parameters, factor
and units. factor scales the maximum Z slope, with respect to X or Y of the polygon, and
units scales the minimum resolvable depth buffer value. The results are summed to produce
the depth offset. This offset is applied in screen space, typically with positive Z pointing into
the screen.

The factor parameter is required to ensure correct results for filled primitives that are nearly
edge−on to the viewer. In this case, the difference between Z values for the same pixel

13 Drawing Lines over Polygons and Using Polygon Offset 71

generated by two coplanar primitives can be as great as the maximum Z slope in X or Y. This
Z slope will be large for nearly edge−on primitives, and almost non−existent for face−on
primitives. The factor parameter lets you add this type of variable difference into the
resulting depth offset.

A typical use might be to set factor and units to 1.0 to offset primitives into positive Z (into
the screen) and enable polygon offset for fill mode. Two passes are then made, once with the
model's solid geometry and once again with the line geometry. Nearly edge−on filled
polygons are pushed substantially away from the eyepoint, to minimize interference with the
line geometry, while nearly planar polygons are drawn at least one depth buffer unit behind
the line geometry.

13.030 What's the difference between the OpenGL 1.0 polygon offset extension and OpenGL 1.1 (and
later) polygon offset interfaces?

The 1.0 polygon offset extension didn't let you apply the offset to filled primitives in line or
point mode. Only filled primitives in fill mode could be offset.

In the 1.0 extension, a bias parameter was added to the normalized (0.0 − 1.0) depth value, in
place of the 1.1 units parameter. Typical applications might obtain a good offset by
specifying a bias of 0.001.

See the GLUT example, which renders two cylinders, one using the 1.0 polygon offset
extension and the other using the 1.1 polygon offset interface.

13.040 Why doesn't polygon offset work when I draw line primitives over filled primitives?

Polygon offset, as its name implies, only works with polygonal primitives. It affects only the
filled primitives: GL_TRIANGLES, GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN,
GL_QUADS, GL_QUAD_STRIP, and GL_POLYGON. Polygon offset will work when you
render them with glPolygonMode set to GL_FILL, GL_LINE, or GL_POINT.

Polygon offset doesn't affect non−polygonal primitives. The GL_POINTS, GL_LINES,
GL_LINE_STRIP, and GL_LINE_LOOP primitives can't be offset with glPolygonOffset().

13.050 What other options do I have for drawing coplanar primitives when I don't want to use polygon
offset?

You can simulate the effects of polygon offset by tinkering with glDepthRange(). For
example, you might code the following:

glDepthRange (0.1, 1.0);
/* Draw underlying geometry */
glDepthRange (0.0, 0.9);
/* Draw overlying geometry */

This code provides a fixed offset in Z, but doesn't account for the polygon slope. It's roughly equivalent to
using glPolygonOffset with a factor parameter of 0.0.

You can render coplanar primitives with the Stencil buffer in many creative ways. The OpenGL
Programming Guide outlines one well−know method. The algorithm for drawing a polygon and its outline is
as follows:

 OpenGL FAQ and Troubleshooting Guide

13 Drawing Lines over Polygons and Using Polygon Offset 72

pgonoff.c

1. Draw the outline into the color, depth, and stencil buffers.
2. Draw the filled primitive into the color buffer and depth buffer, but only where the stencil buffer is

clear.
3. Mask off the color and depth buffers, and render the outline to clear the stencil buffer.

On some SGI OpenGL platforms, an application can use the SGIX_reference_plane extension. With this
extension, the user specifies a plane equation in object coordinates corresponding to a set of coplanar
primitives. You can enable or disable the plane. When the plane is enabled, all fragment Z values will derive
from the specified plane equation. Thus, for any given fragment XY location, the depth value is guaranteed to
be identical regardless of which primitive rendered it.

 OpenGL FAQ and Troubleshooting Guide

13 Drawing Lines over Polygons and Using Polygon Offset 73

14 Rasterization and Operations on the Framebuffer
14.010 How do I obtain the address of the OpenGL framebuffer, so I can write directly to it?

OpenGL doesn't provide a standard mechanism to let an application obtain the address of the
framebuffer. If an implementation allows this, it's through an extension.

Typically, programmers who write graphics programs for a single standard graphics
hardware format, such as the VGA standard under Microsoft Windows, will want the
framebuffer's address. The programmers need to understand that OpenGL is designed to run
on a wide variety of graphics hardware, many of which don't run on Microsoft Windows and
therefore, don't support any kind of standard framebuffer format. Because a programmer will
likely be unfamiliar with this proprietary framebuffer layout, writing directly to it would
produce unpredictable results. Furthermore, some OpenGL devices might not have a
framebuffer that the CPU can address.

You can read the contents of the color, depth, and stencil buffers with the glReadPixels()
command. Likewise, glDrawPixels() and glCopyPixels() are available for sending images to
and BLTing images around in the OpenGL buffers.

14.015 How do I use glDrawPixels() and glReadPixels()?

glDrawPixels() and glReadPixels() write and read rectangular areas to and from the
framebuffer, respectively. Also, you can access stencil and depth buffer information with the
format parameter. Single pixels can be written or read by specifying width and
height parameters of 1.

glDrawPixels() draws pixel data with the current raster position at the lower left corner.
Problems using glDrawPixels() typically occur because the raster position is set incorrectly.
When the raster position is set with the glRasterPos*() function, it is transformed as if it were
a 3D vertex. Then the glDrawPixels() data is written to the resulting device coordinate raster
position. (This allows you to tie pixel arrays and bitmap data to positions in 3D space).

When the raster position is outside the view volume, it's clipped and the glDrawPixels() call
isn't rendered. This occurs even when part of the glDrawPixels() data would be visible.
Here's info on how to render when the raster position is clipped.

glReadPixels() doesn't use the raster position. Instead, it obtains its (X,Y) device coordinate
address from its first two parameters. Like glDrawPixels(), the area read has x and y for the
lower left corner. Problems can occur when reading pixels if:

♦ The area being read is from a window that is overlapped or partially offscreen.
glReadPixels() will return undefined data for the obscured area. (More info.)

♦ Memory wasn't allocated for the return data (the 7th parameter is a NULL pointer)
causing a segmentation fault, core dump, or program termination. If you think you've
allocated enough memory, but you still run into this problem, try doubling the
amount of memory you've allocated. If this causes your read to succeed, chances are
you've miscalculated the amount of memory needed.

For both glDrawPixels() and glReadPixels(), keep in mind:

14 Rasterization and Operations on the Framebuffer 74

♦ The width and height parameters are in pixels.
♦ If the drawn or read pixel data seems correct, but is slightly off, make sure you've set

alignment correctly. Argument values are controlled with the glPixelStore*()
functions. The PACK and UNPACK values control sending and receiving pixel data,
from and to OpenGL, respectively.

14.020 How do I change between double− and single−buffered mode, in an existing a window?

If you create a single−buffered window, you can't change it.

If you create a double−buffered window, you can treat it as a single−buffered window by
setting glDrawBuffer() to GL_FRONT and replacing your swap buffers call with a glFlush()
call. To switch back to double−buffered, you need to set glDrawBuffer() to GL_BACK, and
call swap buffers at the end of the frame.

14.030 How do I read back a single pixel?

Use glReadPixels(), passing a value of one for the width and height parameters.

14.040 How do I obtain the Z value for a rendered primitive?

You can obtain a single pixel's depth value by reading it back from the depth buffer with a
call to glReadPixels(). This returns the screen space depth value.

It could be useful to have this value in object coordinate space. If so, you'll need to pass the
window X and Y values, along with the screen space depth value to gluUnProject(). See
more information on gluUnProject() here.

14.050 How do I draw a pattern into the stencil buffer?

You can set up OpenGL state as follows:

glEnable(GL_STENCIL_TEST);
glStencilFunc(GL_ALWAYS, 0x1, 0x1);
glStencilOp(GL_REPLACE, GL_REPLACE, GL_REPLACE);

Subsequent rendering will set a 1 bit in the stencil buffer for every pixel rendered.

14.060 How do I copy from the front buffer to the back buffer and vice versa?

You need to call glCopyPixels(). The source and destination of glCopyPixels() are set with
calls to glReadBuffer() and glDrawBuffer(), respectively. Thus, to copy from the back buffer
to the front buffer, you can code the following:

glReadBuffer (GL_BACK);
glDrawBuffer (GL_FRONT);
glCopyPixels (GL_COLOR);

14.070 Why don't I get valid pixel data for an overlapped area when I call glReadPixels() where part of the
window is overlapped by another window?

This is due to a portion of the OpenGL specification called the Pixel Ownership test. If a

 OpenGL FAQ and Troubleshooting Guide

14 Rasterization and Operations on the Framebuffer 75

window is obscured by another window, it doesn't have to store pixel data for the obscured
region. Therefore, a glReadPixels() call can return undefined data for the obscured region.

The Pixel Ownership test varies from one OpenGL implementation to the next. Some
OpenGL implementations store obscured regions of a window, or the entire window, in an
off−screen buffer. Such an implementation can return valid pixel data for an obscured
window. However, many OpenGL implementations map pixels on the screen one−to−one to
framebuffer storage locations and don't store (and can't return) pixel data for obscured
regions of a window.

One strategy is to instruct the windowing system to bring the window forward to the top of
the window stack, render, then perform the glReadPixels() call. However, such an approach
still risks user intervention that might obscure the source window.

An approach that might work for some applications is to render into a nonvisible window,
such as a Pixmap under X Windows. This type of drawing surface can't be obscured by the
user, and its contents should always pass the pixel ownership test. Reading from such a
drawing surface should always yield valid pixel data. Unfortunately, rendering to such
drawing surfaces is often not accelerated by graphics hardware.

14.080 Why does the appearance of my smooth−shaded quad change when I view it with different
transformations?

An OpenGL implementation may or may not break up your quad into two triangles for
rendering. Whether it breaks it up or not (and if it does, the method used to split the quad)
will determine how color is interpolated along the edges and ultimately across each scanline.

Many OpenGL applications avoid quads altogether because of their inherent rasterization
problems. A quad can be rendered easily as a two−triangle GL_TRIANGLE_STRIP
primitive with the same data transmission cost as the equivalent quad. Wise programmers use
this primitive in place of quads.

14.090 How do I obtain exact pixelization of lines?

The OpenGL specification allows for a wide range of line rendering hardware, so exact
pixelization may not be possible at all.

You might want to read the OpenGL specification and become familiar yourself with the
diamond exit rule. Being familiar with this rule will give you the best chance to obtain exact
pixelization. Briefly, the diamond exit rule specifies that a diamond−shaped area exists
within each pixel. A pixel is rasterized by a line only if the mathematical definition of that
line exits the diamond inscribed within that pixel.

14.100 How do I turn on wide−line endpoint capping or mitering?

OpenGL draws wide lines by rendering multiple width−1 component lines adjacent to each
other. If the wide line is Y major, the component lines are offset in X; if the wide line is X
major, the component lines are offset in Y. This can produce ugly gaps at the junction of line
segments and differences in apparent width depending on the line segment's slope.

OpenGL doesn't provide a mechanism to cleanly join lines that share common vertices nor to

 OpenGL FAQ and Troubleshooting Guide

14 Rasterization and Operations on the Framebuffer 76

cleanly cap the endpoints.

One possible solution is to render smooth (antialiased) lines instead of normal aliased lines.
To produce a clean junction, you need to draw lines with depth test disabled or the depth
function set to GL_ALWAYS. See the question on rendering antialiased lines for more info.

Another solution is for the application to handle the capping and mitering. Instead of
rendering lines, the application needs to render face−on polygons. The application will need
to perform the necessary math to calculate the vertex locations to provide the desired capping
and joining styles.

14.110 How do I render rubber−band lines?

The unspoken objective of this question is, "How can I render something, then erase it
without disturbing what has already been rendered?"

Here are two common approaches.

One way is to use overlay planes. You draw the rubber−band lines into the overlay planes,
then clear the overlay planes. The contents of the main framebuffer isn't disturbed. The
disadvantage of this approach is that OpenGL devices don't widely support overlay planes.

The other approach is to render with logic op enabled and set to XOR mode. Assuming
you're rendering into an RGBA window, your code needs to look like:

glEnable(GL_COLOR_LOGIC_OP);
glLogicOp(GL_XOR);

Set the color to white and render your lines. Where your lines are drawn, the contents of the framebuffer will
be inverted. When you render the lines a second time, the contents of the framebuffer will be restored.

The logic op command for RGBA windows is only available with OpenGL 1.1. Under 1.0, you can only
enable logic op in color index windows, and GL_LOGIC_OP is passed as the parameter to glEnable().

14.120 If I draw a quad in fill mode and again in line mode, why don't the lines hit the same pixels as the
filled quad?

Filled primitives and line primitives follow different rules for rasterization.

When a filled primitive is rendered, a pixel is only touched if its exact center falls within the
primitive's mathematical boundary.

When a line primitive is rasterized, ideally a pixel is only touched if the line exits a diamond
inscribed in the pixel's boundary.

From these rules, it should be clear that a line loop specified with the same vertices as those
used for a filled primitive, can rasterize pixels that the filled primitive doesn't.

(The OpenGL specification allows for some deviation from the diamond exit line
rasterization rule, but it makes no difference in this scenario.)

 OpenGL FAQ and Troubleshooting Guide

14 Rasterization and Operations on the Framebuffer 77

14.130 How do I draw a full−screen quad?

See this question in the Transformation section.

14.140 How do I initialize or clear a buffer without calling glClear()?

Draw a full screen quad. See the Transformation section.

14.150 How can I make line or polygon antialiasing work?

To render smooth (antialiased) lines, an application needs to do the following:

glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glEnable(GL_LINE_SMOOTH);

If the scene consists entirely of smooth lines, you need to disable the depth test or set it to GL_ALWAYS.

If a scene contains both smooth lines and other primitives, turning depth test off isn't an option. You can
achieve nearly correct rendering results if you treat the smooth lines as transparent primitives. The other
(non−blended) primitives should be rendered first, then the smooth lines rendered last, in back to front order.
See the transparency section for more information.

Even taking these precautions might not prevent some rasterization artifacts at the joints of smooth line
segments that share common vertices. The fact that the depth test is enabled could conceivably cause some
line endpoints to be rendered incorrectly. This is a rendering artifact that you may have to live with if the
depth test must be enabled while smooth lines are rendered.

Not all OpenGL implementations support antialiased polygons. According to the OpenGL spec, an
implementation can render an aliased polygon when GL_POLYGON_SMOOTH is enabled.

14.160 How do I achieve full−scene antialiasing?

See the OpenGL Programming Guide, Third Edition, p452, for a description of a multi−pass
accumulation buffer technique. This method performs well on devices that support the
accumulation buffer in hardware.

On OpenGL 1.2 implementations that support the optional imaging extension, a smoothing
filter may be applied to the final framebuffer image.

Many devices support the multisampling extension.

 OpenGL FAQ and Troubleshooting Guide

14 Rasterization and Operations on the Framebuffer 78

15 Transparency, Translucency, and Blending
15.010 What is the difference between transparent, translucent, and blended primitives?

A transparent physical material shows objects behind it as unobscured and doesn't reflect
light off its surface. Clear glass is a nearly transparent material. Although glass allows most
light to pass through unobscured, in reality it also reflects some light. A perfectly transparent
material is completely invisible.

A translucent physical material shows objects behind it, but those objects are obscured by the
translucent material. In addition, a translucent material reflects some of the light that hits it,
making the material visible. Physical examples of translucent materials include sheer cloth,
thin plastic, and smoked glass.

Transparent and translucent are often used synonymously. Materials that are neither
transparent nor translucent are opaque.

Blending is OpenGL's mechanism for combining color already in the framebuffer with the
color of the incoming primitive. The result of this combination is then stored back in the
framebuffer. Blending is frequently used to simulate translucent physical materials. One
example is rendering the smoked glass windshield of a car. The driver and interior are still
visible, but they are obscured by the dark color of the smoked glass.

15.020 How can I achieve a transparent effect?

OpenGL doesn't support a direct interface for rendering translucent (partially opaque)
primitives. However, you can create a transparency effect with the blend feature and
carefully ordering your primitive data. You might also consider using screen door
transparency.

An OpenGL application typically enables blending as follows:

glEnable (GL_BLEND);
glBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

After blending is enabled, as shown above, the incoming primitive color is blended with the color already
stored in the framebuffer. glBlendFunc() controls how this blending occurs. The typical use described above
modifies the incoming color by its associated alpha value and modifies the destination color by one minus
the incoming alpha value. The sum of these two colors is then written back into the framebuffer.

The primitive’s opacity is specified using glColor4*(). RGB specifies the color, and the alpha parameter
specifies the opacity.

When using depth buffering in an application, you need to be careful about the order in which you render
primitives. Fully opaque primitives need to be rendered first, followed by partially opaque primitives in
back−to−front order. If you don't render primitives in this order, the primitives, which would otherwise be
visible through a partially opaque primitive, might lose the depth test entirely.

15.030 How can I create screen door transparency?

This is accomplished by specifying a polygon stipple pattern with glPolygonStipple() and by

15 Transparency, Translucency, and Blending 79

rendering the transparent primitive with polygon stippling enabled
(glEnable(GL_POLYGON_STIPPLE)). The number of bits set in the stipple pattern
determine the amount of translucency and opacity; setting more bits result in a more opaque
object, and setting fewer bits results in a more translucent object. Screendoor transparency is
sometimes preferable to blending, becuase it's order independent (primitives don't need to be
rendered in back−to−front order).

15.040 How can I render glass with OpenGL?

This question is difficult to answer, because what looks like glass to one person might not to
another. What follows is a general algorithm to get you started.

First render all opaque objects in your scene. Disable lighting, enable blending, and render
your glass geometry with a small alpha value. This should result in a faint rendering of your
object in the framebuffer. (Note: You may need to sort your glass geometry, so it's rendered
in back to front Z order.)

Now, you need to add the specular highlight. Set your ambient and diffuse material colors to
black, and your specular material and light colors to white. Enable lighting. Set
glDepthFunc(GL_EQUAL), then render your glass object a second time.

15.050 Do I need to render my primitives from back to front for correct rendering of translucent primitives
to occur?

If your hardware supports destination alpha, you can experiment with different
glBlendFunc() settings that use destination alpha. However, this won't solve all the problems
with depth buffered translucent surfaces. The only sure way to achieve visually correct
results is to sort and render your primitives from back to front.

15.060 I want to use blending but can’t get destination alpha to work. Can I blend or create a transparency
effect without destination alpha?

Many OpenGL devices don't support destination alpha. In particular, the OpenGL 1.1
software rendering libraries from Microsoft don't support it. The OpenGL specification
doesn't require it.

If you have a system that supports destination alpha, using it is a simple matter of asking for
it when you create your window. For example, pass GLUT_ALPHA to
glutInitDisplayMode(), then set up a blending function that uses destination alpha, such as:

glBlendFunc(GL_ONE_MINUS_DST_ALPHA,GL_DST_ALPHA);

Often this question is asked under the mistaken assumption that destination alpha is required to do blending.
It's not. You can use blending in many ways to obtain a transparency effect that uses source alpha instead of
destination alpha. The fact that you might be on a platform without destination alpha shouldn't prevent you
from obtaining a transparency effect. See the OpenGL Programming Guide chapter 6 for ways to use
blending to achieve transparency.

15.070 If I draw a translucent primitive and draw another primitive behind it, I expect the second primitive
to show through the first, but it's not there?

 OpenGL FAQ and Troubleshooting Guide

15 Transparency, Translucency, and Blending 80

Is depth buffering enabled?

If you're drawing a polygon that's behind another polygon, and depth test is enabled, then the
new polygon will typically lose the depth test, and no blending will occur. On the other hand,
if you've disabled depth test, the new polygon will be blended with the existing polygon,
regardless of whether it's behind or in front of it.

15.080 How can I make part of my texture maps transparent or translucent?

It depends on the effect you're trying to achieve.

If you want blending to occur after the texture has been applied, then use the OpenGL
blending feature. Try this:

glEnable (GL_BLEND);
glBlendFunc (GL_ONE, GL_ONE);

You might want to use the alpha values that result from texture mapping in the blend function. If so,
(GL_SRC_ALPHA,GL_ONE_MINUS_SRC_ALPHA) is always a good function to start with.

However, if you want blending to occur when the primitive is texture mapped (i.e., you want parts of the
texture map to allow the underlying color of the primitive to show through), then don't use OpenGL blending.
Instead, you'd use glTexEnv(), and set the texture environment mode to GL_BLEND. In this case, you'd want
to leave the texture environment color to its default value of (0,0,0,0).

 OpenGL FAQ and Troubleshooting Guide

15 Transparency, Translucency, and Blending 81

16 Display Lists and Vertex Arrays
16.010 Why does a display list take up so much memory?

An OpenGL display list must make a copy of all data it requires to recreate the call sequence
that created it. This means that for every glVertex3f() call, for example, the display list must
provide storage for 3 values (usually 32−bit float values in most implementations). This is
where most of the memory used by a typical display list goes.

However, in most implementations, there's also some memory that's needed to manage the
display lists of a given context and other overhead. In certain pathological cases, this
overhead memory can be larger than the memory used to store the display list data!

16.020 How can I share display lists between different contexts?

If you're using Microsoft Windows, use the wglShareLists() function. If you are using GLX,
see the share parameter to glXCreateContext().

GLUT does not allow display list sharing. You can obtain the GLUT source, and make your
own glutCreateWindow() and glutSetWindow() function calls. You can then modify the
source to expose display list sharing. When doing so, you need to make sure your modified
routines still work with the rest of GLUT.

16.030 How does display list nesting work? Is the called list copied into the calling list?

No. Only the call to the enclosed display list is copied into the parent list. This way a
program can delete or replace a child list, call the parent, and see changes that were made.

16.040 Can I do a particular function while a display list is called?

A display list call is an atomic operation and therefore, it can't be interrupted. You can't call
part of it, for example, then do something, then call the rest of it. Nor can you have a display
list somehow signal your program from some point within the list.

However, an application doesn't have to create one large monolithic display list. By creating
several smaller lists to call sequentially, an application is free to perform tasks between calls
to glCallList().

An application can also use multithreading, so one thread can perform one task while another
thread is calling a display list.

16.050 How can I change an OpenGL function call in a display list that contains many other OpenGL
function calls?

OpenGL display lists aren't editable, so you can't modify the call sequence in them or even
see which calls are embedded in them.

One way of creating a pseudo−editable display list is to create a hierarchical display list. (i.e.,
create a display list parent that contains calls to glCallList()). Then you can edit the display
list by replacing the child display lists that the parent list references.

16 Display Lists and Vertex Arrays 82

16.060 How can I obtain a list of function calls and OpenGL call parameters from a display list?

Currently, there isn't a way to programatically obtain either the function calls contained
within a list or the parameters to those calls. An application that requires this information
must track the data stored in a display list.

One option is to use an OpenGL call logging utility. These utilities capture the OpenGL calls
a program makes, enabling you to see the calls that an application stores in a display list.

16.070 I've converted my program to use display lists, and it doesn't run any faster. Why not?

Achieving the highest performance from display lists is highly dependent on the OpenGL
implementation, but here are a few pointers:

First, make sure that your application's process size isn't becoming so large that it's causing
memory thrashing. Using display lists generally takes more memory than immediate mode,
so it's possible that your program is spending more time thrashing memory blocks than
rendering OpenGL calls.

Display lists won't improve the performance of a fill−limited application. Try rendering to a
smaller window, and if your application runs faster, it's likely that it's fill−limited.

Stay away from GL_COMPILE_AND_EXECUTE mode. Instead, create the list using
GL_COMPILE mode, then execute it with glCallList().

In some cases if you group your state changes together, the display list can optimize them as
a group (i.e., it can remove redundant state changes, concatenate adjacent matrix changes,
etc.).

Read the section on Performance for other tips.

16.080 To save space, should I convert all my coordinates to short before storing them in a display list?

No. Most implementations will convert your data to an internal format for storage in the
display list anyway, and usually, that format will be single−precision float.

16.090 Will putting textures in a display list make them run faster?

In some implementations, a display list can optimize texture download and use of texture
memory. In OpenGL 1.0, storing texture maps in display lists was the preferred method for
optimizing texture performance. However, it resulted in increased memory usage in many
implementations. Many vendors rallied around a better solution, texture objects, introduced
in OpenGL 1.1. If your app is running on OpenGL 1.1 or later, texture objects are preferred.

16.100 Will putting vertex arrays in a display list make them run faster?

It depends on the implementation. In most implementations, it might decrease performance
because of the increased memory use. However, some implementations may cache display
lists on the graphics hardware, so the benefits of this caching could easily offset the extra
memory usage.

 OpenGL FAQ and Troubleshooting Guide

16 Display Lists and Vertex Arrays 83

16.110 When sharing display lists between contexts, what happens when I delete a display list in one
context? Do I have to delete it in all the contexts to make it really go away?

When a display list is modified in one context (deleting is a form of modification), the results
of that modification are immediately available in all shared contexts. So, deleting a display
list in one context will cause it to cease to exist in all contexts in which it was previously
visible.

16.120 How many display lists can I create?

There isn't a limit based on the OpenGL spec. Because a display list ID is a GLuint,
232 display list identifiers are available. A more practical limit to go by is system memory
resources.

16.130 How much memory does a display list use?

See the first question in this section. It depends on the implementation.

16.140 How will I know if the memory used by a display list has been freed?

This depends on the implementation. Some implementations free memory as soon as a
display list is deleted. Others won't free the memory until it's needed by another display list
or until the process dies.

16.150 How can I use vertex arrays to share vertices?

Because vertex arrays let you access a set of vertices and data by index, you might believe
that they're designed to optimally share vertices. Indeed, a programmer new to vertex arrays
might try to render a cube, in which each vertex is shared by three faces. The futility of this
becomes obvious when you add normals for lighting and each instance of the shared vertex
requires a unique normal. The only way to render a cube with normals is to include multiple
copies of each vertex.

Vertex arrays weren't designed to improve vertex sharing. They were intended to let the
programmer to specify blocks of dynamic geometry data with as few function calls as
possible.

You can share vertices with vertex arrays the same way you do with OpenGL immediate
mode, by the type of primitive used. GL_LINE_STRIP, GL_LINE_LOOP,
GL_TRIANGLE_STRIP, and GL_QUAD_STRIP share vertices between their component
line segments, triangles, and quads. Other primitives do not. The type of primitive you
choose to use when using vertex arrays determines whether you share vertices.

Note, however, that sharing vertices is implementation dependent. The OpenGL
Specification dictates vertex array behavior, and as long as an OpenGL implementation
conforms to spec, it's free to optimize vertex sharing in vertex arrays.

Some implementations feature the EXT_compiled_vertex_array extension, which is
explicitly designed to let implementations share transformed vertex array data.

 OpenGL FAQ and Troubleshooting Guide

16 Display Lists and Vertex Arrays 84

17 Using Fonts
17.010 How can I add fonts to my OpenGL scene?

OpenGL doesn't provide direct font support, so the application must use any of OpenGL's
other features for font rendering, such as drawing bitmaps or pixmaps, creating texture maps
containing an entire character set, drawing character outlines, or creating 3D geometry for
each character.

Use bitmaps or pixmaps

The most straightforward method for rendering simple fonts is to use a glBitmap() or
glDrawPixels() call for each character. The result is simple 2D text, which is suitable for
labeling GUI controls, annotating 3D parts, etc.

glBitmap() is the fastest and simplest of the two, and renders characters in the current color.
You can also use glDrawPixels() if required. However, note that glDrawPixels() always
draws a rectangle, so if you desire a transparent background, it must be removed with alpha
test and/or blending.

Typically, each glBitmap() call, one for every glyph in the font, is stored in an individual
display list, which is indexed by its ASCII character value. Thus, a single call to glCallLists()
can render an entire string of characters.

In X Windows, the glXUseXFont() call is available to create these display lists painlessly
from a given font.

If you're using Microsoft Windows, look at the MSDN documentation for
wglUseFontBitmaps(). It's conceptually identical to glXUseXFonts().

For GLUT, you need to use the glutBitmapCharacter() routine, which generates a bitmap for
the specified character from the specified GLUT bitmap font.

Use texture mapping

In many OpenGL implementations, rendering glBitmap() and glDrawPixels() primitives is
inherently slower than rendering an equivalent texture mapped quad. Use texture mapped
primitives to render fonts on such devices.

The basic idea is to create a single texture map that contains all characters in a font (or at
least all the characters that need to be rendered). To render an individual character, draw a
texture mapped quad with texture coordinates configured to select the desired individual
character. If desired, you can use alpha test to discard background pixels.

A library for using texture mapped fonts can be found here. It comes with source code.

Additional extensive information on texture mapped text and example code, can be found
here.

The NeHe web page has a tutorial on using texture mapped fonts.

17 Using Fonts 85

http://plib.sourceforge.net/fnt/index.html
http://plib.sourceforge.net/fnt/index.html
http://reality.sgi.com/mjk/tips/TexFont/TexFont.html
http://reality.sgi.com/mjk/tips/TexFont/TexFont.html
http://reality.sgi.com/mjk/tips/TexFont/TexFont.html
http://nehe.gamedev.net/opengl.asp

Stroked fonts

If you're using Microsoft Windows, look up the MSDN documentation on
wglUseFontOutlines(). It contains example code for rendering stroked characters.

The glutStrokeCharacter() routine renders a single stroked character from a specified GLUT
stroke font.

Geometric fonts

The NeHe web page has a tutorial for rendering geometric fonts. Look for the tutorial on
outline fonts.

17.020 How can I use TrueType fonts in my OpenGL scene?

The NeHe web page has tutorials that show how to use TrueType fonts in a variety of ways.

See the Free Type library.

17.030 How can I make 3D letters, which I can light, shade, and rotate?

See the NeHe web page for a tutorial on using geometric fonts. Look for the tutorial on
outline fonts.

See the Free Type library.

GLTT supports geometric TrueType fonts in OpenGL. It was formerly available from
http://www.moonlight3d.org/gltt/, but fortunately is still available around the Web.
Download GLTT v 2.4 (~125KB).

Glut 3.7 has an example called progs/contrib/text3d.c that may be informative.

 OpenGL FAQ and Troubleshooting Guide

17 Using Fonts 86

http://nehe.gamedev.net/opengl.asp
http://nehe.gamedev.net/opengl.asp
http://www.freetype.org/
http://nehe.gamedev.net/opengl.asp
http://nehe.gamedev.net/opengl.asp
http://www.freetype.org/
ftp://ftp.frii.com/pub/martz/outgoing/gltt-2_4_tar.gz

18 Lights and Shadows
18.010 What should I know about lighting in general?

You must specify normals along with your geometry, or you must generate them
automatically with evaluators, in order for lighting to work as expected. This is covered in
question 18.020.

Lighting does not work with the current color as set by glColor*(). It works with material
colors. Set the material colors with glMaterial*(). Material colors can be made to track the
current color with the color material feature. To use color material, call
glEnable(GL_COLOR_MATERIAL). By default, this causes ambient and diffuse material
colors to track the current color. You can specify which material color tracks the current
color with a call to glColorMaterial().

Changing the material colors with color material and glColor*() calls may be more efficient
than using glMaterial*(). See question 18.080 for more information.

Lighting is computed at each vertex (and interpolated across the primitive, when
glShadeModel() is set to GL_SMOOTH). This may cause primitives to appear too dark, even
though a light is centered over the primitive. You can obtain more correct lighting with a
higher surface approximation, or by using light maps.

A light's position is transformed by the current ModelView matrix at the time the position is
specified with a call to glLight*(). This is analogous to how geometric vertices are
transformed by the current ModelView matrix when they are specified with a call to
glVertex*(). For more information on positioning your light source, see question 18.050.

18.020 Why are my objects all one flat color and not shaded and illuminated?

This effect occurs when you fail to supply a normal at each vertex.

OpenGL needs normals to calculate lighting equations, and it won't calculate normals for you
(with the exception of evaluators). If your application doesn't call glNormal*(), then it uses
the default normal of (0.0, 0.0, 1.0) at every vertex. OpenGL will then compute the same, or
nearly the same, lighting result at each vertex. This will cause your model to look flat and
lack shading.

The solution is to simply calculate the normals that need to be specified at any given vertex.
Then send them to OpenGL with a call to glNormal3f() just prior to specifying the vertex,
which the normal is associated with.

If you don't know how to calculate a normal, in most cases you can do it simply with a vector
cross product. The OpenGL Programming Guide contains a small section explaining how to
calculate normals. Also most basic 3D computer graphics books cover it, because it's not
OpenGL−specific.

18.030 How can I make OpenGL automatically calculate surface normals?

OpenGL won't do this unless you're using evaluators.

18 Lights and Shadows 87

18.040 Why do I get only flat shading when I light my model?

First, check the obvious. glShadeModel() should be set to GL_SMOOTH, which is the
default value, so if you haven't called glShadeModel() at all, it's probably already set to
GL_SMOOTH, and something else is wrong.

If glShadeModel() is set correctly, the problem is probably with your surface normals. To
achieve a smooth shading effect, generally you need to specify a different normal at each
vertex. If you have set the same normal at each vertex, the result, in most cases, will be a
flatly shaded primitive.

Keep in mind that a typical surface normal is perpendicular to the surface that you're
attempting to approximate.

This scenario can be tough to debug, especially for large models. The best debugging
approach is to write a small test program that draws only one primitive, and try to reproduce
the problem. It's usually easy to use a debugger to isolate and fix a small program, which
reproduces the problem.

18.050 How can I make my light move or not move and control the light position?

First, you must understand how the light position is transformed by OpenGL.

The light position is transformed by the contents of the current top of the ModelView matrix
stack when you specify the light position with a call to
glLightfv(GL_LIGHT_POSITION,…). If you later change the ModelView matrix, such as
when the view changes for the next frame, the light position isn't automatically retransformed
by the new contents of the ModelView matrix. If you want to update the light’s position, you
must again specify the light position with a call to glLightfv(GL_LIGHT_POSITION,…).

Asking the question “how do I make my light move” or “how do I make my light stay still”
usually doesn't provide enough information to answer the question. For a better answer, you
need to be more specific. Here are some more specific questions, and their answers:

♦ How can I make my light position stay fixed relative to my eye position? How do I
make a headlight?

You need to specify your light in eye coordinate space. To do so, set the ModelView matrix
to the identity, then specify your light position. To make a headlight (a light that appears to
be positioned at or near the eye and shining along the line of sight), set the ModelView to the
identity, set the light position at (or near) the origin, and set the direction to the negative Z
axis.

When a light’s position is fixed relative to the eye, you don't need to respecify the light
position for every frame. Typically, you specify it once when your program initializes.

• How can I make my light stay fixed relative to my scene? How can I put a light in the corner and
make it stay there while I change my view?

As your view changes, your ModelView matrix also changes. This means you'll need to
respecify the light position, usually at the start of every frame. A typical application will

 OpenGL FAQ and Troubleshooting Guide

18 Lights and Shadows 88

display a frame with the following pseudocode:

Set the view transform.
Set the light position //glLightfv(GL_LIGHT_POSITION,133;)
Send down the scene or model geometry.
Swap buffers.

If your light source is part of a light fixture, you also may need to specify a modeling transform, so the light
position is in the same location as the surrounding fixture geometry.

• How can I make a light that moves around in a scene?

Again, you'll need to respecify this light position every time the view changes. Additionally,
this light has a dynamic modeling transform that also needs to be in the ModelView matrix
before you specify the light position. In pseudocode, you need to do something like:

Set the view transform
Push the matrix stack
Set the model transform to update the light146;s position
Set the light position //glLightfv(GL_LIGHT_POSITION,133;)
Pop the matrix stack
Send down the scene or model geometry
Swap buffers.

18.060 How can I make a spotlight work?

A spotlight is simply a point light source with a small light cone radius. Alternatively, a point
light is just a spot light with a 180 degree radius light cone. Set the radius of the light cone by
changing the cutoff parameter of the light:

glLightf (GL_LIGHT1, GL_SPOT_CUTOFF, 15.f);

The above call sets the light cone radius to 15 degrees for light 1. The light cone's total spread will be 30
degrees.

A spotlight's position and direction are set as for any normal light.

18.070 How can I create more lights than GL_MAX_LIGHTS?

First, make sure you really need more than OpenGL provides. For example, when rendering
a street scene at night with many buildings and streetlights, you need to ask yourself: Does
every building need to be illuminated by every single streetlight? When light attenuation and
direction are accounted for, you may find that any given piece of geometry in your scene is
only illuminated by a small handful of lights.

If this is the case, you need to reuse or cycle the available OpenGL lights as you render your
scene.

The GLUT distribution comes with a small example that might be informative to you. It’s
called multilight.c.

If you really need to have a single piece of geometry lit by more lights than OpenGL
provides, you'll need to simulate the effect somehow. One way is to calculate the lighting for

 OpenGL FAQ and Troubleshooting Guide

18 Lights and Shadows 89

some or all the lights. Another method is to use texture maps to simulate lighting effects.

18.080 Which is faster: making glMaterial*() calls or using glColorMaterial()?

Within a glBegin()/glEnd() pair, on most OpenGL implementations, a call to glColor3f()
generally is faster than a call to glMaterialfv(). This is simply because most implementations
tune glColor3f(), and processing a material change can be complex and difficult to optimize.
For this reason, glColorMaterial() generally is recognized as the most efficient way to change
an object’s material color.

18.090 Why is the lighting incorrect after I scale my scene to change its size?

The OpenGL specification needs normals to be unit length to achieve typical lighting results.
The current ModelView matrix transforms normals. If that matrix contains a scale
transformation, transformed normals might not be unit length, resulting in undesirable
lighting problems.

OpenGL 1.1 lets you call glEnable(GL_NORMALIZE), which will make all normals unit
length after they're transformed. This is often implemented with a square root and can be
expensive for geometry limited applications.

Another solution, available in OpenGL 1.2 (and as an extension to many 1.1
implementations), is glEnable(GL_RESCALE_NORMAL). Rather than making normals unit
length by computing a square root, GL_RESCALE_NORMAL multiplies the transformed
normal by a scale factor. If the original normals are unit length, and the ModelView matrix
contains uniform scaling, this multiplication will restore the normals to unit length.

If the ModelView matrix contains nonuniform scaling, GL_NORMALIZE is the preferred
solution.

18.100 After I turn on lighting, everything is lit. How can I light only some of the objects?

Remember that OpenGL is a state machine. You'll need to do something like this:

glEnable(GL_LIGHTING);
// Render lit geometry.
glDisable(GL_LIGHTING);
// Render non−lit geometry.

18.110 How can I use light maps (e.g., Quake−style) in OpenGL?

See this question in the Texture Mapping section.

18.120 How can I achieve a refraction lighting effect?

First, consider whether OpenGL is the right API for you. You might need to use a ray tracer
to achieve complex light affects such as refraction.

If you're certain that you want to use OpenGL, you need to keep in mind that OpenGL
doesn’t provide functionality to produce a refraction effect. You'll need to fake it. The most
likely solution is to calculate an image corresponding to the refracted rendering, and texture
map it onto the surface of the primitive that's refracting the light.

 OpenGL FAQ and Troubleshooting Guide

18 Lights and Shadows 90

18.130 How can I render caustics?

OpenGL can't help you render caustics, except for texture mapping. GLUT 3.7 comes with
some demos that show you how to achieve caustic lighting effects.

18.140 How can I add shadows to my scene?

OpenGL does not support shadow rendering directly. However, any standard algorithm for
rendering shadows can be used in OpenGL. Some algorithms are described at
http://www.opengl.org. Follow the Coding Tutorials & Techniques link, then the Rendering
Techniques link. Scroll down to the Lighting, Shadows, & Reflections section.

The GLUT 3.7 distribution comes with examples that demonstrate how to do this using
projection shadows and the stencil buffer.

Projection shadows are ideal if your shadow is only to lie on a planar object. You can
generate geometry of the shadow using glFrustum() to transform the object onto the
projection plane.

Stencil buffer shadowing is more flexible, allowing shadows to lie on any object, planar or
otherwise. The basic algorithm is to calculate a "shadow volume". Cull the back faces of the
shadow volume and render the front faces into the stencil buffer, inverting the stencil values.
Then render the shadow volume a second time, culling front faces and rendering the back
faces into the stencil buffer, again inverting the stencil value. The result is that the stencil
planes will now contain non−zero values where the shadow should be rendered. Render the
scene a second time with only ambient light enabled and glDepthFunc() set to GL_EQUAL.
The result is a rendered shadow.

Another mechanism for rendering shadows is outlined in the SIGGRAPH '92 paper Fast
Shadows and Lighting Effects Using Texture Mapping, Mark Segal et al. This paper
describes a relatively simple extension to OpenGL for using the depth buffer as a shadow
texture map. Both the GL_EXT_depth_texture and the GL_EXT_texture3D (or OpenGL 1.2)
extensions are required to use this method.

 OpenGL FAQ and Troubleshooting Guide

18 Lights and Shadows 91

http://www.opengl.org

19 Curves, Surfaces, and Using Evaluators
19.010 How can I use OpenGL evaluators to create a B−spline surface?

OpenGL evaluators use a Bezier basis. To render a surface using any other basis, such as
B−spline, you must convert your control points to a Bezier basis. The OpenGL Programming
Guide, Chapter 12, lists a number of reference books that cover the math behind these
conversions.

19.020 How can I retrieve the geometry values produced by evaluators?

OpenGL does not provide a straightforward mechanism for this.

You might download the Mesa source code distribution, and modify its evaluator code to
return object coordinates rather than pass them into the OpenGL geometry pipeline.

Evaluators involve a lot of math, so their performance in immediate mode is sometimes
unacceptable. Some programmers think they need to "capture" the generated geometry, and
play it back to achieve maximum performance. Indeed, this would be a good solution if it
were possible. Some implementations provide maximum evaluator performance through the
use of display lists.

19 Curves, Surfaces, and Using Evaluators 92

http://www.mesa3d.org/
http://www.mesa3d.org/

20 Picking and Using Selection
20.010 How can I know which primitive a user has selected with the mouse?

OpenGL provides the GL_SELECTION render mode for this purpose. However, you can use
other methods.

You might render each primitive in a unique color, then use glReadPixels() to read the single
pixel under the current mouse location. Examining the color determines the primitive that the
user selected. Here's information on rendering each primitive in a unique color and
information on using glDrawPixels().

Yet another method involves shooting a pick ray through the mouse location and testing for
intersections with the currently displayed objects. OpenGL doesn't test for ray intersections
(for how to do, see the BSP FAQ), but you'll need to interact with OpenGL to generate the
pick ray.

One way to generate a pick ray is to call gluUnProject() twice for the mouse location, first
with winz of 0.0 (at the near plane), then with winz of 1.0 (at the far plane). Subtract the near
plane call's results from the far plane call's results to obtain the XYZ direction vector of your
ray. The ray origin is the view location, of course.

Another method is to generate the ray in eye coordinates, and transform it by the inverse of
the ModelView matrix. In eye coordinates, the pick ray origin is simply (0, 0, 0). You can
build the pick ray vector from the perspective projection parameters, for example, by setting
up your perspective projection this way

aspect = double(window_width)/double(window_height);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glFrustum(−near_height * aspect,
 near_height * aspect,
 −near_height,
 near_height, zNear, zFar);

you can build your pick ray vector like this:

int window_y = (window_height − mouse_y) − window_height/2;
double norm_y = double(window_y)/double(window_height/2);
int window_x = mouse_x − window_width/2;
double norm_x = double(window_x)/double(window_width/2);

(Note that most window systems place the mouse coordinate origin in the upper left of the window instead of
the lower left. That's why window_y is calculated the way it is in the above code. When using a glViewport()
that doesn't match the window height, the viewport height and viewport Y are used to determine the values
for window_y and norm_y.)

The variables norm_x and norm_y are scaled between −1.0 and 1.0. Use them to find the mouse location on
your zNear clipping plane like so:

float y = near_height * norm_y;
float x = near_height * aspect * norm_x;

20 Picking and Using Selection 93

http://reality.sgi.com/bspfaq/

Now your pick ray vector is (x, y, −zNear).

To transform this eye coordinate pick ray into object coordinates, multiply it by the inverse of the
ModelView matrix in use when the scene was rendered. When performing this multiplication, remember that
the pick ray is made up of a vector and a point, and that vectors and points transform differently. You can
translate and rotate points, but vectors only rotate. The way to guarantee that this is working correctly is to
define your point and vector as four−element arrays, as the following pseudo−code shows:

float ray_pnt[4] = {0.f, 0.f, 0.f, 1.f};
float ray_vec[4] = {x, y, −near_distance, 0.f};

The one and zero in the last element determines whether an array transforms as a point or a vector when
multiplied by the inverse of the ModelView matrix.

20.020 What do I need to know to use selection?

Specify a selection buffer:

GLuint buffer[BUF_SIZE];
glSelectBuffer (BUF_SIZE, buffer);

Enter selection mode, render as usual, then exit selection mode:

GLint hits;

glRenderMode(GL_SELECT);
// ...render as usual...
hits = glRenderMode(GL_RENDER);

The call to glRenderMode(GL_RENDER) exits selection mode and returns the number of hit records stored
in the selection buffer. Each hit record contains information on the primitives that were inside the view
volume (controlled with the ModelView and Projection matrices).

That's the basic concept. In practice, you may want to restrict the view volume. The gluPickMatrix() function
is a handy method for restricting the view volume size to within a set number of pixels away from a given
(X,Y) position, such as the current mouse or cursor location.

You'll also want to use the name stack to specify unique names for primitives of interest. After the stack is
pushed once, any number of different names may be loaded onto the stack. Typically, load a name, then
render a primitive or group of primitives. The name stack allows for selection to occur on heirarchical
databases.

After returning to GL_RENDER render mode, you'll need to parse the selection buffer. It will contain zero or
more hit records. The number of hit records is returned by the call to glRenderMode(GL_RENDER). Each hit
record contains the following information stored as unsigned ints:

• Number of names in the name stack for this hit record
• Minimum depth value of primitives (range 0 to 232−1)
• Maximum depth value of primitives (range 0 to 232−1)
• Name stack contents (one name for each unsigned int).

You can use the minimum and maximum Z values with the device coordinate X and Y if known (perhaps
from a mouse click) to determine an object coordinate location of the picked primitive. You can scale the Z

 OpenGL FAQ and Troubleshooting Guide

20 Picking and Using Selection 94

values to the range 0.0 to 1.0, for example, and use them in a call to gluUnProject().

20.030 Why doesn't selection work?

This is usually caused by one of two things.

Did you account for the inverted Y coordinate? Most window systems (Microsoft Windows,
X Windows, others?) usually return mouse coordinates to your program with Y=0 at the top
of the window, while OpenGL assumes Y=0 is at the bottom of the window. Assuming
you're using a default viewport, transform the Y value from window system coordinates to
OpenGL coordinates as (windowHeight−y).

Did you set up the transformations correctly? Assuming you're using gluPickMatrix(), it
should be loaded onto the Projection matrix immediately after a call to glLoadIdentity() and
before you multiply your projection transform (using glFrustum(), gluPerspective(),
glOrtho(), etc.). Your ModelView transformation should be the same as if you were
rendering normally.

20.040 How can I debug my picking code?

A good technique for debugging picking or selection code is not to call
glRenderMode(GL_SELECT). Simply comment out this function call in your code. The
result is instead of performing a selection, your code will render the contents of the pick box
to your window. This allows you to see visually what is inside your pick box.

Along with this method, it's generally a good idea to enlarge your pick box, so you can see
more in your window.

20.050 How can I perform pick highlighting the way PHIGS and PEX provided?

There's no elegant way to do this, and that's why many former PHIGS and PEX
implementers are now happy as OpenGL implementers. OpenGL leaves this up to the
application.

After you've identified the primitive you need to highlight with selection, how you highlight
it is up to your application. You might render the primitive into the displayed image in the
front buffer with a different color set. You may need to use polygon offset to make this work,
or at least set glDepthFunc(GL_EQUAL). You might only render the outline or render the
primitive consecutive times in different colors to create a flashing effect.

 OpenGL FAQ and Troubleshooting Guide

20 Picking and Using Selection 95

21 Texture Mapping
21.010 What are the basic steps for performing texture mapping?

At the bare minimum, a texture map must be specified, texture mapping must be enabled,
and appropriate texture coordinates must be set at each vertex. While these steps will produce
a texture mapped primitive, typically they don't meet the requirements of most OpenGL 1.2
applications. Use the following steps instead.

♦ Create a texture object for each texture in use. The texture object stores the texture
map and associated texture parameter state. See question 21.070 for more
information on texture objects.

♦ Store each texture map or mipmap pyramid in its texture object, along with
parameters to control its use.

♦ On systems with limited texure memory, set the priority of each texture object with
glPrioritizeTextures() to minimize texture memory thrashing.

♦ Whem your application renders the scene, bind each texture object before rendering
the geomtry to be texture mapped. Enable and disable texture mapping as needed.

21.020 I'm trying to use texture mapping, but it doesn't work. What's wrong?

Check for the following:

♦ Texture mapping should be enabled, and a texture map must be bound (when using
texture objects) or otherwise submitted to OpenGL (for example, with a call to
glTexImage2D()).

♦ Make sure you understand the different wrap, environment, and filter modes that are
available. Make sure you have set appropriate values.

♦ Keep in mind that texture objects don't store some texture parameters. Texture
objects bind to a target (either GL_TEXTURE_1D, GL_TEXTURE_2D, or
GL_TEXTURE_3D), and the texture object stores changes to those targets.
glTexGen(), for example, doesn't change the state of the texture target, and therefore
isn't part of texture objects.

♦ If you're using a mipmapping filter (e.g., you've called glTexParameter*(), setting a
min or mag filter that has MIPMAP in its name), make sure you've set all levels of
the mipmap pyramid. All levels must be set, or texture mapping won't occur. You
can set all levels at the same time with the gluBuild2DMipmaps() function. All
levels of the mipmap pyramid must have the same number of components.

♦ Remember that OpenGL is a state machine. If you don't specify texture coordinates,
either explicitly with glTexCoord*(), or generated automatically with glTexGen()),
then OpenGL uses the current texture coordinate for all vertices. This may cause
some primitives to be texture mapped with a single color or single texel value.

♦ If you're using multiple rendering contexts and need to share texture objects between
contexts, you must explicitly enable texture object sharing. This is done with the
wglShareLists() function in Microsoft Windows and glXCreateContext() under X
Windows.

♦ Check for errors with glGetError().

21.030 Why doesn't lighting work when I turn on texture mapping?

21 Texture Mapping 96

There are many well−meaning texture map demos available on the Web that set the texture
environment to GL_DECAL or GL_REPLACE. These environment modes effectively
replace the primitive color with the texture color. Because lighting values are calculated
before texture mapping (lighting is a per vertex operation, while texture mapping is a per
fragment operation), the texture color replaces the colors calculated by lighting. The result is
that lighting appears to stop working when texture mapping is enabled.

The default texture environment is GL_MODULATE, which multiplies the texture color by
the primitive (or lighting) color. Most applications that use both OpenGL lighting and texture
mapping use the GL_MODULATE texture environment.

Look for the following line in your code:

glTexEnv (GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_DECAL); /* or GL_REPLACE */

You should change GL_DECAL to GL_MODULATE, or simply delete the line entirely (since
GL_MODULATE is the default).

21.040 Lighting and texture mapping work pretty well, but why don't I see specular highlighting?

Your geometry may have a nice white specular highlight when it's not texture mapped, but
when you apply a non−white texture suddenly the highlight goes away even though the
geometry is still lit. This is because GL_MODULATE multiplies the primitive's lighting
color components with the texture color components. For example, assume a white specular
highlight is being multiplied by a red texture map. The final color is then (1.0*1.0, 1.0*0.0,
1.0*0.0) or (1.0, 0.0, 0.0), which is red. The white specular highlight isn't visible.

OpenGL 1.2 solves this problem by applying specular highlights after texture mapping. This
separate specular lighting mode is turned on by:

glLightModel (GL_LIGHT_MODEL_COLOR_CONTROL,GL_SEPARATE_SPECULAR_COLOR);

By default, it's set to GL_SINGLE_COLOR, which maintains backwards compatibility with OpenGL 1.1 and
earlier.

If you're not using OpenGL 1.2, other solutions are available. Many vendors provide proprietary extensions
for allowing you to apply the specular highlight after the texture map. See this example code for how to do
this on HP systems. Many OpenGL vendors have settled on an the EXT_separate_specular_color extension.

Another method works on any OpenGL implementation, because it only uses regular OpenGL 1.0
functionality and doesn't depend on extensions. You need to render your geometry in two passes: first with
normal lighting and texture mapping enabled, then the second pass will render the specular highlight. See this
example code for a demonstration of how to do it.

21.050 How can I automatically generate texture coordinates?

Use the glTexGen() function.

21.060 Should I store texture maps in display lists?

See this question in the display list section.

 OpenGL FAQ and Troubleshooting Guide

21 Texture Mapping 97

twopass.cpp
http://oss.sgi.com/projects/ogl-sample/registry/EXT/separate_specular_color.txt
twopass.cpp
twopass.cpp

21.070 How do texture objects work?

Texture objects store texture maps and their associated texture parameter state. They allow
switching between textures with a single call to glBindTexture().

Texture objects were introduced in OpenGL 1.1. Prior to that, an application changed
textures by calling glTexImage*(), a rather expensive operation. Some OpenGL 1.0
implementations simulated texture object functionality for texture maps that were stored in
display lists.

Like display lists, a texture object has a GLuint identifier (the textureName parameter to
glBindTexture()). OpenGL supplies your application with texture object names when your
application calls glGenTextures(). Also like display lists, texture objects can be shared across
rendering contexts.

Unlike display lists, texture objects are mutable. When a texture object is bound, changes to
texture object state are stored in the texture object, including changes to the texture map itself.

The following functions affect and store state in texture objects: glTexImage*(),
glTexSubImage*(), glCopyTexImage*(), glCopyTexSubImage*(), glTexParameter*(), and
glPrioritizeTextures(). Since the GLU routines for building mipmap pyramids ultimately call
glTexImage*(), they also affect texture object state.Noticeably absent from this list are
glTexEnv*() and glTexGen*(); they do not store state in texture objects.

Here is a summary of typical texture object usage:

♦ Get a textureName from glGenTextures(). You'll want one name for each of the
texture objects you plan to use.

♦ Initially bind a texture object with glBindTexture(). Specify the texture map, and any
texture parameters. Repeat this for all texture objects your application uses.

♦ Before rendering texture mapped geometry, call glBindTexture() with the desired
textureName. OpenGL will use the texture map and texture parameter state stored in
that object for rendering.

21.080 Can I share textures between different rendering contexts?

Yes, if you use texture objects. Texture objects can be shared the same way display lists can.
If you're using Microsoft Windows, see the wglShareLists() function. For a GLX platform,
see the share parameter to glXCreateContext().

21.090 How can I apply multiple textures to a surface?

Note that EXT_multitexture and SGIS_multitexture are both obsolete. The preferred
multitexturing extension is ARB_multitexture.

The ARB_multitexture spec is included in the OpenGL 1.2.1 spec:
http://www.opengl.org/Documentation/Specs.html.

An example is on Michael Gold's Web page.

A useful snippet is available at

 OpenGL FAQ and Troubleshooting Guide

21 Texture Mapping 98

http://www.opengl.org/Documentation/Specs.html
http://www.berkelium.com/OpenGL
http://www.berkelium.com/OpenGL

http://reality.sgi.com/blythe/sig99/advanced99/notes/node48.html. It's part of a wider
presentation entitled Advanced Graphics Programming Techniques Using OpenGL. It's a
useful supplement to anyone starting OpenGL and 3D graphics in general.

21.100 How can I perform light mapping?

You can simulate lighting by creating a texture map that mimics the light pattern and by
applying it as a texture to the lit surface. After you've created the light texture map, there's
nothing special about how you apply it to the surface. It’s just like any other texture map. For
this reason, this question really isn't specific to OpenGL.

The GLUT 3.7 distribution contains an example that uses texture mapping to simulate
lighting called progs/advanced97/lightmap.c.

21.110 How can I turn my files, such as GIF, JPG, BMP, etc. into a texture map?

OpenGL doesn't provide support for this. With whatever libraries or home−brewed code you
desire to read in the file, then by using the glTexImage2D call, transform the pixel data into
something acceptable, and use it like any other texture map.

Source code for doing this with TGA files can be found here.

See the Miscellaneous section for info on reading and writing 2D image files.

21.120 How can I render into a texture map?

With OpenGL 1.1, you can use the glCopyTexImage2D() or glCopyTexSubImage2D()
functions to assist with this task. glCopyTexImage2D() takes the contents of the framebuffer
and sets it as the current texture map, while glCopyTexSubImage2D() only replaces part of
the current texture with the contents of the framebuffer. There's a GLUT 3.7 example called
multispheremap.c that does this.

21.130 What's the maximum size texture map my device will render hardware accelerated?

A good OpenGL implementation will render with hardware acceleration whenever possible.
However, the implementation is free to not render hardware accelerated. OpenGL doesn't
provide a mechanism to ensure that an application is using hardware acceleration, nor to
query that it's using hardware acceleration. With this information in mind, the following may
still be useful:

You can obtain an estimate of the maximum texture size your implementation supports with
the following call:

GLint texSize;
glGetIntegerv(GL_MAX_TEXTURE_SIZE, &texSize);

If your texture isn't hardware accelerated, but still within the size restrictions returned by
GL_MAX_TEXTURE_SIZE, it should still render correctly.

This is only an estimate, because the glGet*() function doesn't know what format, internalformat, type, and
other parameters you'll be using for any given texture. OpenGL 1.1 and greater solves this problem by

 OpenGL FAQ and Troubleshooting Guide

21 Texture Mapping 99

http://reality.sgi.com/blythe/sig99/advanced99/notes/node48.html
http://reality.sgi.com/blythe/sig99/advanced99/notes
http://reality.sgi.com/blythe/sig99/advanced99/notes
http://www.stud.uni-goettingen.de/~npovala/

allowing texture proxy.

Here's an example of using texture proxy:

glTexImage2D(GL_PROXY_TEXTURE_2D, level, internalFormat,
 width, height, border, format, type, NULL);

Note the pixels parameter is NULL, because OpenGL doesn't load texel data when the target parameter is
GL_PROXY_TEXTURE_2D. Instead, OpenGL merely considers whether it can accommodate a texture of
the specified size and description. If the specified texture can't be accommodated, the width and height
texture values will be set to zero. After making a texture proxy call, you'll want to query these values as
follows:

GLint width;

glGetTexLevelParameteriv(GL_PROXY_TEXTURE_2D, 0,
 GL_TEXTURE_WIDTH, &width);

if (width==0) {
 /* Can't use that texture */
}

21.140 How can I texture map a sphere, cylinder, or any other object with multiple facets?

Texture map these objects using fractional texture coordinates. Each facet of an
approximated surface or object will only show one small part of the texture map. Fractional
texture coordinates determine what part of the texture map is applied to which facet.

 OpenGL FAQ and Troubleshooting Guide

21 Texture Mapping 100

22 Performance
22.010 What do I need to know about performance?

First, read chapters 11 through 14 of the book OpenGL on Silicon Graphics Systems.
Although some of the information is SGI machine specific, most of the information applies
to OpenGL programming on any platform. It's invaluable reading for the
performance−minded OpenGL programmer.

Consider a performance tuning analogy: A database application spends 5 percent of its time
looking up records and 95 percent of its time transmitting data over a network. The database
developer decides to tune the performance. He sits down and looks at the code for looking up
records and sees that with a few simple changes he can reduce the time it’ll take to look up
records by more than 50 percent. He makes the changes, compiles the database, and runs it.
To his dismay, there's little or no noticeable performance increase!

What happened? The developer didn't identify the bottleneck before he began tuning. The
most important thing you can do when attempting to boost your OpenGL program’s
performance is to identify where the bottleneck is.

Graphics applications can be bound in several places. Generally speaking, bottlenecks fall
into three broad categories: CPU limited, geometry limited, and fill limited.

CPU limited is a general term. Specifically, it means performance is limited by the speed of
the CPU. Your application may also be bus limited, in which the bus bandwidth prevents
better performance. Cache size and amount of RAM can also play a role in performance. For
a true CPU−limited application, performance will increase with a faster CPU. Another way
to increase performance is to reduce your application’s demand on CPU resources.

A geometry limited application is bound by how fast the computer or graphics hardware can
perform vertex computations, such as transformation, clipping, lighting, culling, vertex fog,
and other OpenGL operations performed on a per vertex basis. For many very low−end
graphics devices, this processing is performed in the CPU. In this case, the line between CPU
limited and geometry limited becomes fuzzy. In general, CPU limited implies that the
bottleneck is CPU processing unrelated to graphics.

In a fill−limited application, the rate you can render is limited by how fast your graphics
hardware can fill pixels. To go faster, you'll need to find a way to either fill fewer pixels, or
simplify how pixels are filled, so they can be filled at a faster rate.

It’s usually quite simple to discern whether your application is fill limited. Shrink the
window size, and see if rendering speeds up. If it does, you're fill limited.

If you're not fill limited, then you're either CPU limited or geometry limited. One way to test
for a CPU limitation is to change your code, so it repeatedly renders a static, precalculated
scene. If the performance is significantly faster, you're dealing with a CPU limitation. The
part of your code that calculates the scene or does other application−specific processing is
causing your performance hit. You need to focus on tuning this part of your code.

If it's not fill limited and not CPU limited, congratulations! It's geometry limited. The per

22 Performance 101

http://reality.sgi.com/opengl/#sgidocs

vertex features you’ve enabled or the shear volume of vertices you're rendering is causing
your performance hit. You need to reduce the geometry processing either by reducing the
number of vertices or reducing the calculations OpenGL must use to process each vertex.

22.020 How can I measure my application's performance?

To measure an application's performance, note the system time, do some rendering, then note
the system time again. The difference between the two system times tells you how long the
application took to render. Benchmarking graphics is no different from benchmarking any
other operations in a computer system.

Many graphics programmers often want to measure frames per second (FPS). A simple
method is to note the system time, render a frame, and note the system time again. FPS is
then calculated as (1.0 / elapsed_time). You can obtain a more accurate measurement by
timing multiple frames. For example if you render 10 frames, FPS would be (10.0 /
elapsed_time).

To obtain primitives or triangles per second, add a counter to your code for incrementing as
each primitive is submitted for rendering. This counter needs to be reset to zero when the
system time is initially obtained. If you already have a complex application that is nearly
complete, adding this benchmarking feature as an afterthought might be difficult. When you
intend to measure primitives per second, it's best to design your application with
benchmarking in mind.

Calculating pixels per second is a little tougher. The easiest way to calculate pixels per
second is to write a small benchmark program that renders primitives of a known pixel size.

GLUT 3.7 comes with a benchmark called progs/bucciarelli/gltest that measures OpenGL
rendering performance and is free to download. You can also visit the Standard Performance
Evaluation Corporation, which has many benchmarks you can download free, as well as the
latest performance results from several OpenGL hardware vendors.

22.030 Which primitive type is the fastest?

GL_TRIANGLE_STRIP is generally recognized as the most optimal OpenGL primitive
type. Be aware that the primitive type might not make a difference unless you're geometry
limited.

22.040 What's the cost of redundant calls?

While some OpenGL implementations make redundant calls as cheap as possible, making
redundant calls generally is considered bad practice. Certainly you shouldn't count on
redundant calls as being cheap. Good application developers avoid them when possible.

22.050 I have (n) lights on, and when I turned on (n+1), suddenly performance dramatically drops. What
happened?

Your graphics device supports (n) lights in hardware, but because you turned on more lights
than what's supported, you were kicked off the hardware and are now rendering in the
software. The only solution to this problem, except to use less lights, is to buy better
hardware.

 OpenGL FAQ and Troubleshooting Guide

22 Performance 102

http://www.specbench.org/
http://www.specbench.org/

22.060 I'm using (n) different texture maps and when I started using (n+1) instead, performance
drastically drops. What happened?

Your graphics device has a limited amount of dedicated texture map memory. Your (n)
textures fit well in the texture memory, but there wasn't room left for any more texture maps.
When you started using (n+1) textures, suddenly the device couldn't store all the textures it
needed for a frame, and it had to swap them in from the computer’s system memory. The
additional bus bandwidth required to download these textures in each frame killed your
performance.

You might consider using smaller texture maps at the expense of image quality.

22.070 Why are glDrawPixels() and glReadPixels() so slow?

While performance of the OpenGL 2D path (as its called) is acceptable on many higher−end
UNIX workstation−class devices, some implementations (especially low−end inexpensive
consumer−level graphics cards) never have had good 2D path performance. One can only
expect that corners were cut on these devices or in the device driver to bring their cost down
and decrease their time to market. When this was written (early 2000), if you purchase a
graphics device for under $500, chances are the OpenGL 2D path performance will be
unacceptably slow.

If your graphics system should have decent performance but doesn’t, there are some steps
you can take to boost the performance.

First, all glPixelTransfer() state should be set to their default values. Also, glPixelStore()
should be set to its default value, with the exception of GL_PACK_ALIGNMENT and
GL_UNPACK_ALIGNMENT (whichever is relevant), which should be set to 8. Your data
pointer will need to be correspondingly double− word aligned.

Second, examine the parameters to glDrawPixels() or glReadPixels(). Do they correspond to
the framebuffer layout? Think about how the framebuffer is configured for your application.
For example, if you know you're rendering into a 24−bit framebuffer with eight bits of
destination alpha, your type parameter should be GL_RGBA, and your format parameter
should be GL_UNSIGNED_BYTE. If your type and format parameters don't correspond to
the framebuffer configuration, it's likely you'll suffer a performance hit due to the per pixel
processing that's required to translate your data between your parameter specification and the
framebuffer format.

Finally, make sure you don't have unrealistic expectations. Know your system bus and
memory bandwidth limitations.

22.080 Is it faster to use absolute coordinates or to use relative coordinates?

By using absolute (or “world”) coordinates, your application doesn't have to change the
ModelView matrix as often. By using relative (or “object”) coordinates, you can cut down on
data storage of redundant primitives or geometry.

A good analogy is an architectural software package that models a hotel. The hotel model has
hundreds of thousands of rooms, most of which are identical. Certain features are identical in
each room, and maybe each room has the same lamp or the same light switch or doorknob.

 OpenGL FAQ and Troubleshooting Guide

22 Performance 103

The application might choose to keep only one doorknob model and change the ModelView
matrix as needed to render the doorknob for each hotel room door. The advantage of this
method is that data storage is minimized. The disadvantage is that several calls are made to
change the ModelView matrix, which can reduce performance. Alternatively, the application
could instead choose to keep hundreds of copies of the doorknob in memory, each with its
own set of absolute coordinates. These doorknobs all could be rendered with no change to
the ModelView matrix. The advantage is the possibility of increased performance due to less
matrix changes. The disadvantage is additional memory overhead. If memory overhead gets
out of hand, paging can become an issue, which certainly will be a performance hit.

There is no clear answer to this question. It's model− and application−specific. You'll need to
benchmark to determine which method is best for your model or application.

22.090 Are display lists or vertex arrays faster?

Which is faster varies from system to system.

If your application isn't geometry limited, you might not see a performance difference at all
between display lists, vertex arrays, or even immediate mode.

22.100 How do I make triangle strips out of triangles?

As mentioned in 22.030, GL_TRIANGLE_STRIP is generally recognized as the most
optimal primitive. If your geometry consists of several separate triangles that share vertices
and edges, you might want to convert your data to triangle strips to improve performance.

To create triangle strips from separate triangles, you need to implement an algorithm to find
and join adjacent triangles.

Code for doing this is available free on the Web. The Stripe package is one solution.

 OpenGL FAQ and Troubleshooting Guide

22 Performance 104

http://www.cs.sunysb.edu/~stripe/

23 Extensions and Versions
23.010 Where can I find information on different OpenGL extensions?

The OpenGL extension registry is the central resource for OpenGL extensions. Also, the
OpenGL org Web page maintains a lot of information on OpenGL extensions.

A list of extensions available on common consumer OpenGL devices is available.

Here's a similar list of extensions.

23.020 How will I know which OpenGL version my program is using?

It's commonplace for the OpenGL version to be named as a C preprocessor definition in gl.h.
This enables your application to know the OpenGL version at compile time. To use this
definition, your code might look like:

#ifdef GL_VERSION_1_2
 // Use OpenGL 1.2 functionality
#endif

OpenGL also provides a mechanism for detecting the OpenGL version at run time. An app may call
glGetString(GL_VERSION), and parse the return string. The first part of the return string must be of the form
[major−number].[minor−number], optionally followed by a release number or other vendor−specific
information.

As with any OpenGL call, you need a current context to use glGetString().

23.030 What is the difference between OpenGL 1.0, 1.1, and 1.2?

In OpenGL 1.1, the following features are available:

♦ Vertex Arrays, which are intended to decrease the number of subroutine calls
required to transfer vertex data to OpenGL that is not in a display list

♦ Polygon Offset, which allows depth values of fragments resulting from the filled
primitives' rasterization to be shifted forward or backwards prior to depth testing

♦ Logical Operations can be performed in RGBA mode
♦ Internal Texture Formats, which let an application suggest to OpenGL a preferred

storage precision for texture images
♦ Texture Proxies, which allow an application to tailor its usage of texture resources at

runtime
♦ Copy Texture and Subtexture, which allow an application to copy textures or

subregions of a texture from the framebuffer or client memory
♦ Texture Objects, which let texture arrays and their associated texture parameter state

be treated as a single texture object

In OpenGL 1.2, the following features are available:

♦ Three−dimensional texturing, which supports hardware accelerated volume rendering
♦ BGRA pixel formats and packed pixel formats to directly support more external file

and hardware framebuffer types

23 Extensions and Versions 105

http://oss.sgi.com/projects/ogl-sample/registry/
http://www.opengl.org/Documentation/Extensions.html
http://homepages.fh-regensburg.de/~kuo32652/index.html
http://homepages.fh-regensburg.de/~kuo32652/index.html
http://www.gamedev.net/opengl/exttable.html

♦ Automatically rescaling vertex normals changed by the ModelView matrix. In some
cases, rescaling can replace a more expensive renormalization operation.

♦ Application of specular highlights after texturing for more realistic lighting effects
♦ Texture coordinate edge clamping to avoid blending border and image texels during

texturing
♦ Level of detail control for mipmap textures to allow loading only a subset of levels.

This can save texture memory when high−resolution texture images aren't required
due to textured objects being far from the viewer.

♦ Vertex array enhancements to specify a subrange of the array and draw geometry
from that subrange in one operation. This allows a variety of optimizations such as
pretransforming, caching transformed geometry, etc.

♦ The concept of ARB−approved extensions. The first such extension is
GL_ARB_imaging, a set of features collectively known as the Imaging Subset,
intended for 2D image processing. Check for the extension string to see if this
feature is available.

OpenGL 1.2.1 adds a second ARB−approved extension, GL_ARB_multitexture, which
allows multiple texture maps to be applied to a single primitive. Again, check for the
extension string to use this extension.

23.040 How can I code for different versions of OpenGL?

Because a feature or extension is available on the OpenGL development environment you
use for building your app, it doesn't mean it will be available for use on your end user's
system. Your code must avoid making feature or extension calls when those features and
extensions aren't available.

When your program initializes, it must query the OpenGL library for information on the
OpenGL version and available extensions, and surround version− and extension−specific
code with the appropriate conditionals based on the results of that query. For example:

#include <stdlib.h>
 ...
int gl12Supported;

gl12Supported = atof(glGetString(GL_VERSION)) >= 1.2;
 ...
if (gl12Supported) {
 // Use OpenGL 1.2 functionality
}

23.050 How can I find which extensions are supported?

A call to glGetString(GL_EXTENSIONS) will return a space−separated string of extension
names, which your application can parse at runtime.

23.060 How can I code for extensions that may not exist on a target platform?

At runtime, your application can inquire for the existence of a specific extension using
glGetString(GL_EXTENSIONS). Search the list of supported extensions for the specific
extension you're interested in. For example, to see if the polygon offset extension interface is
available, an application might say:

 OpenGL FAQ and Troubleshooting Guide

23 Extensions and Versions 106

#include <string.h>
 ...
const GLubyte *str;
int glPolyOffExtAvailable;

str = glGetString (GL_EXTENSIONS);
glPolyOffExtAvailable = (strstr((const char *)str, "GL_EXT_polygon_offset")
 != NULL);

Your application can use the extension if it's available, but it needs a fallback plan if it's unavailable (i.e.,
some other way to obtain the same functionality).

If your application code needs to compile on multiple platforms, it must handle a development environment
in which some extensions aren't defined. In C and C++, the preprocessor can protect extension−specific code
from compiling when an extension isn't defined in the local development environment. For example:

#ifdef GL_EXT_polygon_offset
 glEnable (GL_POLYGON_OFFSET_EXT);
 glPolygonOffsetEXT (1., 1./(float)0x10000);
#endif /* GL_EXT_polygon_offset */

23.070 How can I call extension routines on Microsoft Windows?

Your application may find some extensions already available through Microsoft's
opengl32.lib. However, depending on your OpenGL device and device driver, a particular
vendor−specific extension may or may not be present at link time. If it's not present in
opengl32.lib, you'll need to obtain the address of the extension's entry points at run time from
the device's ICD.

Here's an example code segment that demonstrates obtaining function pointers for the
ARB_multitexture extension:

/* Include the header that defines the extension. This may be a vendor−specific
 .h file, or GL/glExt.h as shown here, which contains definitions for all
 extensions. */
#include "GL/glExt.h"

/* Declare function pointers */
PFNGLACTIVETEXTUREARBPROC glActiveTextureARB;
PFNGLMULTITEXCOORD2FARBPROC glMultiTexCoord2fARB;

...
 /* Obtain the address of the extension entry points. */
 glActiveTextureARB = (PFNGLACTIVETEXTUREARBPROC)
 wglGetProcAddress("glActiveTextureARB");
 glMultiTexCoord2fARB = (PFNGLMULTITEXCOORD2FARBPROC)
 wglGetProcAddress("glMultiTexCoord2fARB");

After you obtain the entry point addresses of the extension functions you wish to use, simply call through
them as normal function pointers:

 /* Set texture unit 0 min and mag filters */
 (*glActiveTextureARB) (GL_TEXTURE0_ARB);
 glTexParameterf (GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
 glTexParameterf (GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
...

 OpenGL FAQ and Troubleshooting Guide

23 Extensions and Versions 107

 /* Draw multi textured quad */
 glBegin (GL_QUADS);
 (*glMultiTexCoord2fARB) (GL_TEXTURE0_ARB, 0.f, 0.f);
 (*glMultiTexCoord2fARB) (GL_TEXTURE1_ARB, 0.f, 0.f);
 glVertex3f (32.f,32.f, 0.f);
 ...
 glEnd();

More information on wglGetProcAddress() is available through the MSDN documentation.

You might find it annoying to explicitly call through a function pointer. A modified version of glext.h is
available that doesn't eliminate the function pointer, but hides it with the C preprocessor, allowing for more
aesthetically pleasing code.

23.080 How can I call extension routines on Linux?

Like Microsoft Windows (and unlike proprietary UNIX implementations), an extension entry
point may or may not be defined in the static link library. At run time, a Linux application
must load the function's address, and call through this function pointer.

Linix uses the OpenGL ABI.

23.090 Where can I find extension enumerants and function prototypes?

See the OpenGL extension registry.

For specific files:

glext.h
wglext.h
glxext.h

glext.h is not a replacement for gl.h, it's a supplement. It provides interfaces for all extensions not already
defined by the platform−specific gl.h. This is necessary for platforms that support multiple graphics drivers
where the gl.h from a central source (e.g. Microsoft or XFree86) can't track functionality provided by more
frequently updated vendor drivers.

 OpenGL FAQ and Troubleshooting Guide

23 Extensions and Versions 108

http://wwwmath.uni-muenster.de/cs/u/kostab/glext.h
http://wwwmath.uni-muenster.de/cs/u/kostab/glext.h
http://oss.sgi.com/projects/ogl-sample/ABI/
http://oss.sgi.com/projects/ogl-sample/registry/
http://oss.sgi.com/projects/ogl-sample/ABI/glext.h
http://oss.sgi.com/projects/ogl-sample/ABI/wglext.h
http://oss.sgi.com/projects/ogl-sample/ABI/glxext.h

24 Miscellaneous
24.010 How can I render a wireframe scene with hidden lines removed?

The preferred method is to render your geometry in two passes: first render it in fill mode
with color set to the background color, then render it again in line mode. Use polygon offset
so the lines over the polygons render correctly. The polygon offset section might be helpful
to you.

Often you need to preserve a nonuniform background, such as a gradient fill or an image. In
this case, execute the fill pass with glColorMask() set to all GL_FALSE, then perform the
line pass as usual. Again, use polygon offset to minimize Z fighting.

24.020 How can I render rubber−band lines?

See this question in the Rasterization section.

24.030 My init code calls glGetString() to find information about the OpenGL implementation, but why
doesn't it return a string?

The most likely cause of this problem is that a context hasn't been made current. An OpenGL
rendering context must exist and be made current to a window for any OpenGL calls to
function and return meaningful values.

24.039 Where can I find 3D model files?

As this has little to do with OpenGL, what follows is by no means an exhaustive list:

http://www.3dfiles.com/
http://www.3dcafe.org/
http://www.saturn−online.de/~cosmo/
http://www.swma.net/

You can make your own 3D models using any package you desire, and then loading the geometry file.
ModelMagic3D is shareware and comes with source code. GLScene is also available.

24.040 How can I load geometry files, such as 3DS, OBJ, DEM, etc. and render them with OpenGL?

OpenGL, being a 3D graphics API, has no built−in support for reading application−specific
file formats. If you're writing an application that needs to read a specific file type, you'll need
to add code to support a particular file type.

Many OpenGL users already have written code to do this, and in some cases, the code is
available on the Web. A few are listed here. If you can't find what you are looking for, you
might try doing a Web search.

This file format information covers a variety of different file formats.

Okino's PolyTrans can convert most major 3D file formats into OpenGL C code. Demos are
available on their Web site.

24 Miscellaneous 109

http://www.3dfiles.com/
http://www.3dcafe.org/
http://www.saturn-online.de/~cosmo/
http://www.swma.net/
http://www.imagewaredev.com
http://www.lischke-online.de/GLScene.html
http://www.wotsit.org/
http://www.okino.com/conv/conv.htm
http://www.okino.com/conv/filefrmt.htm

Crossroads can import many file formats and output the data as C/C++ compilable data that
is suitable for use with vertex arrays.

3DWinOGL is shareware that reads in any file format and returns OpenGL primitive data.

If you're using 3D Studio MAX, you should see an export format called ASE, which is
ASCII (i.e., large file sizes), but is very easy to parse.

The XGL file format is intended to be capable of storing all OpenGL 3D information. An
open source parser and a 3DS file converter are available.

Download the GLUT source distribution and look in progs/demos/smooth. The file glm.c
contains routines for reading in Wavefront OBJ files.

glElite reads DXF, ASCII, and LightWave files. Information on glElite can be found at the
following addresses: http://www.helsinki.fi/~tksuoran/lw.html and
http://www.cs.helsinki.fi/~tksuoran/glelite/.

3D Exploration imports and exports several different file formats, including exporting to
C/C++ source.

A 3DS import library in Delphi designed for use with OpenGL can be found here.

24.050 How can I save my OpenGL rendering as an image file, such as GIF, TIF, JPG, BMP, etc.? How
can I read these image files and use them as texture maps?

To save a rendering, the easiest method is to use any of a number of image utilities that let
you capture the screen or window, and save it is a file.

To accomplish this programmatically, you read your image with glReadPixels(), and use the
image data as input to a routine that creates image files.

Similarly, to read an image file and use it as a texture map, you need a routine that will read
the image file. Then send the texture data to OpenGL with glTexImage2D().

OpenGL will not read or write image files for you. To read or write image files, you can
either write your own code, include code that someone else has written, or call into an image
file library. The following links contain information on all three strategies.

This file format information covers a variety of different file formats.

The Independent JPEG Group has a free library for reading and writing JPEG files.

You can save your rendering as a JPEG image file, plus load JPEG and BMP files directly
into OpenGL texture objects, using the C++ mkOpenGLJPEGImage class.

Source code for reading TGA files can be found here.

The gd library lets you create JPG and PNG files from within your program.

Imlib (search the "Download" section) is a wrapper library that allows a program to write out

 OpenGL FAQ and Troubleshooting Guide

24 Miscellaneous 110

http://www.europa.com/~keithr/Crossroads/index.html
http://www.stmuc.com/thbaier/index.html
http://www.xglspec.org/
http://reality.sgi.com/opengl/glut3/glut3.html
http://www.helsinki.fi/~tksuoran/lw.html
http://www.cs.helsinki.fi/~tksuoran/glelite/
http://www.xdsoft.com/
http://www.lischke-online.de/3DS.html
http://www.lischke-online.de/3DS.html
http://www.lischke-online.de/3DS.html
http://www.wotsit.org/
http://www.ijg.org/
http://www.ijg.org/
http://math.ucsd.edu/~mkennedy/software
http://math.ucsd.edu/~mkennedy/software
http://www.stud.uni-goettingen.de/~npovala/
http://www.stud.uni-goettingen.de/~npovala/
http://www.boutell.com/gd/
http://www.boutell.com/gd/
http://www.redhat.com/

JPEG, GIF, PNG, and TIFF files.

An image loader library in Delphi can be found here.

24.060 Can I use a BSP tree with OpenGL?

BSP trees can be useful in OpenGL applications.

OpenGL applications typically use the depth test to perform hidden surface removal.
However, depending on your application and the nature of your geometry database, a BSP
tree can enhance performance when used in conjunction with the depth test or when used in
place of the depth test.

BSP trees also may be used to cull non−visible geometry from the database.

When rendering translucent primitives with blending enabled, BSP trees provide an excellent
sorting method to ensure back−to−front rendering.

More information on BSP trees can be found at the BSP FAQ.

24.070 Can I use an octree with OpenGL?

Yes. Nothing in OpenGL prevents you from using an octree. An octree is especially helpful
when used in conjunction with occlusion culling extensions (such as HP's
GL_HP_occlusion_test).

24.080 Can I do radiosity with OpenGL?

OpenGL doesn't contain any direct support for radiosity, it doesn't prevent you from
displaying a database containing precomputed radiosity values.

An application needs to perform its own radiosity iterations over the database to be
displayed. After sufficient color values are computed at each vertex, the application renders
the database as normal OpenGL primitives, specifying the computed color at each vertex.
glShadeModel() should be set to GL_SMOOTH and lighting should be disabled.

24.090 Can I raytrace with OpenGL?

OpenGL contains no direct support for raytracing.

You might want to use raytracing to produce realistic shadows and reflections. However, you
can simulate in many ways these effects in OpenGL without raytracing. See the section on
shadows or the section on texture mapping for some algorithms.

You can use OpenGL as part of the ray intersection test. For example, a scene can be
rendered with a unique color assigned to each primitive in the scene. This color can be read
back to determine the primitive intersected by a ray at a given pixel. If the exact geometry is
used in this algorithm, some aliasing may result. To reduce these aliasing artifacts, you can
render bounding volumes instead.

Also, by changing the viewpoint and view direction, you can use this algorithm for

 OpenGL FAQ and Troubleshooting Guide

24 Miscellaneous 111

http://www.lischke-online.de/Graphics.html
http://www.lischke-online.de/Graphics.html
http://reality.sgi.com/bspfaq/

intersection testing of secondary rays.

A ray tracing application might also use OpenGL for displaying the final image. In this case,
the application is responsible for computing the color value of each pixel. The pixels then
can be rendered as individual GL_POINTS primitives or stored in an array and displayed via
a call to glDrawPixels().

24.100 How can I perform CSG with OpenGL?

The Opengl Programming Guide, Third Edition, describes some techniques for displaying
the results of CSG operations on geometric data.

The GLUT 3.7 distribution contains an example program called csg.c that may be
informative.

24.110 How can I perform collision detection with OpenGL?

OpenGL contains no direct support for collision detection. Your application needs to perform
this operation itself.

OpenGL can be used to evaluate potential collisions the same way it can evaluate ray
intersections (i.e., the scene is rendered from the object's point of view, looking in the
direction of motion, with an orthographic projection and a field−of−view restricted to the
object's bounding rectangle.) Visible primitives are potential collision candidates. You can
examine their Z values to determine range.

There's a free library for collision detection called I_COLLIDE available that you might find
useful.

24.120 I understand OpenGL might cache commands in an internal buffer. Can I perform an abort
operation, so these buffers are simply emptied instead of executed?

No. After you issue OpenGL commands, inevitably they'll be executed.

24.130 What's the difference between glFlush() and glFinish() and why would I want to use these
routines?

The OpenGL spec allows an implementation to store commands and data in buffers, which
are awaiting execution. glFlush() causes these buffers to be emptied and executed. Thus, any
pending rendering commands will be executed, but glFlush() may return before their
execution is complete. glFinish() instructs an implementation to not return until the effects of
all commands are executed and updated.

A typical use of glFlush() might be to ensure rendering commands are exected when
rendering to the front buffer.

glFinish() might be particularly useful if an app draws using both OpenGL and the window
system's drawing commands. Such an application would first draw OpenGL, then call
glFinish() before proceeding to issue the window system's drawing commands.

24.140 How can I print with OpenGL?

 OpenGL FAQ and Troubleshooting Guide

24 Miscellaneous 112

http://www.cs.unc.edu/~geom/I_COLLIDE.html
http://www.cs.unc.edu/~geom/I_COLLIDE.html

OpenGL currently provides no services for printing. The OpenGL ARB has discussed a GLS
stream protocol, which would enable a more common interface for printing, but for now,
printing is only accomplished by system−specific means.

On a Microsoft Windows platform, ALT−PrintScreen copies the active window to the
clipboard. (To copy the entire screen, make the desktop active by clicking on it, then use
ALT−PrintScreen.) Then you can paste the contents of the clipboard to any 2D image
processing software, such as Microsoft Paint, and print from there.

You can capture an OpenGL rendering with any common 2D image processing packages that
provide a screen or window capture utility, and print from there.

Also, can print programatically using any method available on your platform. For example in
Microsoft Windows, you might use glReadPixels() to read your window, write the pixel data
to a DIB, and submit the DIB for printing.

24.150 Can I capture or log the OpenGL calls an application makes?

IBM has a product called ZAPdb that does this. It ships with many UNIX implementations,
including IBM and HP. It was available on Windows NT in the past, but its current status is
unknown. A non−IBM web page appears to have ZAPdb available for download.

Intel's GPT also supports this functionality.

There's a free utility called GLTrace2, which contains capture functionality similar to ZAPdb
and GPT. More info on GLTrace2 can be found here.

In theory, you could code a simple library that contains OpenGL function entry points, and
logs function calls and parameters passed. Name this library opengl32.dll and store it in your
Windows system folder (first, be careful to save the existing opengl32.dll). This shouldn't be
a difficult programming task, but it might be tedious and time consuming. This solution is
not limited to Microsoft Windows; using the appropriate library name, you can code this
capture utility on any platform, provided your application is linked with a dynamically
loadable library.

24.160 How can I render red−blue stereo pairs?

The Viewing section contains a question on creating a stereo view, and has a link to
information on creating anaglyphs. The basic idea, In OpenGL, is as follows:

1. glColorMask (GL_TRUE, GL_FALSE, GL_FALSE, GL_FALSE)
2. Assuming the red image is the left image, set the projection and model−view

matrices for the left image.
3. Clear color and depth buffers, and render the left image.
4. glColorMask (GL_FALSE, GL_FALSE, GL_TRUE, GL_FALSE)
5. Set the projection and model−view matrices for the right image.
6. Clear color and depth buffers and render the right image.
7. Swap buffers.

There is a GLUT 3.7 demo that shows how to do this.

 OpenGL FAQ and Troubleshooting Guide

24 Miscellaneous 113

http://www.cg.tuwien.ac.at/courses/VR/software/opengl/index.html
http://developer.intel.com/vtune/gpt/
http://www.hawksoft.com/gltrace/gltrace.html
http://www.hawksoft.com/gltrace/gltrace.html

Appendix A Microsoft OpenGL Information
Submitted by Samuel Paik.

Windows Driver Development Kits

Preliminary Windows 2000 DDK

Mini Client Driver
S3Virge

[Sample Windows 2000 display driver supporting DirectDraw, Direct3D, OpenGL MCD, Video Port
Extensions]

Windows Driver and Hardware Development

OpenGL for 3D Color Graphics Programming
[Summary of OpenGL support in Windows]

Driver Licensing Program for OpenGL and Direct3D
WHQL − Test Kits and Procedures

[OpenGL Conformance tests are included in the display driver tests]
GDI Display Drivers in Windows 2000
GDI Display Drivers in Windows 2000
Multimedia Components in Windows 95 and Windows 2000
Implementing Display Control Panel Extensions in Windows 95 and Windows 98

[Notes on acceptible "Wait for Vblank" usage]
Microsoft Releases New 3−D DDK

[New ICD kit announcement including SGI OpenGL improvements−−result of OpenGL truce with
SGI]

Fluff articles

Industry Solutions: OpenGL Update
[Says OpenGL is important to Microsoft and that OpenGL 1.2 support will likely be available in a
future Windows 2000 Service Pack]

Insider: Fixing Color Distortions in Windows 98 3D Screen Savers
Windows NT Workstation: Benchmark Results: Windows NT Workstation 4.0 Bests Unix Workstations in Two
Industry−Standard Engineering Application Benchmarks
Windows NT Workstation: Windows NT Workstation and Windows 95: Technical Differences

[Windows 95 acquired OpenGL with Service Pack 1]
POCKETPC: Here Comes GAPI!

[OpenGL and DirectX are too heavyweight for CE, so yet another "Game API"]
PressPass: Microsoft Delivers Performance−Leading Version of OpenGL

[OpenGL 1.1 introduced for Windows 95 and Windows NT, 1.1 bundled with NT 4.0]
PressPass: Silicon Graphics and Microsoft Form Strategic Alliance To Define the Future of Graphics

[Fahrenheit project announcement−−goes with OpenGL truce]
PressPass: Microsoft and Silicon Graphics Define Distribution And Support of OpenGL on the Windows
Platform

[Truce over OpenGL−−goes with Fahrenheit announcement. New DDK to incorporate old ICD DDK
with code from SGI OpenGL]

Appendix A Microsoft OpenGL Information 114

http://www.microsoft.com/DDK
http://www.microsoft.com/DDK
http://www.microsoft.com/DDK/DDKdocs/Win2k/
http://www.microsoft.com/DDK/DDKdocs/Win2k/
http://www.microsoft.com/DDK/DDKdocs/Win2k/mcd_74x3.htm
http://www.microsoft.com/DDK/DDKdocs/Win2k/mcd_74x3.htm
http://www.microsoft.com/DDK/DDKdocs/Win2k/s3virge.htm
http://www.microsoft.com/HWDEV
http://www.microsoft.com/HWDEV
http://www.microsoft.com/HWDEV/devdes/openglalt.htm
http://www.microsoft.com/HWDEV/devdes/openglalt.htm
http://www.microsoft.com/hwdev/devdes/driver_lic.htm
http://www.microsoft.com/hwdev/devdes/driver_lic.htm
http://www.microsoft.com/hwtest/testkits/
http://www.microsoft.com/hwtest/testkits/
http://www.microsoft.com/HWDEV/video/GDIdispa.htm
http://www.microsoft.com/HWDEV/video/GDIdispa.htm
http://www.microsoft.com/HWDEV/video/GDIdisp.htm
http://www.microsoft.com/HWDEV/video/GDIdisp.htm
http://www.microsoft.com/HWDEV/devdes/MULTIMM.HTM
http://www.microsoft.com/HWDEV/devdes/MULTIMM.HTM
http://www.microsoft.com/HWDEV/devdes/displaycpl.htm
http://www.microsoft.com/HWDEV/devdes/displaycpl.htm
http://www.microsoft.com/HWDEV/devdes/displaycpl.htm
http://www.microsoft.com/HWDEV/video/3Ddrv.htm
http://www.microsoft.com/HWDEV/video/3Ddrv.htm
http://www.microsoft.com/Industry/media/articles/opengl.asp
http://www.microsoft.com/Industry/media/articles/opengl.asp
http://www.microsoft.com/INSIDER/windows98/tips/3dsavers.htm
http://www.microsoft.com/INSIDER/windows98/tips/3dsavers.htm
http://www.microsoft.com/NTWorkstation/eval/ProductCompare/UNIX/Benchresults.asp
http://www.microsoft.com/NTWorkstation/eval/ProductCompare/UNIX/Benchresults.asp
http://www.microsoft.com/NTWorkstation/eval/ProductCompare/UNIX/Benchresults.asp
http://www.microsoft.com/NTWorkstation/eval/ProductCompare/UNIX/Benchresults.asp
http://www.microsoft.com/NTWorkstation/eval/ProductCompare/UNIX/Benchresults.asp
http://www.microsoft.com/NTWorkstation/eval/ProductCompare/Windows95/techdiff.asp
http://www.microsoft.com/NTWorkstation/eval/ProductCompare/Windows95/techdiff.asp
http://www.microsoft.com/NTWorkstation/eval/ProductCompare/Windows95/techdiff.asp
http://www.microsoft.com/POCKETPC/columns/gapi.asp
http://www.microsoft.com/POCKETPC/columns/gapi.asp
http://www.microsoft.com/PressPass/press/1996/aug96/openglpr.asp
http://www.microsoft.com/PressPass/press/1996/aug96/openglpr.asp
http://www.microsoft.com/PressPass/press/1997/dec97/Fahrpr.asp
http://www.microsoft.com/PressPass/press/1997/dec97/Fahrpr.asp
http://www.microsoft.com/PressPass/press/1997/dec97/Fahrpr.asp
http://www.microsoft.com/PressPass/press/1997/dec97/MSSGIpr.asp
http://www.microsoft.com/PressPass/press/1997/dec97/MSSGIpr.asp
http://www.microsoft.com/PressPass/press/1997/dec97/MSSGIpr.asp
http://www.microsoft.com/PressPass/press/1997/dec97/MSSGIpr.asp

OpenGL 3−D Graphics
[OpenGL technology brief]

MSDN Library

Platform SDK

• EMRGLSBOUNDEDRECORD − The EMRGLSBOUNDEDRECORD structure contains members
for an enhanced metafile record generated by OpenGL functions. It contains data for OpenGL
functions with information in pixel units that must be scaled when playing the metafile.

• EMRGLSRECORD − The EMRGLSRECORD structure contains members for an enhanced metafile
record generated by OpenGL functions, It contains data for OpenGL functions that scale
automatically to the OpenGL viewport.

• OpenGL
♦ Legal Information
♦ Overview

◊ Introduction to OpenGL
⋅ Primitives and Commands
⋅ OpenGL Graphic Control
⋅ Execution Model
⋅ Basic OpenGL Operation
⋅ OpenGL Processing Pipeline

• OpenGL Function Names
• Vertices
• Primitives
• Fragments
• Pixels

⋅ Using Evaluators
⋅ Performing Selection and Feedback
⋅ Using Display Lists
⋅ Managing Modes and Execution
⋅ Obtaining State Information
⋅ OpenGL Utility Library

♦ Win32 Extensions to OpenGL
♦ ◊ OpenGL on Windows NT, Windows 2000, and Windows 95/98

⋅ Components
⋅ Generic Implementation and Hardware Implementation
⋅ Limitations
⋅ Guide To Documentation
⋅ Rendering Contexts

• Rendering Context Functions
⋅ Pixel Formats

• Pixel Format Functions
⋅ Front, Back, and Other Buffers

• Buffer Functions
⋅ Fonts and Text

• Font and Text Functions
⋅ OpenGL Color Modes and Windows Palette Management

• Palettes and the Palette Manager
• Palette Awareness

 OpenGL FAQ and Troubleshooting Guide

MSDN Library 115

http://www.microsoft.com/TechNet/winnt/ntwrkstn/prodfact/opengl.asp
http://www.microsoft.com/TechNet/winnt/ntwrkstn/prodfact/opengl.asp
http://msdn.microsoft.com/
http://msdn.microsoft.com/library/default.asp
http://msdn.microsoft.com/library/psdk/gdi/metafile_5z3n.htm
http://msdn.microsoft.com/library/psdk/gdi/metafile_84xe.htm
http://msdn.microsoft.com/library/psdk/opengl/legalgl_62pa.htm
http://msdn.microsoft.com/library/psdk/opengl/int01_2v58.htm
http://msdn.microsoft.com/library/psdk/opengl/int01_2v58.htm
http://msdn.microsoft.com/library/psdk/opengl/int01_1ur7.htm
http://msdn.microsoft.com/library/psdk/opengl/int01_1ur7.htm
http://msdn.microsoft.com/library/psdk/opengl/int01_3jxo.htm
http://msdn.microsoft.com/library/psdk/opengl/int01_3jxo.htm
http://msdn.microsoft.com/library/psdk/opengl/int01_3qcs.htm
http://msdn.microsoft.com/library/psdk/opengl/int01_02su.htm
http://msdn.microsoft.com/library/psdk/opengl/int01_02su.htm
http://msdn.microsoft.com/library/psdk/opengl/over02_5zl1.htm
http://msdn.microsoft.com/library/psdk/opengl/over02_5zl1.htm
http://msdn.microsoft.com/library/psdk/opengl/over02_599v.htm
http://msdn.microsoft.com/library/psdk/opengl/over02_599v.htm
http://msdn.microsoft.com/library/psdk/opengl/over02_30dv.htm
http://msdn.microsoft.com/library/psdk/opengl/over02_8coj.htm
http://msdn.microsoft.com/library/psdk/opengl/over02_5do3.htm
http://msdn.microsoft.com/library/psdk/opengl/over02_6qk3.htm
http://msdn.microsoft.com/library/psdk/opengl/over02_3coj.htm
http://msdn.microsoft.com/library/psdk/opengl/over02_7x9n.htm
http://msdn.microsoft.com/library/psdk/opengl/over02_7x9n.htm
http://msdn.microsoft.com/library/psdk/opengl/over02_4r1v.htm
http://msdn.microsoft.com/library/psdk/opengl/over02_4r1v.htm
http://msdn.microsoft.com/library/psdk/opengl/over02_31ny.htm
http://msdn.microsoft.com/library/psdk/opengl/over02_31ny.htm
http://msdn.microsoft.com/library/psdk/opengl/over02_89pq.htm
http://msdn.microsoft.com/library/psdk/opengl/over02_89pq.htm
http://msdn.microsoft.com/library/psdk/opengl/over02_00hl.htm
http://msdn.microsoft.com/library/psdk/opengl/over02_00hl.htm
http://msdn.microsoft.com/library/psdk/opengl/ntopnglo_0e0o.htm
http://msdn.microsoft.com/library/psdk/opengl/ntopnglo_0e0o.htm
http://msdn.microsoft.com/library/psdk/opengl/ntopnglo_3hpv.htm
http://msdn.microsoft.com/library/psdk/opengl/ntopnglo_62ur.htm
http://msdn.microsoft.com/library/psdk/opengl/ntopnglo_62ur.htm
http://msdn.microsoft.com/library/psdk/opengl/ntopnglo_7ysz.htm
http://msdn.microsoft.com/library/psdk/opengl/ntopnglo_1bqm.htm
http://msdn.microsoft.com/library/psdk/opengl/ntopnglo_1bqm.htm
http://msdn.microsoft.com/library/psdk/opengl/ntopnglo_4kfn.htm
http://msdn.microsoft.com/library/psdk/opengl/ntopnglo_4eb7.htm
http://msdn.microsoft.com/library/psdk/opengl/ntopnglo_4eb7.htm
http://msdn.microsoft.com/library/psdk/opengl/ntopnglo_39ir.htm
http://msdn.microsoft.com/library/psdk/opengl/ntopnglo_47eb.htm
http://msdn.microsoft.com/library/psdk/opengl/ntopnglo_47eb.htm
http://msdn.microsoft.com/library/psdk/opengl/ntopnglo_6xkj.htm
http://msdn.microsoft.com/library/psdk/opengl/ntopnglo_6xkj.htm
http://msdn.microsoft.com/library/psdk/opengl/ntopnglo_04c3.htm
http://msdn.microsoft.com/library/psdk/opengl/ntopnglo_6ph0.htm
http://msdn.microsoft.com/library/psdk/opengl/ntopnglo_6ph0.htm
http://msdn.microsoft.com/library/psdk/opengl/ntopnglo_57ub.htm
http://msdn.microsoft.com/library/psdk/opengl/ntopnglo_57ub.htm
http://msdn.microsoft.com/library/psdk/opengl/ntopnglo_1j78.htm
http://msdn.microsoft.com/library/psdk/opengl/ntopnglo_1j78.htm
http://msdn.microsoft.com/library/psdk/opengl/ntopnglo_19gy.htm
http://msdn.microsoft.com/library/psdk/opengl/ntopnglo_19gy.htm
http://msdn.microsoft.com/library/psdk/opengl/ntopnglo_06nn.htm

• Reading Color Values from the Frame Buffer
• Choosing Between RGBA and Color−Index Mode
• RGBA Mode and Windows Palette Management
• Color−Index Mode and Windows Palette Management

⋅ Overlay, Underlay, and Main Planes
⋅ Sharing Display Lists
⋅ Extending OpenGL Functions
⋅ GLX and WGL/Win32
⋅ Using OpenGL on Windows NT/2000 and Windows 95/98

• Header Files
• Pixel Format Tasks

♦ Choosing and Setting a Best−Match Pixel Format
♦ Examining a Device Context's Current Pixel Format
♦ Examining a Device's Supported Pixel Formats

• Rendering Context Tasks
♦ Creating a Rendering Context and Making It Current
♦ Making a Rendering Context Not Current
♦ Deleting a Rendering Context

• Drawing with Double Buffers
• Drawing Text in a Double−Buffered OpenGL Window
• Printing an OpenGL Image
• Copying an OpenGL Image to the Clipboard
• Multithread OpenGL Drawing Strategies
• Using the Auxiliary Library

⋅ Reference for Win 32 Extensions to OpenGL
◊ WGL and Win32 Functions and Structures
◊ Programming Tips

⋅ OpenGL Correctness Tips
⋅ OpenGL Performance Tips

♦ Reference
♦ Porting to OpenGL

◊ Introduction to Porting to OpenGL for Windows NT, Windows 2000, and Windows
95/98

⋅ Porting X Window System Applications
⋅ Translating the GLX library
⋅ Porting Device Contexts and Pixel Formats

• GLX Pixel Format Code Sample
• Win32 Pixel Format Code Sample

⋅ Porting Rendering Contexts
• GLX Rendering Context Code Sample
• Win32 Rendering Context Code Sample

⋅ Porting GLX Pixmap Code
⋅ Porting Other GLX Code
⋅ A Porting Sample

• An X Window System OpenGL Program
• The Program Ported to Win32

⋅ Porting Applications from IRIS GL
⋅ Special IRIS GL Porting Issues

◊ OpenGL Functions and Their IRIS GL Equivalents
◊ IRIS GL and OpenGL Differences

♦ Glossary

 OpenGL FAQ and Troubleshooting Guide

MSDN Library 116

http://msdn.microsoft.com/library/psdk/opengl/ntopnglo_9sc2.htm
http://msdn.microsoft.com/library/psdk/opengl/ntopnglo_9sc2.htm
http://msdn.microsoft.com/library/psdk/opengl/ntopnglo_9sc2.htm
http://msdn.microsoft.com/library/psdk/opengl/ntopnglo_70f9.htm
http://msdn.microsoft.com/library/psdk/opengl/ntopnglo_70f9.htm
http://msdn.microsoft.com/library/psdk/opengl/ntopnglo_5gqc.htm
http://msdn.microsoft.com/library/psdk/opengl/ntopnglo_5gqc.htm
http://msdn.microsoft.com/library/psdk/opengl/ntopnglo_0510.htm
http://msdn.microsoft.com/library/psdk/opengl/ntopnglo_0510.htm
http://msdn.microsoft.com/library/psdk/opengl/ntopnglo_5a5v.htm
http://msdn.microsoft.com/library/psdk/opengl/ntopnglo_5a5v.htm
http://msdn.microsoft.com/library/psdk/opengl/ntopnglo_0ktv.htm
http://msdn.microsoft.com/library/psdk/opengl/ntopnglo_0ktv.htm
http://msdn.microsoft.com/library/psdk/opengl/ntopnglo_30tv.htm
http://msdn.microsoft.com/library/psdk/opengl/ntopnglo_30tv.htm
http://msdn.microsoft.com/library/psdk/opengl/ntopnglo_4v3m.htm
http://msdn.microsoft.com/library/psdk/opengl/ntopnglo_4v3m.htm
http://msdn.microsoft.com/library/psdk/opengl/ntopnglo_4upk.htm
http://msdn.microsoft.com/library/psdk/opengl/ntopnglo_4upk.htm
http://msdn.microsoft.com/library/psdk/opengl/ntopnglo_4upk.htm
http://msdn.microsoft.com/library/psdk/opengl/ntopnglo_53qr.htm
http://msdn.microsoft.com/library/psdk/opengl/ntopnglo_550z.htm
http://msdn.microsoft.com/library/psdk/opengl/ntopnglo_550z.htm
http://msdn.microsoft.com/library/psdk/opengl/ntopnglo_37p0.htm
http://msdn.microsoft.com/library/psdk/opengl/ntopnglo_37p0.htm
http://msdn.microsoft.com/library/psdk/opengl/ntopnglo_37p0.htm
http://msdn.microsoft.com/library/psdk/opengl/ntopnglo_6lys.htm
http://msdn.microsoft.com/library/psdk/opengl/ntopnglo_6lys.htm
http://msdn.microsoft.com/library/psdk/opengl/ntopnglo_6lys.htm
http://msdn.microsoft.com/library/psdk/opengl/ntopnglo_9blf.htm
http://msdn.microsoft.com/library/psdk/opengl/ntopnglo_9blf.htm
http://msdn.microsoft.com/library/psdk/opengl/ntopnglo_9blf.htm
http://msdn.microsoft.com/library/psdk/opengl/ntopnglo_95pv.htm
http://msdn.microsoft.com/library/psdk/opengl/ntopnglo_95pv.htm
http://msdn.microsoft.com/library/psdk/opengl/ntopnglo_4ygk.htm
http://msdn.microsoft.com/library/psdk/opengl/ntopnglo_4ygk.htm
http://msdn.microsoft.com/library/psdk/opengl/ntopnglo_4ygk.htm
http://msdn.microsoft.com/library/psdk/opengl/ntopnglo_4c50.htm
http://msdn.microsoft.com/library/psdk/opengl/ntopnglo_4c50.htm
http://msdn.microsoft.com/library/psdk/opengl/ntopnglo_2ik4.htm
http://msdn.microsoft.com/library/psdk/opengl/ntopnglo_2ik4.htm
http://msdn.microsoft.com/library/psdk/opengl/ntopnglo_43n7.htm
http://msdn.microsoft.com/library/psdk/opengl/ntopnglo_43n7.htm
http://msdn.microsoft.com/library/psdk/opengl/ntopnglo_1h6f.htm
http://msdn.microsoft.com/library/psdk/opengl/ntopnglo_1h6f.htm
http://msdn.microsoft.com/library/psdk/opengl/ntopnglo_1h6f.htm
http://msdn.microsoft.com/library/psdk/opengl/ntopnglo_7rtx.htm
http://msdn.microsoft.com/library/psdk/opengl/ntopnglo_7rtx.htm
http://msdn.microsoft.com/library/psdk/opengl/ntopnglo_56g4.htm
http://msdn.microsoft.com/library/psdk/opengl/ntopnglo_56g4.htm
http://msdn.microsoft.com/library/psdk/opengl/ntopnglo_9zjn.htm
http://msdn.microsoft.com/library/psdk/opengl/ntopnglo_9zjn.htm
http://msdn.microsoft.com/library/psdk/opengl/ntopnglo_1ugp.htm
http://msdn.microsoft.com/library/psdk/opengl/ntopnglo_1ugp.htm
http://msdn.microsoft.com/library/psdk/opengl/ntopnglo_8rak.htm
http://msdn.microsoft.com/library/psdk/opengl/ntopnglo_8rak.htm
http://msdn.microsoft.com/library/psdk/opengl/apptips_9soj.htm
http://msdn.microsoft.com/library/psdk/opengl/apptips_7wqb.htm
http://msdn.microsoft.com/library/psdk/opengl/apptips_7wqb.htm
http://msdn.microsoft.com/library/psdk/opengl/apptips_1d9v.htm
http://msdn.microsoft.com/library/psdk/opengl/apptips_1d9v.htm
http://msdn.microsoft.com/library/psdk/opengl/oglport_3oqg.htm
http://msdn.microsoft.com/library/psdk/opengl/oglport_3oqg.htm
http://msdn.microsoft.com/library/psdk/opengl/oglport_3oqg.htm
http://msdn.microsoft.com/library/psdk/opengl/oglport_3oqg.htm
http://msdn.microsoft.com/library/psdk/opengl/oglport_2c8j.htm
http://msdn.microsoft.com/library/psdk/opengl/oglport_2c8j.htm
http://msdn.microsoft.com/library/psdk/opengl/oglport_3dvd.htm
http://msdn.microsoft.com/library/psdk/opengl/oglport_3dvd.htm
http://msdn.microsoft.com/library/psdk/opengl/oglport_0jqr.htm
http://msdn.microsoft.com/library/psdk/opengl/oglport_0jqr.htm
http://msdn.microsoft.com/library/psdk/opengl/oglport_4ehx.htm
http://msdn.microsoft.com/library/psdk/opengl/oglport_4ehx.htm
http://msdn.microsoft.com/library/psdk/opengl/oglport_29ut.htm
http://msdn.microsoft.com/library/psdk/opengl/oglport_29ut.htm
http://msdn.microsoft.com/library/psdk/opengl/oglport_80z7.htm
http://msdn.microsoft.com/library/psdk/opengl/oglport_80z7.htm
http://msdn.microsoft.com/library/psdk/opengl/oglport_676t.htm
http://msdn.microsoft.com/library/psdk/opengl/oglport_676t.htm
http://msdn.microsoft.com/library/psdk/opengl/oglport_1obp.htm
http://msdn.microsoft.com/library/psdk/opengl/oglport_1obp.htm
http://msdn.microsoft.com/library/psdk/opengl/oglport_286d.htm
http://msdn.microsoft.com/library/psdk/opengl/oglport_286d.htm
http://msdn.microsoft.com/library/psdk/opengl/oglport_0j8l.htm
http://msdn.microsoft.com/library/psdk/opengl/oglport_0j8l.htm
http://msdn.microsoft.com/library/psdk/opengl/oglport_7qzp.htm
http://msdn.microsoft.com/library/psdk/opengl/oglport_7qzp.htm
http://msdn.microsoft.com/library/psdk/opengl/oglport_0b71.htm
http://msdn.microsoft.com/library/psdk/opengl/oglport_0b71.htm
http://msdn.microsoft.com/library/psdk/opengl/oglport_17jm.htm
http://msdn.microsoft.com/library/psdk/opengl/oglport_17jm.htm
http://msdn.microsoft.com/library/psdk/opengl/oglport_3164.htm
http://msdn.microsoft.com/library/psdk/opengl/oglport_3164.htm
http://msdn.microsoft.com/library/psdk/opengl/oglport_9xkj.htm
http://msdn.microsoft.com/library/psdk/opengl/oglport_9xkj.htm
http://msdn.microsoft.com/library/psdk/opengl/appenda1_3soj.htm
http://msdn.microsoft.com/library/psdk/opengl/appenda1_3soj.htm
http://msdn.microsoft.com/library/psdk/opengl/appenb_5wkz.htm
http://msdn.microsoft.com/library/psdk/opengl/appenb_5wkz.htm

♦ Appendix
◊ About OpenGL

OpenGL technical articles

OpenGL 1.1
[OpenGL 1.1 was first introduced into the Windows 9X line with Windows 95, OEM Service
Release 2]

OpenGL I: Quick Start
This article describes GLEasy, a simple OpenGL program. OpenGL is a three−dimensional (3−D)
graphics library included with the Microsoft® Windows NT® version 3.5 operating system. GLEasy
is a Microsoft Foundation Class Library (MFC) application that provides a good starting point for
investigations into the Windows NT implementation of OpenGL.

OpenGL II: Windows Palettes in RGBA Mode
If a program written for the Microsoft® Windows® operating system needs more than 16 colors and
is running on an 8−bits−per−pixel (bpp) display adapter, the program must create and use a palette.
OpenGL programs running on Windows NT® or (eventually) Windows 95 are no exception.
OpenGL imposes additional requirements on the colors and their locations on the palette in RGBA
mode. The articles "OpenGL I: Quick Start" and "Windows NT OpenGL: Getting Started" in the
MSDN Library cover the basics of using OpenGL in a Windows−based program and are required
reading for this article. Two sample applications, GLEasy and GLpal, accompany this article.

OpenGL III: Building an OpenGL C++ Class
This article discusses the development of a C++ class library for encapsulating OpenGLT code. The
C++ class presented is for demonstration and educational purposes only. I will expand the class
library for future OpenGL articles. The class library is not currently part of the Microsoft®
Foundation Class Library (MFC), and there are no plans to add this class to MFC in the future. I
assume that the reader has already read the first article in this series, "OpenGL I: Quick Start," in the
MSDN Library. The class library is in the GLlib.DLL file included with this article. The EasyGL
sample application, also included with this article, uses the classes in GLlib.DLL.

Color Index Mode
This article explores the Windows NTT implementation of OpenGLT color index mode. In color
index mode, colors are specified as indexes into a palette instead of as levels of red, green, and blue.
The EasyCI sample application (provided with this article) is a conversion of EasyGL that uses color
index mode. EasyCI uses the GLlib.DLL, also included with this article.

OpenGL IV: Translating Windows DIBs
OpenGLT is a portable language for rendering three−dimensional (3−D) graphics. OpenGL does not
understand Microsoft® Windows® device−independent bitmaps (DIBs); instead, it has its own
format for representing images. This article explains how to translate a Windows DIB into a format
usable with OpenGL. Some knowledge of the Windows DIB format and the Microsoft Foundation
Class Library (MFC) is expected. The EasyDIB sample application and GLlib dynamic−link library
(DLL) demonstrate the ideas presented in this article.

OpenGL VI: Rendering on DIBs with PFD_DRAW_TO_BITMAP
The PFD_DRAW_TO_BITMAP pixel format descriptor flag allows OpenGLT applications to render
on a Microsoft® Windows® device−independent bitmap (DIB). The resulting DIB can be
manipulated to the full extent using the commands in the Windows graphics device interface (GDI).
This article explains how you can render OpenGL scenes on DIBs with PFD_DRAW_TO_BITMAP.
The EasyBit sample application demonstrates the techniques presented in the article.

OpenGL VII: Scratching the Surface of Texture Mapping
This article explains how to apply bitmaps to OpenGLT surfaces to give them a realistic appearance.
The bitmaps are known as textures and can resemble wood, marble, or any other interesting material
or pattern. The process of applying or mapping a texture to a surface is known as texture mapping.

 OpenGL FAQ and Troubleshooting Guide

OpenGL technical articles 117

http://msdn.microsoft.com/library/psdk/opengl/aboutapx_0kz0.htm
http://msdn.microsoft.com/library/psdk/win95/append_3pgx.htm
http://msdn.microsoft.com/library/techart/msdn_gl1.htm
http://msdn.microsoft.com/library/techart/msdn_gl1.htm
http://msdn.microsoft.com/library/techart/msdn_gl2.htm
http://msdn.microsoft.com/library/techart/msdn_gl2.htm
http://msdn.microsoft.com/library/techart/msdn_gl3.htm
http://msdn.microsoft.com/library/techart/msdn_gl3.htm
http://msdn.microsoft.com/library/techart/msdn_gl4.htm
http://msdn.microsoft.com/library/techart/msdn_gl4.htm
http://msdn.microsoft.com/library/techart/msdn_gl5.htm
http://msdn.microsoft.com/library/techart/msdn_gl5.htm
http://msdn.microsoft.com/library/techart/msdn_gl6.htm
http://msdn.microsoft.com/library/techart/msdn_gl6.htm
http://msdn.microsoft.com/library/techart/msdn_gl7.htm
http://msdn.microsoft.com/library/techart/msdn_gl7.htm

The EasyTex and PicCube sample applications demonstrate the concepts discussed in this article.
OpenGL VIII: wglUseFontOutlines

This article explains how to use the Win32® wglUseFontOutlines function. This function creates
three−dimensional (3−D) characters based on a TrueType® font for use in OpenGLT−rendered
scenes. The EasyFont sample application demonstrates using wglUseFontOutlines.

Windows NT OpenGL: Getting Started
OpenGL, an industry−standard three−dimensional software interface, is now a part of Microsoft®
Windows NTT version 3.5. As a hardware−independent interface, the operating system needs to
provide pixel format and rendering context management functions. Windows NT provides a generic
graphics device interface (GDI) implementation for this as well as a device implementation. This
article details these implementations, OpenGL/NT functions, and tasks that applications need to
accomplish before OpenGL commands can be used to render images on the device surface.

CUBE: Demonstrates an OpenGL Application
CUBE is a simple OpenGLT application. It demonstrates how to integrate OpenGL with the MFC
single document interface (SDI), and how OpenGL's resource contexts are used in conjunction with
device contexts.

OPENGL: Demonstrates Using OpenGL
This sample creates a control that draws a spinning cube using the OpenGL graphics library. [Uses
ATL: Active Template Library]

OpenGL Without the Pain: Creating a Reusable 3D View Class for MFC
DirectX 6.0 Goes Ballistic With Multiple New Features And Much Faster Code
Get Fast and Simple 3D Rendering with DrawPrimitive and DirectX 5.0
February 97 Microsoft Interactive Developer Column: Fun and Games

[claims OpenGL will be based on Direct3D Immediate Mode in the future−−I believe this work on
this ended some time ago, may eventually be revived]

Poking Around Under the Hood: A Programmer's View of Windows NT 4.0
[What's new with Windows NT 4.0, including WGL (very misleading information)]

Windows NT Resource Kit: Registry Value Entries: Video Device Driver Entries
[OpenGL registry keys, among others]

Windows NT Resource Kit: Dynamic Link Library Files
[Annotated list of system DLLs]

DirectX Developer FAQ
[Notes that the DX7 Direct3D lighting model was changed to match OpenGL lighting]

Useful other articles

DIBs and Their Use
This article discusses the DIB (device−independent bitmap) concept from definition and structure to
the API that uses it. Included is a small sample application that illustrates some of the most common
methods of using DIBs to display and manipulate digital images. Functions discussed are GetDIBits,
SetDIBits, CreateDIBitmap, SetDIBitsToDevice, StretchDIBits, and CreateDIBPatternBrush.
This article does not discuss using palettes with DIBs.

Using DIBs with Palettes
This article discusses using palettes in conjunction with DIBs (device−independent bitmaps). It does
not delve into involved uses of the Microsoft® WindowsT Palette Manager.

Creating Programs Without a Standard Windows User Interface Using Visual C++ and MFC
Microsoft® Visual C++T and the Microsoft Foundation Class Libraries (MFC) provided a very fast
way to get a standard WindowsT−based application up and running. But what if you don't want the
normal look and feel? Many games and educational applications have special user interface needs
that can't be met with the standard Windows user interface. This article takes a look at creating a
simple child's coloring game that uses only a single window and has no window border, caption,

 OpenGL FAQ and Troubleshooting Guide

Useful other articles 118

http://msdn.microsoft.com/library/techart/msdn_gl8.htm
http://msdn.microsoft.com/library/techart/msdn_gl8.htm
http://msdn.microsoft.com/library/techart/msdn_gl9.htm
http://msdn.microsoft.com/library/techart/msdn_gl9.htm
http://msdn.microsoft.com/library/devprods/vs6/visualc/vcsample/_sample_mfc_cube.htm
http://msdn.microsoft.com/library/devprods/vs6/visualc/vcsample/_sample_mfc_cube.htm
http://msdn.microsoft.com/library/devprods/vs6/visualc/vcsample/_sample_atl_opengl.htm
http://msdn.microsoft.com/library/devprods/vs6/visualc/vcsample/_sample_atl_opengl.htm
http://msdn.microsoft.com/library/periodic/period96/S2085.htm
http://msdn.microsoft.com/library/periodic/period96/S2085.htm
http://msdn.microsoft.com/library/periodic/period99/jan99_direct3d_direct3d.htm
http://msdn.microsoft.com/library/periodic/period99/jan99_direct3d_direct3d.htm
http://msdn.microsoft.com/library/periodic/period99/jan99_direct3d_direct3d.htm
http://msdn.microsoft.com/library/periodic/period98/primitive.htm
http://msdn.microsoft.com/library/periodic/period98/primitive.htm
http://msdn.microsoft.com/library/periodic/period98/primitive.htm
http://msdn.microsoft.com/library/periodic/period97/games0297.htm
http://msdn.microsoft.com/library/periodic/period97/games0297.htm
http://msdn.microsoft.com/library/periodic/period96/S413.htm
http://msdn.microsoft.com/library/periodic/period96/S413.htm
http://msdn.microsoft.com/library/winresource/dnwinnt/S7BE1.HTM
http://msdn.microsoft.com/library/winresource/dnwinnt/S7BE1.HTM
http://msdn.microsoft.com/library/winresource/dnwinnt/S7BE1.HTM
http://msdn.microsoft.com/library/winresource/dnwinnt/S836E.HTM
http://msdn.microsoft.com/library/winresource/dnwinnt/S836E.HTM
http://msdn.microsoft.com/library/techart/dxfaq2.htm
http://msdn.microsoft.com/library/techart/dxfaq2.htm
http://msdn.microsoft.com/library/techart/msdn_dibs2.htm
http://msdn.microsoft.com/library/techart/msdn_dibs2.htm
http://msdn.microsoft.com/library/techart/msdn_dibpal.htm
http://msdn.microsoft.com/library/techart/msdn_dibpal.htm
http://msdn.microsoft.com/library/techart/msdn_markpnt.htm
http://msdn.microsoft.com/library/techart/msdn_markpnt.htm
http://msdn.microsoft.com/library/techart/msdn_markpnt.htm

buttons, cursor, or any other recognizable elements of a Windows user interface.

Knowledge Base

Current

Q254265 − 'Advanced' Button Under 'Display' Does Not Work After Installation of Windows NT 4.0 Drivers
in Windows 2000

[Windows 2000] After you upgrade from Microsoft Windows NT 4.0 to Microsoft Windows 2000,
or after you install Windows NT 4.0 drivers in Windows 2000, and you click the Advanced button on
the Settings tab under Display in Control Panel, you may receive an error message.

Q253521 − INFO: OpenGL Drivers
OpenGL drivers have traditionally been provided by the hardware vendors who provide the 3D
adapter in your computer.

Q247438 − OpenGL Support Not Available on nVidia TNT2 Card in Microsoft Windows 2000
[Windows 2000] When you attempt to play a game that requires support for the OpenGL standard
(for three−dimensional graphics display) on a Microsoft Windows 2000−based computer, the game
does not run. [ed note: Microsoft does not ship display drivers with OpenGL support with Windows
2000]

Q240896 − OpenGL Program May Cause an Invalid Page Fault Error Message if the Window is Moved or
Resized

[Windows 95, 98, 98SE] When you move or resize a window, a program that uses OpenGL may
perform an illegal operation, and then shutdown. For example, Microsoft Internet Explorer may
generate an invalid page fault if a Java tool using OpenGL is running, and the window displaying the
OpenGL graphic content is moved. Also, the following message may be generated in the Details
section of the Application error dialog box:

Q233390 − BUG: First Chance Exceptions When Calling ChoosePixelFormat
[Windows 95, 98] The following error is displayed in the debug window of Visual C++:
First−chance exception in myapp.exe (GDI32.DLL): 0xC0000005: Access Violation.

Q228099 − PRB: wglUseFontOutlines Does Not Handle DBCS
[Windows 98, NT 4.0] On Windows 98, the OpenGL function wglUseFontOutlines does not work
with DBCS or UNICODE strings. On Windows NT, UNICODE strings work; however, DBCS
strings do not.

Q227279 − OpenGL Screen Saver Prevents Power Management Standby Mode
[Windows 2000] When you configure your computer to use an OpenGL screen saver and the System
Standby feature in Advanced Power Management (APM), your computer may not start the Standby
mode.

Glide API Features Disabled on Video Adapter
[Windows NT 4.0; I don't see why this doesn't affect Windows 9X or Windows 2000. The
description is confused] After you install Windows NT 4.0 Service Pack 4 on a computer with a
proprietary 3Dfx function library file (such as the 3dfxgl.dll file installed during the installation of id
Software's Quake II), you may not be able to access your video adapter's support for 3Dfx graphics.

Windows 98 Components for Typical, Portable and Compact Setup
[Lists components installed, OpenGL is not installed in "Compact" installation]

Q176752 − Glen.exe Shows How to Enumerate Pixel Formats in OpenGL
The GLEnum sample provides a demonstration of how to enumerate pixel formats and method for
checking the available pixel formats provided on your machine. The GLEnum sample is included in
Glen.exe.
GLEN.EXE: SAMPLE: Pixel Format Enumeration in OpenGL Demo

Q169954 − INFO: Layer Planes in OpenGL

 OpenGL FAQ and Troubleshooting Guide

Knowledge Base 119

http://support.microsoft.com/support/kb/articles/Q254/2/65.ASP
http://support.microsoft.com/support/kb/articles/Q254/2/65.ASP
http://support.microsoft.com/support/kb/articles/Q254/2/65.ASP
http://support.microsoft.com/support/kb/articles/Q254/2/65.ASP
http://support.microsoft.com/support/kb/articles/Q253/5/21.ASP
http://support.microsoft.com/support/kb/articles/Q253/5/21.ASP
http://support.microsoft.com/support/kb/articles/Q247/4/30.ASP
http://support.microsoft.com/support/kb/articles/Q247/4/30.ASP
http://support.microsoft.com/support/kb/articles/Q247/4/30.ASP
http://support.microsoft.com/support/kb/articles/Q240/8/96.ASP
http://support.microsoft.com/support/kb/articles/Q240/8/96.ASP
http://support.microsoft.com/support/kb/articles/Q240/8/96.ASP
http://support.microsoft.com/support/kb/articles/Q240/8/96.ASP
http://support.microsoft.com/support/kb/articles/Q233/3/90.ASP
http://support.microsoft.com/support/kb/articles/Q233/3/90.ASP
http://support.microsoft.com/support/kb/articles/Q228/0/99.ASP
http://support.microsoft.com/support/kb/articles/Q228/0/99.ASP
http://support.microsoft.com/support/kb/articles/Q227/2/79.ASP
http://support.microsoft.com/support/kb/articles/Q227/2/79.ASP
http://support.microsoft.com/support/kb/articles/Q194/9/85.ASP
http://support.microsoft.com/support/kb/articles/Q194/9/85.ASP
http://support.microsoft.com/support/kb/articles/Q188/1/25.ASP
http://support.microsoft.com/support/kb/articles/Q188/1/25.ASP
http://support.microsoft.com/support/kb/articles/Q176/7/52.asp
http://support.microsoft.com/support/kb/articles/Q176/7/52.asp
http://support.microsoft.com/support/downloads/DP2879.ASP
http://support.microsoft.com/support/downloads/DP2879.ASP
http://support.microsoft.com/support/kb/articles/Q169/9/54.ASP
http://support.microsoft.com/support/kb/articles/Q169/9/54.ASP

Layer Planes are a new feature in the Microsoft implementation of OpenGL 1.1. Before using
OpenGL layer planes, there are several new functions and some driver dependency issues that you
should be aware of.

Q160817 − Demonstrates OpenGL Texture−Mapping Capabilities
GLTEXTUR.EXE provides a demonstration of how to use a Device−independent Bitmap (DIB) as a
texture−map for OpenGL by pasting a DIB (chosen by the user) onto three different OpenGL objects.
GLTEXTUR.EXE: SAMPLE: Demonstrates OpenGL Texture−Mapping Capabilities

Q154877 − OpenGL 1.1 Release Notes & Components
Opengl95.exe contains the release notes for OpenGL version 1.1 for Windows 95 and all of the
components associated with OpenGL such as the DLL, library, and include files.
Note that Windows 95 OSR2, Windows 98, and Windows NT already include OpenGL with the
O.S., so this download is not necessary (or recommended) for those platforms
OPENGL95.EXE

Q152001 − GLLT.EXE Demonstrates Simple Lighting in OpenGL
The GLLight sample provides a demonstration of how the various light settings effect an OpenGL
scene. The initial scene is simply a single white sphere with a single blue light (GL_LIGHT0) shining
on it.

Q151489 − INFO: When to Select and Realize OpenGL Palettes
An OpenGL application must select and realize its palette before setting the current rendering context
with wglMakeCurrent.

Q148301 − GLTex Demos How to Use DIBs for Texture Mapping
The GLTex sample provides a demonstration of how to use a DIB (device− independent bitmap) as a
texture−map for OpenGL by pasting a DIB (chosen by the user) onto all sides of a three−dimensional
cube. [Appears to have been superceded by Q160817, code no longer here.]

Q139967 − GLEXT: Demo of GL_WIN_swap_hint & GL_EXT_vertex_array
The GLEXT sample illustrates how to use the GL_WIN_swap_hint extension to speed up animation
by reducing the amount of repainting between frames and how to use GL_EXT_vertex_array
extension to provide fast rendering of multiple geometric primitives with one glDrawArraysEXT call.
It also shows how to use glPixelZoom and glDrawPixels to display an OpenGL bitmap.

Q139653 − PRB: Antialiased Polygons Not Drawn in OpenGL Antipoly Sample
The antipoly sample in OpenGL SDK BOOK directory is unable to draw antialised polygons with the
generic implementation of Windows NT and Windows 95 OpenGL.

Q136266 − Demonstration of OpenGL Material Property and Printing
The GLBMP sample illustrates how to define the material properties of the objects in the scene: the
ambient, diffuse, and specular colors; the shininess; and the color of any emitted lights. This sample
also demonstrates how to print an OpenGL image by writing the OpenGL image into a DIB section
and printing the DIB section. The current version of Microsoft's implementation of OpenGL in
Windows NT does not provide support for printing. To work around this current limitation, draw the
OpenGL image into a memory bitmap, and then print the bitmap.
GLBMP.EXE: Sample: OpenGL Material Property & Printing

Q131130 − HOWTO: Set the Current Normal Vector in an OpenGL Application
[Information on using the cross product to obtain a normal vector for a polygon]

Q131024 − Drawing Three−Dimensional Text in OpenGL Appliations
GDI operations, such as TextOut, can be performed on an OpenGL window only if the window is
single−buffered. The Windows NT implementation of OpenGL does not support GDI graphics in a
double−buffered window. Therefore, you cannot use GDI functions to draw text in a
double−buffered window, for example. To draw text in a double−buffered window, an application
can use the wglUseFontBitmaps and wglUseFontOutlines functions to create display lists for
characters in a font, and then draw the characters in the font with the glCallLists function.
The wglUseFontOutlines function is new to Windows NT 3.51 and can be used to draw 3−D
characters of TrueType fonts. These characters can be rotated, scaled, transformed, and viewed like

 OpenGL FAQ and Troubleshooting Guide

Knowledge Base 120

http://support.microsoft.com/support/kb/articles/Q160/8/17.asp
http://support.microsoft.com/support/kb/articles/Q160/8/17.asp
http://support.microsoft.com/support/downloads/DP2396.ASP
http://support.microsoft.com/support/downloads/DP2396.ASP
http://support.microsoft.com/support/kb/articles/Q154/8/77.asp
http://support.microsoft.com/support/kb/articles/Q154/8/77.asp
http://support.microsoft.com/support/downloads/DP2248.ASP
http://support.microsoft.com/support/kb/articles/Q152/0/01.asp
http://support.microsoft.com/support/kb/articles/Q152/0/01.asp
http://support.microsoft.com/support/kb/articles/Q151/4/89.asp
http://support.microsoft.com/support/kb/articles/Q151/4/89.asp
http://support.microsoft.com/support/kb/articles/Q148/3/01.asp
http://support.microsoft.com/support/kb/articles/Q148/3/01.asp
http://support.microsoft.com/support/kb/articles/Q139/9/67.asp
http://support.microsoft.com/support/kb/articles/Q139/9/67.asp
http://support.microsoft.com/support/kb/articles/Q139/6/53.asp
http://support.microsoft.com/support/kb/articles/Q139/6/53.asp
http://support.microsoft.com/support/kb/articles/Q136/2/66.asp
http://support.microsoft.com/support/kb/articles/Q136/2/66.asp
http://support.microsoft.com/support/downloads/DP1752.ASP
http://support.microsoft.com/support/downloads/DP1752.ASP
http://support.microsoft.com/support/kb/articles/Q131/1/30.asp
http://support.microsoft.com/support/kb/articles/Q131/1/30.asp
http://support.microsoft.com/support/kb/articles/Q131/0/24.asp
http://support.microsoft.com/support/kb/articles/Q131/0/24.asp

any other OpenGL 3−D image. This function is designed to work with TrueType fonts.
The GLFONT sample shows how to use the wglUseFontOutlines function to create display lists for
characters in a TrueType font and how to draw, scale, and rotate the glyphs in the font by using
glCallLists to draw the characters and other OpenGL functions to rotate and scale them. You need the
Win32 SDK for Windows NT 3.51 to compile this sample, and you need to incorporate
wglUseFontOutlines in your own application. You also need Windows NT 3.51 to execute the
application.
GLFONT.EXE: Sample: Drawing 3−D Text in an OpenGL App

Q127071 − MFCOGL a Generic MFC OpenGL Code Sample
Microsoft Windows NT's OpenGL can be used with the Microsoft Foundation Class (MFC) library.
This article gives you the steps to follow to enable MFC applications to use OpenGL.
MFCOGL.EXE: Code Sample Demonstrates Using OpenGL with MFC

Q128122 − Implementing Multiple Threads in an OpenGL Application
It is possible to create multiple threads in an OpenGL application and have each thread call OpenGL
functions to draw an image. You might want to do this when multiple objects need to be drawn at the
same time or when you want to have certain threads perform the rendering of specific types of
objects.
GLTHREAD.EXE: SAMPLE: Using Multiple Threads in OpenGL App

Q126019 − PRB: Most Common Cause of SetPixelFormat() Failure
SetPixelFormat() fails with incorrect class or window styles. [I'm not convinced this is the
most common cause today.]

Q124870 − XFONT.C from SAMPLES\OPENGL\BOOK Subdirectory
XFONT.C from the SAMPLES\OPENGL\BOOK subdirectory is not in the MAKEFILE, and
subsequently is never built.

OPENGL3.EXE: MSJ Source: Feb '95: OPENGL3.EXE
[The associated KB article Q124/2/06 has disappeared. This code apparently went with the Microsoft
Systems Journal "Understanding Modelview Transformations in OpenGL for Windows NT"]

Q124034 − OpenGL Interface in Windows NT 3.5
This article defines and explains the OpenGL interface that is available and can be implemented in
Windows NT version 3.5.

Q121381 − Microsoft Systems Journal: November 1994
This article lists the filenames and Snumbers for files available from online services that contain the
source code described in articles published in the November 1994 issue of the "Microsoft Systems
Journal."
CUBES.EXE: MSJ Source: Nov, 1994 cubes.exe
[This code apparently went with the Microsoft Systems Journal article introducing OpenGL with
Windows NT 3.5: "3−D Graphics for Windows NT 3.5. Introducing the OpenGL Interface, Part II."]

Q121282 − OPENGL Screen Savers May Degrade Server Performance
If OPENGL screen savers are used on a Windows NT Server, network server performance (the
Server's responsiveness to clients) may be degraded while the screen saver is running.

OPENGL.EXE: MSJ Source: Oct, 1994 opengl.exe
[Associated KB article Q119/8/62 appears to have disappeared. This code apparently went with the
Microsoft Systems Journal article introducing OpenGL with Windows NT 3.5: "3−D Graphics for
Windows NT 3.5. Introducing the OpenGL Interface, Part I."]

Archive

Q224792 − List of Bugs Fixed in Windows NT 4.0 Service Pack 1, 2, and 3
Err Msg: STOP 0x00000050 PAGE_FAULT_IN_NONPAGED_AREA

[Windows NT 4.0] When you run NetMeeting with sharing enabled, you may receive the following
error message on a blue screen if you restart your computer and start NetMeeting again:

 OpenGL FAQ and Troubleshooting Guide

Archive 121

http://support.microsoft.com/support/downloads/DP1531.ASP
http://support.microsoft.com/support/downloads/DP1531.ASP
http://support.microsoft.com/support/kb/articles/Q127/0/71.asp
http://support.microsoft.com/support/kb/articles/Q127/0/71.asp
http://support.microsoft.com/support/downloads/DP1436.ASP
http://support.microsoft.com/support/downloads/DP1436.ASP
http://support.microsoft.com/support/kb/articles/Q128/1/22.asp
http://support.microsoft.com/support/kb/articles/Q128/1/22.asp
http://support.microsoft.com/support/downloads/DP1464.ASP
http://support.microsoft.com/support/downloads/DP1464.ASP
http://support.microsoft.com/support/kb/articles/Q126/0/19.asp
http://support.microsoft.com/support/kb/articles/Q126/0/19.asp
http://support.microsoft.com/support/downloads/DP1280.ASP
http://support.microsoft.com/support/downloads/DP1280.ASP
http://support.microsoft.com/support/kb/articles/Q124/0/34.asp
http://support.microsoft.com/support/kb/articles/Q124/0/34.asp
http://support.microsoft.com/support/kb/articles/Q121/3/81.asp
http://support.microsoft.com/support/kb/articles/Q121/3/81.asp
http://support.microsoft.com/support/downloads/DP1167.ASP
http://support.microsoft.com/support/downloads/DP1167.ASP
http://support.microsoft.com/support/kb/articles/Q121/2/82.asp
http://support.microsoft.com/support/kb/articles/Q121/2/82.asp
http://support.microsoft.com/support/downloads/DP1106.ASP
http://support.microsoft.com/support/downloads/DP1106.ASP
http://support.microsoft.com/support/kb/articles/Q224/7/92.ASP
http://support.microsoft.com/support/kb/articles/Q224/7/92.ASP
http://support.microsoft.com/support/kb/articles/Q224/7/92.ASP
http://support.microsoft.com/support/kb/articles/Q222/6/35.ASP
http://support.microsoft.com/support/kb/articles/Q222/6/35.ASP

Q191359 − SMS: Windows 95 OpenGL Screen Saver May Cause Computer to Stop
[Windows 95 OSR2] Computers that are running Microsoft Windows 95 may lose their ability to
safely shut down after the OpenGL or Mystify Your Mind screen saver is started and stopped several
times. This may occur on computers that have the ATI 64 and ATI Rage Series video adapters
installed.

Q189979 − OpenGL−Based Programs Do Not Work After Upgrade to Windows 98
[Windows 98] After you upgrade to Windows 98, your OpenGL−based programs may no longer
work correctly, or may not work at all.

Q166334 − OpenGL Access Violation on Windows NT Version 4.0
[Windows NT 4.0] Under heavy stress, OpenGL applications may experience access violations. Also,
OpenGl Line and Polygon texture clipping functions may fail when fogging is enabled.

Q166257 − Applications Using OpenGL Cause Access Violation in OPENGL.DLL
[Windows NT 4.0] A multi−threaded or multi−windowed application that uses OpenGL may cause
an access violation in the Opengl.dll library.

Q166198 − Display Color Problem with OpenGL Applications in Windows NT 4.0 Service Pack 2
[Windows NT 4.0 SP2] After you apply Windows NT 4.0 Service Pack 2, coloring problems may
occur with OpenGL applications where the wrong colors are drawn in a wide variety of situations.
[See Q163677]

Q164158 − OpenGL Diffuse Settings Revert to Default
[Windows NT 4.0] When using OpenGL with Windows NT, the diffuse parameter changes back to
the default when the color material changes from AMBIENT_AND_DIFFUSE to AMBIENT.

Q163677 − BUG: OpenGL Color Problems Using Service Pack 2 for Win NT 4.0
[Windows NT 4.0 SP2] When you use Service Pack 2 for Windows NT 4.0, various coloring
problems may arise that are not present in previous versions. The coloring problems involve drawing
the wrong colors in a variety of situations.

GLSP2FIX.EXE: BUG: OpenGL Color Problems Using Service Pack 2 for Win NT 4.0
Q160651

[pre−Windows NT 4.0 SP2] An application that uses OpenGL may crash with an exception
0xC0000090.

Q159129 − OpenGL Access Violation with Invalid OpenGL Context
[Pre−Windows NT 4.0 SP2] The API gluGetString causes an access violation and affects OpenGL
operations.

Q156473 − BUG: Windows NT Version 4.0 Bug List − GDI
[Windows NT 4.0. Known bugs at time of release]

Q152841 − Windows NT 4.0 Service Pack 3 Readme.txt File (40−bit)
Q147798 − Windows NT 4.0 Service Pack 3 Readme.txt File (128−bit)
Access Violation in glsbCreateAndDuplicateSection API on PowerPC

[Windows NT 3.51 for PowerPC] When you install a OpenGL client video driver on your PowerPC
computer running Windows NT and you run an OPENGL program, for example, the Windows NT
Pipes screen saver, an access violation occurs in the glsbCreateAndDuplicateSection application
programming interface (API).

Q134893 − 3D OpenGL Screen Saver Restores Windows NT 3.51 Help
[Windows NT 3.51] When you return to your desktop from any of Windows NT 3D OpenGL screen
savers, any minimized Windows NT 3.51 Help files that use the Windows 95 Help engine are
restored to full size.

Q134765 − Unknown Software Exception When Application Calls OpenGL
[Windows NT 3.51] An unknown software exception occurs when applications call OpenGL. When
Windows NT attempts to shutdown the computer, a blue screen appears.

Q133322 − List of Confirmed Bugs in Windows NT Version 3.51
Q133220 − List of Confirmed Bugs in Windows NT Version 3.5
Q132866 − DOCERR: Printing an OpenGL Image

 OpenGL FAQ and Troubleshooting Guide

Archive 122

http://support.microsoft.com/support/kb/articles/Q191/3/59.ASP
http://support.microsoft.com/support/kb/articles/Q191/3/59.ASP
http://support.microsoft.com/support/kb/articles/Q191/3/59.ASP
http://support.microsoft.com/support/kb/articles/Q189/9/79.ASP
http://support.microsoft.com/support/kb/articles/Q189/9/79.ASP
http://support.microsoft.com/support/kb/articles/Q189/9/79.ASP
http://support.microsoft.com/support/kb/articles/Q166/3/34.ASP
http://support.microsoft.com/support/kb/articles/Q166/3/34.ASP
http://support.microsoft.com/support/kb/articles/Q166/2/57.SP
http://support.microsoft.com/support/kb/articles/Q166/2/57.SP
http://support.microsoft.com/support/kb/articles/Q166/1/98.ASP
http://support.microsoft.com/support/kb/articles/Q166/1/98.ASP
http://support.microsoft.com/support/kb/articles/Q166/1/98.ASP
http://support.microsoft.com/support/kb/articles/Q164/1/58.asp
http://support.microsoft.com/support/kb/articles/Q164/1/58.asp
http://support.microsoft.com/support/kb/articles/Q163/6/77.asp
http://support.microsoft.com/support/kb/articles/Q163/6/77.asp
http://support.microsoft.com/support/kb/articles/Q163/6/77.asp
http://download.microsoft.com/download/winntwks40/fix/1/NT4/EN-US/Glsp2fix.exe
http://download.microsoft.com/download/winntwks40/fix/1/NT4/EN-US/Glsp2fix.exe
http://download.microsoft.com/download/winntwks40/fix/1/NT4/EN-US/Glsp2fix.exe
http://support.microsoft.com/support/kb/articles/Q160/6/51.ASP
http://support.microsoft.com/support/kb/articles/Q159/1/29.ASP
http://support.microsoft.com/support/kb/articles/Q159/1/29.ASP
http://support.microsoft.com/support/kb/articles/Q156/4/73.asp
http://support.microsoft.com/support/kb/articles/Q156/4/73.asp
http://support.microsoft.com/support/kb/articles/Q152/8/41.asp
http://support.microsoft.com/support/kb/articles/Q152/8/41.asp
http://support.microsoft.com/support/kb/articles/Q147/7/98.asp
http://support.microsoft.com/support/kb/articles/Q147/7/98.asp
http://support.microsoft.com/support/kb/articles/Q134/9/88.asp
http://support.microsoft.com/support/kb/articles/Q134/9/88.asp
http://support.microsoft.com/support/kb/articles/Q134/8/93.asp
http://support.microsoft.com/support/kb/articles/Q134/8/93.asp
http://support.microsoft.com/support/kb/articles/Q134/7/65.asp
http://support.microsoft.com/support/kb/articles/Q134/7/65.asp
http://support.microsoft.com/support/kb/articles/Q133/3/22.asp
http://support.microsoft.com/support/kb/articles/Q133/3/22.asp
http://support.microsoft.com/support/kb/articles/Q133/3/20.asp
http://support.microsoft.com/support/kb/articles/Q133/3/20.asp
http://support.microsoft.com/support/kb/articles/Q132/8/66.asp
http://support.microsoft.com/support/kb/articles/Q132/8/66.asp

The documentation relating to printing an OpenGL image in the Win32 SDK versions 3.5, 3.51, and
4.0 is incorrect. The current version of Microsoft's implementation of OpenGL in Windows NT does
not provide support for printing. More specifically, an application cannot call wglCreateContext or
wglMakeCurrent on a printer device context.

Q132748 − Choosing a Workstation OS: Windows 95/Windows NT Workstation
Q128531 − README.TXT: Windows NT Version 3.51 U.S. Service Pack
Snow/White Noise with Mach 32 at 1024x768 − 65536 colors

[Windows NT 3.5] When you use the ATI Mach 32 video adapter driver included with Windows NT
version 3.5, white haze (also known as snow) may appear when you move windows on the desktop.
This problem can also occur when you use the 3D Pipes (OpenGL) screen saver.

Q126128 − Message Popup Changes Color When Using OpenGL Screen Saver
[Windows NT 3.5] When you run Windows NT with a 800 x 600 (256 color) or 1024 x 768 (256
color) video driver and test an OpenGL screen−saver, the Title Bar and OK button in the Messenger
Service dialog box are red.

 OpenGL FAQ and Troubleshooting Guide

Archive 123

http://support.microsoft.com/support/kb/articles/Q132/7/48.asp
http://support.microsoft.com/support/kb/articles/Q132/7/48.asp
http://support.microsoft.com/support/kb/articles/Q128/5/31.asp
http://support.microsoft.com/support/kb/articles/Q128/5/31.asp
http://support.microsoft.com/support/kb/articles/Q127/8/65.asp
http://support.microsoft.com/support/kb/articles/Q127/8/65.asp
http://support.microsoft.com/support/kb/articles/Q126/1/28.asp
http://support.microsoft.com/support/kb/articles/Q126/1/28.asp

Appendix B Source Code Index

GlView.zip
This code demonstrates use of OpenGL and MFC. OpenGL is rendered into a
CStatic form control. For more information on using OpenGL with MFC, see
questions 5.150, 5.160, 5.170, and 5.180.

lookat.cpp
Many new OpenGL programmers are also new to linear algebra, and manipulating
matrices can present a challenge. This code shows how to create a transformation
matrix that will make an object point in a given direction. Section 9 on
transformations may also be helpful.

mirror.c
Stencil planes can be used to render mirrors in OpenGL, but because many low−end
graphics devices do not support them efficiently, using stencil planes is not practical.
This code demonstrates how to use the depth buffer to render mirrors. An overview
of the technique can be found in question 9.170.

pgonoff.c
OpenGL provides the polygon offset feature to allow rendering of coplanar
primitives, and especially coplanar lines or edges over polygons. This code
demonstrates correct use of the OpenGL 1.1 polygon offset interface, as well as the
OpenGL 1.0 polygon offset extension interface. See section 13 on polygon offset,
and section 23 on extensions for more information.

twopass.cpp
Since GL_MODULATE texture environment mode multiplies color values,
obtaining white specular highlights on texture mapped objects requires special
techniques. This code demonstrates a portable two−pass method, and also shows use
of HP's pre−specular extension on platforms that support it. Question
21.040 discusses the issues involved in specular highlights on texture mapped
objects.

viewcull.c
OpenGL clips geometry to the view volume a single vertex at a time. For optimum
performance, an application must "bulk cull" large amounts of geometry. This code
demonstrates how to obtain object space plane equations for the view volume, and
how to clip test bounding boxes against them. Section 10 on clipping contains more
information.

Appendix B Source Code Index 124

ftp://ftp.frii.com/pub/martz/outgoing/GlView.zip
lookat.cpp
mirror.c
pgonoff.c
twopass.cpp
viewcull.c

Frequently Asked GLUT Questions
Here are few questions I expect to be frequently asked about GLUT 3.7. First, here are tag-line summaries of the question
subject matter.

1. Problems building GLUT.
2. More GUI features.
3. New with GLUT 3.0.
4. GLUT for NT.
5. GLUT for OS/2.
6. GLUT for Power Mcintosh.
7. GLUT 3.0 incompatibilities.
8. GLUT and Motif.
9. aux conversion to GLUT.

10. SGI N32 and 64-bit support.
11. FORTRAN and GLUT.
12. Sophisticated input devices.
13. GLUT and Open Inventor.
14. GLUT, Sun, and Overlays.
15. The GLUT stroke font.
16. My book on GLUT.
17. GLUT and Microsoft portability.
18. GLUT and networking.
19. Asking GLUT questions.
20. Free OpenGL.
21. GLUT overlay example code.
22. BadMatch errors running GLUT programs.
23. New with GLUT 3.1.
24. Shared libraries for Linux
25. New in GLUT 3.2.
26. GLUT API man pages.
27. Fast window repair for Mesa.
28. Advanced GLUT example .rgb image files.
29. IRIX 6.3 and 6.4 fast atoms support issues for older IRIX releases.
30. GLUT for the Power Macintosh.
31. New in GLUT 3.4
32. Cosmo3D beta and GLUT problem.
33. New in GLUT 3.5.
34. Using the precompiled GLUT DLLs with Borland compilers.
35. Using GLUT with C++.
36. How do you avoid the Console window appearing when you compiler a Win32 GLUT application with Microsoft

compilers?
37. What is new in GLUT 3.6?
38. Why am I get build problems dealing with "glXChannelRectSyncSGIX" on an SGI O2 running IRIX 6.3?
39. Floating point exceptions using GLUT with Microsoft OpenGL 1.1 and compiling with Borland compilers.
40. Linking problems using GLUT with SGI OpenGL for Windows and compiling with Borland compilers.
41. What is GameGLUT?

Q1: I've tried to use the "mkmkfiles.imake" script to generate Makefiles so I can build GLUT, but it doesn't seem to
work.

A1: While Imakefiles are supposted to be system independent (hence the "I"), the commands to translate Imakefiles into
Makefiles varies from system to system. The X Consortium provides a command called "xmkmf", but vendors do not put
this command in a consistent place. The "mkmkfiles.imake" script tries its best to generate Makefiles, but may get
confused by different vendors configurations that I am not aware of.

It is also possible the imake configuration files (typically located at /usr/lib/X11/config) are buggy or from a very old
version of X.

SGI users can benefit from using the "mkmkfile.sgi" script that uses SGI's parallel make, though "mkmkfiles.imake"
should work too.

Frequently Asked GLUT Questions

Page 1 of 9

Q2: GLUT needs improved menus, dialog boxes, scrollbars, text entry fields, etc. to be useful to me?

A2: GLUT does not pretend to be a full-featured graphical user interface toolkit.

You _could_ write these sorts of GUI objects using GLUT and OpenGL if you needed to. The other alternative is to use
Motif or whatever full featured toolkit you have.

Q3: What new things are in GLUT 3.0?

A3: See README.glut3 or read The OpenGL Utility (GLUT) Programming Interface document.

Q4: Is there a version of GLUT for Windows NT or Windows 95.

A4: Nate Robins and Layne Christensen at Evans & Sutherland has been working on a freely distributable version of
GLUT for Windows 95 and NT (European mirror). His efforts are directed at porting GLUT 3.3.

Q5: Is there a version of GLUT for OS/2?

A5: Yes. I believe a version based on GLUT 2.x is distributed on an OS/2 OpenGL developer's CD-ROM.

Q6: Is there a version of GLUT for the Power Mcintosh?

A6: Was told by Template Graphics that an incomplete version of GLUT had been developed for their OpenGL product
for the Power Mcintosh. I am not sure if it was ever completed or made available.

Q7: I'm hesitant about upgrading to GLUT 3.0 since I've got things working will with GLUT 2.3. Is the transition
painful?

A7: I do not believe so. There are two changes worth noting that _may_ affect programs you have written.

First, you need a display callback registered before your display your windows on the screen. It did not make sense for
this to not be true. In all likeihood, this should not affect your GLUT programs if they written well.

Second, you can no longer change, create, or destroy menus while pop-up menus are in use. Before, you could do this,
but it meant a menu might be changed while in use. It was near impossible to describe what should happen in the case of
menus being changed while in use that was likely to be portable to the way other window systems handled menus, so I
made the practice illegal.

You can register a menu status callback to know when menus become used and unused to avoid changing menus while
they are in use.

For more details about what has changed, see the CHANGES file.

Q8: So how do I use GLUT and Motif together?

Frequently Asked GLUT Questions

Page 2 of 9

A8: You don't. To make GLUT simple and easy-to-program, GLUT supplies its own event processing loop. This makes
it nearly impossible to combine GLUT and Motif. If you want Motif, you probably want a full-featured toolkit, and you
ship skip GLUT and implement your application directly in Motif.

Q9: I have a bunch of simpe OpenGL programs using the aux toolkit descibed in the OpenGL Programming Guide (the
"red" book). Is there an easy way to convert them to GLUT?

A9: In the progs/redbook directory, there is a script named aux2glut.sed It will give you a good start at converting simple
aux calls to their GLUT equivalents. It is a good start, but you'll still have to hand edit some things.

Here's a usage example:

sed -f aux2glut.sed < aux_prog. > glut_prog.c

Q10: I have IRIX 6.2 (or 6.1) and I'd like to write GLUT programs run in true 64-bit and/or benefit from the recent, faster
MIPS processors. How do I build GLUT to support these newer application binary interfaces (ABIs)?

A10: See README.irix6

Q11: I'd like to write FORTRAN programs using GLUT and OpenGL. How do I use GLUT with FORTRAN?

A11: GLUT does have a FORTRAN language binding.

For instructions for building a binding library for Silicon Graphics workstations, see README.fortran

If you want to use GLUT and OpenGL or Mesa on with Fortran on non-SGI systems, I recommend that you check,
William Mitchell's f90gl home page .

Q12: I'd like to use the sophisticated input devices that GLUT supports. What should I know about this?

A12: GLUT uses the X Input extension to talk to these devices. Because the X Input extension gives a framework for
supporting input devices, but does not manadate how particular devices are supported, it is possible that each vendor
supports the same input devices differently.

GLUT as implemented supports SGI's means of advertising the tablet, dial & button box, and Spaceball devices. I am not
sure how other vendors support these devices. For the details of SGI's support for these devices, see README.xinput
Since there is no benefit in each vendor supporting these same devices in a different an incompatible way, I encourage
other vendors to implement their devices in this same manner.

Q13: Can I use GLUT and Open Inventor?

A13: Yes. See the README.inventor file. Also, some source code examples can be found at progs/inventor

Because the Open Inventor development enviornment is not supported on all systems, the Inventor example programs are
not built by default, and the Makefile there only support SGI systems.

Q14: I have Sun workstation, and it is supposed to support overlays. So why does GLUT not use them?

Frequently Asked GLUT Questions

Page 3 of 9

A14: GLUT uses the SERVER_OVERLAY_VISUALS convention that advertises overlay visuals. Most major
workstation vendors support this convention (DEC, HP, IBM, SGI), but Sun does not.

Q15: The stroke font used for GLUT looks familar. Where did it come from?

A15: The data for the "stroke roman" font is lifted from the X11R5 PEX sample implementation.

Q16: I read in the NOTICE file that you are writing a book on programming OpenGL for the X Window System. When
will it be available?

A16: At SIGGRAPH '96 or possibly before that.

Q17: You mention an unnamed bu "very large window system software vendor" as the reason portable GLUT programs
should not directly include <GL/gl.h> and <GL/glu.h> directly. What's the vendor and what are the details?

A17: Microsoft. It's version of <GL/gl.h> requires <windows.h> to be included before <GL/gl.h> can be included
because of Microsoft function declaration conventions. Sigh.

Q18: I want my GLUT program to read and send information over a socket to some other program. How do I do this in in
GLUT?

A18: You can not do it currently. I am considering such support for a possible GLUT 4.0. I'd like to have a portable
solution.

What you'd like is a callback that would tell you when a socket is ready for reading and writing. I'm hoping to find a way
to support this in an operating system independent manner. Does anyone know of a good portable interface for networked
bytestream connections?

For now, you've got the source code to GLUT and you could hack it into GLUT for whatever particular interface your
operating system provides.

Q19: Where's the best place to ask questions about GLUT or OpenGL? Can I just email them to you?

A19: While I may try to return email if I have time, the best place is the comp.graphics.api.opengl newsgroup. This gives
a lot more people a chance to answer your question and you'll probably get an answer much faster than sending me email.
Plus, I may not know the answer though someone on the "net" may know it.

Q20: My workstation doesn't have OpenGL. Where can I get a free copy to use with GLUT?

A20: OpenGL is licensed by Silicon Graphics and is not available as "free" or "public domain" software, but workstation
vendors typically bundle OpenGL software with their workstation. However, there is a package called Mesa written by
Brian Paul at the University of Wisconsin that implements the OpenGL API. (To be branded as "OpenGL", an
implementation must be licensed and pass the Architectural Review Board's conformance suite, so Mesa is not an official
"OpenGL" implementation.) Mesa does work with GLUT.

Frequently Asked GLUT Questions

Page 4 of 9

Q21: I hear GLUT 3.0 has overlay support. Where is an example?

A21: Look at progs/examples/zoomdino.c for an example of using overlays for rubber-banding and display of a
help message, both in the overlays. Also, test/over_test.c exercises all of the overlay routines.

Q22: I get BadMatch X protocol errors when I run GLUT programs. What gives?

A22: There is a bug in the Solaris 2.4 and 2.5 implementation of XmuLookupStandardColormap (fixed in Solaris 2.6).
When you compile GLUT on Solaris 2.4 or 2.5, please apply the following patch and compile with -
DSOLARIS_2_4_BUG to workaround the problem. To do this, edit the glut/lib/glut/Makefile and add -
DSOLARIS_2_4_BUG to the CFLAGS macro. See the comment in the patch below. This code is already in GLUT 3.1 and
later.

*** glut_win.c Wed Apr 24 14:06:08 1996
--- glut_win.c.bad Wed Apr 24 14:03:58 1996

*** 398,414 ****
 case TrueColor:
 case DirectColor:
 colormap = NULL; / NULL if RGBA */
- #ifndef SOLARIS_2_4_BUG
- /* Solaris 2.4 has a bug in its XmuLookupStandardColormap
- implementation. Please compile your Solaris 2.4 version
- of GLUT with -DSOLARIS_2_4_BUG to work around this bug.
- The symptom of the bug is that programs will get a
- BadMatch error from X_CreateWindow when creating a GLUT
- window because Solaris 2.4 creates a corrupted
- RGB_DEFAULT_MAP property. Note that this workaround
- prevents Colormap sharing between applications, perhaps
- leading unnecessary colormap installations or colormap
- flashing. */
 status = XmuLookupStandardColormap(__glutDisplay,
 vi->screen, vi->visualid, vi->depth, XA_RGB_DEFAULT_MAP,
 /* replace */ False, /* retain */ True);
--- 398,403 ----

*** 423,429 ****
 return;
 }
 }
- #endif
 /* If no standard colormap but TrueColor, just make a
 private one. */
 /* XXX Should do a better job of internal sharing for
--- 412,417 ----

Q23: What is new in GLUT 3.1?

A23: GLUT 3.1 is largely a maintence release. There are some new programs, a few minor GLUT library bug fixes, but
mostly GLUT 3.1 is to make sure GLUT builds cleanly on various platforms like SunOS, HP/UX, Solaris, and Linux.
See the CHANGES file included in the distribution for more details.

Q24: How do I make Linux shared libraries for GLUT?

A24: Peter F. Martone (pmarton@mailbox.bgsu.edu) has written some instructions for making a Linux shared library for
GLUT. You can grab the instructions for doing so from http://pizza.bgsu.edu/cgi-bin/cgiwrap/~pmarton/makeMainIndex

Frequently Asked GLUT Questions

Page 5 of 9

Q25: New in GLUT 3.2.

A25: Like GLUT 3.1, GLUT 3.2 is a maintence release. Along with bug fixes to the core GLUT library, many new
GLUT example programs have been added. The portability of the examples has been improved so that most should build
using Windows 95 and NT. Also, GLUT API man pages are now included. See the CHANGES file included in the
distribution for more details.

Q26: GLUT API man pages.

A26: Please see the README.man file for details. The easiest way for SGI users to get the man pages is to install the
"glut_dev.man.glut" subsystem included with the pre-compiled SGI GLUT images.

Q27: Fast window repair for Mesa.

A27: The GLX specification states that the state of a window's back color buffer after a glXSwapBuffers is undefined.
However, the freeware Mesa implementation of the OpenGL API always leaves the back buffer with its previous
contents (ie, it simply "copies" the back buffer contents to the front buffer).

Because Mesa lacks hardware acceleration and is often slow to redraw a window, this presents the opportunity to speed
redrawing a window damaged by window system interactions by simply calling glXSwapBuffers again.

If you set the MESA_SWAP_HACK enviornment variable, GLUT 3.2 will try to repair double buffered windows not
otherwise needing a redisplay because of glutPostRedisplay by calling glXSwapBuffers when Mesa is the OpenGL
implementation being used and the last display callback called glutSwapBuffers.

In general, this means if you see MESA_SWAP_HACK when using Mesa, double buffered GLUT programs will redraw
very quickly after being damaged but still operate well if they've been correctly written to use glutPostRedisplay to
trigger application required redraws.

I encourage all Mesa users to set the MESA_SWAP_HACK environment variable.

Q28: Advanced GLUT example .rgb image file.

A28: Yes, the image files these examples use are large and were seperated out from the main GLUT source code
distribution. Get the glut_data.tar.gz file from where you got your GLUT distribution. Untar these data files over your
glut distribution so the "data" directory is at the same level as "progs". Then do a "make links" in the progs/advanced
directory to make symbolic links.

See the progs/advanced/README file for more details.

Q29: Why doesn't GLUT programs compiled on IRIX 6.4 or 6.3 work earlier releases?

A29: First, SGI never guarantees that an executable built on a later IRIX release will work on an earlier release.
Sometimes it works; more often than not it does not. GLUT takes advantage of a new X optimization in IRIX 6.3 called
"fast atoms". This optimization lets X clients determine common atom values without an X server round-trip. This helps
X performance.

If you compile the GLUT library on an IRIX 6.3 or IRIX 6.4 machine, the library will support fast atoms. This will mean
that if you run executables linked against the "fast atom enabled" version of the GLUT library, you'll get a run-time link
error saying something like:

17062:glut_example: rld: Fatal Error: attemped access to unresolvable symbol in projtex:

Frequently Asked GLUT Questions

Page 6 of 9

_XSGIFastInternAtom

Do not be alarmed. If you want, you can recompile the GLUT library with the -DNO_FAST_ATOMS and get a version of
the library that doesn't have the support so that GLUT executables built with a library compiled without "fast atoms" can
work on earlier IRIX releases. Note that even if you do compile with -DNO_FAST_ATOMS, there is still no guarantee that
an IRIX executable compiled on a newer release will actually work on an older release (but at least you'll have a
chance!).

Note that the precompiled images lack "fast atoms" support so they will work fine with IRIX releases before IRIX 6.3
and 6.4.

Q30: Can I get a version of GLUT for the Power Macintosh?

A30: Probably pretty soon. Conix Graphics is working on a port of GLUT 3.2 as of late January 1997. Try checking the
Conix Graphics web site http://www.conix3d.com/ for current info.

Q31: What is new in GLUT 3.4?

A31: GLUT 3.4 is an incremental release. An Ada binding for SGI machines is included along with an Ada example.
Many new sample programs. Several such as dinoshade.c demonstrate real-time rendering techniques relevant for games.
Examples using Sam Leffler's libtiff library for loading, drawing and writing TIFF image files. GLUT version of the
facial animation "geoview" decibed in the Parke and Water's book "Computer Facial Animation". New API interfaces to
be made part of the GLUT 4 API update (not yet fully finalized though). glutInitDisplayMode for example. Improved
portability and a few bug fixes.

Q32: I installed SGI's Cosmo3D beta and GLUT, and I'm having problems compiling GLUT programs.

A32: Unfortunately, SGI's Cosmo3D beta images install a DSO for GLUT (libglut.so) that does not fully implement the
GLUT API and lacks some of the newer GLUT 3.4 entrypoints as well. The problem is that a DSO takes preferenc over
an archive when you compile with an option like "-lglut". While the Cosmo3D beta installs a libglut.so, my GLUT
distribution and images only build and install an archive. There are a couple of solutions:

1. Explicitly link your GLUT programs with libglut.a (the archive version of GLUT). For example, put
"/usr/lib/libglut.a" on your compile line instead of "-lglut".

2. You can convert the GLUT 3.4 archive into a DSO:

su
cd /usr/lib
mv libglut.so libglut.so.cosmo
cc -32 -o libglut.so -shared -all libglut.a
cd /usr/lib32
mv libglut.so libglut.so.cosmo
cc -n32 -o libglut.so -shared -all libglut.a

The new DSO generated from the GLUT 3.4 DSO should be compatible with the old Cosmo version. This will
mean that all the GLUT programs you build will need the libglut.so on the machine they run on.

3. Remove the Cosmo3D beta.

Q33: What is new in GLUT 3.5?

A33: The most significant change with GLUT 3.5 is unifying the X Window System and Win32 versions of GLUT into a

Frequently Asked GLUT Questions

Page 7 of 9

single source code distribution. Henk Kok contributed several cool new demos (rollercoaster, chess, opengl_logo). All
the demos build cleanly under Win32. Lots of bug fixes. Interesting new OpenGL rendering techniques are demonstrated
in a number of new examples: movelight, dinoshade, halomagic, rendereps, movelight, shadowfun, torus_test,
underwater, texfont, reflectdino.

Q34: How do I use the precompiled Win32 GLUT DLLs with Borland compilers?

A34: The "implib" command should let you generate a GLUT.LIB that works with Borland compilers from the
precompiled GLUT.DLL Here is an example:

 C:\>implib C:\GLUT\LIB\GLUT.LIB C:\WINDOWS\SYSTEM\GLUT.DLL

After this, then link C:\GLUT\LIB\GLUT.LIB to your project

Suggested by Carter <carter@extremezone.com>.

Q35: Are there any C++ wrappers for GLUT?

A35: Yes, George Stetten (stetten@acpub.duke.edu) of Duke University has made available the GlutMaster C++ wrapper
classes. See:

 http://www.duke.edu/~stetten/GlutMaster/GlutMaster.html
 http://www.duke.edu/~stetten/GlutMaster/README.txt

Q36: How do you avoid the Console window appearing when you compiler a Win32 GLUT application with Microsoft
compilers?

A36: Try using the following Microsoft Visual C compiler flags:

 /SUBSYSTEM:WINDOWS /ENTRY:mainCRTStartup

These are linker options... if main or wmain are defined, MSVC build a CONSOLE app by default; hence the need
for /SUBSYSTEM:WINDOWS. if /SUBSYSTEM:WINDOWS is defined, MSVC expects WinMain or wWinMain to be
defined; hence the need to /ENTRY:mainCRTStartup (eg the entry point is the usual C main).

stdout/stderr are [apparently] not "attached"; output via printf is simply "eaten" unless redirected at the command-line or
by a parent program.

Information thanks to Jean-David Marrow (jd@riverbed.com).

Q37: What is new in GLUT 3.6?

A37: GLUT 3.6 adds/improves the following:

l Win32 GLUT performance improvements.
l Win32 GLUT confromance improvements.
l Linas Vepstas's GLE Tubing & Extrusions Library is included with GLUT, including nroff man pages and demo

programs.
l More GLUT-based OpenGL demos and examples (and bug fixes to existing demos and examples).
l glutPostWindowRedisplay and glutPostWindowOverlayRedisplay entry points added for posting redisplays on

non-current windows (for faster multi-window updates).
l Bug fixes and minor functionality improvements to Tom Davis's micro-UI GLUT-based user interface toolkit.

Frequently Asked GLUT Questions

Page 8 of 9

See the "CHANGES" file that accompanies GLUT 3.6 for a fuller list of changes.

Q38: On my IRIX 6.3 SGI O2 workstation, why do I get errors about "glXChannelRectSyncSGIX" being unresolved
building certain GLUT examples?

A38: The original IRIX 6.3 release for the O2 workstation accidently advertised support for the dynamic video resize
extension supported on SGI's high-end InfiniteReality graphics system. This confuses GLUT into providing its dynamic
video resize sub-API.

This problem is fixed by patch 1979 (and its successor patches). Because patch 1979 (and its successor patches) also help
O2's OpenGL rendering performance, I strongly recommend requesting the latest O2 OpenGL patch from SGI customer
support.

Once the patch is installed, your build errors will be resolved.

Q39: Using GLUT with Microsoft OpenGL 1.1 and compiling GLUT with Borland compilers causes GLUT applications
to generates floating point exceptions. What can be done?

A39: Under certain conditions (e.g. while rendering solid surfaces with lighting enabled) MS libraries cause some illegal
operations like floating point overflow or division by zero. The default behaviour of Microsoft compilers is to mask
(ignore) floating point exceptions, while Borland compilers do not. A function of Borland run-time library allows to
mask exceptions. Modify glut_init.c by adding the following lines to the function __glutOpenWin32Connection:

#ifdef __BORLANDC__
#include
 _control87(MCW_EM,MCW_EM);
#endif

With this modification, compiling the GLUT library with your Borland compilers and using GLUT with Microsoft
OpenGL should work fine.

GLUT 3.7 will have this change already included in the GLUT library source code distribution.

This advice comes from Pier Giorgio Esposito (mc2172@mclink.it).

Q40: Using GLUT with SGI OpenGL for Windows and compiling with Borland compilers results in linking problems.
What can be done?

A40: Some care must be taken when linking GLUT.DLL or programs that use it with Borland compilers. The import
library IMPORT32.LIB already contains the functions exported by the Microsoft OpenGL libraries, thus SGI OpenGL
import libraries must be listed _before_ import32 in the Borland tlink command line.

This advice comes from Pier Giorgio Esposito (mc2172@mclink.it).

Q41: What is GameGLUT?

A41: GameGLUT is a set of API extension to GLUT to be released in GLUT 3.7. These extensions provide keyboard
release callbacks, disabling of keyboard auto repeat, joystick callbacks, and full screen resolution setting.

Questions, send mail to mjk@nvidia.com

Frequently Asked GLUT Questions

Page 9 of 9

OpenGL Performance FAQ for NVIDIA GPUs v2.0
John Spitzer

NVIDIA Corporation
JSpitzer@nvidia.com

This document refers to the performance of OpenGL on the NVIDIA GeForce 256, Quadro, GeForce2 MX and
GeForce2 GTS, running the Release 5 (5.XX) series of drivers.

I. Geometry

1. What are the fastest transfer mechanisms for geometry?
2. What are the fastest primitives to use?
3. Which vertex array calls should I use?
4. How does processor speed and/or bus bandwidth (AGP/AGP2X/AGP4X) affect this?
5. What is the best manner in which to organize my geometry in memory?
6. What do vertex arrays buy me in terms of performance?
7. What do compiled vertex arrays (CVAs) buy me in terms of performance?
8. How can I maximize performance with the vertex_array_range extension?
9. Is there an optimal size vertex array to define/use?
10. Should I use display lists for static geometry?
11. Will I get better performance if I chain together separate triangles with degenerate triangle strips?
12. I’ve heard that NVIDIA GPUs have a vertex cache – how do I use it?

II. Lighting
13. What lighting mode is fastest?
14. Which ones should I avoid?
15. How many lights should I use?
16. Should I turn normalization on or off for maximum performance?
17. Should I use the rescale normal extension to increase performance?
18. Is it faster if I only want to calculate the diffuse component, not the specular?

III. Texture Coordinate Generation

19. Which TexGen modes are hardware accelerated?
20. Is the texture matrix hardware accelerated?
21. Is there hardware acceleration for two sets of texture coordinates?

IV. Clipping and Culling
22. Should I perform any clipping myself?
23. Are user-defined clip planes hardware accelerated?
24. How many user-defined clip planes are hardware accelerated?

V. Texturing

25. How can I maximize texture downloading performance?
26. Should I use texture compression?
27. How can I maximize texture rendering performance?
28. What filtering modes should I use?
29. How much performance will anisotropic filtering take away?
30. What kind of performance increase can I expect from using paletted textures?

VI. Other Fragment Operations

31. What are the performance implications of polygon stippling?
32. What fragment operations should I avoid?

mailto:JSpitzer@nvidia.com

VII. Pixel Transfers

33. What are the best formats/types to use with glReadPixels and glDrawPixels?
34. I want to read back the depth buffer for incremental updates; how should I do this?

VIII. Miscellaneous

35. How much will Full Scene Anti-Aliasing (FSAA) slow me down?
36. Is context switching expensive?
37. What about state changes?
38. Why is my GeForce 256 running at a fraction of the speed of my TNT2?
39. Should I use a unified back buffer (UBB) or not?

I. Geometry
1. What are the fastest transfer mechanisms for geometry?

Fastest DrawElements/DrawArrays Using

wglAllocateMemoryNV(size,0,0,1)
Saves data in video memory, eliminating any
bus bottleneck. Very poor read/write access.

 DrawElements/DrawArrays Using
wglAllocateMemoryNV(size,0,0,.5)

Saves data in AGP (uncached) memory, and
allows hardware to pull it directly. Very poor
read access, must write sequentially (see below)

 Display Lists Can encapsulate data in the most efficient
manner for hardware, though they are
immutable (i.e. once created, you can’t alter
them in any way).

 DrawElements using
Compiled Vertex Arrays
(glLockArraysEXT)

Copies locked vertices to AGP memory, so that
the hardware can then pull it directly. Only one
mode is supported (see q, 7 below).

 DrawElements and DrawArrays
using Vertex Arrays with Common
Data Formats

Optimized to assemble primitives as efficiently
as possible, and minimizes function call
overhead. 13 formats supported (see q. 6).

 Immediate Mode Multiple function calls required per primitive
results in relatively poor performance compared
to other options above.

Slowest All Other Vertex Arrays Must be copied from application memory to
AGP memory before the hardware can pull it.
Since data can change between calls, data must
be copied every time, which is expensive.

2. What are the fastest primitives to use?

Fastest GL_TRIANGLE_STRIP

GL_TRIANGLE_FAN
GL_QUAD_STRIP

These maximize reuse of the vertices shared
within a given graphics primitive, and are all
similarly fast.

 GL_TRIANGLES
GL_QUADS

These aggregate (potentially multiple) disjoint
triangles and quads, and amortize function
overhead over multiple primitives.

Slowest GL_POLYGON A bit slower than the independent triangles and

quads.

The GeForce2 GTS is able to setup primitives much faster than GeForce 256 or Quadro, so that
all primitives are equally fast when accessing vertices in the vertex cache (see vertex cache
question below for other details).

3. Which vertex array calls should I use?

Fastest glDrawElements Can take advantage of shared vertices and

conserve front-side bus bandwidth by merely
sending indices to the data.

 glDrawArrays The most efficient way to send vertices that are
not shared, though much slower than
glDrawElements in the common case of shared
vertices.

Slowest glArrayElement Call overhead per vertex severely impacts
performance. Avoid if at all possible.

4. How does processor speed and/or bus bandwidth (AGP/AGP2X/AGP4X) affect this?
Unlike TNT2, NVIDIA GPUs all have hardware T&L, and processor speed is not nearly so
important for attaining good T&L performance. Basically, only in immediate mode will
processor speed play any significant role in determining T&L performance. Bus bandwidth is
another matter, however, as it ultimately limits how quickly the data can pass from system
memory to the GPU. AGP4X is needed for optimal performance in many of the transfer modes
utilizing the bus, but even in these modes, AGP2X will yield performance close to AGP4X.
Standard AGP, on the other hand, creates a bottleneck for many of the transfer modes, and can
result in performance far less than optimal.

5. What is the best manner in which to organize my geometry in memory?
There is no inherent advantage, nor disadvantage, to using glInterleavedArrays versus
glVertexPointer, glTexCoordPointer, etc. Similarly, there is typically no performance advantage
to interleaving data versus keeping the components in separate, disjoint arrays.

6. What do vertex arrays buy me in terms of performance?
Vertex arrays minimize the number of OpenGL calls that must be made to send geometry down
the pipeline. Some data formats are specifically optimized for use within regular vertex arrays:

Vertex
Size/Type

Normal Type Color
Size/Type

Texture Unit
0 Size/Type

Texture Unit
1 Size/Type

Fog Coord
Type

3/GLfloat - - - - -
3/GLfloat - - 2/GLfloat - -
3/GLfloat - - 2/GLfloat 2/GLfloat -
3/GLfloat GLfloat - - - -
3/GLfloat GLfloat - 2/GLfloat - -
3/GLfloat GLfloat - 2/GLfloat 2/GLfloat -
3/GLfloat - 3/GLfloat - - -
3/GLfloat - 3/GLfloat 2/GLfloat - -
3/GLfloat - 3/GLfloat 2/GLfloat 2/GLfloat -

3/GLfloat - 4/GLubyte - - -
3/GLfloat - 4/GLubyte 2/GLfloat - -
3/GLfloat - 4/GLubyte 2/GLfloat 2/GLfloat -
3/GLfloat - - 2/GLfloat 3/GLfloat -
3/GLfloat - - - - GLfloat
3/GLfloat - - 2/GLfloat - GLfloat
3/GLfloat - - 2/GLfloat 2/GLfloat GLfloat

Other formats are likely to be slower than immediate mode.

7. What do compiled vertex arrays (CVAs) buy me in terms of performance?
Although your mileage may vary, compiled vertex arrays can yield a large increase in
performance over other modes of transport – specifically, if you frequently reuse vertices within
a vertex array, have the appropriate arrays enabled and use glDrawElements. Only one data
format is specifically optimized for use within CVAs:

Vertex
Size/Type

Normal Type Color
Size/Type

Texture Unit
0 Size/Type

Texture Unit
1 Size/Type

3/GLfloat - 4/GLubyte 2/GLfloat 2/GLfloat

Note that there is no corresponding glInterleavedArrays enumerant for this format (i.e. you must
use glVertexPointer, glColorPointer and glTexCoordPointer to specify the arrays).

When using compiled vertex arrays with this format, it’s important to maximize use of the
vertices that have been locked. For example, if you lock down 100 vertices and only use 25 of
them in subsequent glDrawElements calls before unlocking, you will have relatively poor
performance.

For more flexibility in accelerated data formats, it’s recommended that vertex_array_range
extension be used (see below).

8. How can I maximize performance with the vertex_array_range extension?
Currently, you should only use the vertex_array_range with memory allocated by
wglAllocateMemoryNV (or glXAllocateMemoryNV) given the following settings:
Memory Allocated ReadFrequency WriteFrequency Priority
AGP Memory [0, .25) [0, .25) (.25, .75]
Video Memory [0, .25) [0, .25) (.75, 1]

All other settings will yield relatively poor performance. Use video memory sparingly, and only
for static geometry. You may use AGP memory for dynamic geometry, but write your data to
these buffers sequentially to maximize memory bandwidth (it is uncached memory, and
sequentially writing is essential to take advantage of the write combiners within the CPU that
batch up multiple writes into a single, efficient block write). And being uncached, read access
will be very, very slow – it may be best to keep two buffers, one allocated by standard malloc for
general R/W access and the other allocated by wglAllocateMemoryNV that is only written to –
synchronization would copy data from the R/W buffer sequentially into the AGP memory. Keep
the vertex array strides to a reasonable length (less than 256), and mind the necessary alignment
restrictions in the extension specification. Also, do not use wglAllocateMemoryNV unless you

use and enable the vertex_array_range extension. If you do not heed those restrictions, you will
certainly have less than optimal (if not poor) performance.

9. Is there an optimal size vertex array to define/use?
There is no hard and fast rule for vertex array size with respect to performance. Allocating a
huge amount of AGP memory is probably not wise, however, since that memory will not be
available to the OS (possibly causing unnecessary thrashing).

10. Should I use display lists for static geometry?
Yes, they are simple to use and the driver will choose the optimal way to transfer the data to the
GPU.

11. Will I get better performance if I chain together separate triangles with degenerate
triangle strips?
No. Draw what you can with triangle strips (or quad strips) and triangle fans, then draw the
remaining independent triangles using glBegin(GL_TRIANGLES)…glEnd().

12. I’ve heard that NVIDIA GPUs have a vertex cache – how do I use it?
All NVIDIA GPUs have a 16 element post-T&L vertex cache (also called the “vertex file”),
though the effective size is closer to 10 elements when you consider pipelining. You must
adhere to a few rules to take advantage of the vertex cache:

1. Use glDrawElements or glDrawRangeElements
2. Use the NV_vertex_array_range extension (see question 8 above) or the optimized

compiled vertex array format (see question 7 above).
3. Ensure your vertices are shared between multiple primitives, and that you have decent

vertex cache coherency (i.e. adjacent triangles are drawn together)

II. Lighting
13. What lighting mode is fastest?
Directional (AKA infinite) lights, with infinite (i.e. non-local) viewer and one-sided lighting.

14. Which ones should I avoid?
When using directional lights, avoid using local viewer, because it may cut your performance in
half. However, when using local lights, you can use local viewer “for free” – that is, the GPU
can calculate the local viewer at the same performance as infinite viewer. Two-sided lighting
will be slower than one-sided lighting, and should only be used when absolutely necessary.

15. How many lights should I use?
In general, use as few as possible. When using local lights with attenuation, far-off lights will
often not contribute to a given surface, although many calculations will still have to be made by
the GPU. You can optimize for this by reducing the number of enabled lights to those in an
object’s immediate vicinity. Reference the graph below to see how much additional lights cost.

Quadro Lighting Performance

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8

Number of Lights

M
ill

io
ns

 o
f T

ria
ng

le
s

pe
r S

ec
on

d

inf lights/inf viewer
inf lights/local viewer
local lights
spot lights

16. Should I turn normalization on or off for maximum performance?
The GPU performs normalization very efficiently, so that the cost for enabling it is negligible.
Since unexpectedly bright or dim lighting can occur if normalization is disabled (with non-unit
length normals), it’s recommended that you always enable normalization.

17. Should I use the rescale normal extension to increase performance?
No, enable normalization instead. [See question above]

18. Is it faster if I only want to calculate the diffuse component, not the specular?
If you want to only compute the diffuse component – presumably by setting the specular material
to black – additional performance will not be gained on NVIDIA GPUs, which include the
specular calculation “for free”. Separating the diffuse and specular colors and applying the
specular component after texturing also incurs no additional T&L cost, though rasterization of
large, non-Z buffered polygons may be slower.

Specifically, GeForce2 GTS interpolates the secondary/specular color at full speed. GeForce2
MX, GeForce 256 and Quadro all check if the specular color is constant across all the vertices of
a triangle. If constant, the interpolation unit runs at full speed because there is no need to
interpolate the secondary color. However, if the color varies over the triangle, the color
interpolators have to be double pumped with the diffuse and specular color, which will cause that
unit to run at half speed. Bear in mind that this will reduce overall performance only if this unit
is already the bottleneck.

II. Texture Coordinate Generation
19. Which TexGen modes are hardware accelerated?
All 6 TexGen modes are hardware accelerated, but not at similar performance. See chart below.

Quadro Texture Coordinate Generation Performance

0
2
4
6
8

10
12
14
16
18

Exp
lici

t T
ex

tur
e C

oo
rdi

na
tes

GL_
OBJE

CT_L
IN

EAR

GL_
NORMAL_

MAP_N
V

GL_
EYE_L

IN
EAR

GL_
SPHERE_M

AP

GL_
REFLE

CTIO
N_M

AP_N
V

glTexGen Modes

M
ill

io
ns

 o
f T

ria
ng

le
s

pe
r S

ec
on

d

20. Is the texture matrix hardware accelerated?
Yes, transformations for both texture units are performed in the GPU. There may be a
performance penalty associated with the texture matrix. While the maximum performance on
Quadro with an identity texture matrix is almost 16M triangles/second (see graph above), the
performance will drop to around 10 M triangles/second with a non-identity texture matrix. If
you are transfer-bound or raster-bound, you will not see any performance drop at all.

21. Is there hardware acceleration for two sets of texture coordinates?
Yes. This includes two TexGen units and two texture matrices.

III. Clipping and Culling
22. Should I perform any clipping myself?
No, it’s fastest to allow OpenGL to handle it, since the GPU performs viewport clipping very
efficiently. In order to take advantage of this clipping, applications should pass in unclipped
geometry. Applications should continue to perform gross culling against the view frustum
before sending complex objects, and some intelligent scene occlusion culling, such as a BSP.

23. Are user-defined clip planes hardware accelerated?
Yes, a number of user-defined clip planes are hardware accelerated through use of texture
mapping and special hardware features.

24. How many user-defined clip planes are hardware accelerated?
For every texture unit you have left unused, you get two hardware user-defined clip planes. The
caveat is that enabling polygon stipple counts as using a texture unit if you are not already using
both texture units (see question on polygon stippling below). For example, you can use 2 clip
planes with single-texturing, and 4 clip planes with no texturing, assuming no polygon stipple.

If more clip planes are defined than can be implemented by the hardware, the driver falls back to
software clipping. If lighting is disabled, the driver can use fairly fast clip routines. However,
clip planes are harder when lighting is enabled, because you have to light the vertices and then
apply the clip planes, interpolating the lighted vertex results to the clipped coordinates. If
lighting is enabled, the driver must use fairly slow clipping code. Avoid this case, if at all
possible. In fact, avoid user-defined clipping planes altogether, if possible.

IV. Texturing
25. How can I maximize texture downloading performance?
Best RGB/RGBA texture image formats/types in order of performance:

Image
Format

Image Type Texture Internal
Format

GL_RGB GL_UNSIGNED_SHORT_5_6_5 GL_RGB
GL_BGRA GL_UNSIGNED_SHORT_1_5_5_5_REV GL_RGBA
GL_BGRA GL_UNSIGNED_SHORT_4_4_4_4_REV GL_RGBA
GL_BGRA GL_UNSIGNED_INT_8_8_8_8_REV GL_RGBA
GL_RGBA GL_UNSIGNED_INT_8_8_8_8 GL_RGBA

Bear in mind that the NVIDIA GPUs store all 24-bit texels in 32-bit entries, so try using the
spare alpha channel for something worthwhile, or it will just be wasted space. Moreover, 32-bit
texels can be downloaded at twice the speed of 24-bit texels. Single or dual component texture
formats such as GL_LUMINANCE, GL_ALPHA and GL_LUMINANCE_ALPHA are also very
effective, as well as space efficient, particularly when they are blended with a constant color (e.g.
grass, sky, etc.). Most importantly, always use glTexSubImage2D instead of glTexImage2D
(and glCopyTexSubImage2D instead of glCopyTexImage2D) when updating texture images.
The former call avoids any memory freeing or allocation, while the latter call may be required to
reallocate its texture buffer for the newly defined texture.

26. Should I use texture compression?
If image fidelity is not of utmost importance, you should definitely consider using texture
compression via the GL_ARB_texture_compression (http://oss.sgi.com/projects/ogl-
sample/registry/ARB/texture_compression.txt) and GL_texture_compression_s3tc
(http://oss.sgi.com/projects/ogl-sample/registry/EXT/texture_compression_s3tc.txt) extensions.
This technology allows larger textures to be put in a smaller space, and thus reduces the chance
of texture thrashing. The compressed texture can also be downloaded much faster to the GPU.
See the NVIDIA developer web site for a white paper and code example.

http://oss.sgi.com/projects/ogl-sample/registry/ARB/texture_compression.txt
http://oss.sgi.com/projects/ogl-sample/registry/ARB/texture_compression.txt
http://oss.sgi.com/projects/ogl-sample/registry/EXT/texture_compression_s3tc.txt

27. How can I maximize texture rendering performance?
In general, it’s best to minimize the number of texture binds that must be performed. By sorting
its objects by texture, an application can optimally render them in order. Moreover, try to
eliminate multiple passes over the same object by using multitexture. Although performing 2
texture multitexture may be more expensive than a single texture on GeForce 256 and Quadro, it
is still much cheaper than performing another pass. And under most conditions, GeForce 2 GTS
can perform dual-texturing at the same rate as single-texturing. Also consider using the
GL_NV_register_combiners extension to reduce the number of required passes. This extension
provides a good deal of flexibility in combining RGB and ALPHA components, as well as
exposing functions such as dot products on a per-pixel level. If using register combiners, try to
use only one general combiner, since using two combiners may lower texturing performance. By
all means, however, use two general combiners rather than create another rendering pass!

28. What filtering modes should I use?
Mipmapping is always advised, particularly for minified objects. Minified objects create a very
large stride through the non-mipmapped texture image, yielding poor cache utilization.
Mipmapping greatly reduces the stride and results in higher cache utilization, and in turn, higher
performance. Choose the 4-tap GL_LINEAR_MIPMAP_NEAREST as a minification filter, as
it will be faster than the 8-tap trilinear filter.

29. How much performance will anisotropic filtering take away?
Anisotropic filtering comes at a slight performance penalty on NVIDIA GPUs (around 10%). It
is most effectively used in a “Highest Quality” mode in concert with trilinear texture filtering.

30. What kind of performance increase can I expect from using paletted textures?
Paletted textures will not create a large increase in performance, and will possibly even decrease
performance if shared palettes are not employed.

VI. Other Fragment Operations
31. What are the performance implications of polygon stippling?
Polygon stippling is implemented via texture mapping in NVIDIA GPUs, and though fast, it
burns a texture unit. Performing polygon stippling with dual-texturing will force the driver to
render in software.

32. What fragment operations should I avoid?
Try to curb use of blending, because it requires a read/modify/write operation. All non-zero
blending modes cut fillrates in half (compared to non-blended rendering). Use alpha test instead
of blending where feasible (e.g. to render sprites and such). One operation to stay away from is
the color logical operator (as known as logic op). Only the GL_COPY operator is hardware
accelerated on NVIDIA GPUs, relegating the rest to software rendering, at a mere fraction of the
hardware’s performance.

VII. Pixel Transfers

33. What are the best formats/types to use with glReadPixels and glDrawPixels?
For 32-bit glReadPixels, stick to using GL_UNSIGNED_BYTE type, with GL_RGB,
GL_RGBA and GL_BGRA formats. For 16-bit glReadPixels, use GL_FLOAT type, with
GL_RGB format. For 16/32-bit glDrawPixels, use GL_UNSIGNED_BYTE type, with
GL_RGB and GL_RGBA formats. A type of GL_FLOAT will also give decent, though lower,
performance with these formats.

34. I want to read back the depth buffer for incremental updates; how should I do this?
Writing to the depth buffer via glDrawPixels is quite slow (though reading the depth buffer via
glReadPixels is moderately fast). For performing incremental updates to scenes by saving away
the color and depth buffers, consider using the GL_KTX_buffer_region extension.

VIII. Miscellaneous

35. How much will Full Scene Anti-Aliasing (FSAA) slow me down?
Your mileage will vary depending upon which part of the system is the performance bottleneck.
In general, if you are limited by anything but rasterization (e.g. your CPU’s speed, or T&L
performance), FSAA should not incur any cost at all. If you’re limited by rasterization, however,
your performance will drop in proportion to your super-sampling rate. For example, 2X FSAA
requires just over two times the rasterization as no-FSAA, while 4X FSAA requires four times
the rasterization as no-FSAA.

FSAA causes more video memory to be used, so texture thrashing may occur with FSAA
enabled, where it did not occur with it disabled.

36. Is context switching expensive?
Yes. Context switching is often a problem in workstation applications, though not as commonly
a problem in games. Reduce context switching to a minimum by reusing a single context, and
bind it to separate windows, if necessary. It’s best to have merely a single window/context and
use glViewport and glScissor to restrict rendering to specific “sub-windows”.

37. What about state changes?
State changes can severely impact performance. As such, they should be minimized by binning
primitives with similar state (textures first, then lights, then blending modes, materials and so on)
and drawing them all at the same time.

38. Why is my GeForce 256 running at a fraction of the speed of my TNT2?
Chances are, you have antialiased polygons enabled (i.e. glEnable(GL_POLYGON_SMOOTH))
and you’re running on 3.XX drivers. If you turn it off, performance will increase dramatically.

39. Should I use a unified back buffer (UBB) or not?
Quadro has the ability to enable a unified back buffer (in fact, it’s enabled by default). The
unified back buffer is particularly useful for applications that use many (overlapping) windows
and cannot afford to create separate back-buffers for each of them, since it uses too much
framebuffer memory. UBB may be slightly slower for single windowed apps, so if you’re
running games, it’s usually not a good idea to have it enabled. If you’re running workstation
apps, however, it probably is a good idea to enable it.

Mesa Frequently Asked Questions

Introduction
For general OpenGL questions see the OpenGL FAQ

Most questions regarding Mesa can be answered by reading the README files included with Mesa. Please do so before
sending email questions.

Suggestions for topics to add to this document are welcome.

Compilation and installation problems
Mesa doesn't compile on my system

First, make sure you have the latest version of Mesa. If a newer version doesn't help, keep reading.

Can't compile on Windows 95/NT using (any) compiler

First, I (Brian) do not develop on 95/NT so I can't help you. Look in the Mesa README files for people to
contact for help. Otherwise, ask on the Mesa mailing list.

I compiled my program with Mesa but the linker reports all kinds of undefined symbols such as bgnpolygon, v3f,
etc...

The program was written for IRIS GL, not OpenGL (which Mesa emulates). Perhaps you should convert your
application to OpenGL.

I'm trying to compile Mesa for 'linux-elf' but get lots of errors.

If the errors look like this:

/usr/lib/crt0.o(.text+0x35): undefined reference to `main'
accum.o(.text+0x1d): undefined reference to `GLOBAL_OFFSET_TABLE_'
accum.o(.text+0x224): undefined reference to `GLOBAL_OFFSET_TABLE_'
etc...

Then you probably don't have a gcc compiler with ELF support even though your kernel can run ELF binaries.
Try gcc-2.7.2 or later.

Can't compile Mesa 2.2 (or ealier) on Redhat 4.1

It appears they've changed the X11 development directories a bit. Try adding -I/usr/X11R6/include to the
CFLAGS for linux in the Make -config file. You may also have to add -L/usr/X11R6/lib to the XLIBS line.

Can't compile Mesa 2.x on RedHat 5.0

Get Mesa 2.6.

Runtime problems

Mesa FAQ

Page 1 of 3

I'm seeing errors in depth (Z) buffering

Make sure the ratio of the far to near clipping planes isn't too great. Look here for details.

If that doesn't help then edit the src/config.h file and change DEPTH_BITS to 32 instead of 16. Mesa uses a 16-
bit depth buffer by default which is smaller and faster to clear than a 32-bit buffer but not as accurate.

Depth buffering isn't working at all

Be sure you're requesting a depth buffered-visual. If you set the MESA_DEBUG environment variable it will
warn you about trying to enable depth testing when you don't have a depth buffer.

glGetString() always returns NULL

Be sure you have an active GL context before calling glGetString.

I've compiled Mesa on my Linux (or other Unix system) but I get not DGL-capable errors.

There are two problems here. First, your application uses IRIS GL, not OpenGL. Find and OpenGL version of the
application or rewrite it to use OpenGL.

Second, if you want to remotely display OpenGL apps from your SGI onto another X server you must compile
and install Mesa on the SGI, not on your local host. See below for more information about GLX.

Mesa crashes on my Linux PC with "signal 11" or other errors when using the linux-386 configs

Try upgrading the binutils on your system. Older versions of binutils don't correctly assemble the 386 code in
Mesa.

Points, lines, triangles aren't rendered on the exact pixel I expect

This is probably a problem involving point sampling and numerical round-off error. See the appendix of the
OpenGL Programming Guide for the solution.

Hardware support
Is anybody working on supporting 3-D PC hardware?

Yes, for currently available hardware support see the info at the bottom of the main Mesa page.

There's at least one or two other Linux 3-D hardware projects underway that haven't been officially announced
yet. I can's say any more.

What about S3 Virge support with Linux?

Someone at S3 is working on this in his spare time. There is no estimated time for release.

What about the nVidia Riva128?

There are no plans to support it at this time. nVidia hasn't released their hardware specs to the public. Perhaps if a
group of people would organize themselves and contact nVidia they could get technical specs under NDA. You
should post to the Mesa mailing list if interested in doing this.

What about support for the XYZ Inc. SuperTurboMega3D card?

First, a 3-D card cannot be supported with Mesa unless complete technical specifications are available for the
hardware. Most vendors don't release this info, except perhaps under NDA. Second, someone has to volunteer to

Mesa FAQ

Page 2 of 3

write the Mesa driver for the 3-D hardware.

I (Brian) do not have the time to do this myself. However, I'm happy to assist anyone working on new Mesa
drivers.

Ultimately, 3-D hardware acceleration for Linux should be integrated into the (XFree86) X server. If you're
interested in doing the work you should contact the XFree86 development group.

Will Mesa work with Voodoo2 (on Linux or Windows)?

Voodoo2 requires that the 3Dfx Glide library be updated. After that has been done Mesa will work with
Voodoo2.

Miscellaneous
Can I use Mesa with Ousterhout's Tcl/Tk?

Yes, check out Togl

Can I use Mesa to display OpenGL applications on my X terminal?

Yes. If you have source code to the application, just recompile and relink with Mesa instead of OpenGL.

If you do not have souce code to the application you can still use Mesa if your operating system supports dynamic
run-time linking (such as IRIX 5.x). Basically, you have to create a Mesa shared library (DSO under IRIX 5.x)
and tell the runtime loader/linker to use the Mesa library instead of the OpenGL library. Usually this is done by
creating a symbolic link to the Mesa library which is the same as the OpenGL library name. Then set a shell
environment variable (_RLD_LIST on IRIX 5.x) to point to the symbolic link. An example of this for IRIX 5.x is
in the Mesa README file.

I compiled Mesa on my Linux (or other) computer but when I try to view programs on my PC which are running
on my SGI I get "GLX missing" errors

Compiling Mesa on your Linux PC does not install the GLX extension into your X server. You have to compile
Mesa on the SGI as explained in the previous step.

Is Mesa multithreaded?

Thread support in Mesa is under development. Contact John Stone (johns@umr.edu) for details.

Linux Quake questions
A lot of people use Mesa on Linux to run Quake...

If you have problems, be sure you have the latest version of Mesa. Then, perhaps ask for help on the
3dfx.glide.linux newsgroup.

Last updated on February 23, 1999.

Mesa FAQ

Page 3 of 3

Mesa User's Guide

Introduction

This document discusses a number of Mesa subjects which are often asked about. Also see the FAQ for miscellaneous
subjects. Suggestions for new topics are welcome.

Subjects:

1. X visuals and colormaps
2. Mesa's X driver
3. Optimizing Mesa's performance
4. Installing Mesa
5. Remote display of OpenGL apps

Subject 1: X visuals and colormaps

Before explaining the details of the X driver for Mesa (subject 2) it's important to understand some basic
information about X visuals. Volume 1 of the O'Reilly series on the X window system is a good source for this
information.

Visuals

An X "visual" describes how data in a frame buffer are displayed as colored pixels on your screen. Visuals are
characterized by their depth and class. The depth is the number of bits per pixel. The class determines what kind
of colormap, if any, is used.

X supports 6 different visual types or classes (N=depth):

¡ StaticGray - each N-bit pixel values is an index into an immutable grayscale colormap with 2^N entries
¡ GrayScale - each N-bit pixel value is an index into a mutable grayscale colormap with 2^N entries
¡ StaticColor - each N-bit pixel value is an index into an immutable colormap with 2^N entries
¡ PseudoColor - each N-bit pixel value is an index into a mutable colormap with 2^N entries
¡ TrueColor - each N-bit pixel values is partitioned into 3 components (R + G + B = N) which directly map

to 2^R red, 2^G green, and 2^B blue intensities
¡ DirectColor - each N-bit pixel value is partitioned into 3 components (R + G + B = N) each of which is

an index into a mutable red, green, and blue colormap
Note: mutable = dynamic or changable, immutable = fixed, can't be changed.

The most common visual type on low-end displays is 8-bit PseudoColor. In this case each byte in the frame buffer
is an index into a 256-entry colormap which can be loaded with colors you choose.

A common visual type on high-end displays is 24-bit TrueColor. In this case each triplet of bytes in the frame
buffer directly maps to an RGB color on the screen. 256 shades of red, 256 shades of green and 256 shades of
blue allow 16,777,216 differeent colors. Some people say you can display "16 million colors at once" but that's
false because nobody has a display with that many pixels!

Here are some other common visuals:
¡ 1-bit StaticGray - monochrome screen
¡ 8-bit GrayScale - grayscale screen
¡ 8-bit TrueColor - 2-bits red, 3-bits green, 3-bits blue
¡ 12-bit PseudoColor - 12 bits per pixel, 4096-entry colormap
¡ 16-bit TrueColor - 5-bits red, 6-bits green, 5 -bits blue

Which visual(s) does my display support?

You can find out with the standard xdpyinfo command. It prints all sorts of interesting information about your
display including a list of visuals supported by each screen. Note that an X display is a collection of one or more
X screens , each of which can support a different set of visuals . Most people have one screen per display. Low-end

Mesa User's Guide

Page 1 of 6

systems usually list 1 or 2 visuals, high-end systems may list upwards of 70 visuals.

Which visual is the default?

One of the visuals in the list from xdpyinfo is the default visual. The default visual is the visual used by the root
(background) window. Look for default visual id in the xdpyinfo output.

Another way to determine the default (root) visual is to use xwininfo. When you run xwininfo your pointer will
turn into a cross-hair. Point over the root window and press a mouse button. Among the information printed will
be the visual class and depth. Note that you can apply this program to any X window.

Can I control which visuals are available?

That depends on your graphics hardware and X server software. On Linux systems with XFree86 you can do
startx -- -bpp16 or startx -- -bpp32 to start the X server with deeper visuals. Ask your sysadmin or
consult your system's X documentation to learn more.

If your display supports more than one visual you should also be able to configure the default (root) visual to be
which ever you want. Again, read your documentation.

Information for Xlib programmers

If you're programming with Xlib (or a higher level toolkit) you need to be aware of visual issues when creating
windows. Naive programmers who use XCreateSimpleWindow may find all kinds of problems when later
running their client on a different display. The problem is XCreateSimpleWindow inherits its parent's visual. If
creating a top -level window, it'll inherit the root win window's visual which will vary from display to display.

When creating top-level windows it's much better to use XGetVisualInfo or XMatchVisualInfo to explicitly
choose the visual and XCreateWindow to create the window. Alternatively, if you want to use the default visual,
your code should verify that the default visual is suitable for your application's needs and deal with it
appropriately.

Finally, If you create a window with a visual you've explicitly chosen you must also be sure to provide a
colormap which matches the visual. Otherwise you'll get a BAD MATCH X protocol error.

Colormaps

Color management in X is complicated. What follows is a quick overview of X's colormap system. See the
O'Reilly Xlib Programming Manual for more detailed info.

An X colormap is really an abstraction over the hardware. While your X screen may only have one real colormap,
X gives programmers the illusion of having an unlimited number of colormaps. If the hardware colormap(s)
become over commited you'll probably see the "technicolor" effect or colormap "flashing" when you move the
input focus from one window to another. That's caused by the window manager installing the virtual X colormap
into the hardware colormap for the current window. Careful programming can reduce or eliminate this problem as
we'll see.

X colormaps come into two varieties: private and shared. When you call XCreateColormap you indicate
AllocAll for private or AllocNone for shared.

When you create a private colormap you get a whole colormap to yourself in which you can setup any mapping of
pixels to colors you want using XStoreColor(s). You should avoid using private colormaps when possible
because they inhibit color sharing. Remember, it's not sharing colors with other clients which leads to the dreaded
colormap flashing.

When you create a shared colormap you must allocate colors from it using XAllocColor . You specify a color by
red, green, and blue values and XAllocColor returns a pixel value for you to use when drawing things. If X can't
allocate the color you need, XAllocColor will fail. Your best recourse is to then search the colormap for the
closest match and use that color. X will try to combine shared colormaps into one hardware colormap to reduce
flashing.

Mesa User's Guide

Page 2 of 6

Programming tips:
¡ Use shared colormaps whenever possible.
¡ If you need to create a number of windows with the same visual you should try to share the same

colormap among them.
¡ If you create a number of windows with different visuals you must be sure to allocate a different colormap

for each visual.
¡ If possible, try to use the visual and colormap of the root window to reduce colormap flashing.

How Mesa works with colormaps is the subject of the next section.

Subject 2: Mesa's X driver- visuals and colormaps

According to the OpenGL GLX spec, when using OpenGL in RGB mode you must use a TrueColor or
DirectColor visual. When using OpenGL in color-index mode you must use a PseudoColor or StaticColor visual.
Indeed these are the only possibilities returned by glXChooseVisual.

Mesa's X driver is more flexible, allowing you to use any X visual type in RGB mode and either GrayScale,
StaticGray, PseudoColor or StaticColor in color- index mode. Unfortunately, this flexibility sometimes causes
problems.

It's very important to understand that most of the visual and colormap problems people have with Mesa are not
caused by the core Mesa library but rather the higher level toolkits such as aux, tk and GLUT. However, the
toolkits cannot be blamed too much because they were designed to work with OpenGL but not Mesa's unique
features.

Mesa's glXChooseVisual

Mesa's implementation of glXChooseVisual is written to be as compatible with the OpenGL semantics as
possible. However, The fact that Mesa's glXChooseVisual may return, for example, a PseudoColor visual in RGB
mode is enough to make some OpenGL applications fail. If the OpenGL application requires a TrueColor or
DirectColor visual and your display doesn't support such a visual you may be out of luck. This is no one's fault.
However, if you write an OpenGL application, you'd be doing a service to Mesa users if you wrote code which
would accept any visual type in RGB mode.

Remember that if Mesa's glXChooseVisual were modified to behave exactly like OpenGL's we would actually be
losing functionality which a lot of people (everyone without a TrueColor display) depend on.

How can I stop colormap flashing?

If the colors on your screen flash when you move the pointer in and out of a Mesa window it's because the
working set of Mesa and other X clients have allocated more colors than will fit in the hardware colormap(s). To
remedy this, you can either close some of your other X clients or try setting the MESA_RGB_VISUAL
environment variable to match the root window's visual, thereby encouraging colormap sharing.

I don't see flashing but the Mesa window's colors are wrong!

Your Mesa window is probably using the same visual type as the root window and is sharing the root's colormap.
Unfortunately, either the window manager and/or other X clients have allocated so many entries from the
colormap that Mesa can't get the ones it needs for its palette. The solution is to try the Mesa application again
after you've terminated other color-demanding clients. Or set the MESA_PRIVATE_CMAP variable which
forces the aux, tk and GLUT toolkits to allocate a private colormap. Unfortunately, now you'll probably see
colormap flashing.

Note that the MESA_PRIVATE_CMAP variable is recognized by the aux and tk toolkits and not the Mesa core
library. Colormap management is an issue at a level above the core of Mesa.

Caveat

The above discussion assumed you're using Mesa in RGB mode. If you're using color-index mode most of the
above is still applicable. However, many (most?) color-index mode application need a private colormap so they
can manipulate (read/write) the colormap. If, for example, your display does not have a PseudoColor visual the
Mesa/OpenGL application many generate X protocol errors when it tries to execute an XStoreColor command.

Mesa User's Guide

Page 3 of 6

Subject 3: Optimizing Mesa's performance

The following is a list of things you can do to maximize the performance of Mesa. In no particular order...

Experiment with the MESA_BACK_BUFFER environment variable if using double buffered mode. Possible
values are "P" for pixmap and "X" for XImage. When displaying on the local host and using an XImage for the
back buffer, the X shared memory extension is used to accelerate the glXSwapBuffers() function. Using an X
image is usually faster except when rendering scenes which don't use any raster operations (such as depth-test,
stenciling, dithering, etc) since the Xlib point, line and polygon functions can be used.

Experiment with different visuals with the MESA_RGB_VISUAL environment variable. Some are visuals faster
than others.

Try to maximize the number of vertices between glBegin/glEnd .

Group state changes such as glEn/Disable, glShadeModel, etc together before glBegin/glEnd to minimize the
number internal state change computations.

Disable smooth shading when not needed. Smooth shading is usually only needed for drawing lit polygons.

Disable dithering when not needed.

Disable depth testing and any other raster operations you don't need.

glDrawPixels works quickest with GL_UNSIGNED_BYTE, GL_RGB - format image data.

Use GLfloat-valued functions such as glVertexf[v], glNormal3f[v], glColorf[v] glLoadMatrixf, glMultMatrixf,
etc. because conversion to the internal GLfloat type will not be needed.

Use backface culling to reduce the rasterization bottleneck.

Using a smaller window will speed up polygon rasterization, glClear, and glXSwapBuffers.

Avoid using glColorMaterial .

Use directional lights rather than positional lights. i.e. W component of position = 0.0.

Avoid using GL_LIGHT_MODEL_LOCAL_VIEWER.

Avoid using spot lights.

Use low-numbered, consecutive lights such as GL_LIGHT0, GL_LIGHT1, GL_LIGHT2 rather than
GL_LIGHT2, GL_LIGHT5, GL_LIGHT7 for example.

Avoid using GL_NORMALIZE .

Use viewports which are completely inside the window boundaries.

Subject 4: Installing Mesa (on Unix systems)

After you've compiled the Mesa library files, as seen in Mesa/lib, you should probably move them and the
include files to a more appropriate location. I suggest copying the Mesa/lib files to /usr/local/lib and
copying the Mesa/include/GL directory to /usr/local/include.

When you compile your Mesa/OpenGL application just add -I/usr/local/include to your C compiler flags
and add -L/usr/local/lib to your linker flags.

If your system doesn't have real OpenGL libraries it may also be a good idea to make a few symbolic links so that

Mesa User's Guide

Page 4 of 6

"off the shelf" OpenGL applications compile painlessly:

ln -s /usr/local/include/GL /usr/include/GL
ln -s /usr/local/lib/libMesaGL.a /usr/lib/libGL.a
ln -s /usr/local/lib/libMesaGLU.a /usr/lib/libGLU.a

NOTE: if you've made shared Mesa libraries the symbolic links will probably have different names: .so suffix
instead of .a suffix, for example. If you do this you may also have to run a special program such as ldconfig -
v on Linux to make things work.

Then you can specify -lGL and -lGLU when linking your Mesa application and be confident that it will also
compile successfully on other systems which may have real OpenGL libraries.

Subject 5: Remote display of OpenGL apps

Normally, X11-based OpenGL applications can only be displayed on X servers which have the GLX extension.
The GLX extension decodes the GLX protocol (which is sent within the X protocol stream) and executes the
appropriate OpenGL rendering operations. You can check if your display server has this extension by examining
the output of running xdpyinfo.

If you have an OpenGL application and want to display it on a server which lacks the GLX extension, Mesa can
help you. You have two alternatives:

1. If you have the application source, recompile it (or just relink it) using the Mesa libraries instead of the
OpenGL libraries. Basically, just substitute -lGL with -lMesaGL in the Makefile. The application should
now be displayable on almost any X server.

2. If you don't have the application source but it was linked with a shared OpenGL library you can replace
the OpenGL shared library with the Mesa shared library at runtime. Naturally, this requires that your
operating system uses shared libraries (i.e. IRIX, Linux 1.2.x, SunOS, AIX, HPUX and others).

If you're not familiar with shared libraries you should read your system's documentation. Man pages on ld,
rld, ld.so or man -k library should turn up something.

Here are the steps to using a Mesa shared library in place of OpenGL:

1. You have to compile Mesa as a shared library. The Mesa Makefile already supports this for a
number of systems. Just type make in the Mesa directory to see a list of configurations and look for
yours.

2. Make a symbolic link with the same name as your system's OpenGL library which points to the
Mesa library. For example, on IRIX systems the OpenGL lib is named libGL.so so you'd create the
symbolic link with: ln -s libMesaGL.so libGL.so in the Mesa/lib directory. Note that you
could just rename the Mesa library instead of making a symbolic link, if you prefer.

3. Tell the runtime linker to look in Mesa/lib (or where ever you've installed the Mesa shared library)
for libraries before the default library directories. On IRIX 5.x systems this is done by setting the
_RLD_LIST environment variable: setenv _RLD_LIST "mesalibdir/libGL.so:DEFAULT"
where mesalibdir is the full path to the location of the symbolic link you made previously.

Now when you execute the OpenGL application the runtime linker should select the Mesa shared library
instead of the OpenGL shared library.

Using either of these methods, The application should now be displayable on almost any X server since the
OpenGL API calls will effectively be translated into ordinary X protocol by Mesa.

Why did I say "almost any X server"? Because it might be the case that the OpenGL application won't accept any
of the visual types offered by your display. For example, if the OpenGL app asks for an RGBA visual and Mesa
returns a PseudoColor visual the application may not accept it because a TrueColor or DirectColor visual was
expected. You may have to experiment with the MESA_RGB_VISUAL environment variable if you have this
problem.

Mesa User's Guide

Page 5 of 6

Back to the Mesa home page

Last updated on January 19, 1996 by brianp@ssec.wisc.edu.

Mesa User's Guide

Page 6 of 6

 A full featured cross-platform image
library.

About

News

Download

SourceForge
Home

Documentation

Tutorials

Logos

Links

Projects

Contact Us

.OIL Specifications Last Revised: 5:55 AM 12/24/2000

The .oil file format was developed to be a robust solution to the lack of truecolour
animated images (.mng is a possible one, but I've never even seen a .mng file, the
library is still in beta and the format lacks some desirable features). From this auspicious
beginning, .oil blossomed into a full-fledged image format, designed to support future
additions (such as new types of compression) without breaking earlier files.

Or, as Aggrav8d of #flipCode said:
Say something like, "It was conceived by a comity formed by the clones of history's
greatest minds, inscribed on sheets of silk by immaculate virgins using ink made by
blind monks who used ground down charred pieces of the true cross. It was prompty
lost in a sea of paganistic anarchy for a thousand years, kept secret by templar knights
and guarded by the last great Chinese dragon and curses more powerful than those of
Tutankhamen until DooMWiz performed an ancient series of rituals and rights-of-
passage until finally he was allowed the right to glimpse it's wonderous magnificence. He
promptly stole it."

.oil files are always in little endian format.

File Header
The .oil format is powerful, yet easy to read and begins with the obligatory file header.

typedef struct OILHEAD
{

char ByteHead[4];
ILuint MagicNum;
ILushort Version;
ILuint NumImages;
ILuint DirOffset;
ILuint AuthInfoOffset;
char HeadString[HEAD_STRING_LEN];

} OILHEAD;

ByteHead: This is a string that spells "OIL" (with the terminating zero).

MagicNum: This unsigned long "magic" number is 0x693D71 (or 6897009 in decimal
format). Do not ask how this number was generated, as it was a horrid process that
noone should ever submit themselves to.

Version: Simply states what version of the .oil format this file is. Unless the .oil format
undergoes some major revision, more than likely, this number will stay at 1.

NumImages: Since the .oil format supports animation, this value is the number of
images in the entire file, minus mipmaps, as they are considered "subsets" of an image.

The Official OpenIL Homepage

Page 1 of 4

DirOffset: Offset from the beginning of the file to the directory. The directory will be
explained later in this document.

AuthInfoOffset: Currently means nothing, but set it to 0 always, as it will point to the
author information in the future.

HeadString: This is a human-readable string that just describes the type of file it is. If
you want to make absolutely certain it's an .oil file and aren't convinced up to now,
check this string. You can skip it if you want -- just skip to DirOffset. The string is
currently:
"This is a graphics file based on the Open Image Library file format specification."
The length of this string is 83 bytes long (HEAD_STRING_LEN) and includes the
terminating null character.

The Directory
To accomodate for animation quite easily, .oil files have a directory at DirOffset of the
OILHEAD struct. This directory basically just tells where all of the images are located
throughout the file. With this kind of system, there is no need to keep images in order in
the file, though it is probably desirable for sequential access. You can even put the
directory at the end of the file if you so desire. There are as many directory entries as
there are number of images, so use the NumImages member of the OILHEAD struct to
determine how many directory entries to load. The directory entry is described as such:

typedef struct DIRENT
{

char Name[DIRNAME_LEN];
ILuint Offset;
ILuint ImageSize;

} DIRENT;

DIRNAME_LEN is 255 characters, and Name is the filename of the file that this image
was taken from or even just the regular name of this image. There is no significance to
this name, except as a convenience to the author.

Offset is the number of bytes from the beginning of the file to this image.
ImageSize is the total size in bytes of the image, including mipmaps and anything else
that may be present in the image.

The Image
Finally, we are down to the image itself. An image begins with its own little header:

typedef struct IMAGEHEAD
{

ILuint Width;
ILuint Height;
ILuint Depth;
ILubyte NumChan;
ILubyte Bpc;
ILubyte Type;
ILubyte Compression;
ILubyte NumMipmaps;
ILuint Duration;
ILuint SizeOfData;

} IMAGEHEAD;

Width: Specifies the number of pixels in the x direction.

Height: Specifies the number of pixels in the y direction.

Depth: Specifies the number of pixels in the z direction.

NumChan: Number of colour channels per pixel -- typically equated to bytes per pixel

The Official OpenIL Homepage

Page 2 of 4

(or bits per pixel / 8). This number is usually 1, 3 or 4, but any number is theoretically
support in the format, though support for it will not be available in any immediate
fashion.

Bpc: Bytes per channel -- usually, this is 1, showing that each channel only occupies
one byte (one byte for red, one for green, one for blue, etc.). The other common value
for this field is 2, usually signifying 64 bits per pixel.

Type: Type is what type the image format is.

If Type is 1, then the image has a palette.
If Type is 2, then the image is only luminance values (greyscale).
If Type is 3, then the image's data is in bgr (blue-green-red) format.
If Type is 4, then the image's data is in bgra (blue-green-red-alpha) format.

Compression: Tells how the image data has been compressed. This field is what allows
us to have virtually any kind of compression. Applications can even try to compress an
image various ways before deciding on the best compression style for that particular
image before compressing the image. With this field in place, we even have the option
of lossy compression! The .oil specifications were designed with lossless compression in
mind, but lossy compression may be ideally suited to certain types of images. There are
currently three "official" compression schemes right now:

Compression Type:
0: No compression. Image data is to be read directly.
1: Run-length encoding. This version of rle is adapted from the .tga specification,
which can be found at Wotsit's Format.
3: zlib compression. Just uses the uncompress and compress functions from zlib.
zlib can be found at the zlib Homepage.

Source examples for all three of these can be found in the OpenIL sources, in oil.c.

NumMipmaps: Tells how many mipmaps immediately follow the image data. These are
discussed in greater detail later in this document.

Duration: Specifies the number of milliseconds this image ("frame") should be
displayed if part of an animation.

SizeOfData: Actual size of the image data on disk. This is the compressed size, if the
image was compressed or, if not, is the size of the image data in memory and on disk.
This field is particularly useful for skipping the correct number of bytes if you do not
understand the compression type used in this image (such as new compression engines
being used in future versions of OpenIL or other programs). The main use of this field
though is for decompression of the image data, because you don't want to read to much
when decompressing, so you don't overstep an array's boundaries.

Palettes
Only if the Type field of the image's header (IMAGEHEAD) is 1, then the image has a
palette. The palette is always in bgra (blue-green-red-alpha) format. Immediately
following the SizeOfData member of the image's header is the size of the entire palette
in number of bytes as an unsigned long. For instance, if there are 256 palette entries, at
4 bytes per entry (bgra), 1024 should be written here. If the Type field of the image's
header is not 1, this unsigned long value is not present.

Image Data
All multichannel image data is in blue-green-red format instead of red-green-blue, like
some other image formats. The data is interleaved, meaning that we do not separate
data into channels. In other words, our data looks like bgrbgrbgr instead of bbbgggrrr.
Luminance data (type 2) is just read as a series of values, as is colour indexed data.
How many bytes you read per pixel is dependent on both the number of channels and
the bytes per channel. Just multiply these two values to determine how many bytes you
must read per pixel. For programs that can only make sense out of one byte per
channel, assume that the data is only in the top byte.

The Official OpenIL Homepage

Page 3 of 4

Mipmaps
Immediately following the (compressed or uncompressed) image data is the mipmaps.
Mipmaps have the exact same format as their parents and even share the same image
header, though the Duration and NumMipmaps members are ignored for mipmaps. The
duration of the mipmap is the same duration as its parent, and mipmaps are not allowed
to have mipmaps of their own.

That should be all for the .oil format. Any comments, questions or suggestions should be
sent to Denton Woods.

The Official OpenIL Homepage

Page 4 of 4

 A full featured cross-platform image
library.

About

News

Download

SourceForge
Home

Documentation

Tutorials

Logos

Links

Projects

Contact Us

Beginner's Step-by-Step Tutorial Last Revised: 11:13 PM
12/20/2000

The task of using OpenIL may seem daunting at first, with the multitudes of functions
available, but OpenIL is actually relatively easy to use. This tutorial will show you how to
create a simple OpenIL application to load, save and display a variety of images.

Checking Versions
This is a critical first step for any well-written application that utilizes OpenIL. With
almost all compilers supported, OpenIL is generated as a shared library. Even though
the function names may all be the same, earlier versions of OpenIL may have
inconsistencies that render your application unuseable. Bugfixes are constantly
introduced to try to make OpenIL the best image library ever. The drawback to shared
libraries is that a user may inadvertently (or purposefully) replace a newer version of
OpenIL with an older version than your application was designed for. Luckily, OpenIL
provides version mechanisms to check versions -- ilGetInteger, iluGetInteger and
ilutGetInteger. There are #defines in all three libraries that provide the version number
your application was compiled with to check against the version number returned by
their respective GetInteger functions: IL_VERSION, ILU_VERSION and ILUT_VERSION.

Example of version checking.
if (ilGetInteger(IL_VERSION_NUM) < IL_VERSION ||
 iluGetInteger(ILU_VERSION_NUM) < ILU_VERSION)
 ilutGetInteger(ILUT_VERSION_NUM) < ILUT_VERSION) {
 printf("OpenIL version is different...exiting!\n");
 return 1;
}

Initializing the Library
With compilers that support shared libraries, no initialization is required, as OpenIL is
automatically intialized when it is loaded by an application. Initialization is
recommended, though, to ease any porting troubles. Plus, it is only one additional line
of source. All that is needed to initialize OpenIL is to call ilStartup. No parameters are
even needed.

Image Names
OpenIL's image name system is virtually identical to OpenGL's texture name system.
First, you need an image name variable:

ILuint ImageName;

Next, generate an image name to be put in this variable:

ilGenImages(1, &ImageName);

Now bind this image name so that OpenIL performs all subsequent operations on this

The Official OpenIL Homepage

Page 1 of 3

image:

ilBindImage(ImageName);

Creating images is as simple as that. No messy pointers or anything else to mess with.
To get an in-depth explanation of image names, read the tutorial on them.

Loading an Image
Loading an image is as simple as it can be with OpenIL. For most programs, a simple
call to ilLoadImage will suffice. IF the image was not loaded due to any of various
reasons, ilLoadImage returns false, else it returns true if the image was successfully
loaded.

Code for loading an image.
ilLoadImage("monkey.tga");

Saving an Image
Saving an image is just as easy as loading an image via OpenIL. Just call ilSaveImage
with the desired filename as the only parameter. If OpenIL could not save the image,
ilSaveImage returns false, else it returns true. By default, OpenIL will refuse to
overwrite any images that already exist on the harddrive to prevent from overwriting
important data. To change this behaviour to allow overwriting of files, use ilEnable with
the IL_FILE_OVERWRITE parameter.

Code for saving an image.
ilEnable(IL_FILE_OVERWRITE);
ilSaveImage("llama.jpg");

Checking for Errors
Occassionally, errors may occur in OpenIL, such as an image not being loaded. If an
OpenIL function returns indicating an error (e.g. returns false from a function that
returns an ILboolean), an error code is set internally in OpenIL and may be retrieved via
ilGetError. Usually, the code is quite specific about what kind of error occurred. OpenIL
maintains an error stack (usually 32 errors deep) so that if more than one error is set,
an error doesn't get "lost". When you call ilGetError, the last error set is popped off of
the stack. If no error has occurred, or all the errors have been popped off of the stack,
ilGetError returns IL_NO_ERROR.

For a more in-depth discussion of errors, read the tutorial on them.

Code for detecting an error.
ILenum Error;
Error = ilGetError();

Image Information
Of course OpenIL would be pretty useless if you could not retrieve information about the
image somehow. ilGetInteger serves this purpose very well, allowing you to know pretty
much everything about an image. Some useful values to pass as parameters to
ilGetInteger are IL_IMAGE_WIDTH, IL_IMAGE_HEIGHT and IL_IMAGE_BPP. All of these
and more are defined in OpenIL's il.h header and in the ilGetInteger documentation.

Code for getting an image's width and height.
ILuint Width, Height;
Width = ilGetInteger(IL_IMAGE_WIDTH);
Height = ilGetInteger(IL_IMAGE_HEIGHT);

Image Data
To get a pointer to the image data for your own use, make a call to ilGetData . ilGetData
returns a direct pointer to the image data. Do not try to free this pointer when you are
done with it, as it does not point to a copy of the image data but to the actual image
data. The image data is freed when you delete the image.

The Official OpenIL Homepage

Page 2 of 3

Code for getting the image data.
ILubyte *Data = ilGetData();

Display the Image
OpenIL supports several different APIs for displaying an image through ilut. Right now,
we will only focus on OpenGL though, as OpenIL is OpenGL's bastard sibling. Since ilut is
a separate API, you could manually send data to OpenIL just as ilut does, though it
would require more code and time from you (similar to writing your own image routines
=).

For a much more in-depth discussion of using OpenIL with OpenGL, read this tutorial.

Before you call any ilut functions dealing with OpenGL and after you have initialized
OpenGL, you *must* call ilutRenderer with the ILUT_OPENGL parameter to initialize ilut
correctly.

Most applications will then only need to call ilutGLBindTexImage to get a corresponding
OpenGL texture from the OpenIL image. If you only need to use the OpenGL texture and
not the OpenIL image after this, it is safe to delete the image.

Example of getting an OpenGL texture.
GLuint Texture;
Texture = ilutGLBindTexImage().

Deleting an Image
To delete an image when you are through with it, call ilDeleteImages. ilDeleteImages
frees all data and makes that image name available for use in the future. ilDeleteImages
has a syntax exactly like ilGenImages, and the functions are each other's complement.

Example of deleting an image.
ilDeleteImages(1, &ImageName);

The Official OpenIL Homepage

Page 3 of 3

WELCOME

There are a lot of good and bad documents on how to code, this is
another. This is specifically targeted at the game development
community, which suffers from two serious evils in coding : the belief
that you're in such a hurry to meet deadlines that you don't have time
for clean coding practices, and the belief that every bit of code needs
to be so optimized that you can't afford clean coding practices. Both of
these are wrong, and I'll try to convince you of that. In fact, these
two mistakes make game developers some of the worst coders in the
industry. There are hardly any programming disciplines (databases,
operating systems, applications, web development, etc.) where people
swear by the false and old tenent that C++ is too costly, so they'll
stick to C, but I've heard it many times from gamers.

There's an evil irony in that the people who would take the time to read
a document like this are probably already the "good" ones, because it
means they're actively trying to improve their work. The "bad" ones will
think themselves above this sort of thing, or just not be interested.
That's a big mistake. Programming is all about efficiency, so any new
trick or technique you can find to improve your efficiency or that of
the team is a huge bonus. You should be reading books on programming,
like Scott Meyer's "Effective C++", they really do have new and valuable
things to say.

As a manager of programmers, or just a programmer on a team, you must
think : what is the job of a programmer? It's not just to write code
that "gets the job done" - it's to write code which will result in the
entire project being finished well and on time. That means that
programmers need to write code which is efficient, easy to debug, easy
to modify and extend, and easy for other coders to understand. These
later parts are just as important as efficiency, and are often
overlooked or not enforced.

EFFICIENCY IN THE RIGHT WAY

When I arrived at Eclipse, I was fond of using plain C and doing nasty
things like

if (*(++ptr) == (i = j)) { ...

because I had found in my early days that these kind of obfuscated
expressions would turn into more efficient compiled code (I also took a
perverse pleasure in it). Dave Stafford wisely told me to stop. He
pointed out a key tenet of optimization which I was aware of but had't
fully assimilated : if the code is really that important to speed, then
you should write it in assembly language or something similar; if it's
not, then it should be written for clarity, not efficiency.

This is a form of the old Knuth 80-20 rule; 20% of the code takes 80% of
the execution time (hence, optimize it!), while 80% of the code should
just be written for clarity and ease of maintenance. Part of the problem
in game programming is that most of us started out on Apple 2's or
Amigas, or 286 PC's, where the CPU was so slow that you really did have
to worry about optimizing all parts of the code. Hence we've got bad
habits. Another problem is that C and C++ optimizers used to be very
bad. They're not anymore. In fact, I challenge you to write assembly
using plain integer instructions which is faster than optimized C code.
It's possible, but it's very hard (optimizers still aren't so great with
floating point, and of course if you use multimedia extensions you can
win).

Modern optimizers are so great, that code written for clarity can often
end up faster than code written for speed. That's because it gives the
optimizer a better chance to figure out what's going on and do the right
thing. I'll go through a lot of specific cases of this later; in all
cases, I'll be using the C syntax to make the operation of the
code more blatant and restrictive and precise, and it will result in
better optimization.

Page 1 of 8

Now there's the point of algorithmic efficiency versus tight code.
The former is *MANY* orders of magnitude more important. If you have a
brute force string matcher written in assembly, I can beat it using a
clean C++ implementation of a suffix-trie searcher. Of course,
algorithms and spot optimization together will always win, but that
really takes too much time. Throughout the development process you need
to be able to change your algorithms quickly, and too much early
optimization can lock you down in a bad technique. I've spent a lot of
wasted time optimizing, because no matter how tight you make a loop to
draw a font onto the backbuffer, it'll still be too slow and you'll have
to just render the font using sprites and textures - a much better
algorithm. Even as recent as a few months ago, we spent a bunch of time
here at Surreal spot-optimizing our landscape texture generator, only to
find it was still too slow, so we threw it out and came up with a new
algorithm.

Related to this is the matter of C++ versus C. Many people are afraid of
C++, and they shouldn't be. Instead, they should simply learn about it,
what's going on, and how to make sure that it's efficient. Using C++ can
greatly improve the clarity, cleanliness, maintainability, abstraction
and modularization of code. That's not to say that you can't do all those
things with C, it's just much easier with C++. So, the advantages are
obvious.

How C++ can cause inefficiency :

1. virtual functions. Yes, they are a slight overhead. However, you
should probably not be calling virtual functions in any of your tight
loops. For example, your Vector class should not use virtual functions.
Virtual functions are useful in class heirarchies where you're
abstracting the child relationship, and this should only be done on your
top level classes, which are used in the 80% of the code that don't need
optimization. Hence, used correctly, virtual functions are no problem.

2. exception handling. This is another overhead, but it's quite easy to
get rid of : just disable it. You probably weren't using it anyway.

3. implicit class construction. This is a nasty one, and I'll talk about
it more. Basically, this happens when a class conversion is performed by
C++, or when you return a class by value from a function. This can be a
nasty little inefficiency, but if you do things right, you can avoid it.
I'll talk more about it in my list of specific tips, but there are a few
basic keys : A. use the "explicit" keyword on constructors, and B. don't
define any functions that return a class by value (this includes things
like "operator +").

There are some more evils to C++, generally caused by people who are
enamored of the features but not aware of the costs, or forgetting what
the real point is : clarity and encapsulation. These evils are things
like:

1. over-use of pass-by-address. This can cause clarity problems because
it's not obvious to the caller that the value he's passing in is being
changed. It can also lead (or is caused by) that pass-by-address is
somehow "safer" than pointers. It's not, for example addresses can
point to null (rarely) and can point into invalid space (e.g.,
if the object they pointed to was freed and the address remained).

2. over-use of proxy types and templates, derived classes and operator
overloads. In general, all of these things should only be used where
really necessary and/or natural. For example, an operator ++ that draws
a polygon is not wise. You should accomplish your goal with the simplest
possible machinery.

Good class design can actually provide the biggest improvement to
efficiency possible these days : better memory access patterns. On all
the modern game development platforms, cache missses are really the most
expensive thing you can do (CPU's are very fast at math these days).
Good encapsulation of classes lets you replace the data members with
memory-use optimized forms that may be quite nasty (such as run-time

Page 2 of 8

compressed data) but all opaqued and hidden away in the class
implementation. Thus a client may have no idea that the integer he
just requested was actually stored in only two bits.

The final rule of efficiency is to test it, and to examine the
assembler. The latter is something that people don't do enough. Say you
write some C++ and you're pretty sure that your operators and proxy
classes are getting optimized out - well, don't be "pretty sure", tell
the compiler to output the assembly and have a look, see what's really
happening. You should never write obfuscated code for efficiency
purposes unless you have hard proof that it makes a big difference.

GOOD CODING PRACTICE, WHY IT'S WORTH IT

When you start working on someone else's code, perhaps fixing a bug or
adding a feature, I'm sure you wish that it was well commented, with
clear variable names, and small function bodies.

Bad code results in near-constant debugging, due to programmers'
inability to understand how functions are supposed to be used, or
unexpected side-effects of changing some un-protected variables. Not
only does this slow down development, it makes programmers miserable,
and miserable programmers don't write good code.

One of the worst things about bad code is that it spreads. You might
hope that it could be contained, and new coders could write better
modules into the engine, but this rarely happens. Instead, all new
code which refers to the bad old modules inherets the accesses to
public variables and unclear function names and duplicated code.
Furthermore, good coders working on bad code get frustrated and don't
want to spend any excess time in that portion of the code base. The
result is that they do shoddy rushed jobs; they also are usually loathe
to fix bugs or add enhancements to the bad portions.

1. COMMENTING & CLARITY

Commenting is so obvious and important, there's no reason not to do it.
It may take a little more time as you're working, but it'll end up
saving hours if not days in debugging and frustration in the future.
Comments are especially important when there is some strange "gotcha" or
side-effects which are not obvious.

Header files should be commented, with descriptions of each function
describing its operation, and especially noting side-effects or
inefficiencies. You should consider using an automatic document
generator (like Doxygen, etc.) in which case you'll want to comment each
function using a style compatible with your documentation tool.

When you implement something and aren't sure about it, or know it's not
quite right, you should mark it with a special comment. Also, if you do
something lazily or inefficiently, you should comment that and also
indicate so in the header. You should use special searchable tags for
these, like "@@" and "^~^" so that you can easily find them later.

The key here is that you should think of every function you write as a
"service" which is provided to the coders (even if that coder is you).
When you later want to use that service, you need to know how to use it
and what it does, and how it will effect your code (eg. is it very fast?
is it very slow? can it fail in a bad way? can it require user input?).

Another important part of commenting is writing your code in a way that
comments itself. If you have some strange self-consistency requirements,
add some assert()'s; they not only are useful for debugging, but provide
documentation of the interrelationship of your variables. For example,
if you have variables like 'counter' and 'counterModulo7' then you
should sprinkle in 'assert(counterModulo7 == (counter%7));' Another
way to self-document code is through use of descriptive function names
and variables. For example, small variable names like 'i' should only be
used for loop counters that don't have any other meaning inside the

Page 3 of 8

loop.

More ways of self-commenting code include the use of the 'const'
directive which lets users know if a field will be modified (and also
helps optimization), and by making complicated tasks have complicated
names. For example, even though it's "natural" for a matrix to have an
"operator *=" multiplication method, I choose not to implement it and
make clients call "Multiply()", because I want to make it absolutely
clear to users what they're doing when they perform something that
expensive.

A little more on the 'const' directive : in some compilers, const can
improve optimization alot, because it lets the compiler know that the
variable can be stored in any way. For example, if you have a variable
which is on the heap (not the stack), the compiler cannot cache it out
in a register unless it is const, because it must assume that any time
you write to a pointer you might be writing to the memory where that
variable is stored. Not 'const'-ing is also definitely contagious,
because you cannot call a function which is improperly consted from a
function which is consted (without casting). As a side note, when a
class member function doesn't modify the "essence" of a class, then it
should be declared as if the class were const, with internal casts when
necessary. Also, whenever you cast to non-const to modify a value, use
the const_cast<> to make it clear why you're casting. You may think this
casting is uglier and requires more typing, and you're right, but it
should - consting is evil and it should be very apparent to the eye and
the fingers when it happens.

Make functions minimal, and make them do only what they say. If you have
a long function, it should probably be broken up into smaller functions
which each have a specific task. This helps debugging (because you can
test each function independently) and re-use, because those little
functions may be useful elsewhere, as well as helping readability. Along
with this goes the fact that the function can then be easily described
by their name. The opposite of this is large functions that do lots of
things as well as doing things that are not obvious, such as changing
global or static variables. These result in bugs that are hard to track
down.

2. MODULARIZATION

Modularization is key to efficient development. It allows one programmer
to work on a module of the code base without breaking or involving other
sections. Basically, it lets your coding team work like a
multi-processor machine; when the code base is not modular (eg. tangled
up with dependencies) your coders synchronize, eg. can't work
independently.

Modularization is a large topic and more difficult than you may think.
It hinges on good class design in C++. Classes should be a minimal
implementation of their natural function. If a class is quite complex,
perhaps it should be separated into a more fundamental base class and a
derived class; put these in different headers so that other modules only
need to include what they actually use. The class "interface", that is
the public functions it provides, should not lock down it's
implementation. For example, accessors that return the member variables
are only slightly better than providing access to those variables
directly. Which of course brings me to a point I perhaps glossed over :
of course those member variables must be private, because making them
public lets anyone use them, which locks down the implementation of the
class indefinitely.

Leaving classes the freedom to change is very very important. It lets
you change your mind about the implementation later if you need to,
which is almost always the case. For example, if you had an old 3d
engine with a Mesh class which held lots of individual triangles with
properties, you might now want to replace it with a Mesh that held a
triangle strip - you cannot do that if the old variables are public,
because your whole engine may be tangled up in accesses to that class.

Page 4 of 8

With a good class interface, you should be able to change the
implementation without touching any of the code that depends on that
class. In an ideal construction, that includes classes that derive from
the one you change, but that may be impossible. Avoid Get() accessors,
or at least discourage their use.

Another part of modularization is simply splitting things into separate
files and headers. This improves compile times (which is very important)
by letting files only include the interfaces they really need. Note that
hiding the implementation of classes also improves compile times. For
example, any 3d engine should hide the API of the graphics architecture
it's running on, so that only a few files in the engine actually need to
parse "d3d.h" or "opengl.h" or whatever. Splitting things up also improves
the parrallelism of work by making the source-sharing environment work
better (CVS, SourceSafe, etc.).

One nice way to acheive modularization is with helper classes and
non-member helper functions. These are *not* friend functions or
classes, which should essentially never be used, or used sparingly, since
friends break modularization and encapsulation. Non-member helper
functions for a class are functions which use only the public interface
of a class, and automate common operations. Essentially, any
manipulation of a class which happens more than once should go into a
helper. The helper functions can be in a separate file and header from
the main class. Similarly, any function in the class which could be a
helper usually should (the exception is functions which may reasonably some
day need to be members if the class was implemented differently). Making
helpers non-member functions help to minimize the class interface, which
makes the more flexible and basic. It also makes it easier to
modify and/or replace, since the core functionality is minimal and the
non-member helpers need not be changed. You can use a namespace to wrap
the non-member helpers. For example, you might have a class Vector and a
namespace VectorHelper. Then you would do things like Vector v;
 VectorHelper::SetRandom(v); // which would use v.SetMembers(x,y,z);

Helper classes are similar, but useful for larger tasks that have many
sub-tasks. The helper class is constructed on an instance of the
original class (not deriving, rather taking the original as a parameter)
and does operations on it. For example, you might have an Image class.
You could construct an ImagePainter class which would act on that Image.
It would take functions like airbrush that drew into the image, but
modify the Image data only through its public accessors.

AN EXAMPLE

Here's an actual example I just found of the bad code I used to be fond of
writing. Let's find all the flaws.

 int countCharsSame(char *a,char *b)
 {
 int count = 0;
 while (*a && *b)
 {
 count += (*a++ == *b++);
 }
 return count;
 }

This function counts the number of characters which match in the same
location in two strings. The first problem is that I make use of the fact that
'bool' has value 0 or 1 when converted to an integer. That's a no-no : using
pecularities of C (especially without commenting it), for no good reason. The
next problem is that I didn't const the input pointers correctly. Next, the
action of the function is un-documented; someone just seeing the name might not
realize that characters must "line up" to be counted as matching. Finally, this
method really should be a method of String which compares to another string (eg.
it's not modularized; if you like using 'char *' for your strings you could just
use a Str:: namespace). Here's a slightly better version :

 int String::CountCharsSame(const String & vs) const

Page 5 of 8

 {
 int count = 0;
 for(int i=0; (*this)[i] && vs[i]; i++)
 {
 if ((*this)[i] == vs[i])
 count ++;
 }
 return count;
 }

Note that we've lost some efficiency; in particular, we've taken code that could
be compiled into 'setge' and replaced it with a real branch. First of all, we
can't take that last sentence too seriously until we look at the disassembly. Second
of all, chances are this function is used rarely so clarity is more important than
efficiency.

SPECIFIC TIPS

X. use smart pointers
 They're great; auto_ptr in the STL is not. The "smart pointer" that I'm
 enamored with is one that points at a ref-counted object. When the smart
 pointer is made, a reference is taken, when it's destroyed, the reference
 is released. All functions that return pointers to that object return
 smart pointers, which makes you quite thread-safe, since anyone using an
 object always owns a reference to it (this is the standard "ref before
 returning" paradigm, which Microsoft's COM uses, for example).

X. no binary operators
 Binary operators like "operator +" require construction of a temporary.
 If you're defining operator +, it should only be on a mathematical class
 which is used in tight loops (like a Vector or Complex number). Thus,
 construction of temporaries cannot be tolerated (since most optimizers
 cannot eliminate constructors, even when they do nothing). Thus, you
 should only declare left-hand-modifying operators, like "operator +=".
 On a related note, some people think it's cool and good style to pass through
 the result of "operator +=" and "operator =". While it is true that passing
 through makes your operators equivalent to the ones on basic C types, like int,
 I don't really care to allow coders to do things like "a = b = c". Thus, I
 generally do not pass through the new value.

X. use deferred declaration of variables; also use additional scoping
 Late declaration of variables (eg. right before they're used) provides
 optimization. Similarly, using scoping (that is, adding brackets around
 the lifetime of variables) provides optimization and helps prevent bugs.
 For example, a variable's lifetime should generally be explicitly terminated
 when it becomes invalid (eg. when you delete a pointer, let that pointer go
 out of scope, and also make sure any references to it go out of scope).
 Late declaration also improves clarity by letting the user see the type
 of the variable right near its use.

X. don't use int's declared in a for() elsewhere
 It's occasionally nice in C++ to declare the loop iterator right in the loop,
 like for(int i=0;i<n;i++). This stops being nice if you use 'i' later in the
 function, outside of the loop (that's now againt ANSI C++, so it's a big no-no,
 even though most popular compilers still allow it).

X. initialize members with garbage in null constructors in debug mode.
 This is a nice little trick for making sure that classes which aren't initialized
 in their constructor do get initialized before use. For example, in my Vector class,
 I stuff "invalid float" into the members. That way I can make sure the members get
 initialized before being passed into any other function.

X. don't overuse inheritance or operator overloads. The classic rule for this
 is that inheritance means "is a", and if that's not natural then maybe you
 should use "has a" instead - that is, own an instance of the class. For example,
 at Surreal they had a "Frame" time which derived from "Matrix" and "Vector".
 Now, this is somewhat natural, because it does occasionally make sense to take
 the translational component of a Frame and use it as a vector. However, is it
 really an "is a", or would it work just as well by making Frame have a private
 member which was a Vector? In this case, the public inheritance caused several

Page 6 of 8

 problems, because it means that a Frame could be implicitly converted into a Vector
 and then used in mays that weren't expected. For example, if you used operator
 overloads to define a Frame transform operator :
 Vector Frame::operator * (Vector)
 then the operation (Frame * Frame) would actually succeed by converting the second
 Frame into a Vector by inheritance and then applying the transformation.

X. check for &lhs == &rhs in (operator =)
 Self-explanatory. Avoid bugs.

X. check for ¶ms == this in most vector/matrix ops!
 Do this any time the parameters must be read in order to modify the class (this).

X. use "explicit" on constructors.
 "Explicit" on a constructor means that the constructor cannot be invoked by C++
 implicitly (to perform a type conversion). For example, if you have a constructor
 of class B, B::B(class A), then when you pass a type of class A to a function
 that takes a class B, you may implicitly create the class B. You essentially never
 want this happen, or if you do it'll be just as good to do it explicitly.

X. avoid multiple inheritance
 It really confuses C++. Multiple inheritance can almost always be avoided by making
 a more fundamental base class, so that your classes always have a tree structure.
 Occasionally, multiple inheritance is nice. Generally, it's wise to avoid it unless
 the parent classes have orthogonal functionality (eg. operate in different spaces).
 It's very bad with common ancestors. It can be a nice thing to do with orthogonal
 parent classes, for example, you might have Renderables and Collidables, which you
 can put together via multiple inheritance.

X. inline constructors and initializer lists
 This is a little-known optimization trick. First of all, initializer lists are good
 because they eliminate doubly setting members. That is, you set a member in the body
 of the constructor, then that member is first constructed, then set. If you do it in
 the initializer list, that member is constructed with the parameter, and that's it.
 If you can write a constructor which uses only the initializer list, then you can
 declare it inline. In some cases this will result in the constructor actually being
 inlined. Note that most optimizers *still* won't optimize it out even if it's
 unecessary (see: dont use binary operators) but at least it won't be a function call.

X. virtual destructors
 If you have virtual functions in a derived class, then you probably want virtual
 destructors. A virtual destructor means that if you have a class of type B which is
 cast to a class of type A, then when you delete it you actually get the destructor of
 B. If you think about it, this is really always what you want to happen, and non-
 destructors of publicly derived classes are just memory leaks waiting to happen.

X. base classes for templates
 Templates are like a lot of things in C++ : great if used right, but can be a
 penalty if used badly or overused. In particular, templates can cause code-bloat,
 increased compiled code size, and increased compile time. One way to reduce this is
 to implement templates in terms of a common base class. For example, if you had a
 template linked list "t_link", then you might define a linked list base class "link"
 which is not a template and doesn't contain a data type. You then implement as much
 logic as possible in the link class, and make t_link derive from it. Thus, all
 instances of the t_link class will make use of the shared code from the link class.

X. use const !
 Did I mention this already? I use const all over, even on temporary variables and
 function parameters. If you need to modify a function parameter that's passed in
 by value, make a new variable and read out of the const parameter. This not only
 produces faster code, it also helps debugging, because the original parameters are
 left intact for inspection.

X. write function test loops
 When you write a difficult new function, you should make a mini program
 which tests it by throwing all kinds of input at it and confirming the
 results. This mini program might be left in the main codebase so that
 you can run it again later and make sure your functions still work. This
 is part of the larger task of writing modules which are *reliable* so that
 clients (including yourself) can use them elsewhere and not have to worry
 about acquiring bugs from the old module.

Page 7 of 8

X. use assert() and do error checking
 I can never get enough of assert(). It's awesome for debugging; every
 function should be blanketed with enough asserts to make sure that the
 values that come into it are valid, and the values that come out are
 right. The best types of asserts are self-consistency checks (which
 verify some implicit relationship between the member variables of a class),
 and checks of a function's action by performing the same task a different
 way and comparing results. Along with this goes error checking. Any
 assert() which is not in a speed-critical location may need to also have
 a real error case for the release build. All user input and data files
 should be checked for consistency and handled with proper errors. I've
 worked places where this was not done, and I spent a lot of time looking
 for bugs in my code when it was actually an invalid program input that I
 was passing in and the old code wasn't checking for errors.

X. be careful about using Hungarian notation
 (Hungarian notation is the style in which you pre-pend variable names
 with a description of their type). Hungarian can be nice when used
 with discrimination. Used excessively, it forms a type of dependence on
 implementation. That is, if I wish to change the implementation of a
 class, I may need to change the types of its members, but may not need
 to rewrite every function that uses those members. For example, if you
 used "w" for WORD data and "dw" for DWORD data, and you needed to change
 a flag field from 16 to 32 bits, you would have to change every reference
 to "wFlags" to "dwFlags". Clearly this goes against the spirit of the
 notation and the ability to seamlessly change the underlying implementation.
 (see http://msdn.microsoft.com/library/techart/hunganotat.htm)

Page 8 of 8

 OpenGL Programming Guide (Addison-Wesley
Publishing Company)

Chapter 1
Introduction to OpenGL
Chapter Objectives

After reading this chapter, you’ll be able to do the following:

Appreciate in general terms what OpenGL does

Identify different levels of rendering complexity

Understand the basic structure of an OpenGL program

Recognize OpenGL command syntax

Identify the sequence of operations of the OpenGL rendering pipeline

Understand in general terms how to animate graphics in an OpenGL program

This chapter introduces OpenGL. It has the following major sections:

"What Is OpenGL?" explains what OpenGL is, what it does and doesn’t do, and how it works.

"A Smidgen of OpenGL Code" presents a small OpenGL program and briefly discusses it. This
section also defines a few basic computer-graphics terms.

"OpenGL Command Syntax" explains some of the conventions and notations used by OpenGL
commands.

"OpenGL as a State Machine" describes the use of state variables in OpenGL and the commands
for querying, enabling, and disabling states.

"OpenGL Rendering Pipeline" shows a typical sequence of operations for processing geometric
and image data.

"OpenGL-Related Libraries" describes sets of OpenGL-related routines, including an auxiliary
library specifically written for this book to simplify programming examples.

"Animation" explains in general terms how to create pictures on the screen that move.

What Is OpenGL?

OpenGL is a software interface to graphics hardware. This interface consists of about 150 distinct
commands that you use to specify the objects and operations needed to produce interactive
three-dimensional applications.

OpenGL is designed as a streamlined, hardware-independent interface to be implemented on many
different hardware platforms. To achieve these qualities, no commands for performing windowing tasks
or obtaining user input are included in OpenGL; instead, you must work through whatever windowing
system controls the particular hardware you’re using. Similarly, OpenGL doesn’t provide high-level
commands for describing models of three-dimensional objects. Such commands might allow you to
specify relatively complicated shapes such as automobiles, parts of the body, airplanes, or molecules.
With OpenGL, you must build up your desired model from a small set of geometric primitives - points,
lines, and polygons.

A sophisticated library that provides these features could certainly be built on top of OpenGL. The
OpenGL Utility Library (GLU) provides many of the modeling features, such as quadric surfaces and
NURBS curves and surfaces. GLU is a standard part of every OpenGL implementation. Also, there is a
higher-level, object-oriented toolkit, Open Inventor, which is built atop OpenGL, and is available
separately for many implementations of OpenGL. (See "OpenGL-Related Libraries" for more
information about Open Inventor.)

Now that you know what OpenGL doesn’t do, here’s what it does do. Take a look at the color plates -
they illustrate typical uses of OpenGL. They show the scene on the cover of this book, rendered (which
is to say, drawn) by a computer using OpenGL in successively more complicated ways. The following
list describes in general terms how these pictures were made.

"Plate 1" shows the entire scene displayed as a wireframe model - that is, as if all the objects in the
scene were made of wire. Each line of wire corresponds to an edge of a primitive (typically a
polygon). For example, the surface of the table is constructed from triangular polygons that are
positioned like slices of pie.

Note that you can see portions of objects that would be obscured if the objects were solid rather
than wireframe. For example, you can see the entire model of the hills outside the window even
though most of this model is normally hidden by the wall of the room. The globe appears to be
nearly solid because it’s composed of hundreds of colored blocks, and you see the wireframe lines
for all the edges of all the blocks, even those forming the back side of the globe. The way the
globe is constructed gives you an idea of how complex objects can be created by assembling
lower-level objects.

"Plate 2" shows a depth-cued version of the same wireframe scene. Note that the lines farther from
the eye are dimmer, just as they would be in real life, thereby giving a visual cue of depth.
OpenGL uses atmospheric effects (collectively referred to as fog) to achieve depth cueing.

"Plate 3" shows an antialiased version of the wireframe scene. Antialiasing is a technique for
reducing the jagged edges (also known as jaggies) created when approximating smooth edges
using pixels - short for picture elements - which are confined to a rectangular grid. Such jaggies

are usually the most visible with near-horizontal or near-vertical lines.

"Plate 4" shows a flat-shaded, unlit version of the scene. The objects in the scene are now shown
as solid. They appear "flat" in the sense that only one color is used to render each polygon, so they
don’t appear smoothly rounded. There are no effects from any light sources.

"Plate 5" shows a lit, smooth-shaded version of the scene. Note how the scene looks much more
realistic and three-dimensional when the objects are shaded to respond to the light sources in the
room as if the objects were smoothly rounded.

"Plate 6" adds shadows and textures to the previous version of the scene. Shadows aren’t an
explicitly defined feature of OpenGL (there is no "shadow command"), but you can create them
yourself using the techniques described in Chapter 14. Texture mapping allows you to apply a
two-dimensional image onto a three-dimensional object. In this scene, the top on the table surface
is the most vibrant example of texture mapping. The wood grain on the floor and table surface are
all texture mapped, as well as the wallpaper and the toy top (on the table).

"Plate 7" shows a motion-blurred object in the scene. The sphinx (or dog, depending on your
Rorschach tendencies) appears to be captured moving forward, leaving a blurred trace of its path
of motion.

"Plate 8" shows the scene as it’s drawn for the cover of the book from a different viewpoint. This
plate illustrates that the image really is a snapshot of models of three-dimensional objects.

"Plate 9" brings back the use of fog, which was seen in "Plate 2," to show the presence of smoke
particles in the air. Note how the same effect in "Plate 2" now has a more dramatic impact in
"Plate 9."

"Plate 10" shows the depth-of-field effect, which simulates the inability of a camera lens to
maintain all objects in a photographed scene in focus. The camera focuses on a particular spot in
the scene. Objects that are significantly closer or farther than that spot are somewhat blurred.

The color plates give you an idea of the kinds of things you can do with the OpenGL graphics system.
The following list briefly describes the major graphics operations which OpenGL performs to render an
image on the screen. (See "OpenGL Rendering Pipeline" for detailed information about this order of
operations.)

1. Construct shapes from geometric primitives, thereby creating mathematical descriptions of objects.
(OpenGL considers points, lines, polygons, images, and bitmaps to be primitives.)

2. Arrange the objects in three-dimensional space and select the desired vantage point for viewing the
composed scene.

3. Calculate the color of all the objects. The color might be explicitly assigned by the application,
determined from specified lighting conditions, obtained by pasting a texture onto the objects, or
some combination of these three actions.

4. Convert the mathematical description of objects and their associated color information to pixels on

the screen. This process is called rasterization.

During these stages, OpenGL might perform other operations, such as eliminating parts of objects that
are hidden by other objects. In addition, after the scene is rasterized but before it’s drawn on the screen,
you can perform some operations on the pixel data if you want.

In some implementations (such as with the X Window System), OpenGL is designed to work even if the
computer that displays the graphics you create isn’t the computer that runs your graphics program. This
might be the case if you work in a networked computer environment where many computers are
connected to one another by a digital network. In this situation, the computer on which your program
runs and issues OpenGL drawing commands is called the client, and the computer that receives those
commands and performs the drawing is called the server. The format for transmitting OpenGL
commands (called the protocol) from the client to the server is always the same, so OpenGL programs
can work across a network even if the client and server are different kinds of computers. If an OpenGL
program isn’t running across a network, then there’s only one computer, and it is both the client and the
server.

A Smidgen of OpenGL Code

Because you can do so many things with the OpenGL graphics system, an OpenGL program can be
complicated. However, the basic structure of a useful program can be simple: Its tasks are to initialize
certain states that control how OpenGL renders and to specify objects to be rendered.

Before you look at some OpenGL code, let’s go over a few terms. Rendering, which you’ve already seen
used, is the process by which a computer creates images from models. These models, or objects, are
constructed from geometric primitives - points, lines, and polygons - that are specified by their vertices.

The final rendered image consists of pixels drawn on the screen; a pixel is the smallest visible element
the display hardware can put on the screen. Information about the pixels (for instance, what color they’re
supposed to be) is organized in memory into bitplanes. A bitplane is an area of memory that holds one
bit of information for every pixel on the screen; the bit might indicate how red a particular pixel is
supposed to be, for example. The bitplanes are themselves organized into a framebuffer, which holds all
the information that the graphics display needs to control the color and intensity of all the pixels on the
screen.

Now look at what an OpenGL program might look like. Example 1-1 renders a white rectangle on a
black background, as shown in Figure 1-1.

Figure 1-1 : White Rectangle on a Black Background

Example 1-1 : Chunk of OpenGL Code

#include <whateverYouNeed.h>

main() {

 InitializeAWindowPlease();

 glClearColor (0.0, 0.0, 0.0, 0.0);
 glClear (GL_COLOR_BUFFER_BIT);
 glColor3f (1.0, 1.0, 1.0);
 glOrtho(0.0, 1.0, 0.0, 1.0, -1.0, 1.0);
 glBegin(GL_POLYGON);
 glVertex3f (0.25, 0.25, 0.0);
 glVertex3f (0.75, 0.25, 0.0);
 glVertex3f (0.75, 0.75, 0.0);
 glVertex3f (0.25, 0.75, 0.0);
 glEnd();
 glFlush();

 UpdateTheWindowAndCheckForEvents();
}

The first line of the main() routine initializes a window on the screen: The InitializeAWindowPlease()
routine is meant as a placeholder for window system-specific routines, which are generally not OpenGL
calls. The next two lines are OpenGL commands that clear the window to black: glClearColor()
establishes what color the window will be cleared to, and glClear() actually clears the window. Once the
clearing color is set, the window is cleared to that color whenever glClear() is called. This clearing color
can be changed with another call to glClearColor(). Similarly, the glColor3f() command establishes
what color to use for drawing objects - in this case, the color is white. All objects drawn after this point
use this color, until it’s changed with another call to set the color.

The next OpenGL command used in the program, glOrtho(), specifies the coordinate system OpenGL
assumes as it draws the final image and how the image gets mapped to the screen. The next calls, which
are bracketed by glBegin() and glEnd(), define the object to be drawn - in this example, a polygon with
four vertices. The polygon’s "corners" are defined by the glVertex3f() commands. As you might be able
to guess from the arguments, which are (x, y, z) coordinates, the polygon is a rectangle on the z=0 plane.

Finally, glFlush() ensures that the drawing commands are actually executed rather than stored in a
buffer awaiting additional OpenGL commands. The UpdateTheWindowAndCheckForEvents()
placeholder routine manages the contents of the window and begins event processing.

Actually, this piece of OpenGL code isn’t well structured. You may be asking, "What happens if I try to
move or resize the window?" Or, "Do I need to reset the coordinate system each time I draw the
rectangle?" Later in this chapter, you will see replacements for both InitializeAWindowPlease() and
UpdateTheWindowAndCheckForEvents() that actually work but will require restructuring the code to
make it efficient.

OpenGL Command Syntax

As you might have observed from the simple program in the previous section, OpenGL commands use
the prefix gl and initial capital letters for each word making up the command name (recall
glClearColor(), for example). Similarly, OpenGL defined constants begin with GL_, use all capital
letters, and use underscores to separate words (like GL_COLOR_BUFFER_BIT).

You might also have noticed some seemingly extraneous letters appended to some command names (for
example, the 3f in glColor3f() and glVertex3f()). It’s true that the Color part of the command name
glColor3f() is enough to define the command as one that sets the current color. However, more than one
such command has been defined so that you can use different types of arguments. In particular, the 3
part of the suffix indicates that three arguments are given; another version of the Color command takes
four arguments. The f part of the suffix indicates that the arguments are floating-point numbers. Having
different formats allows OpenGL to accept the user’s data in his or her own data format.

Some OpenGL commands accept as many as 8 different data types for their arguments. The letters used
as suffixes to specify these data types for ISO C implementations of OpenGL are shown in Table 1-1,
along with the corresponding OpenGL type definitions. The particular implementation of OpenGL that
you’re using might not follow this scheme exactly; an implementation in C++ or Ada, for example,
wouldn’t need to.

Table 1-1 : Command Suffixes and Argument Data Types

Suffix Data Type Typical Corresponding
C-Language Type

OpenGL Type
Definition

b 8-bit integer signed char GLbyte

s 16-bit integer short GLshort

i 32-bit integer int or long GLint, GLsizei

f 32-bit floating-point float GLfloat, GLclampf

d 64-bit floating-point double GLdouble, GLclampd

ub 8-bit unsigned integer unsigned char GLubyte, GLboolean

us 16-bit unsigned integer unsigned short GLushort

ui 32-bit unsigned integer unsigned int or unsigned long GLuint, GLenum,
GLbitfield

Thus, the two commands

glVertex2i(1, 3);
glVertex2f(1.0, 3.0);

are equivalent, except that the first specifies the vertex’s coordinates as 32-bit integers, and the second
specifies them as single-precision floating-point numbers.

Note: Implementations of OpenGL have leeway in selecting which C data type to use to represent
OpenGL data types. If you resolutely use the OpenGL defined data types throughout your application,
you will avoid mismatched types when porting your code between different implementations.

Some OpenGL commands can take a final letter v, which indicates that the command takes a pointer to a
vector (or array) of values rather than a series of individual arguments. Many commands have both
vector and nonvector versions, but some commands accept only individual arguments and others require
that at least some of the arguments be specified as a vector. The following lines show how you might
use a vector and a nonvector version of the command that sets the current color:

glColor3f(1.0, 0.0, 0.0);

GLfloat color_array[] = {1.0, 0.0, 0.0};
glColor3fv(color_array);

Finally, OpenGL defines the typedef GLvoid. This is most often used for OpenGL commands that
accept pointers to arrays of values.

In the rest of this guide (except in actual code examples), OpenGL commands are referred to by their
base names only, and an asterisk is included to indicate that there may be more to the command name.
For example, glColor*() stands for all variations of the command you use to set the current color. If we
want to make a specific point about one version of a particular command, we include the suffix
necessary to define that version. For example, glVertex*v() refers to all the vector versions of the
command you use to specify vertices.

OpenGL as a State Machine

OpenGL is a state machine. You put it into various states (or modes) that then remain in effect until you
change them. As you’ve already seen, the current color is a state variable. You can set the current color
to white, red, or any other color, and thereafter every object is drawn with that color until you set the
current color to something else. The current color is only one of many state variables that OpenGL
maintains. Others control such things as the current viewing and projection transformations, line and
polygon stipple patterns, polygon drawing modes, pixel-packing conventions, positions and
characteristics of lights, and material properties of the objects being drawn. Many state variables refer to
modes that are enabled or disabled with the command glEnable() or glDisable().

Each state variable or mode has a default value, and at any point you can query the system for each
variable’s current value. Typically, you use one of the six following commands to do this:
glGetBooleanv(), glGetDoublev(), glGetFloatv(), glGetIntegerv(), glGetPointerv(), or
glIsEnabled(). Which of these commands you select depends on what data type you want the answer to
be given in. Some state variables have a more specific query command (such as glGetLight*(),
glGetError(), or glGetPolygonStipple()). In addition, you can save a collection of state variables on an
attribute stack with glPushAttrib() or glPushClientAttrib(), temporarily modify them, and later restore
the values with glPopAttrib() or glPopClientAttrib(). For temporary state changes, you should use
these commands rather than any of the query commands, since they’re likely to be more efficient.

See Appendix B for the complete list of state variables you can query. For each variable, the appendix
also lists a suggested glGet*() command that returns the variable’s value, the attribute class to which it
belongs, and the variable’s default value.

OpenGL Rendering Pipeline

Most implementations of OpenGL have a similar order of operations, a series of processing stages called
the OpenGL rendering pipeline. This ordering, as shown in Figure 1-2, is not a strict rule of how
OpenGL is implemented but provides a reliable guide for predicting what OpenGL will do.

If you are new to three-dimensional graphics, the upcoming description may seem like drinking water
out of a fire hose. You can skim this now, but come back to Figure 1-2 as you go through each chapter
in this book.

The following diagram shows the Henry Ford assembly line approach, which OpenGL takes to
processing data. Geometric data (vertices, lines, and polygons) follow the path through the row of boxes

that includes evaluators and per-vertex operations, while pixel data (pixels, images, and bitmaps) are
treated differently for part of the process. Both types of data undergo the same final steps (rasterization
and per-fragment operations) before the final pixel data is written into the framebuffer.

Figure 1-2 : Order of Operations

Now you’ll see more detail about the key stages in the OpenGL rendering pipeline.

Display Lists

All data, whether it describes geometry or pixels, can be saved in a display list for current or later use.
(The alternative to retaining data in a display list is processing the data immediately - also known as
immediate mode.) When a display list is executed, the retained data is sent from the display list just as if
it were sent by the application in immediate mode. (See Chapter 7 for more information about display
lists.)

Evaluators

All geometric primitives are eventually described by vertices. Parametric curves and surfaces may be
initially described by control points and polynomial functions called basis functions. Evaluators provide
a method to derive the vertices used to represent the surface from the control points. The method is a
polynomial mapping, which can produce surface normal, texture coordinates, colors, and spatial
coordinate values from the control points. (See Chapter 12 to learn more about evaluators.)

Per-Vertex Operations

For vertex data, next is the "per-vertex operations" stage, which converts the vertices into primitives.
Some vertex data (for example, spatial coordinates) are transformed by 4 x 4 floating-point matrices.
Spatial coordinates are projected from a position in the 3D world to a position on your screen. (See
Chapter 3 for details about the transformation matrices.)

If advanced features are enabled, this stage is even busier. If texturing is used, texture coordinates may
be generated and transformed here. If lighting is enabled, the lighting calculations are performed using
the transformed vertex, surface normal, light source position, material properties, and other lighting

information to produce a color value.

Primitive Assembly

Clipping, a major part of primitive assembly, is the elimination of portions of geometry which fall
outside a half-space, defined by a plane. Point clipping simply passes or rejects vertices; line or polygon
clipping can add additional vertices depending upon how the line or polygon is clipped.

In some cases, this is followed by perspective division, which makes distant geometric objects appear
smaller than closer objects. Then viewport and depth (z coordinate) operations are applied. If culling is
enabled and the primitive is a polygon, it then may be rejected by a culling test. Depending upon the
polygon mode, a polygon may be drawn as points or lines. (See "Polygon Details" in Chapter 2.)

The results of this stage are complete geometric primitives, which are the transformed and clipped
vertices with related color, depth, and sometimes texture-coordinate values and guidelines for the
rasterization step.

Pixel Operations

While geometric data takes one path through the OpenGL rendering pipeline, pixel data takes a different
route. Pixels from an array in system memory are first unpacked from one of a variety of formats into
the proper number of components. Next the data is scaled, biased, and processed by a pixel map. The
results are clamped and then either written into texture memory or sent to the rasterization step. (See
"Imaging Pipeline" in Chapter 8.)

If pixel data is read from the frame buffer, pixel-transfer operations (scale, bias, mapping, and clamping)
are performed. Then these results are packed into an appropriate format and returned to an array in
system memory.

There are special pixel copy operations to copy data in the framebuffer to other parts of the framebuffer
or to the texture memory. A single pass is made through the pixel transfer operations before the data is
written to the texture memory or back to the framebuffer.

Texture Assembly

An OpenGL application may wish to apply texture images onto geometric objects to make them look
more realistic. If several texture images are used, it’s wise to put them into texture objects so that you
can easily switch among them.

Some OpenGL implementations may have special resources to accelerate texture performance. There
may be specialized, high-performance texture memory. If this memory is available, the texture objects
may be prioritized to control the use of this limited and valuable resource. (See Chapter 9.)

Rasterization

Rasterization is the conversion of both geometric and pixel data into fragments. Each fragment square
corresponds to a pixel in the framebuffer. Line and polygon stipples, line width, point size, shading

model, and coverage calculations to support antialiasing are taken into consideration as vertices are
connected into lines or the interior pixels are calculated for a filled polygon. Color and depth values are
assigned for each fragment square.

Fragment Operations

Before values are actually stored into the framebuffer, a series of operations are performed that may
alter or even throw out fragments. All these operations can be enabled or disabled.

The first operation which may be encountered is texturing, where a texel (texture element) is generated
from texture memory for each fragment and applied to the fragment. Then fog calculations may be
applied, followed by the scissor test, the alpha test, the stencil test, and the depth-buffer test (the depth
buffer is for hidden-surface removal). Failing an enabled test may end the continued processing of a
fragment’s square. Then, blending, dithering, logical operation, and masking by a bitmask may be
performed. (See Chapter 6 and Chapter 10) Finally, the thoroughly processedfragment is drawn into the
appropriate buffer, where it has finally advanced to be a pixel and achieved its final resting place.

OpenGL-Related Libraries

OpenGL provides a powerful but primitive set of rendering commands, and all higher-level drawing
must be done in terms of these commands. Also, OpenGL programs have to use the underlying
mechanisms of the windowing system. A number of libraries exist to allow you to simplify your
programming tasks, including the following:

The OpenGL Utility Library (GLU) contains several routines that use lower-level OpenGL
commands to perform such tasks as setting up matrices for specific viewing orientations and
projections, performing polygon tessellation, and rendering surfaces. This library is provided as
part of every OpenGL implementation. Portions of the GLU are described in the OpenGL
Reference Manual. The more useful GLU routines are described in this guide, where they’re
relevant to the topic being discussed, such as in all of Chapter 11 and in the section "The GLU
NURBS Interface" in Chapter 12. GLU routines use the prefix glu.

For every window system, there is a library that extends the functionality of that window system to
support OpenGL rendering. For machines that use the X Window System, the OpenGL Extension
to the X Window System (GLX) is provided as an adjunct to OpenGL. GLX routines use the
prefix glX. For Microsoft Windows, the WGL routines provide the Windows to OpenGL interface.
All WGL routines use the prefix wgl. For IBM OS/2, the PGL is the Presentation Manager to
OpenGL interface, and its routines use the prefix pgl.

All these window system extension libraries are described in more detail in both Appendix C. In
addition, the GLX routines are also described in the OpenGL Reference Manual.

The OpenGL Utility Toolkit (GLUT) is a window system-independent toolkit, written by Mark
Kilgard, to hide the complexities of differing window system APIs. GLUT is the subject of the
next section, and it’s described in more detail in Mark Kilgard’s book OpenGL Programming for
the X Window System (ISBN 0-201-48359-9). GLUT routines use the prefix glut. "How to Obtain

the Sample Code" in the Preface describes how to obtain the source code for GLUT, using ftp.

Open Inventor is an object-oriented toolkit based on OpenGL which provides objects and methods
for creating interactive three-dimensional graphics applications. Open Inventor, which is written in
C++, provides prebuilt objects and a built-in event model for user interaction, high-level
application components for creating and editing three-dimensional scenes, and the ability to print
objects and exchange data in other graphics formats. Open Inventor is separate from OpenGL.

Include Files

For all OpenGL applications, you want to include the gl.h header file in every file. Almost all OpenGL
applications use GLU, the aforementioned OpenGL Utility Library, which requires inclusion of the glu.h
header file. So almost every OpenGL source file begins with

#include <GL/gl.h>
#include <GL/glu.h>

If you are directly accessing a window interface library to support OpenGL, such as GLX, AGL, PGL,
or WGL, you must include additional header files. For example, if you are calling GLX, you may need
to add these lines to your code

#include <X11/Xlib.h>
#include <GL/glx.h>

If you are using GLUT for managing your window manager tasks, you should include

#include <GL/glut.h>

Note that glut.h includes gl.h, glu.h, and glx.h automatically, so including all three files is redundant.
GLUT for Microsoft Windows includes the appropriate header file to access WGL.

GLUT, the OpenGL Utility Toolkit

As you know, OpenGL contains rendering commands but is designed to be independent of any window
system or operating system. Consequently, it contains no commands for opening windows or reading
events from the keyboard or mouse. Unfortunately, it’s impossible to write a complete graphics program
without at least opening a window, and most interesting programs require a bit of user input or other
services from the operating system or window system. In many cases, complete programs make the most
interesting examples, so this book uses GLUT to simplify opening windows, detecting input, and so on.
If you have an implementation of OpenGL and GLUT on your system, the examples in this book should
run without change when linked with them.

In addition, since OpenGL drawing commands are limited to those that generate simple geometric
primitives (points, lines, and polygons), GLUT includes several routines that create more complicated
three-dimensional objects such as a sphere, a torus, and a teapot. This way, snapshots of program output
can be interesting to look at. (Note that the OpenGL Utility Library, GLU, also has quadrics routines
that create some of the same three-dimensional objects as GLUT, such as a sphere, cylinder, or cone.)

GLUT may not be satisfactory for full-featured OpenGL applications, but you may find it a useful

starting point for learning OpenGL. The rest of this section briefly describes a small subset of GLUT
routines so that you can follow the programming examples in the rest of this book. (See Appendix D for
more details about this subset of GLUT, or see Chapters 4 and 5 of OpenGL Programming for the X
Window System for information about the rest of GLUT.)

Window Management

Five routines perform tasks necessary to initialize a window.

glutInit(int *argc, char **argv) initializes GLUT and processes any command line arguments (for
X, this would be options like -display and -geometry). glutInit() should be called before any other
GLUT routine.

glutInitDisplayMode(unsigned int mode) specifies whether to use an RGBA or color-index color
model. You can also specify whether you want a single- or double-buffered window. (If you’re
working in color-index mode, you’ll want to load certain colors into the color map; use
glutSetColor() to do this.) Finally, you can use this routine to indicate that you want the window
to have an associated depth, stencil, and/or accumulation buffer. For example, if you want a
window with double buffering, the RGBA color model, and a depth buffer, you might call
glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH).

glutInitWindowPosition(int x, int y) specifies the screen location for the upper-left corner of your
window.

glutInitWindowSize(int width, int size) specifies the size, in pixels, of your window.

int glutCreateWindow(char *string) creates a window with an OpenGL context. It returns a
unique identifier for the new window. Be warned: Until glutMainLoop() is called (see next
section), the window is not yet displayed.

The Display Callback

glutDisplayFunc(void (* func)(void)) is the first and most important event callback function you will
see. Whenever GLUT determines the contents of the window need to be redisplayed, the callback
function registered by glutDisplayFunc() is executed. Therefore, you should put all the routines you
need to redraw the scene in the display callback function.

If your program changes the contents of the window, sometimes you will have to call
glutPostRedisplay(void), which gives glutMainLoop() a nudge to call the registered display callback
at its next opportunity.

Running the Program

The very last thing you must do is call glutMainLoop(void). All windows that have been created are
now shown, and rendering to those windows is now effective. Event processing begins, and the
registered display callback is triggered. Once this loop is entered, it is never exited!

Example 1-2 shows how you might use GLUT to create the simple program shown in Example 1-1.

Note the restructuring of the code. To maximize efficiency, operations that need only be called once
(setting the background color and coordinate system) are now in a procedure called init(). Operations to
render (and possibly re-render) the scene are in the display() procedure, which is the registered GLUT
display callback.

Example 1-2 : Simple OpenGL Program Using GLUT: hello.c

#include <GL/gl.h>
#include <GL/glut.h>

void display(void)
{
/* clear all pixels */
 glClear (GL_COLOR_BUFFER_BIT);

/* draw white polygon (rectangle) with corners at
 * (0.25, 0.25, 0.0) and (0.75, 0.75, 0.0)
 */
 glColor3f (1.0, 1.0, 1.0);
 glBegin(GL_POLYGON);
 glVertex3f (0.25, 0.25, 0.0);
 glVertex3f (0.75, 0.25, 0.0);
 glVertex3f (0.75, 0.75, 0.0);
 glVertex3f (0.25, 0.75, 0.0);
 glEnd();

/* don’t wait!
 * start processing buffered OpenGL routines
 */
 glFlush ();
}

void init (void)
{
/* select clearing (background) color */
 glClearColor (0.0, 0.0, 0.0, 0.0);

/* initialize viewing values */
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 glOrtho(0.0, 1.0, 0.0, 1.0, -1.0, 1.0);
}

/*
 * Declare initial window size, position, and display mode
 * (single buffer and RGBA). Open window with "hello"
 * in its title bar. Call initialization routines.
 * Register callback function to display graphics.
 * Enter main loop and process events.
 */
int main(int argc, char** argv)
{
 glutInit(&argc, argv);
 glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);
 glutInitWindowSize (250, 250);
 glutInitWindowPosition (100, 100);
 glutCreateWindow ("hello");
 init ();
 glutDisplayFunc(display);

 glutMainLoop();
 return 0; /* ISO C requires main to return int. */
}

Handling Input Events

You can use these routines to register callback commands that are invoked when specified events occur.

glutReshapeFunc(void (* func)(int w, int h)) indicates what action should be taken when the
window is resized.

glutKeyboardFunc(void (* func)(unsigned char key, int x, int y)) and glutMouseFunc(void
(* func)(int button, int state, int x, int y)) allow you to link a keyboard key or a mouse button with a
routine that’s invoked when the key or mouse button is pressed or released.

glutMotionFunc(void (* func)(int x, int y)) registers a routine to call back when the mouse is
moved while a mouse button is also pressed.

Managing a Background Process

You can specify a function that’s to be executed if no other events are pending - for example, when the
event loop would otherwise be idle - with glutIdleFunc(void (* func)(void)). This routine takes a pointer
to the function as its only argument. Pass in NULL (zero) to disable the execution of the function.

Drawing Three-Dimensional Objects

GLUT includes several routines for drawing these three-dimensional objects:

cone icosahedron teapot

cube octahedron tetrahedron

dodecahedron sphere torus

You can draw these objects as wireframes or as solid shaded objects with surface normals defined. For
example, the routines for a cube and a sphere are as follows:

void glutWireCube(GLdouble size);

void glutSolidCube(GLdouble size);

void glutWireSphere(GLdouble radius, GLint slices, GLint stacks);

void glutSolidSphere(GLdouble radius, GLint slices, GLint stacks);

All these models are drawn centered at the origin of the world coordinate system. (See for information
on the prototypes of all these drawing routines.)

Animation

One of the most exciting things you can do on a graphics computer is draw pictures that move. Whether
you’re an engineer trying to see all sides of a mechanical part you’re designing, a pilot learning to fly an
airplane using a simulation, or merely a computer-game aficionado, it’s clear that animation is an
important part of computer graphics.

In a movie theater, motion is achieved by taking a sequence of pictures and projecting them at 24 per
second on the screen. Each frame is moved into position behind the lens, the shutter is opened, and the
frame is displayed. The shutter is momentarily closed while the film is advanced to the next frame, then
that frame is displayed, and so on. Although you’re watching 24 different frames each second, your
brain blends them all into a smooth animation. (The old Charlie Chaplin movies were shot at 16 frames
per second and are noticeably jerky.) In fact, most modern projectors display each picture twice at a rate
of 48 per second to reduce flickering. Computer-graphics screens typically refresh (redraw the picture)
approximately 60 to 76 times per second, and some even run at about 120 refreshes per second. Clearly,
60 per second is smoother than 30, and 120 is marginally better than 60. Refresh rates faster than 120,
however, are beyond the point of diminishing returns, since the human eye is only so good.

The key reason that motion picture projection works is that each frame is complete when it is displayed.
Suppose you try to do computer animation of your million-frame movie with a program like this:

open_window();
for (i = 0; i < 1000000; i++) {
 clear_the_window();
 draw_frame(i);
 wait_until_a_24th_of_a_second_is_over();
}

If you add the time it takes for your system to clear the screen and to draw a typical frame, this program
gives more and more disturbing results depending on how close to 1/24 second it takes to clear and
draw. Suppose the drawing takes nearly a full 1/24 second. Items drawn first are visible for the full 1/24
second and present a solid image on the screen; items drawn toward the end are instantly cleared as the
program starts on the next frame. They present at best a ghostlike image, since for most of the 1/24
second your eye is viewing the cleared background instead of the items that were unlucky enough to be
drawn last. The problem is that this program doesn’t display completely drawn frames; instead, you
watch the drawing as it happens.

Most OpenGL implementations provide double-buffering - hardware or software that supplies two
complete color buffers. One is displayed while the other is being drawn. When the drawing of a frame is
complete, the two buffers are swapped, so the one that was being viewed is now used for drawing, and
vice versa. This is like a movie projector with only two frames in a loop; while one is being projected on
the screen, an artist is desperately erasing and redrawing the frame that’s not visible. As long as the artist
is quick enough, the viewer notices no difference between this setup and one where all the frames are
already drawn and the projector is simply displaying them one after the other. With double-buffering,
every frame is shown only when the drawing is complete; the viewer never sees a partially drawn frame.

A modified version of the preceding program that does display smoothly animated graphics might look
like this:

open_window_in_double_buffer_mode();
for (i = 0; i < 1000000; i++) {
 clear_the_window();
 draw_frame(i);
 swap_the_buffers();
}

The Refresh That Pauses

For some OpenGL implementations, in addition to simply swapping the viewable and drawable buffers,
the swap_the_buffers() routine waits until the current screen refresh period is over so that the previous
buffer is completely displayed. This routine also allows the new buffer to be completely displayed,
starting from the beginning. Assuming that your system refreshes the display 60 times per second, this
means that the fastest frame rate you can achieve is 60 frames per second (fps), and if all your frames
can be cleared and drawn in under 1/60 second, your animation will run smoothly at that rate.

What often happens on such a system is that the frame is too complicated to draw in 1/60 second, so
each frame is displayed more than once. If, for example, it takes 1/45 second to draw a frame, you get 30
fps, and the graphics are idle for 1/30-1/45=1/90 second per frame, or one-third of the time.

In addition, the video refresh rate is constant, which can have some unexpected performance
consequences. For example, with the 1/60 second per refresh monitor and a constant frame rate, you can
run at 60 fps, 30 fps, 20 fps, 15 fps, 12 fps, and so on (60/1, 60/2, 60/3, 60/4, 60/5, ...). That means that
if you’re writing an application and gradually adding features (say it’s a flight simulator, and you’re
adding ground scenery), at first each feature you add has no effect on the overall performance - you still
get 60 fps. Then, all of a sudden, you add one new feature, and the system can’t quite draw the whole
thing in 1/60 of a second, so the animation slows from 60 fps to 30 fps because it misses the first
possible buffer-swapping time. A similar thing happens when the drawing time per frame is more than
1/30 second - the animation drops from 30 to 20 fps.

If the scene’s complexity is close to any of the magic times (1/60 second, 2/60 second, 3/60 second, and
so on in this example), then because of random variation, some frames go slightly over the time and
some slightly under. Then the frame rate is irregular, which can be visually disturbing. In this case, if
you can’t simplify the scene so that all the frames are fast enough, it might be better to add an
intentional, tiny delay to make sure they all miss, giving a constant, slower, frame rate. If your frames
have drastically different complexities, a more sophisticated approach might be necessary.

Motion = Redraw + Swap

The structure of real animation programs does not differ too much from this description. Usually, it is
easier to redraw the entire buffer from scratch for each frame than to figure out which parts require
redrawing. This is especially true with applications such as three-dimensional flight simulators where a
tiny change in the plane’s orientation changes the position of everything outside the window.

In most animations, the objects in a scene are simply redrawn with different transformations - the
viewpoint of the viewer moves, or a car moves down the road a bit, or an object is rotated slightly. If
significant recomputation is required for non-drawing operations, the attainable frame rate often slows
down. Keep in mind, however, that the idle time after the swap_the_buffers() routine can often be used
for such calculations.

OpenGL doesn’t have a swap_the_buffers() command because the feature might not be available on all
hardware and, in any case, it’s highly dependent on the window system. For example, if you are using
the X Window System and accessing it directly, you might use the following GLX routine:

void glXSwapBuffers(Display *dpy, Window window);

(See Appendix C for equivalent routines for other window systems.)

If you are using the GLUT library, you’ll want to call this routine:

void glutSwapBuffers(void);

Example 1-3 illustrates the use of glutSwapBuffers() in an example that draws a spinning square as
shown in Figure 1-3. The following example also shows how to use GLUT to control an input device
and turn on and off an idle function. In this example, the mouse buttons toggle the spinning on and off.

Figure 1-3 : Double-Buffered Rotating Square

Example 1-3 : Double-Buffered Program: double.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>
#include <stdlib.h>

static GLfloat spin = 0.0;

void init(void)
{
 glClearColor (0.0, 0.0, 0.0, 0.0);
 glShadeModel (GL_FLAT);
}

void display(void)
{
 glClear(GL_COLOR_BUFFER_BIT);
 glPushMatrix();
 glRotatef(spin, 0.0, 0.0, 1.0);
 glColor3f(1.0, 1.0, 1.0);

 glRectf(-25.0, -25.0, 25.0, 25.0);
 glPopMatrix();
 glutSwapBuffers();
}

void spinDisplay(void)
{
 spin = spin + 2.0;
 if (spin > 360.0)
 spin = spin - 360.0;
 glutPostRedisplay();
}

void reshape(int w, int h)
{
 glViewport (0, 0, (GLsizei) w, (GLsizei) h);
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 glOrtho(-50.0, 50.0, -50.0, 50.0, -1.0, 1.0);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
}

void mouse(int button, int state, int x, int y)
{
 switch (button) {
 case GLUT_LEFT_BUTTON:
 if (state == GLUT_DOWN)
 glutIdleFunc(spinDisplay);
 break;
 case GLUT_MIDDLE_BUTTON:
 if (state == GLUT_DOWN)
 glutIdleFunc(NULL);
 break;
 default:
 break;
 }
}

/*
 * Request double buffer display mode.
 * Register mouse input callback functions
 */
int main(int argc, char** argv)
{
 glutInit(&argc, argv);
 glutInitDisplayMode (GLUT_DOUBLE | GLUT_RGB);
 glutInitWindowSize (250, 250);
 glutInitWindowPosition (100, 100);
 glutCreateWindow (argv[0]);
 init ();
 glutDisplayFunc(display);
 glutReshapeFunc(reshape);
 glutMouseFunc(mouse);
 glutMainLoop();
 return 0;
}

 OpenGL Programming Guide (Addison-Wesley

Publishing Company)

 OpenGL Programming Guide (Addison-Wesley
Publishing Company)

Chapter 2
State Management and Drawing Geometric
Objects
Chapter Objectives

After reading this chapter, you’ll be able to do the following:

Clear the window to an arbitrary color

Force any pending drawing to complete

Draw with any geometric primitive - points, lines, and polygons - in two or three dimensions

Turn states on and off and query state variables

Control the display of those primitives - for example, draw dashed lines or outlined polygons

Specify normal vectors at appropriate points on the surface of solid objects

Use vertex arrays to store and access a lot of geometric data with only a few function calls

Save and restore several state variables at once

Although you can draw complex and interesting pictures using OpenGL, they’re all constructed from a
small number of primitive graphical items. This shouldn’t be too surprising - look at what Leonardo da
Vinci accomplished with just pencils and paintbrushes.

At the highest level of abstraction, there are three basic drawing operations: clearing the window,
drawing a geometric object, and drawing a raster object. Raster objects, which include such things as
two-dimensional images, bitmaps, and character fonts, are covered in Chapter 8. In this chapter, you
learn how to clear the screen and to draw geometric objects, including points, straight lines, and flat
polygons.

You might think to yourself, "Wait a minute. I’ve seen lots of computer graphics in movies and on
television, and there are plenty of beautifully shaded curved lines and surfaces. How are those drawn, if
all OpenGL can draw are straight lines and flat polygons?" Even the image on the cover of this book
includes a round table and objects on the table that have curved surfaces. It turns out that all the curved
lines and surfaces you’ve seen are approximated by large numbers of little flat polygons or straight lines,
in much the same way that the globe on the cover is constructed from a large set of rectangular blocks.

The globe doesn’t appear to have a smooth surface because the blocks are relatively large compared to
the globe. Later in this chapter, we show you how to construct curved lines and surfaces from lots of
small geometric primitives.

This chapter has the following major sections:

"A Drawing Survival Kit" explains how to clear the window and force drawing to be completed. It
also gives you basic information about controlling the color of geometric objects and describing a
coordinate system.

"Describing Points, Lines, and Polygons" shows you what the set of primitive geometric objects is
and how to draw them.

"Basic State Management" describes how to turn on and off some states (modes) and query state
variables.

"Displaying Points, Lines, and Polygons" explains what control you have over the details of how
primitives are drawn - for example, what diameter points have, whether lines are solid or dashed,
and whether polygons are outlined or filled.

"Normal Vectors" discusses how to specify normal vectors for geometric objects and (briefly)
what these vectors are for.

"Vertex Arrays" shows you how to put lots of geometric data into just a few arrays and how, with
only a few function calls, to render the geometry it describes. Reducing function calls may
increase the efficiency and performance of rendering.

"Attribute Groups" reveals how to query the current value of state variables and how to save and
restore several related state values all at once.

"Some Hints for Building Polygonal Models of Surfaces" explores the issues and techniques
involved in constructing polygonal approximations to surfaces.

One thing to keep in mind as you read the rest of this chapter is that with OpenGL, unless you specify
otherwise, every time you issue a drawing command, the specified object is drawn. This might seem
obvious, but in some systems, you first make a list of things to draw. When your list is complete, you
tell the graphics hardware to draw the items in the list. The first style is called immediate-mode graphics
and is the default OpenGL style. In addition to using immediate mode, you can choose to save some
commands in a list (called a display list) for later drawing. Immediate-mode graphics are typically easier
to program, but display lists are often more efficient. Chapter 7 tells you how to use display lists and
why you might want to use them.

A Drawing Survival Kit

This section explains how to clear the window in preparation for drawing, set the color of objects that
are to be drawn, and force drawing to be completed. None of these subjects has anything to do with
geometric objects in a direct way, but any program that draws geometric objects has to deal with these

issues.

Clearing the Window

Drawing on a computer screen is different from drawing on paper in that the paper starts out white, and
all you have to do is draw the picture. On a computer, the memory holding the picture is usually filled
with the last picture you drew, so you typically need to clear it to some background color before you
start to draw the new scene. The color you use for the background depends on the application. For a
word processor, you might clear to white (the color of the paper) before you begin to draw the text. If
you’re drawing a view from a spaceship, you clear to the black of space before beginning to draw the
stars, planets, and alien spaceships. Sometimes you might not need to clear the screen at all; for
example, if the image is the inside of a room, the entire graphics window gets covered as you draw all
the walls.

At this point, you might be wondering why we keep talking about clearing the window - why not just
draw a rectangle of the appropriate color that’s large enough to cover the entire window? First, a special
command to clear a window can be much more efficient than a general-purpose drawing command. In
addition, as you’ll see in Chapter 3, OpenGL allows you to set the coordinate system, viewing position,
and viewing direction arbitrarily, so it might be difficult to figure out an appropriate size and location for
a window-clearing rectangle. Finally, on many machines, the graphics hardware consists of multiple
buffers in addition to the buffer containing colors of the pixels that are displayed. These other buffers
must be cleared from time to time, and it’s convenient to have a single command that can clear any
combination of them. (See Chapter 10 for a discussion of all the possible buffers.)

You must also know how the colors of pixels are stored in the graphics hardware known as bitplanes.
There are two methods of storage. Either the red, green, blue, and alpha (RGBA) values of a pixel can
be directly stored in the bitplanes, or a single index value that references a color lookup table is stored.
RGBA color-display mode is more commonly used, so most of the examples in this book use it. (See
Chapter 4 for more information about both display modes.) You can safely ignore all references to alpha
values until Chapter 6.

As an example, these lines of code clear an RGBA mode window to black:

glClearColor(0.0, 0.0, 0.0, 0.0);
glClear(GL_COLOR_BUFFER_BIT);

The first line sets the clearing color to black, and the next command clears the entire window to the
current clearing color. The single parameter to glClear() indicates which buffers are to be cleared. In
this case, the program clears only the color buffer, where the image displayed on the screen is kept.
Typically, you set the clearing color once, early in your application, and then you clear the buffers as
often as necessary. OpenGL keeps track of the current clearing color as a state variable rather than
requiring you to specify it each time a buffer is cleared.

Chapter 4 and Chapter 10 talk about how other buffers are used. For now, all you need to know is that
clearing them is simple. For example, to clear both the color buffer and the depth buffer, you would use
the following sequence of commands:

glClearColor(0.0, 0.0, 0.0, 0.0);
glClearDepth(1.0);

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

In this case, the call to glClearColor() is the same as before, the glClearDepth() command specifies the
value to which every pixel of the depth buffer is to be set, and the parameter to the glClear() command
now consists of the bitwise OR of all the buffers to be cleared. The following summary of glClear()
includes a table that lists the buffers that can be cleared, their names, and the chapter where each type of
buffer is discussed.

void glClearColor(GLclampf red, GLclampf green, GLclampf blue,
GLclampf alpha);

Sets the current clearing color for use in clearing color buffers in RGBA mode. (See Chapter 4 for
more information on RGBA mode.) The red, green, blue, and alpha values are clamped if
necessary to the range [0,1]. The default clearing color is (0, 0, 0, 0), which is black.

void glClear(GLbitfield mask);
Clears the specified buffers to their current clearing values. The mask argument is a bitwise-ORed
combination of the values listed in Table 2-1.

Table 2-1 : Clearing Buffers

Buffer Name Reference

Color buffer GL_COLOR_BUFFER_BIT Chapter 4

Depth buffer GL_DEPTH_BUFFER_BIT Chapter 10

Accumulation buffer GL_ACCUM_BUFFER_BIT Chapter 10

Stencil buffer GL_STENCIL_BUFFER_BIT Chapter 10

Before issuing a command to clear multiple buffers, you have to set the values to which each buffer is to
be cleared if you want something other than the default RGBA color, depth value, accumulation color,
and stencil index. In addition to the glClearColor() and glClearDepth() commands that set the current
values for clearing the color and depth buffers, glClearIndex(), glClearAccum(), and glClearStencil()
specify the color index, accumulation color, and stencil index used to clear the corresponding buffers.
(See Chapter 4 and Chapter 10 for descriptions of these buffers and their uses.)

OpenGL allows you to specify multiple buffers because clearing is generally a slow operation, since
every pixel in the window (possibly millions) is touched, and some graphics hardware allows sets of
buffers to be cleared simultaneously. Hardware that doesn’t support simultaneous clears performs them
sequentially. The difference between

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

and

glClear(GL_COLOR_BUFFER_BIT);
glClear(GL_DEPTH_BUFFER_BIT);

is that although both have the same final effect, the first example might run faster on many machines. It
certainly won’t run more slowly.

Specifying a Color

With OpenGL, the description of the shape of an object being drawn is independent of the description of
its color. Whenever a particular geometric object is drawn, it’s drawn using the currently specified
coloring scheme. The coloring scheme might be as simple as "draw everything in fire-engine red," or
might be as complicated as "assume the object is made out of blue plastic, that there’s a yellow spotlight
pointed in such and such a direction, and that there’s a general low-level reddish-brown light
everywhere else." In general, an OpenGL programmer first sets the color or coloring scheme and then
draws the objects. Until the color or coloring scheme is changed, all objects are drawn in that color or
using that coloring scheme. This method helps OpenGL achieve higher drawing performance than
would result if it didn’t keep track of the current color.

For example, the pseudocode

set_current_color(red);
draw_object(A);
draw_object(B);
set_current_color(green);
set_current_color(blue);
draw_object(C);

draws objects A and B in red, and object C in blue. The command on the fourth line that sets the current
color to green is wasted.

Coloring, lighting, and shading are all large topics with entire chapters or large sections devoted to them.
To draw geometric primitives that can be seen, however, you need some basic knowledge of how to set
the current color; this information is provided in the next paragraphs. (See Chapter 4 and Chapter 5 for
details on these topics.)

To set a color, use the command glColor3f(). It takes three parameters, all of which are floating-point
numbers between 0.0 and 1.0. The parameters are, in order, the red, green, and blue components of the
color. You can think of these three values as specifying a "mix" of colors: 0.0 means don’t use any of
that component, and 1.0 means use all you can of that component. Thus, the code

glColor3f(1.0, 0.0, 0.0);

makes the brightest red the system can draw, with no green or blue components. All zeros makes black;
in contrast, all ones makes white. Setting all three components to 0.5 yields gray (halfway between black
and white). Here are eight commands and the colors they would set.

glColor3f(0.0, 0.0, 0.0); black
glColor3f(1.0, 0.0, 0.0); red
glColor3f(0.0, 1.0, 0.0); green
glColor3f(1.0, 1.0, 0.0); yellow
glColor3f(0.0, 0.0, 1.0); blue
glColor3f(1.0, 0.0, 1.0); magenta

glColor3f(0.0, 1.0, 1.0); cyan
glColor3f(1.0, 1.0, 1.0); white

You might have noticed earlier that the routine to set the clearing color, glClearColor(), takes four
parameters, the first three of which match the parameters for glColor3f(). The fourth parameter is the
alpha value; it’s covered in detail in "Blending" in Chapter 6. For now, set the fourth parameter of
glClearColor() to 0.0, which is its default value.

Forcing Completion of Drawing

As you saw in "OpenGL Rendering Pipeline" in Chapter 1, most modern graphics systems can be
thought of as an assembly line. The main central processing unit (CPU) issues a drawing command.
Perhaps other hardware does geometric transformations. Clipping is performed, followed by shading
and/or texturing. Finally, the values are written into the bitplanes for display. In high-end architectures,
each of these operations is performed by a different piece of hardware that’s been designed to perform
its particular task quickly. In such an architecture, there’s no need for the CPU to wait for each drawing
command to complete before issuing the next one. While the CPU is sending a vertex down the pipeline,
the transformation hardware is working on transforming the last one sent, the one before that is being
clipped, and so on. In such a system, if the CPU waited for each command to complete before issuing
the next, there could be a huge performance penalty.

In addition, the application might be running on more than one machine. For example, suppose that the
main program is running elsewhere (on a machine called the client) and that you’re viewing the results
of the drawing on your workstation or terminal (the server), which is connected by a network to the
client. In that case, it might be horribly inefficient to send each command over the network one at a time,
since considerable overhead is often associated with each network transmission. Usually, the client
gathers a collection of commands into a single network packet before sending it. Unfortunately, the
network code on the client typically has no way of knowing that the graphics program is finished
drawing a frame or scene. In the worst case, it waits forever for enough additional drawing commands to
fill a packet, and you never see the completed drawing.

For this reason, OpenGL provides the command glFlush(), which forces the client to send the network
packet even though it might not be full. Where there is no network and all commands are truly executed
immediately on the server, glFlush() might have no effect. However, if you’re writing a program that
you want to work properly both with and without a network, include a call to glFlush() at the end of
each frame or scene. Note that glFlush() doesn’t wait for the drawing to complete - it just forces the
drawing to begin execution, thereby guaranteeing that all previous commands execute in finite time even
if no further rendering commands are executed.

There are other situations where glFlush() is useful.

Software renderers that build image in system memory and don’t want to constantly update the
screen.

Implementations that gather sets of rendering commands to amortize start-up costs. The
aforementioned network transmission example is one instance of this.

void glFlush(void);

Forces previously issued OpenGL commands to begin execution, thus guaranteeing that they
complete in finite time.

A few commands - for example, commands that swap buffers in double-buffer mode - automatically
flush pending commands onto the network before they can occur.

If glFlush() isn’t sufficient for you, try glFinish(). This command flushes the network as glFlush() does
and then waits for notification from the graphics hardware or network indicating that the drawing is
complete in the framebuffer. You might need to use glFinish() if you want to synchronize tasks - for
example, to make sure that your three-dimensional rendering is on the screen before you use Display
PostScript to draw labels on top of the rendering. Another example would be to ensure that the drawing
is complete before it begins to accept user input. After you issue a glFinish() command, your graphics
process is blocked until it receives notification from the graphics hardware that the drawing is complete.
Keep in mind that excessive use of glFinish() can reduce the performance of your application, especially
if you’re running over a network, because it requires round-trip communication. If glFlush() is sufficient
for your needs, use it instead of glFinish().

void glFinish(void);
Forces all previously issued OpenGL commands to complete. This command doesn’t return until
all effects from previous commands are fully realized.

Coordinate System Survival Kit

Whenever you initially open a window or later move or resize that window, the window system will
send an event to notify you. If you are using GLUT, the notification is automated; whatever routine has
been registered to glutReshapeFunc() will be called. You must register a callback function that will

Reestablish the rectangular region that will be the new rendering canvas

Define the coordinate system to which objects will be drawn

In Chapter 3 you’ll see how to define three-dimensional coordinate systems, but right now, just create a
simple, basic two-dimensional coordinate system into which you can draw a few objects. Call
glutReshapeFunc(reshape), where reshape() is the following function shown in Example 2-1.

Example 2-1 : Reshape Callback Function

void reshape (int w, int h)
{
 glViewport (0, 0, (GLsizei) w, (GLsizei) h);
 glMatrixMode (GL_PROJECTION);
 glLoadIdentity ();
 gluOrtho2D (0.0, (GLdouble) w, 0.0, (GLdouble) h);
}

The internals of GLUT will pass this function two arguments: the width and height, in pixels, of the
new, moved, or resized window. glViewport() adjusts the pixel rectangle for drawing to be the entire
new window. The next three routines adjust the coordinate system for drawing so that the lower-left
corner is (0, 0), and the upper-right corner is (w, h) (See Figure 2-1).

To explain it another way, think about a piece of graphing paper. The w and h values in reshape()
represent how many columns and rows of squares are on your graph paper. Then you have to put axes
on the graph paper. The gluOrtho2D() routine puts the origin, (0, 0), all the way in the lowest, leftmost
square, and makes each square represent one unit. Now when you render the points, lines, and polygons
in the rest of this chapter, they will appear on this paper in easily predictable squares. (For now, keep all
your objects two-dimensional.)

Figure 2-1 : Coordinate System Defined by w = 50, h = 50

Describing Points, Lines, and Polygons

This section explains how to describe OpenGL geometric primitives. All geometric primitives are
eventually described in terms of their vertices - coordinates that define the points themselves, the
endpoints of line segments, or the corners of polygons. The next section discusses how these primitives
are displayed and what control you have over their display.

What Are Points, Lines, and Polygons?

You probably have a fairly good idea of what a mathematician means by the terms point, line, and
polygon. The OpenGL meanings are similar, but not quite the same.

One difference comes from the limitations of computer-based calculations. In any OpenGL
implementation, floating-point calculations are of finite precision, and they have round-off errors.
Consequently, the coordinates of OpenGL points, lines, and polygons suffer from the same problems.

Another more important difference arises from the limitations of a raster graphics display. On such a
display, the smallest displayable unit is a pixel, and although pixels might be less than 1/100 of an inch
wide, they are still much larger than the mathematician’s concepts of infinitely small (for points) or
infinitely thin (for lines). When OpenGL performs calculations, it assumes points are represented as
vectors of floating-point numbers. However, a point is typically (but not always) drawn as a single pixel,
and many different points with slightly different coordinates could be drawn by OpenGL on the same
pixel.

Points

A point is represented by a set of floating-point numbers called a vertex. All internal calculations are
done as if vertices are three-dimensional. Vertices specified by the user as two-dimensional (that is, with
only x and y coordinates) are assigned a z coordinate equal to zero by OpenGL.

Advanced

OpenGL works in the homogeneous coordinates of three-dimensional projective geometry, so for
internal calculations, all vertices are represented with four floating-point coordinates (x, y, z, w). If w is
different from zero, these coordinates correspond to the Euclidean three-dimensional point (x/w, y/w,
z/w). You can specify the w coordinate in OpenGL commands, but that’s rarely done. If the w coordinate
isn’t specified, it’s understood to be 1.0. (See Appendix F for more information about homogeneous
coordinate systems.)

Lines

In OpenGL, the term line refers to a line segment, not the mathematician’s version that extends to
infinity in both directions. There are easy ways to specify a connected series of line segments, or even a
closed, connected series of segments (see Figure 2-2). In all cases, though, the lines constituting the
connected series are specified in terms of the vertices at their endpoints.

Figure 2-2 : Two Connected Series of Line Segments

Polygons

Polygons are the areas enclosed by single closed loops of line segments, where the line segments are
specified by the vertices at their endpoints. Polygons are typically drawn with the pixels in the interior
filled in, but you can also draw them as outlines or a set of points. (See "Polygon Details.")

In general, polygons can be complicated, so OpenGL makes some strong restrictions on what constitutes
a primitive polygon. First, the edges of OpenGL polygons can’t intersect (a mathematician would call a
polygon satisfying this condition a simple polygon). Second, OpenGL polygons must be convex,
meaning that they cannot have indentations. Stated precisely, a region is convex if, given any two points
in the interior, the line segment joining them is also in the interior. See Figure 2-3 for some examples of
valid and invalid polygons. OpenGL, however, doesn’t restrict the number of line segments making up
the boundary of a convex polygon. Note that polygons with holes can’t be described. They are
nonconvex, and they can’t be drawn with a boundary made up of a single closed loop. Be aware that if
you present OpenGL with a nonconvex filled polygon, it might not draw it as you expect. For instance,
on most systems no more than the convex hull of the polygon would be filled. On some systems, less
than the convex hull might be filled.

Figure 2-3 : Valid and Invalid Polygons

The reason for the OpenGL restrictions on valid polygon types is that it’s simpler to provide fast
polygon-rendering hardware for that restricted class of polygons. Simple polygons can be rendered
quickly. The difficult cases are hard to detect quickly. So for maximum performance, OpenGL crosses
its fingers and assumes the polygons are simple.

Many real-world surfaces consist of nonsimple polygons, nonconvex polygons, or polygons with holes.
Since all such polygons can be formed from unions of simple convex polygons, some routines to build
more complex objects are provided in the GLU library. These routines take complex descriptions and
tessellate them, or break them down into groups of the simpler OpenGL polygons that can then be
rendered. (See "Polygon Tessellation" in Chapter 11 for more information about the tessellation
routines.)

Since OpenGL vertices are always three-dimensional, the points forming the boundary of a particular
polygon don’t necessarily lie on the same plane in space. (Of course, they do in many cases - if all the z
coordinates are zero, for example, or if the polygon is a triangle.) If a polygon’s vertices don’t lie in the
same plane, then after various rotations in space, changes in the viewpoint, and projection onto the
display screen, the points might no longer form a simple convex polygon. For example, imagine a
four-point quadrilateral where the points are slightly out of plane, and look at it almost edge-on. You
can get a nonsimple polygon that resembles a bow tie, as shown in Figure 2-4, which isn’t guaranteed to
be rendered correctly. This situation isn’t all that unusual if you approximate curved surfaces by
quadrilaterals made of points lying on the true surface. You can always avoid the problem by using
triangles, since any three points always lie on a plane.

Figure 2-4 : Nonplanar Polygon Transformed to Nonsimple Polygon

Rectangles

Since rectangles are so common in graphics applications, OpenGL provides a filled-rectangle drawing
primitive, glRect*(). You can draw a rectangle as a polygon, as described in "OpenGL Geometric
Drawing Primitives," but your particular implementation of OpenGL might have optimized glRect*()
for rectangles.

void glRect{sifd}(TYPEx1, TYPEy1, TYPEx2, TYPEy2);
void glRect{sifd}v(TYPE*v1, TYPE*v2);

Draws the rectangle defined by the corner points (x1, y1) and (x2, y2). The rectangle lies in the
plane z=0 and has sides parallel to the x- and y-axes. If the vector form of the function is used, the
corners are given by two pointers to arrays, each of which contains an (x, y) pair.

Note that although the rectangle begins with a particular orientation in three-dimensional space (in the
x-y plane and parallel to the axes), you can change this by applying rotations or other transformations.
(See Chapter 3 for information about how to do this.)

Curves and Curved Surfaces

Any smoothly curved line or surface can be approximated - to any arbitrary degree of accuracy - by
short line segments or small polygonal regions. Thus, subdividing curved lines and surfaces sufficiently
and then approximating them with straight line segments or flat polygons makes them appear curved
(see Figure 2-5). If you’re skeptical that this really works, imagine subdividing until each line segment
or polygon is so tiny that it’s smaller than a pixel on the screen.

Figure 2-5 : Approximating Curves

Even though curves aren’t geometric primitives, OpenGL does provide some direct support for
subdividing and drawing them. (See Chapter 12 for information about how to draw curves and curved
surfaces.)

Specifying Vertices

With OpenGL, all geometric objects are ultimately described as an ordered set of vertices. You use the
glVertex*() command to specify a vertex.

void glVertex{234}{sifd}[v](TYPEcoords);
Specifies a vertex for use in describing a geometric object. You can supply up to four coordinates
(x, y, z, w) for a particular vertex or as few as two (x, y) by selecting the appropriate version of the
command. If you use a version that doesn’t explicitly specify z or w, z is understood to be 0 and w
is understood to be 1. Calls to glVertex*() are only effective between a glBegin() and glEnd()
pair.

Example 2-2 provides some examples of using glVertex*().

Example 2-2 : Legal Uses of glVertex*()

glVertex2s(2, 3);
glVertex3d(0.0, 0.0, 3.1415926535898);
glVertex4f(2.3, 1.0, -2.2, 2.0);

GLdouble dvect[3] = {5.0, 9.0, 1992.0};
glVertex3dv(dvect);

The first example represents a vertex with three-dimensional coordinates (2, 3, 0). (Remember that if it
isn’t specified, the z coordinate is understood to be 0.) The coordinates in the second example are (0.0,
0.0, 3.1415926535898) (double-precision floating-point numbers). The third example represents the
vertex with three-dimensional coordinates (1.15, 0.5, -1.1). (Remember that the x, y, and z coordinates
are eventually divided by the w coordinate.) In the final example, dvect is a pointer to an array of three
double-precision floating-point numbers.

On some machines, the vector form of glVertex*() is more efficient, since only a single parameter needs
to be passed to the graphics subsystem. Special hardware might be able to send a whole series of
coordinates in a single batch. If your machine is like this, it’s to your advantage to arrange your data so
that the vertex coordinates are packed sequentially in memory. In this case, there may be some gain in
performance by using the vertex array operations of OpenGL. (See "Vertex Arrays.")

OpenGL Geometric Drawing Primitives

Now that you’ve seen how to specify vertices, you still need to know how to tell OpenGL to create a set
of points, a line, or a polygon from those vertices. To do this, you bracket each set of vertices between a
call to glBegin() and a call to glEnd(). The argument passed to glBegin() determines what sort of
geometric primitive is constructed from the vertices. For example, Example 2-3 specifies the vertices for
the polygon shown in Figure 2-6.

Example 2-3 : Filled Polygon

glBegin(GL_POLYGON);
 glVertex2f(0.0, 0.0);
 glVertex2f(0.0, 3.0);
 glVertex2f(4.0, 3.0);
 glVertex2f(6.0, 1.5);
 glVertex2f(4.0, 0.0);
glEnd();

Figure 2-6 : Drawing a Polygon or a Set of Points

If you had used GL_POINTS instead of GL_POLYGON, the primitive would have been simply the five
points shown in Figure 2-6. Table 2-2 in the following function summary for glBegin() lists the ten
possible arguments and the corresponding type of primitive.

void glBegin(GLenum mode);
Marks the beginning of a vertex-data list that describes a geometric primitive. The type of
primitive is indicated by mode, which can be any of the values shown in Table 2-2.

Table 2-2 : Geometric Primitive Names and Meanings

Value Meaning

GL_POINTS individual points

GL_LINES pairs of vertices interpreted as individual line segments

GL_LINE_STRIP series of connected line segments

GL_LINE_LOOP same as above, with a segment added between last and first vertices

GL_TRIANGLES triples of vertices interpreted as triangles

GL_TRIANGLE_STRIP linked strip of triangles

GL_TRIANGLE_FAN linked fan of triangles

GL_QUADS quadruples of vertices interpreted as four-sided polygons

GL_QUAD_STRIP linked strip of quadrilaterals

GL_POLYGON boundary of a simple, convex polygon

void glEnd(void);
Marks the end of a vertex-data list.

Figure 2-7 shows examples of all the geometric primitives listed in Table 2-2. The paragraphs that
follow the figure describe the pixels that are drawn for each of the objects. Note that in addition to
points, several types of lines and polygons are defined. Obviously, you can find many ways to draw the
same primitive. The method you choose depends on your vertex data.

Figure 2-7 : Geometric Primitive Types

As you read the following descriptions, assume that n vertices (v0, v1, v2, ... , vn-1) are described
between a glBegin() and glEnd() pair.

GL_POINTS Draws a point at each of the n vertices.

GL_LINES Draws a series of unconnected line segments. Segments are drawn
between v0 and v1, between v2 and v3, and so on. If n is odd, the last
segment is drawn between vn-3 and vn-2, and vn-1 is ignored.

GL_LINE_STRIP Draws a line segment from v0 to v1, then from v1 to v2, and so on,
finally drawing the segment from vn-2 to vn-1. Thus, a total of n-1 line
segments are drawn. Nothing is drawn unless n is larger than 1. There
are no restrictions on the vertices describing a line strip (or a line loop);
the lines can intersect arbitrarily.

GL_LINE_LOOP Same as GL_LINE_STRIP, except that a final line segment is drawn
from vn-1 to v0, completing a loop.

GL_TRIANGLES Draws a series of triangles (three-sided polygons) using vertices v0, v1,
v2, then v3, v4, v5, and so on. If n isn’t an exact multiple of 3, the final
one or two vertices are ignored.

GL_TRIANGLE_STRIP Draws a series of triangles (three-sided polygons) using vertices v0, v1,

v2, then v2, v1, v3 (note the order), then v2, v3, v4, and so on. The
ordering is to ensure that the triangles are all drawn with the same
orientation so that the strip can correctly form part of a surface.
Preserving the orientation is important for some operations, such as
culling. (See "Reversing and Culling Polygon Faces") n must be at least
3 for anything to be drawn.

GL_TRIANGLE_FAN Same as GL_TRIANGLE_STRIP, except that the vertices are v0, v1,
v2, then v0, v2, v3, then v0, v3, v4, and so on (see Figure 2-7).

GL_QUADS Draws a series of quadrilaterals (four-sided polygons) using vertices v0,
v1, v2, v3, then v4, v5, v6, v7, and so on. If n isn’t a multiple of 4, the
final one, two, or three vertices are ignored.

GL_QUAD_STRIP Draws a series of quadrilaterals (four-sided polygons) beginning with
v0, v1, v3, v2, then v2, v3, v5, v4, then v4, v5, v7, v6, and so on (see
Figure 2-7). n must be at least 4 before anything is drawn. If n is odd,
the final vertex is ignored.

GL_POLYGON Draws a polygon using the points v0, ... , vn-1 as vertices. n must be at
least 3, or nothing is drawn. In addition, the polygon specified must not
intersect itself and must be convex. If the vertices don’t satisfy these
conditions, the results are unpredictable.

Restrictions on Using glBegin() and glEnd()

The most important information about vertices is their coordinates, which are specified by the
glVertex*() command. You can also supply additional vertex-specific data for each vertex - a color, a
normal vector, texture coordinates, or any combination of these - using special commands. In addition, a
few other commands are valid between a glBegin() and glEnd() pair. Table 2-3 contains a complete list
of such valid commands.

Table 2-3 : Valid Commands between glBegin() and glEnd()

Command Purpose of Command Reference

glVertex*() set vertex coordinates Chapter 2

glColor*() set current color Chapter 4

glIndex*() set current color index Chapter 4

glNormal*() set normal vector coordinatesChapter 2

glTexCoord*() set texture coordinates Chapter 9

glEdgeFlag*() control drawing of edges Chapter 2

glMaterial*() set material properties Chapter 5

glArrayElement() extract vertex array data Chapter 2

glEvalCoord*(), glEvalPoint*() generate coordinates Chapter 12

glCallList(), glCallLists() execute display list(s) Chapter 7

No other OpenGL commands are valid between a glBegin() and glEnd() pair, and making most other
OpenGL calls generates an error. Some vertex array commands, such as glEnableClientState() and
glVertexPointer(), when called between glBegin() and glEnd(), have undefined behavior but do not
necessarily generate an error. (Also, routines related to OpenGL, such as glX*() routines have undefined
behavior between glBegin() and glEnd().) These cases should be avoided, and debugging them may be
more difficult.

Note, however, that only OpenGL commands are restricted; you can certainly include other
programming-language constructs (except for calls, such as the aforementioned glX*() routines). For
example, Example 2-4 draws an outlined circle.

Example 2-4 : Other Constructs between glBegin() and glEnd()

#define PI 3.1415926535898
GLint circle_points = 100;
glBegin(GL_LINE_LOOP);
for (i = 0; i < circle_points; i++) {
 angle = 2*PI*i/circle_points;
 glVertex2f(cos(angle), sin(angle));
}
glEnd();

Note: This example isn’t the most efficient way to draw a circle, especially if you intend to do it

repeatedly. The graphics commands used are typically very fast, but this code calculates an angle and
calls the sin() and cos() routines for each vertex; in addition, there’s the loop overhead. (Another way to
calculate the vertices of a circle is to use a GLU routine; see "Quadrics: Rendering Spheres, Cylinders,
and Disks" in Chapter 11.) If you need to draw lots of circles, calculate the coordinates of the vertices
once and save them in an array and create a display list (see Chapter 7), or use vertex arrays to render
them.

Unless they are being compiled into a display list, all glVertex*() commands should appear between
some glBegin() and glEnd() combination. (If they appear elsewhere, they don’t accomplish anything.) If
they appear in a display list, they are executed only if they appear between a glBegin() and a glEnd().
(See Chapter 7 for more information about display lists.)

Although many commands are allowed between glBegin() and glEnd(), vertices are generated only
when a glVertex*() command is issued. At the moment glVertex*() is called, OpenGL assigns the
resulting vertex the current color, texture coordinates, normal vector information, and so on. To see this,
look at the following code sequence. The first point is drawn in red, and the second and third ones in
blue, despite the extra color commands.

glBegin(GL_POINTS);
 glColor3f(0.0, 1.0, 0.0); /* green */
 glColor3f(1.0, 0.0, 0.0); /* red */
 glVertex(...);
 glColor3f(1.0, 1.0, 0.0); /* yellow */
 glColor3f(0.0, 0.0, 1.0); /* blue */
 glVertex(...);
 glVertex(...);
glEnd();

You can use any combination of the 24 versions of the glVertex*() command between glBegin() and
glEnd(), although in real applications all the calls in any particular instance tend to be of the same form.
If your vertex-data specification is consistent and repetitive (for example, glColor*, glVertex*,
glColor*, glVertex*,...), you may enhance your program’s performance by using vertex arrays. (See
"Vertex Arrays.")

Basic State Management

In the previous section, you saw an example of a state variable, the current RGBA color, and how it can
be associated with a primitive. OpenGL maintains many states and state variables. An object may be
rendered with lighting, texturing, hidden surface removal, fog, or some other states affecting its
appearance.

By default, most of these states are initially inactive. These states may be costly to activate; for example,
turning on texture mapping will almost certainly slow down the speed of rendering a primitive.
However, the quality of the image will improve and look more realistic, due to the enhanced graphics
capabilities.

To turn on and off many of these states, use these two simple commands:

void glEnable(GLenum cap);
void glDisable(GLenum cap);

glEnable() turns on a capability, and glDisable() turns it off. There are over 40 enumerated
values that can be passed as a parameter to glEnable() or glDisable(). Some examples of these
are GL_BLEND (which controls blending RGBA values), GL_DEPTH_TEST (which controls
depth comparisons and updates to the depth buffer), GL_FOG (which controls fog),
GL_LINE_STIPPLE (patterned lines), GL_LIGHTING (you get the idea), and so forth.

You can also check if a state is currently enabled or disabled.

GLboolean glIsEnabled(GLenum capability)
Returns GL_TRUE or GL_FALSE, depending upon whether the queried capability is currently
activated.

The states you have just seen have two settings: on and off. However, most OpenGL routines set values
for more complicated state variables. For example, the routine glColor3f() sets three values, which are
part of the GL_CURRENT_COLOR state. There are five querying routines used to find out what values
are set for many states:

void glGetBooleanv(GLenum pname, GLboolean *params);
void glGetIntegerv(GLenum pname, GLint *params);
void glGetFloatv(GLenum pname, GLfloat *params);
void glGetDoublev(GLenum pname, GLdouble *params);
void glGetPointerv(GLenum pname, GLvoid **params);

Obtains Boolean, integer, floating-point, double-precision, or pointer state variables. The pname
argument is a symbolic constant indicating the state variable to return, and params is a pointer to
an array of the indicated type in which to place the returned data. See the tables in Appendix B for
the possible values for pname. For example, to get the current RGBA color, a table in Appendix B
suggests you use glGetIntegerv(GL_CURRENT_COLOR, params) or
glGetFloatv(GL_CURRENT_COLOR, params). A type conversion is performed if necessary to
return the desired variable as the requested data type.

These querying routines handle most, but not all, requests for obtaining state information. (See "The
Query Commands" in Appendix B for an additional 16 querying routines.)

Displaying Points, Lines, and Polygons

By default, a point is drawn as a single pixel on the screen, a line is drawn solid and one pixel wide, and
polygons are drawn solidly filled in. The following paragraphs discuss the details of how to change
these default display modes.

Point Details

To control the size of a rendered point, use glPointSize() and supply the desired size in pixels as the
argument.

void glPointSize(GLfloat size);
Sets the width in pixels for rendered points; size must be greater than 0.0 and by default is 1.0.

The actual collection of pixels on the screen which are drawn for various point widths depends on
whether antialiasing is enabled. (Antialiasing is a technique for smoothing points and lines as they’re
rendered; see "Antialiasing" in Chapter 6 for more detail.) If antialiasing is disabled (the default),
fractional widths are rounded to integer widths, and a screen-aligned square region of pixels is drawn.
Thus, if the width is 1.0, the square is 1 pixel by 1 pixel; if the width is 2.0, the square is 2 pixels by 2
pixels, and so on.

With antialiasing enabled, a circular group of pixels is drawn, and the pixels on the boundaries are
typically drawn at less than full intensity to give the edge a smoother appearance. In this mode,
non-integer widths aren’t rounded.

Most OpenGL implementations support very large point sizes. The maximum size for antialiased points
is queryable, but the same information is not available for standard, aliased points. A particular
implementation, however, might limit the size of standard, aliased points to not less than its maximum
antialiased point size, rounded to the nearest integer value. You can obtain this floating-point value by
using GL_POINT_SIZE_RANGE with glGetFloatv().

Line Details

With OpenGL, you can specify lines with different widths and lines that are stippled in various ways -
dotted, dashed, drawn with alternating dots and dashes, and so on.

Wide Lines

void glLineWidth(GLfloat width);
Sets the width in pixels for rendered lines; width must be greater than 0.0 and by default is 1.0.

The actual rendering of lines is affected by the antialiasing mode, in the same way as for points. (See
"Antialiasing" in Chapter 6.) Without antialiasing, widths of 1, 2, and 3 draw lines 1, 2, and 3 pixels
wide. With antialiasing enabled, non-integer line widths are possible, and pixels on the boundaries are
typically drawn at less than full intensity. As with point sizes, a particular OpenGL implementation
might limit the width of nonantialiased lines to its maximum antialiased line width, rounded to the
nearest integer value. You can obtain this floating-point value by using GL_LINE_WIDTH_RANGE
with glGetFloatv().

Note: Keep in mind that by default lines are 1 pixel wide, so they appear wider on lower-resolution
screens. For computer displays, this isn’t typically an issue, but if you’re using OpenGL to render to a
high-resolution plotter, 1-pixel lines might be nearly invisible. To obtain resolution-independent line
widths, you need to take into account the physical dimensions of pixels.

Advanced

With nonantialiased wide lines, the line width isn’t measured perpendicular to the line. Instead, it’s
measured in the y direction if the absolute value of the slope is less than 1.0; otherwise, it’s measured in
the x direction. The rendering of an antialiased line is exactly equivalent to the rendering of a filled

rectangle of the given width, centered on the exact line.

Stippled Lines

To make stippled (dotted or dashed) lines, you use the command glLineStipple() to define the stipple
pattern, and then you enable line stippling with glEnable().

glLineStipple(1, 0x3F07);
glEnable(GL_LINE_STIPPLE);

void glLineStipple(GLint factor, GLushort pattern);
Sets the current stippling pattern for lines. The pattern argument is a 16-bit series of 0s and 1s,
and it’s repeated as necessary to stipple a given line. A 1 indicates that drawing occurs, and 0 that
it does not, on a pixel-by-pixel basis, beginning with the low-order bit of the pattern. The pattern
can be stretched out by using factor, which multiplies each subseries of consecutive 1s and 0s.
Thus, if three consecutive 1s appear in the pattern, they’re stretched to six if factor is 2. factor is
clamped to lie between 1 and 255. Line stippling must be enabled by passing GL_LINE_STIPPLE
to glEnable(); it’s disabled by passing the same argument to glDisable().

With the preceding example and the pattern 0x3F07 (which translates to 0011111100000111 in binary),
a line would be drawn with 3 pixels on, then 5 off, 6 on, and 2 off. (If this seems backward, remember
that the low-order bit is used first.) If factor had been 2, the pattern would have been elongated: 6 pixels
on, 10 off, 12 on, and 4 off. Figure 2-8 shows lines drawn with different patterns and repeat factors. If
you don’t enable line stippling, drawing proceeds as if pattern were 0xFFFF and factor 1. (Use
glDisable() with GL_LINE_STIPPLE to disable stippling.) Note that stippling can be used in
combination with wide lines to produce wide stippled lines.

Figure 2-8 : Stippled Lines

One way to think of the stippling is that as the line is being drawn, the pattern is shifted by 1 bit each
time a pixel is drawn (or factor pixels are drawn, if factor isn’t 1). When a series of connected line
segments is drawn between a single glBegin() and glEnd(), the pattern continues to shift as one segment
turns into the next. This way, a stippling pattern continues across a series of connected line segments.
When glEnd() is executed, the pattern is reset, and - if more lines are drawn before stippling is disabled
- the stippling restarts at the beginning of the pattern. If you’re drawing lines with GL_LINES, the
pattern resets for each independent line.

Example 2-5 illustrates the results of drawing with a couple of different stipple patterns and line widths.
It also illustrates what happens if the lines are drawn as a series of individual segments instead of a

single connected line strip. The results of running the program appear in Figure 2-9.

Figure 2-9 : Wide Stippled Lines

Example 2-5 : Line Stipple Patterns: lines.c

#include <GL/gl.h>
#include <GL/glut.h>

#define drawOneLine(x1,y1,x2,y2) glBegin(GL_LINES); \
 glVertex2f ((x1),(y1)); glVertex2f ((x2),(y2)); glEnd();

void init(void)
{
 glClearColor (0.0, 0.0, 0.0, 0.0);
 glShadeModel (GL_FLAT);
}

void display(void)
{
 int i;

 glClear (GL_COLOR_BUFFER_BIT);
/* select white for all lines */
 glColor3f (1.0, 1.0, 1.0);

/* in 1st row, 3 lines, each with a different stipple */
 glEnable (GL_LINE_STIPPLE);

 glLineStipple (1, 0x0101); /* dotted */
 drawOneLine (50.0, 125.0, 150.0, 125.0);
 glLineStipple (1, 0x00FF); /* dashed */
 drawOneLine (150.0, 125.0, 250.0, 125.0);
 glLineStipple (1, 0x1C47); /* dash/dot/dash */
 drawOneLine (250.0, 125.0, 350.0, 125.0);
/* in 2nd row, 3 wide lines, each with different stipple */
 glLineWidth (5.0);
 glLineStipple (1, 0x0101); /* dotted */
 drawOneLine (50.0, 100.0, 150.0, 100.0);
 glLineStipple (1, 0x00FF); /* dashed */
 drawOneLine (150.0, 100.0, 250.0, 100.0);
 glLineStipple (1, 0x1C47); /* dash/dot/dash */
 drawOneLine (250.0, 100.0, 350.0, 100.0);
 glLineWidth (1.0);

/* in 3rd row, 6 lines, with dash/dot/dash stipple */
/* as part of a single connected line strip */
 glLineStipple (1, 0x1C47); /* dash/dot/dash */

 glBegin (GL_LINE_STRIP);
 for (i = 0; i < 7; i++)
 glVertex2f (50.0 + ((GLfloat) i * 50.0), 75.0);
 glEnd ();

/* in 4th row, 6 independent lines with same stipple */
 for (i = 0; i < 6; i++) {
 drawOneLine (50.0 + ((GLfloat) i * 50.0), 50.0,
 50.0 + ((GLfloat)(i+1) * 50.0), 50.0);
 }

/* in 5th row, 1 line, with dash/dot/dash stipple */
/* and a stipple repeat factor of 5 */
 glLineStipple (5, 0x1C47); /* dash/dot/dash */
 drawOneLine (50.0, 25.0, 350.0, 25.0);

 glDisable (GL_LINE_STIPPLE);
 glFlush ();
}

void reshape (int w, int h)
{
 glViewport (0, 0, (GLsizei) w, (GLsizei) h);
 glMatrixMode (GL_PROJECTION);
 glLoadIdentity ();
 gluOrtho2D (0.0, (GLdouble) w, 0.0, (GLdouble) h);
}
int main(int argc, char** argv)
{
 glutInit(&argc, argv);
 glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);
 glutInitWindowSize (400, 150);
 glutInitWindowPosition (100, 100);
 glutCreateWindow (argv[0]);
 init ();
 glutDisplayFunc(display);
 glutReshapeFunc(reshape);
 glutMainLoop();
 return 0;
}

Polygon Details

Polygons are typically drawn by filling in all the pixels enclosed within the boundary, but you can also
draw them as outlined polygons or simply as points at the vertices. A filled polygon might be solidly
filled or stippled with a certain pattern. Although the exact details are omitted here, filled polygons are
drawn in such a way that if adjacent polygons share an edge or vertex, the pixels making up the edge or
vertex are drawn exactly once - they’re included in only one of the polygons. This is done so that
partially transparent polygons don’t have their edges drawn twice, which would make those edges
appear darker (or brighter, depending on what color you’re drawing with). Note that it might result in
narrow polygons having no filled pixels in one or more rows or columns of pixels. Antialiasing
polygons is more complicated than for points and lines. (See "Antialiasing" in Chapter 6 for details.)

Polygons as Points, Outlines, or Solids

A polygon has two sides - front and back - and might be rendered differently depending on which side is
facing the viewer. This allows you to have cutaway views of solid objects in which there is an obvious

distinction between the parts that are inside and those that are outside. By default, both front and back
faces are drawn in the same way. To change this, or to draw only outlines or vertices, use
glPolygonMode().

void glPolygonMode(GLenum face, GLenum mode);
Controls the drawing mode for a polygon’s front and back faces. The parameter face can be
GL_FRONT_AND_BACK, GL_FRONT, or GL_BACK; mode can be GL_POINT, GL_LINE, or
GL_FILL to indicate whether the polygon should be drawn as points, outlined, or filled. By
default, both the front and back faces are drawn filled.

For example, you can have the front faces filled and the back faces outlined with two calls to this
routine:

glPolygonMode(GL_FRONT, GL_FILL);
glPolygonMode(GL_BACK, GL_LINE);

Reversing and Culling Polygon Faces

By convention, polygons whose vertices appear in counterclockwise order on the screen are called
front-facing. You can construct the surface of any "reasonable" solid - a mathematician would call such
a surface an orientable manifold (spheres, donuts, and teapots are orientable; Klein bottles and Möbius
strips aren’t) - from polygons of consistent orientation. In other words, you can use all clockwise
polygons, or all counterclockwise polygons. (This is essentially the mathematical definition of
orientable.)

Suppose you’ve consistently described a model of an orientable surface but that you happen to have the
clockwise orientation on the outside. You can swap what OpenGL considers the back face by using the
function glFrontFace(), supplying the desired orientation for front-facing polygons.

void glFrontFace(GLenum mode);
Controls how front-facing polygons are determined. By default, mode is GL_CCW, which
corresponds to a counterclockwise orientation of the ordered vertices of a projected polygon in
window coordinates. If mode is GL_CW, faces with a clockwise orientation are considered
front-facing.

In a completely enclosed surface constructed from opaque polygons with a consistent orientation, none
of the back-facing polygons are ever visible - they’re always obscured by the front-facing polygons. If
you are outside this surface, you might enable culling to discard polygons that OpenGL determines are
back-facing. Similarly, if you are inside the object, only back-facing polygons are visible. To instruct
OpenGL to discard front- or back-facing polygons, use the command glCullFace() and enable culling
with glEnable().

void glCullFace(GLenum mode);
Indicates which polygons should be discarded (culled) before they’re converted to screen
coordinates. The mode is either GL_FRONT, GL_BACK, or GL_FRONT_AND_BACK to indicate
front-facing, back-facing, or all polygons. To take effect, culling must be enabled using
glEnable() with GL_CULL_FACE; it can be disabled with glDisable() and the same argument.

Advanced

In more technical terms, the decision of whether a face of a polygon is front- or back-facing depends on
the sign of the polygon’s area computed in window coordinates. One way to compute this area is

where xi and yi are the x and y window coordinates of the ith vertex of the n-vertex polygon and

Assuming that GL_CCW has been specified, if a>0, the polygon corresponding to that vertex is
considered to be front-facing; otherwise, it’s back-facing. If GL_CW is specified and if a<0, then the
corresponding polygon is front-facing; otherwise, it’s back-facing.

Try This

Modify Example 2-5 by adding some filled polygons. Experiment with different colors. Try different
polygon modes. Also enable culling to see its effect.

Stippling Polygons

By default, filled polygons are drawn with a solid pattern. They can also be filled with a 32-bit by 32-bit
window-aligned stipple pattern, which you specify with glPolygonStipple().

void glPolygonStipple(const GLubyte *mask);
Defines the current stipple pattern for filled polygons. The argument mask is a pointer to a 32 ×
32 bitmap that’s interpreted as a mask of 0s and 1s. Where a 1 appears, the corresponding pixel in
the polygon is drawn, and where a 0 appears, nothing is drawn. Figure 2-10 shows how a stipple
pattern is constructed from the characters in mask. Polygon stippling is enabled and disabled by
using glEnable() and glDisable() with GL_POLYGON_STIPPLE as the argument. The
interpretation of the mask data is affected by the glPixelStore*() GL_UNPACK* modes. (See
"Controlling Pixel-Storage Modes" in Chapter 8.)

In addition to defining the current polygon stippling pattern, you must enable stippling:

glEnable(GL_POLYGON_STIPPLE);

Use glDisable() with the same argument to disable polygon stippling.

Figure 2-11 shows the results of polygons drawn unstippled and then with two different stippling
patterns. The program is shown in Example 2-6. The reversal of white to black (from Figure 2-10 to
Figure 2-11) occurs because the program draws in white over a black background, using the pattern in
Figure 2-10 as a stencil.

Figure 2-10 : Constructing a Polygon Stipple Pattern

Figure 2-11 : Stippled Polygons

Example 2-6 : Polygon Stipple Patterns: polys.c

#include <GL/gl.h>
#include <GL/glut.h>
void display(void)
{
 GLubyte fly[] = {
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x03, 0x80, 0x01, 0xC0, 0x06, 0xC0, 0x03, 0x60,
 0x04, 0x60, 0x06, 0x20, 0x04, 0x30, 0x0C, 0x20,
 0x04, 0x18, 0x18, 0x20, 0x04, 0x0C, 0x30, 0x20,
 0x04, 0x06, 0x60, 0x20, 0x44, 0x03, 0xC0, 0x22,
 0x44, 0x01, 0x80, 0x22, 0x44, 0x01, 0x80, 0x22,
 0x44, 0x01, 0x80, 0x22, 0x44, 0x01, 0x80, 0x22,
 0x44, 0x01, 0x80, 0x22, 0x44, 0x01, 0x80, 0x22,
 0x66, 0x01, 0x80, 0x66, 0x33, 0x01, 0x80, 0xCC,
 0x19, 0x81, 0x81, 0x98, 0x0C, 0xC1, 0x83, 0x30,
 0x07, 0xe1, 0x87, 0xe0, 0x03, 0x3f, 0xfc, 0xc0,
 0x03, 0x31, 0x8c, 0xc0, 0x03, 0x33, 0xcc, 0xc0,
 0x06, 0x64, 0x26, 0x60, 0x0c, 0xcc, 0x33, 0x30,
 0x18, 0xcc, 0x33, 0x18, 0x10, 0xc4, 0x23, 0x08,
 0x10, 0x63, 0xC6, 0x08, 0x10, 0x30, 0x0c, 0x08,
 0x10, 0x18, 0x18, 0x08, 0x10, 0x00, 0x00, 0x08};
 GLubyte halftone[] = {
 0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
 0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
 0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
 0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
 0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
 0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
 0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
 0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
 0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
 0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
 0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
 0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
 0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
 0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
 0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
 0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55};

 glClear (GL_COLOR_BUFFER_BIT);
 glColor3f (1.0, 1.0, 1.0);

/* draw one solid, unstippled rectangle, */
/* then two stippled rectangles */
 glRectf (25.0, 25.0, 125.0, 125.0);
 glEnable (GL_POLYGON_STIPPLE);
 glPolygonStipple (fly);
 glRectf (125.0, 25.0, 225.0, 125.0);
 glPolygonStipple (halftone);
 glRectf (225.0, 25.0, 325.0, 125.0);
 glDisable (GL_POLYGON_STIPPLE);

 glFlush ();
}

void init (void)

{
 glClearColor (0.0, 0.0, 0.0, 0.0);
 glShadeModel (GL_FLAT);
}

void reshape (int w, int h)
{
 glViewport (0, 0, (GLsizei) w, (GLsizei) h);
 glMatrixMode (GL_PROJECTION);
 glLoadIdentity ();
 gluOrtho2D (0.0, (GLdouble) w, 0.0, (GLdouble) h);
}

int main(int argc, char** argv)
{
 glutInit(&argc, argv);
 glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);
 glutInitWindowSize (350, 150);
 glutCreateWindow (argv[0]);
 init ();
 glutDisplayFunc(display);
 glutReshapeFunc(reshape);
 glutMainLoop();
 return 0;
}

You might want to use display lists to store polygon stipple patterns to maximize efficiency. (See
"Display-List Design Philosophy" in Chapter 7.)

Marking Polygon Boundary Edges

Advanced

OpenGL can render only convex polygons, but many nonconvex polygons arise in practice. To draw
these nonconvex polygons, you typically subdivide them into convex polygons - usually triangles, as
shown in Figure 2-12 - and then draw the triangles. Unfortunately, if you decompose a general polygon
into triangles and draw the triangles, you can’t really use glPolygonMode() to draw the polygon’s
outline, since you get all the triangle outlines inside it. To solve this problem, you can tell OpenGL
whether a particular vertex precedes a boundary edge; OpenGL keeps track of this information by
passing along with each vertex a bit indicating whether that vertex is followed by a boundary edge.
Then, when a polygon is drawn in GL_LINE mode, the nonboundary edges aren’t drawn. In Figure
2-12, the dashed lines represent added edges.

Figure 2-12 : Subdividing a Nonconvex Polygon

By default, all vertices are marked as preceding a boundary edge, but you can manually control the

setting of the edge flag with the command glEdgeFlag*(). This command is used between glBegin() and
glEnd() pairs, and it affects all the vertices specified after it until the next glEdgeFlag() call is made. It
applies only to vertices specified for polygons, triangles, and quads, not to those specified for strips of
triangles or quads.

void glEdgeFlag(GLboolean flag);
void glEdgeFlagv(const GLboolean *flag);

Indicates whether a vertex should be considered as initializing a boundary edge of a polygon. If
flag is GL_TRUE, the edge flag is set to TRUE (the default), and any vertices created are
considered to precede boundary edges until this function is called again with flag being
GL_FALSE.

As an example, Example 2-7 draws the outline shown in Figure 2-13.

Figure 2-13 : Outlined Polygon Drawn Using Edge Flags

Example 2-7 : Marking Polygon Boundary Edges

glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
glBegin(GL_POLYGON);
 glEdgeFlag(GL_TRUE);
 glVertex3fv(V0);
 glEdgeFlag(GL_FALSE);
 glVertex3fv(V1);
 glEdgeFlag(GL_TRUE);
 glVertex3fv(V2);
glEnd();

Normal Vectors

A normal vector (or normal, for short) is a vector that points in a direction that’s perpendicular to a
surface. For a flat surface, one perpendicular direction is the same for every point on the surface, but for
a general curved surface, the normal direction might be different at each point on the surface. With
OpenGL, you can specify a normal for each polygon or for each vertex. Vertices of the same polygon
might share the same normal (for a flat surface) or have different normals (for a curved surface). But
you can’t assign normals anywhere other than at the vertices.

An object’s normal vectors define the orientation of its surface in space - in particular, its orientation
relative to light sources. These vectors are used by OpenGL to determine how much light the object
receives at its vertices. Lighting - a large topic by itself - is the subject of Chapter 5, and you might want

to review the following information after you’ve read that chapter. Normal vectors are discussed briefly
here because you define normal vectors for an object at the same time you define the object’s geometry.

You use glNormal*() to set the current normal to the value of the argument passed in. Subsequent calls
to glVertex*() cause the specified vertices to be assigned the current normal. Often, each vertex has a
different normal, which necessitates a series of alternating calls, as in Example 2-8.

Example 2-8 : Surface Normals at Vertices

glBegin (GL_POLYGON);
 glNormal3fv(n0);
 glVertex3fv(v0);
 glNormal3fv(n1);
 glVertex3fv(v1);
 glNormal3fv(n2);
 glVertex3fv(v2);
 glNormal3fv(n3);
 glVertex3fv(v3);
glEnd();

void glNormal3{bsidf}(TYPEnx, TYPEny, TYPEnz);
void glNormal3{bsidf}v(const TYPE *v);

Sets the current normal vector as specified by the arguments. The nonvector version (without the
v) takes three arguments, which specify an (nx, ny, nz) vector that’s taken to be the normal.
Alternatively, you can use the vector version of this function (with the v) and supply a single array
of three elements to specify the desired normal. The b, s, and i versions scale their parameter
values linearly to the range [-1.0,1.0].

There’s no magic to finding the normals for an object - most likely, you have to perform some
calculations that might include taking derivatives - but there are several techniques and tricks you can
use to achieve certain effects. Appendix E explains how to find normal vectors for surfaces. If you
already know how to do this, if you can count on always being supplied with normal vectors, or if you
don’t want to use the lighting facility provided by OpenGL lighting facility, you don’t need to read this
appendix.

Note that at a given point on a surface, two vectors are perpendicular to the surface, and they point in
opposite directions. By convention, the normal is the one that points to the outside of the surface being
modeled. (If you get inside and outside reversed in your model, just change every normal vector from (x,
y, z) to (- &xgr; , -y, -z)).

Also, keep in mind that since normal vectors indicate direction only, their length is mostly irrelevant.
You can specify normals of any length, but eventually they have to be converted to having a length of 1
before lighting calculations are performed. (A vector that has a length of 1 is said to be of unit length, or
normalized.) In general, you should supply normalized normal vectors. To make a normal vector of unit
length, divide each of its x, y, z components by the length of the normal:

Normal vectors remain normalized as long as your model transformations include only rotations and

translations. (See Chapter 3 for a discussion of transformations.) If you perform irregular
transformations (such as scaling or multiplying by a shear matrix), or if you specify nonunit-length
normals, then you should have OpenGL automatically normalize your normal vectors after the
transformations. To do this, call glEnable() with GL_NORMALIZE as its argument. By default,
automatic normalization is disabled. Note that automatic normalization typically requires additional
calculations that might reduce the performance of your application.

Vertex Arrays

You may have noticed that OpenGL requires many function calls to render geometric primitives.
Drawing a 20-sided polygon requires 22 function calls: one call to glBegin(), one call for each of the
vertices, and a final call to glEnd(). In the two previous code examples, additional information (polygon
boundary edge flags or surface normals) added function calls for each vertex. This can quickly double or
triple the number of function calls required for one geometric object. For some systems, function calls
have a great deal of overhead and can hinder performance.

An additional problem is the redundant processing of vertices that are shared between adjacent
polygons. For example, the cube in Figure 2-14 has six faces and eight shared vertices. Unfortunately,
using the standard method of describing this object, each vertex would have to be specified three times:
once for every face that uses it. So 24 vertices would be processed, even though eight would be enough.

Figure 2-14 : Six Sides; Eight Shared Vertices

OpenGL has vertex array routines that allow you to specify a lot of vertex-related data with just a few
arrays and to access that data with equally few function calls. Using vertex array routines, all 20 vertices
in a 20-sided polygon could be put into one array and called with one function. If each vertex also had a
surface normal, all 20 surface normals could be put into another array and also called with one function.

Arranging data in vertex arrays may increase the performance of your application. Using vertex arrays
reduces the number of function calls, which improves performance. Also, using vertex arrays may allow
non-redundant processing of shared vertices. (Vertex sharing is not supported on all implementations of
OpenGL.)

Note: Vertex arrays are standard in version 1.1 of OpenGL but were not part of the OpenGL 1.0
specification. With OpenGL 1.0, some vendors have implemented vertex arrays as an extension.

There are three steps to using vertex arrays to render geometry.

1. Activate (enable) up to six arrays, each to store a different type of data: vertex coordinates, RGBA

colors, color indices, surface normals, texture coordinates, or polygon edge flags.

2. Put data into the array or arrays. The arrays are accessed by the addresses of (that is, pointers to)
their memory locations. In the client-server model, this data is stored in the client’s address space.

3. Draw geometry with the data. OpenGL obtains the data from all activated arrays by dereferencing
the pointers. In the client-server model, the data is transferred to the server’s address space. There
are three ways to do this:

1. Accessing individual array elements (randomly hopping around)

2. Creating a list of individual array elements (methodically hopping around)

3. Processing sequential array elements

The dereferencing method you choose may depend upon the type of problem you encounter.

Interleaved vertex array data is another common method of organization. Instead of having up to six
different arrays, each maintaining a different type of data (color, surface normal, coordinate, and so on),
you might have the different types of data mixed into a single array. (See "Interleaved Arrays" for two
methods of solving this.)

Step 1: Enabling Arrays

The first step is to call glEnableClientState() with an enumerated parameter, which activates the chosen
array. In theory, you may need to call this up to six times to activate the six available arrays. In practice,
you’ll probably activate only between one to four arrays. For example, it is unlikely that you would
activate both GL_COLOR_ARRAY and GL_INDEX_ARRAY, since your program’s display mode
supports either RGBA mode or color-index mode, but probably not both simultaneously.

void glEnableClientState(GLenum array)
Specifies the array to enable. Symbolic constants GL_VERTEX_ARRAY, GL_COLOR_ARRAY,
GL_INDEX_ARRAY, GL_NORMAL_ARRAY, GL_TEXTURE_COORD_ARRAY, and
GL_EDGE_FLAG_ARRAY are acceptable parameters.

If you use lighting, you may want to define a surface normal for every vertex. (See "Normal Vectors.")
To use vertex arrays for that case, you activate both the surface normal and vertex coordinate arrays:

glEnableClientState(GL_NORMAL_ARRAY);
glEnableClientState(GL_VERTEX_ARRAY);

Suppose that you want to turn off lighting at some point and just draw the geometry using a single color.
You want to call glDisable() to turn off lighting states (see Chapter 5). Now that lighting has been
deactivated, you also want to stop changing the values of the surface normal state, which is wasted
effort. To do that, you call

glDisableClientState(GL_NORMAL_ARRAY);

void glDisableClientState(GLenum array);

Specifies the array to disable. Accepts the same symbolic constants as glEnableClientState().

You might be asking yourself why the architects of OpenGL created these new (and long!) command
names, gl*ClientState(). Why can’t you just call glEnable() and glDisable()? One reason is that
glEnable() and glDisable() can be stored in a display list, but the specification of vertex arrays cannot,
because the data remains on the client’s side.

Step 2: Specifying Data for the Arrays

There is a straightforward way by which a single command specifies a single array in the client space.
There are six different routines to specify arrays - one routine for each kind of array. There is also a
command that can specify several client-space arrays at once, all originating from a single interleaved
array.

void glVertexPointer(GLint size, GLenum type, GLsizei stride,
const GLvoid *pointer);

Specifies where spatial coordinate data can be accessed. pointer is the memory address of the first
coordinate of the first vertex in the array. type specifies the data type (GL_SHORT, GL_INT,
GL_FLOAT, or GL_DOUBLE) of each coordinate in the array. size is the number of coordinates
per vertex, which must be 2, 3, or 4. stride is the byte offset between consecutive vertexes. If stride
is 0, the vertices are understood to be tightly packed in the array.

To access the other five arrays, there are five similar routines:

void glColorPointer(GLint size, GLenum type, GLsizei stride,
const GLvoid *pointer);
void glIndexPointer(GLenum type, GLsizei stride, const GLvoid *pointer);
void glNormalPointer(GLenum type, GLsizei stride,
const GLvoid *pointer);
void glTexCoordPointer(GLint size, GLenum type, GLsizei stride,
const GLvoid *pointer);
void glEdgeFlagPointer(GLsizei stride, const GLvoid *pointer);

The main differences among the routines are whether size and type are unique or must be specified. For
example, a surface normal always has three components, so it is redundant to specify its size. An edge
flag is always a single Boolean, so neither size nor type needs to be mentioned. Table 2-4 displays legal
values for size and data types.

Table 2-4 : Vertex Array Sizes (Values per Vertex) and Data Types(continued)

Command Sizes Values for type Argument

glVertexPointer 2, 3, 4 GL_SHORT, GL_INT, GL_FLOAT, GL_DOUBLE

glNormalPointer 3 GL_BYTE, GL_SHORT, GL_INT, GL_FLOAT, GL_DOUBLE

glColorPointer 3, 4 GL_BYTE, GL_UNSIGNED_BYTE, GL_SHORT,
GL_UNSIGNED_SHORT, GL_INT, GL_UNSIGNED_INT,
GL_FLOAT, GL_DOUBLE

glIndexPointer 1 GL_UNSIGNED_BYTE, GL_SHORT, GL_INT, GL_FLOAT,
GL_DOUBLE

glTexCoordPointer 1, 2, 3, 4 GL_SHORT, GL_INT, GL_FLOAT, GL_DOUBLE

glEdgeFlagPointer 1 no type argument (type of data must be GLboolean)

Example 2-9 uses vertex arrays for both RGBA colors and vertex coordinates. RGB floating-point
values and their corresponding (x, y) integer coordinates are loaded into the GL_COLOR_ARRAY and
GL_VERTEX_ARRAY.

Example 2-9 : Enabling and Loading Vertex Arrays: varray.c

static GLint vertices[] = {25, 25,
 100, 325,
 175, 25,
 175, 325,
 250, 25,
 325, 325};
static GLfloat colors[] = {1.0, 0.2, 0.2,
 0.2, 0.2, 1.0,
 0.8, 1.0, 0.2,
 0.75, 0.75, 0.75,
 0.35, 0.35, 0.35,
 0.5, 0.5, 0.5};

glEnableClientState (GL_COLOR_ARRAY);
glEnableClientState (GL_VERTEX_ARRAY);

glColorPointer (3, GL_FLOAT, 0, colors);
glVertexPointer (2, GL_INT, 0, vertices);

Stride

With a stride of zero, each type of vertex array (RGB color, color index, vertex coordinate, and so on)
must be tightly packed. The data in the array must be homogeneous; that is, the data must be all RGB
color values, all vertex coordinates, or all some other data similar in some fashion.

Using a stride of other than zero can be useful, especially when dealing with interleaved arrays. In the
following array of GLfloats, there are six vertices. For each vertex, there are three RGB color values,
which alternate with the (x, y, z) vertex coordinates.

static GLfloat intertwined[] =
 {1.0, 0.2, 1.0, 100.0, 100.0, 0.0,
 1.0, 0.2, 0.2, 0.0, 200.0, 0.0,
 1.0, 1.0, 0.2, 100.0, 300.0, 0.0,
 0.2, 1.0, 0.2, 200.0, 300.0, 0.0,
 0.2, 1.0, 1.0, 300.0, 200.0, 0.0,
 0.2, 0.2, 1.0, 200.0, 100.0, 0.0};

Stride allows a vertex array to access its desired data at regular intervals in the array. For example, to
reference only the color values in the intertwined array, the following call starts from the beginning of
the array (which could also be passed as &intertwined[0]) and jumps ahead 6 * sizeof(GLfloat) bytes,
which is the size of both the color and vertex coordinate values. This jump is enough to get to the
beginning of the data for the next vertex.

glColorPointer (3, GL_FLOAT, 6 * sizeof(GLfloat), intertwined);

For the vertex coordinate pointer, you need to start from further in the array, at the fourth element of
intertwined (remember that C programmers start counting at zero).

glVertexPointer(3, GL_FLOAT,6*sizeof(GLfloat), &intertwined[3]);

Step 3: Dereferencing and Rendering

Until the contents of the vertex arrays are dereferenced, the arrays remain on the client side, and their
contents are easily changed. In Step 3, contents of the arrays are obtained, sent down to the server, and
then sent down the graphics processing pipeline for rendering.

There are three ways to obtain data: from a single array element (indexed location), from a sequence of
array elements, and from an ordered list of array elements.

Dereference a Single Array Element

void glArrayElement(GLint ith)
Obtains the data of one (the ith) vertex for all currently enabled arrays. For the vertex coordinate
array, the corresponding command would be glVertex[size][type]v(), where size is one of [2,3,4],
and type is one of [s,i,f,d] for GLshort, GLint, GLfloat, and GLdouble respectively. Both size and
type were defined by glVertexPointer(). For other enabled arrays, glArrayElement() calls
glEdgeFlagv(), glTexCoord[size][type]v(), glColor[size][type]v(), glIndex[type]v(), and
glNormal[type]v(). If the vertex coordinate array is enabled, the glVertex*v() routine is executed
last, after the execution (if enabled) of up to five corresponding array values.

glArrayElement() is usually called between glBegin() and glEnd(). (If called outside,
glArrayElement() sets the current state for all enabled arrays, except for vertex, which has no current
state.) In Example 2-10, a triangle is drawn using the third, fourth, and sixth vertices from enabled
vertex arrays (again, remember that C programmers begin counting array locations with zero).

Example 2-10 : Using glArrayElement() to Define Colors and Vertices

glEnableClientState (GL_COLOR_ARRAY);
glEnableClientState (GL_VERTEX_ARRAY);
glColorPointer (3, GL_FLOAT, 0, colors);
glVertexPointer (2, GL_INT, 0, vertices);

glBegin(GL_TRIANGLES);
glArrayElement (2);
glArrayElement (3);
glArrayElement (5);
glEnd();

When executed, the latter five lines of code has the same effect as

glBegin(GL_TRIANGLES);
glColor3fv(colors+(2*3*sizeof(GLfloat));
glVertex3fv(vertices+(2*2*sizeof(GLint));
glColor3fv(colors+(3*3*sizeof(GLfloat));
glVertex3fv(vertices+(3*2*sizeof(GLint));
glColor3fv(colors+(5*3*sizeof(GLfloat));
glVertex3fv(vertices+(5*2*sizeof(GLint));
glEnd();

Since glArrayElement() is only a single function call per vertex, it may reduce the number of function
calls, which increases overall performance.

Be warned that if the contents of the array are changed between glBegin() and glEnd(), there is no
guarantee that you will receive original data or changed data for your requested element. To be safe,
don’t change the contents of any array element which might be accessed until the primitive is
completed.

Dereference a List of Array Elements

glArrayElement() is good for randomly "hopping around" your data arrays. A similar routine,
glDrawElements(), is good for hopping around your data arrays in a more orderly manner.

void glDrawElements(GLenum mode, GLsizei count, GLenum type,
void *indices);

Defines a sequence of geometric primitives using count number of elements, whose indices are
stored in the array indices. type must be one of GL_UNSIGNED_BYTE, GL_UNSIGNED_SHORT,
or GL_UNSIGNED_INT, indicating the data type of the indices array. mode specifies what kind of
primitives are constructed and is one of the same values that is accepted by glBegin(); for
example, GL_POLYGON, GL_LINE_LOOP, GL_LINES, GL_POINTS, and so on.

The effect of glDrawElements() is almost the same as this command sequence:

int i;
glBegin (mode);
for (i = 0; i < count; i++)
 glArrayElement(indices[i]);
glEnd();

glDrawElements() additionally checks to make sure mode, count, and type are valid. Also, unlike the
preceding sequence, executing glDrawElements() leaves several states indeterminate. After execution
of glDrawElements(), current RGB color, color index, normal coordinates, texture coordinates, and
edge flag are indeterminate if the corresponding array has been enabled.

With glDrawElements(), the vertices for each face of the cube can be placed in an array of indices.
Example 2-11 shows two ways to use glDrawElements() to render the cube. Figure 2-15 shows the
numbering of the vertices used in Example 2-11.

Figure 2-15 : Cube with Numbered Vertices

Example 2-11 : Two Ways to Use glDrawElements()

static GLubyte frontIndices = {4, 5, 6, 7};
static GLubyte rightIndices = {1, 2, 6, 5};
static GLubyte bottomIndices = {0, 1, 5, 4};
static GLubyte backIndices = {0, 3, 2, 1};
static GLubyte leftIndices = {0, 4, 7, 3};
static GLubyte topIndices = {2, 3, 7, 6};

glDrawElements(GL_QUADS, 4, GL_UNSIGNED_BYTE, frontIndices);
glDrawElements(GL_QUADS, 4, GL_UNSIGNED_BYTE, rightIndices);
glDrawElements(GL_QUADS, 4, GL_UNSIGNED_BYTE, bottomIndices);
glDrawElements(GL_QUADS, 4, GL_UNSIGNED_BYTE, backIndices);
glDrawElements(GL_QUADS, 4, GL_UNSIGNED_BYTE, leftIndices);
glDrawElements(GL_QUADS, 4, GL_UNSIGNED_BYTE, topIndices);

Or better still, crunch all the indices together:

static GLubyte allIndices = {4, 5, 6, 7, 1, 2, 6, 5,
 0, 1, 5, 4, 0, 3, 2, 1,
 0, 4, 7, 3, 2, 3, 7, 6};

glDrawElements(GL_QUADS, 24, GL_UNSIGNED_BYTE, allIndices);

Note: It is an error to encapsulate glDrawElements() between a glBegin()/glEnd() pair.

With both glArrayElement() and glDrawElements(), it is also possible that your OpenGL
implementation caches recently processed vertices, allowing your application to "share" or "reuse"
vertices. Take the aforementioned cube, for example, which has six faces (polygons) but only eight
vertices. Each vertex is used by exactly three faces. Without glArrayElement() or glDrawElements(),
rendering all six faces would require processing twenty-four vertices, even though sixteen vertices
would be redundant. Your implementation of OpenGL may be able to minimize redundancy and process

as few as eight vertices. (Reuse of vertices may be limited to all vertices within a single
glDrawElements() call or, for glArrayElement(), within one glBegin()/glEnd() pair.)

Dereference a Sequence of Array Elements

While glArrayElement() and glDrawElements() "hop around" your data arrays, glDrawArrays()
plows straight through them.

void glDrawArrays(GLenum mode, GLint first, GLsizei count);
Constructs a sequence of geometric primitives using array elements starting at first and ending at
first+count-1 of each enabled array. mode specifies what kinds of primitives are constructed and
is one of the same values accepted by glBegin(); for example, GL_POLYGON, GL_LINE_LOOP,
GL_LINES, GL_POINTS, and so on.

The effect of glDrawArrays() is almost the same as this command sequence:

int i;
glBegin (mode);
for (i = 0; i < count; i++)
 glArrayElement(first + i);
glEnd();

As is the case with glDrawElements(), glDrawArrays() also performs error checking on its parameter
values and leaves the current RGB color, color index, normal coordinates, texture coordinates, and edge
flag with indeterminate values if the corresponding array has been enabled.

Try This

Change the icosahedron drawing routine in Example 2-13 to use vertex arrays.

Interleaved Arrays

Advanced

Earlier in this chapter (in "Stride"), the special case of interleaved arrays was examined. In that section,
the array intertwined, which interleaves RGB color and 3D vertex coordinates, was accessed by calls to
glColorPointer() and glVertexPointer(). Careful use of stride helped properly specify the arrays.

static GLfloat intertwined[] =
 {1.0, 0.2, 1.0, 100.0, 100.0, 0.0,
 1.0, 0.2, 0.2, 0.0, 200.0, 0.0,
 1.0, 1.0, 0.2, 100.0, 300.0, 0.0,
 0.2, 1.0, 0.2, 200.0, 300.0, 0.0,
 0.2, 1.0, 1.0, 300.0, 200.0, 0.0,
 0.2, 0.2, 1.0, 200.0, 100.0, 0.0};

There is also a behemoth routine, glInterleavedArrays(), that can specify several vertex arrays at once.
glInterleavedArrays() also enables and disables the appropriate arrays (so it combines both Steps 1 and
2). The array intertwined exactly fits one of the fourteen data interleaving configurations supported by
glInterleavedArrays(). So to specify the contents of the array intertwined into the RGB color and

vertex arrays and enable both arrays, call

glInterleavedArrays (GL_C3F_V3F, 0, intertwined);

This call to glInterleavedArrays() enables the GL_COLOR_ARRAY and GL_VERTEX_ARRAY
arrays. It disables the GL_INDEX_ARRAY, GL_TEXTURE_COORD_ARRAY,
GL_NORMAL_ARRAY, and GL_EDGE_FLAG_ARRAY.

This call also has the same effect as calling glColorPointer() and glVertexPointer() to specify the
values for six vertices into each array. Now you are ready for Step 3: Calling glArrayElement(),
glDrawElements(), or glDrawArrays() to dereference array elements.

void glInterleavedArrays(GLenum format, GLsizei stride, void *pointer)
Initializes all six arrays, disabling arrays that are not specified in format, and enabling the arrays
that are specified. format is one of 14 symbolic constants, which represent 14 data configurations;
Table 2-5 displays format values. stride specifies the byte offset between consecutive vertexes. If
stride is 0, the vertexes are understood to be tightly packed in the array. pointer is the memory
address of the first coordinate of the first vertex in the array.

Note that glInterleavedArrays() does not support edge flags.

The mechanics of glInterleavedArrays() are intricate and require reference to Example 2-12 and Table
2-5. In that example and table, you’ll see et, ec, and en, which are the boolean values for the enabled or
disabled texture coordinate, color, and normal arrays, and you’ll see st, sc, and sv, which are the sizes
(number of components) for the texture coordinate, color, and vertex arrays. tc is the data type for
RGBA color, which is the only array that can have non-float interleaved values. pc, pn, and pv are the
calculated strides for jumping over individual color, normal, and vertex values, and s is the stride (if one
is not specified by the user) to jump from one array element to the next.

The effect of glInterleavedArrays() is the same as calling the command sequence in Example 2-12 with
many values defined in Table 2-5. All pointer arithmetic is performed in units of
sizeof(GL_UNSIGNED_BYTE).

Example 2-12 : Effect of glInterleavedArrays(format, stride, pointer)

int str;
/* set et, ec, en, st, sc, sv, tc, pc, pn, pv, and s
 * as a function of Table 2-5 and the value of format
 */
str = stride;
if (str == 0)
 str = s;
glDisableClientState(GL_EDGE_FLAG_ARRAY);
glDisableClientState(GL_INDEX_ARRAY);
if (et) {
 glEnableClientState(GL_TEXTURE_COORD_ARRAY);
 glTexCoordPointer(st, GL_FLOAT, str, pointer);
}
else
 glDisableClientState(GL_TEXTURE_COORD_ARRAY);
if (ec) {
 glEnableClientState(GL_COLOR_ARRAY);

 glColorPointer(sc, tc, str, pointer+pc);
}
else
 glDisableClientState(GL_COLOR_ARRAY);
if (en) {
 glEnableClientState(GL_NORMAL_ARRAY);
 glNormalPointer(GL_FLOAT, str, pointer+pn);
}
else
 glDisableClientState(GL_NORMAL_ARRAY);
glEnableClientState(GL_VERTEX_ARRAY);
glVertexPointer(sv, GL_FLOAT, str, pointer+pv);

In Table 2-5, T and F are True and False. f is sizeof(GL_FLOAT). c is 4 times
sizeof(GL_UNSIGNED_BYTE), rounded up to the nearest multiple of f.

Table 2-5 : (continued) Variables that Direct glInterleavedArrays()

format et ec en st sc sv tc pc pn

GL_V2F F F F 2

GL_V3F F F F 3

GL_C4UB_V2F F T F 4 2 GL_UNSIGNED_BYTE 0

GL_C4UB_V3F F T F 4 3 GL_UNSIGNED_BYTE 0

GL_C3F_V3F F T F 3 3 GL_FLOAT 0

GL_N3F_V3F F F T 3 0

GL_C4F_N3F_V3F F T T 4 3 GL_FLOAT 0 4f

GL_T2F_V3F T F F 2 3

GL_T4F_V4F T F F 4 4

GL_T2F_C4UB_V3F T T F 2 4 3 GL_UNSIGNED_BYTE 2f

GL_T2F_C3F_V3F T T F 2 3 3 GL_FLOAT 2f

GL_T2F_N3F_V3F T F T 2 3 2f

GL_T2F_C4F_N3F_V3F T T T 2 4 3 GL_FLOAT 2f 6f

GL_T4F_C4F_N3F_V4F T T T 4 4 4 GL_FLOAT 4f 8f

Start by learning the simpler formats, GL_V2F, GL_V3F, and GL_C3F_V3F. If you use any of the
formats with C4UB, you may have to use a struct data type or do some delicate type casting and pointer
math to pack four unsigned bytes into a single 32-bit word.

For some OpenGL implementations, use of interleaved arrays may increase application performance.
With an interleaved array, the exact layout of your data is known. You know your data is tightly packed
and may be accessed in one chunk. If interleaved arrays are not used, the stride and size information has
to be examined to detect whether data is tightly packed.

Note: glInterleavedArrays() only enables and disables vertex arrays and specifies values for the
vertex-array data. It does not render anything. You must still complete Step 3 and call
glArrayElement(), glDrawElements(), or glDrawArrays() to dereference the pointers and render
graphics.

Attribute Groups

In "Basic State Management," you saw how to set or query an individual state or state variable. Well,
you can also save and restore the values of a collection of related state variables with a single command.

OpenGL groups related state variables into an attribute group. For example, the GL_LINE_BIT attribute
consists of five state variables: the line width, the GL_LINE_STIPPLE enable status, the line stipple
pattern, the line stipple repeat counter, and the GL_LINE_SMOOTH enable status. (See "Antialiasing"
in Chapter 6.) With the commands glPushAttrib() and glPopAttrib(), you can save and restore all five
state variables, all at once.

Some state variables are in more than one attribute group. For example, the state variable,
GL_CULL_FACE, is part of both the polygon and the enable attribute groups.

In OpenGL Version 1.1, there are now two different attribute stacks. In addition to the original attribute
stack (which saves the values of server state variables), there is also a client attribute stack, accessible by

the commands glPushClientAttrib() and glPopClientAttrib().

In general, it’s faster to use these commands than to get, save, and restore the values yourself. Some
values might be maintained in the hardware, and getting them might be expensive. Also, if you’re
operating on a remote client, all the attribute data has to be transferred across the network connection
and back as it is obtained, saved, and restored. However, your OpenGL implementation keeps the
attribute stack on the server, avoiding unnecessary network delays.

There are about twenty different attribute groups, which can be saved and restored by glPushAttrib()
and glPopAttrib(). There are two client attribute groups, which can be saved and restored by
glPushClientAttrib() and glPopClientAttrib(). For both server and client, the attributes are stored on a
stack, which has a depth of at least 16 saved attribute groups. (The actual stack depths for your
implementation can be obtained using GL_MAX_ATTRIB_STACK_DEPTH and
GL_MAX_CLIENT_ATTRIB_STACK_DEPTH with glGetIntegerv().) Pushing a full stack or
popping an empty one generates an error.

(See the tables in Appendix B to find out exactly which attributes are saved for particular mask values;
that is, which attributes are in a particular attribute group.)

void glPushAttrib(GLbitfield mask);
void glPopAttrib(void);

glPushAttrib() saves all the attributes indicated by bits in mask by pushing them onto the attribute
stack. glPopAttrib() restores the values of those state variables that were saved with the last
glPushAttrib(). Table 2-7 lists the possible mask bits that can be logically ORed together to save
any combination of attributes. Each bit corresponds to a collection of individual state variables.
For example, GL_LIGHTING_BIT refers to all the state variables related to lighting, which
include the current material color, the ambient, diffuse, specular, and emitted light, a list of the
lights that are enabled, and the directions of the spotlights. When glPopAttrib() is called, all those
variables are restored.

The special mask, GL_ALL_ATTRIB_BITS, is used to save and restore all the state variables in all the
attribute groups.

Table 2-6 : (continued) Attribute Groups

Mask Bit Attribute Group

GL_ACCUM_BUFFER_BIT accum-buffer

GL_ALL_ATTRIB_BITS --

GL_COLOR_BUFFER_BIT color-buffer

GL_CURRENT_BIT current

GL_DEPTH_BUFFER_BIT depth-buffer

GL_ENABLE_BIT enable

GL_EVAL_BIT eval

GL_FOG_BIT fog

GL_HINT_BIT hint

GL_LIGHTING_BIT lighting

GL_LINE_BIT line

GL_LIST_BIT list

GL_PIXEL_MODE_BIT pixel

GL_POINT_BIT point

GL_POLYGON_BIT polygon

GL_POLYGON_STIPPLE_BIT polygon-stipple

GL_SCISSOR_BIT scissor

GL_STENCIL_BUFFER_BIT stencil-buffer

GL_TEXTURE_BIT texture

GL_TRANSFORM_BIT transform

GL_VIEWPORT_BIT viewport

void glPushClientAttrib(GLbitfield mask);
void glPopClientAttrib(void);

glPushClientAttrib() saves all the attributes indicated by bits in mask by pushing them onto the
client attribute stack. glPopClientAttrib() restores the values of those state variables that were
saved with the last glPushClientAttrib(). Table 2-7 lists the possible mask bits that can be
logically ORed together to save any combination of client attributes.
There are two client attribute groups, feedback and select, that cannot be saved or restored with
the stack mechanism.

Table 2-7 : Client Attribute Groups

Mask Bit Attribute Group

GL_CLIENT_PIXEL_STORE_BIT pixel-store

GL_CLIENT_VERTEX_ARRAY_BIT vertex-array

GL_ALL_CLIENT_ATTRIB_BITS --

can’t be pushed or popped feedback

can’t be pushed or popped select

Some Hints for Building Polygonal Models of Surfaces

Following are some techniques that you might want to use as you build polygonal approximations of
surfaces. You might want to review this section after you’ve read Chapter 5 on lighting and Chapter 7 on
display lists. The lighting conditions affect how models look once they’re drawn, and some of the
following techniques are much more efficient when used in conjunction with display lists. As you read
these techniques, keep in mind that when lighting calculations are enabled, normal vectors must be
specified to get proper results.

Constructing polygonal approximations to surfaces is an art, and there is no substitute for experience.
This section, however, lists a few pointers that might make it a bit easier to get started.

Keep polygon orientations consistent. Make sure that when viewed from the outside, all the
polygons on the surface are oriented in the same direction (all clockwise or all counterclockwise).
Consistent orientation is important for polygon culling and two-sided lighting. Try to get this right
the first time, since it’s excruciatingly painful to fix the problem later. (If you use glScale*() to
reflect geometry around some axis of symmetry, you might change the orientation with
glFrontFace() to keep the orientations consistent.)

When you subdivide a surface, watch out for any nontriangular polygons. The three vertices of a
triangle are guaranteed to lie on a plane; any polygon with four or more vertices might not.
Nonplanar polygons can be viewed from some orientation such that the edges cross each other,
and OpenGL might not render such polygons correctly.

There’s always a trade-off between the display speed and the quality of the image. If you
subdivide a surface into a small number of polygons, it renders quickly but might have a jagged
appearance; if you subdivide it into millions of tiny polygons, it probably looks good but might

take a long time to render. Ideally, you can provide a parameter to the subdivision routines that
indicates how fine a subdivision you want, and if the object is farther from the eye, you can use a
coarser subdivision. Also, when you subdivide, use large polygons where the surface is relatively
flat, and small polygons in regions of high curvature.

For high-quality images, it’s a good idea to subdivide more on the silhouette edges than in the
interior. If the surface is to be rotated relative to the eye, this is tougher to do, since the silhouette
edges keep moving. Silhouette edges occur where the normal vectors are perpendicular to the
vector from the surface to the viewpoint - that is, when their vector dot product is zero. Your
subdivision algorithm might choose to subdivide more if this dot product is near zero.

Try to avoid T-intersections in your models (see Figure 2-16). As shown, there’s no guarantee that
the line segments AB and BC lie on exactly the same pixels as the segment AC. Sometimes they
do, and sometimes they don’t, depending on the transformations and orientation. This can cause
cracks to appear intermittently in the surface.

Figure 2-16 : Modifying an Undesirable T-intersection

If you’re constructing a closed surface, make sure to use exactly the same numbers for coordinates
at the beginning and end of a closed loop, or you can get gaps and cracks due to numerical
round-off. Here’s a two-dimensional example of bad code:

/* don’t use this code */
#define PI 3.14159265
#define EDGES 30

/* draw a circle */
glBegin(GL_LINE_STRIP);
for (i = 0; i <= EDGES; i++)
 glVertex2f(cos((2*PI*i)/EDGES), sin((2*PI*i)/EDGES));
glEnd();

The edges meet exactly only if your machine manages to calculate the sine and cosine of 0 and of
(2*PI*EDGES/EDGES) and gets exactly the same values. If you trust the floating-point unit on
your machine to do this right, the authors have a bridge they’d like to sell you.... To correct the
code, make sure that when i == EDGES, you use 0 for the sine and cosine, not
2*PI*EDGES/EDGES. (Or simpler still, use GL_LINE_LOOP instead of GL_LINE_STRIP, and
change the loop termination condition to i < EDGES.)

An Example: Building an Icosahedron

To illustrate some of the considerations that arise in approximating a surface, let’s look at some example
code sequences. This code concerns the vertices of a regular icosahedron (which is a Platonic solid
composed of twenty faces that span twelve vertices, each face of which is an equilateral triangle). An
icosahedron can be considered a rough approximation for a sphere. Example 2-13 defines the vertices
and triangles making up an icosahedron and then draws the icosahedron.

Example 2-13 : Drawing an Icosahedron

#define X .525731112119133606
#define Z .850650808352039932

static GLfloat vdata[12][3] = {
 {-X, 0.0, Z}, {X, 0.0, Z}, {-X, 0.0, -Z}, {X, 0.0, -Z},
 {0.0, Z, X}, {0.0, Z, -X}, {0.0, -Z, X}, {0.0, -Z, -X},
 {Z, X, 0.0}, {-Z, X, 0.0}, {Z, -X, 0.0}, {-Z, -X, 0.0}
};
static GLuint tindices[20][3] = {
 {0,4,1}, {0,9,4}, {9,5,4}, {4,5,8}, {4,8,1},
 {8,10,1}, {8,3,10}, {5,3,8}, {5,2,3}, {2,7,3},
 {7,10,3}, {7,6,10}, {7,11,6}, {11,0,6}, {0,1,6},
 {6,1,10}, {9,0,11}, {9,11,2}, {9,2,5}, {7,2,11} };
int i;

glBegin(GL_TRIANGLES);
for (i = 0; i < 20; i++) {
 /* color information here */
 glVertex3fv(&vdata[tindices[i][0]][0]);
 glVertex3fv(&vdata[tindices[i][1]][0]);
 glVertex3fv(&vdata[tindices[i][2]][0]);
}
glEnd();

The strange numbers X and Z are chosen so that the distance from the origin to any of the vertices of the
icosahedron is 1.0. The coordinates of the twelve vertices are given in the array vdata[][] , where the
zeroth vertex is {- &Xgr; , 0.0, &Zgr; }, the first is {X, 0.0, Z}, and so on. The array tindices[][] tells
how to link the vertices to make triangles. For example, the first triangle is made from the zeroth, fourth,
and first vertex. If you take the vertices for triangles in the order given, all the triangles have the same
orientation.

The line that mentions color information should be replaced by a command that sets the color of the ith
face. If no code appears here, all faces are drawn in the same color, and it’ll be impossible to discern the
three-dimensional quality of the object. An alternative to explicitly specifying colors is to define surface
normals and use lighting, as described in the next subsection.

Note: In all the examples described in this section, unless the surface is to be drawn only once, you
should probably save the calculated vertex and normal coordinates so that the calculations don’t need to
be repeated each time that the surface is drawn. This can be done using your own data structures or by
constructing display lists. (See Chapter 7.)

Calculating Normal Vectors for a Surface

If a surface is to be lit, you need to supply the vector normal to the surface. Calculating the normalized
cross product of two vectors on that surface provides normal vector. With the flat surfaces of an

icosahedron, all three vertices defining a surface have the same normal vector. In this case, the normal
needs to be specified only once for each set of three vertices. The code in Example 2-14 can replace the
"color information here" line in Example 2-13 for drawing the icosahedron.

Example 2-14 : Generating Normal Vectors for a Surface

GLfloat d1[3], d2[3], norm[3];
for (j = 0; j < 3; j++) {
 d1[j] = vdata[tindices[i][0]][j] - vdata[tindices[i][1]][j];
 d2[j] = vdata[tindices[i][1]][j] - vdata[tindices[i][2]][j];
}
normcrossprod(d1, d2, norm);
glNormal3fv(norm);

The function normcrossprod() produces the normalized cross product of two vectors, as shown in
Example 2-15.

Example 2-15 : Calculating the Normalized Cross Product of Two Vectors

void normalize(float v[3]) {
 GLfloat d = sqrt(v[0]*v[0]+v[1]*v[1]+v[2]*v[2]);
 if (d == 0.0) {
 error("zero length vector");
 return;
 }
 v[0] /= d; v[1] /= d; v[2] /= d;
}

void normcrossprod(float v1[3], float v2[3], float out[3])
{
 GLint i, j;
 GLfloat length;

 out[0] = v1[1]*v2[2] - v1[2]*v2[1];
 out[1] = v1[2]*v2[0] - v1[0]*v2[2];
 out[2] = v1[0]*v2[1] - v1[1]*v2[0];
 normalize(out);
}

If you’re using an icosahedron as an approximation for a shaded sphere, you’ll want to use normal
vectors that are perpendicular to the true surface of the sphere, rather than being perpendicular to the
faces. For a sphere, the normal vectors are simple; each points in the same direction as the vector from
the origin to the corresponding vertex. Since the icosahedron vertex data is for an icosahedron of radius
1, the normal and vertex data is identical. Here is the code that would draw an icosahedral
approximation of a smoothly shaded sphere (assuming that lighting is enabled, as described in Chapter
5):

glBegin(GL_TRIANGLES);
for (i = 0; i < 20; i++) {
 glNormal3fv(&vdata[tindices[i][0]][0]);
 glVertex3fv(&vdata[tindices[i][0]][0]);
 glNormal3fv(&vdata[tindices[i][1]][0]);
 glVertex3fv(&vdata[tindices[i][1]][0]);
 glNormal3fv(&vdata[tindices[i][2]][0]);
 glVertex3fv(&vdata[tindices[i][2]][0]);
}

glEnd();

Improving the Model

A twenty-sided approximation to a sphere doesn’t look good unless the image of the sphere on the
screen is quite small, but there’s an easy way to increase the accuracy of the approximation. Imagine the
icosahedron inscribed in a sphere, and subdivide the triangles as shown in Figure 2-17. The newly
introduced vertices lie slightly inside the sphere, so push them to the surface by normalizing them
(dividing them by a factor to make them have length 1). This subdivision process can be repeated for
arbitrary accuracy. The three objects shown in Figure 2-17 use 20, 80, and 320 approximating triangles,
respectively.

Figure 2-17 : Subdividing to Improve a Polygonal Approximation to a Surface

Example 2-16 performs a single subdivision, creating an 80-sided spherical approximation.

Example 2-16 : Single Subdivision

void drawtriangle(float *v1, float *v2, float *v3)
{
 glBegin(GL_TRIANGLES);
 glNormal3fv(v1); vlVertex3fv(v1);
 glNormal3fv(v2); vlVertex3fv(v2);
 glNormal3fv(v3); vlVertex3fv(v3);
 glEnd();
}

void subdivide(float *v1, float *v2, float *v3)
{
 GLfloat v12[3], v23[3], v31[3];
 GLint i;

 for (i = 0; i < 3; i++) {
 v12[i] = v1[i]+v2[i];
 v23[i] = v2[i]+v3[i];

 v31[i] = v3[i]+v1[i];
 }
 normalize(v12);
 normalize(v23);
 normalize(v31);
 drawtriangle(v1, v12, v31);
 drawtriangle(v2, v23, v12);
 drawtriangle(v3, v31, v23);
 drawtriangle(v12, v23, v31);
}

for (i = 0; i < 20; i++) {
 subdivide(&vdata[tindices[i][0]][0],
 &vdata[tindices[i][1]][0],
 &vdata[tindices[i][2]][0]);
}

Example 2-17 is a slight modification of Example 2-16 which recursively subdivides the triangles to the
proper depth. If the depth value is 0, no subdivisions are performed, and the triangle is drawn as is. If the
depth is 1, a single subdivision is performed, and so on.

Example 2-17 : Recursive Subdivision

void subdivide(float *v1, float *v2, float *v3, long depth)
{
 GLfloat v12[3], v23[3], v31[3];
 GLint i;

 if (depth == 0) {
 drawtriangle(v1, v2, v3);
 return;
 }
 for (i = 0; i < 3; i++) {
 v12[i] = v1[i]+v2[i];
 v23[i] = v2[i]+v3[i];
 v31[i] = v3[i]+v1[i];
 }
 normalize(v12);
 normalize(v23);
 normalize(v31);
 subdivide(v1, v12, v31, depth-1);
 subdivide(v2, v23, v12, depth-1);
 subdivide(v3, v31, v23, depth-1);
 subdivide(v12, v23, v31, depth-1);
}

Generalized Subdivision

A recursive subdivision technique such as the one described in Example 2-17 can be used for other types
of surfaces. Typically, the recursion ends either if a certain depth is reached or if some condition on the
curvature is satisfied (highly curved parts of surfaces look better with more subdivision).

To look at a more general solution to the problem of subdivision, consider an arbitrary surface
parameterized by two variables u[0] and u[1] . Suppose that two routines are provided:

void surf(GLfloat u[2], GLfloat vertex[3], GLfloat normal[3]);
float curv(GLfloat u[2]);

If surf() is passed u[] , the corresponding three-dimensional vertex and normal vectors (of length 1) are
returned. If u[] is passed to curv(), the curvature of the surface at that point is calculated and returned.
(See an introductory textbook on differential geometry for more information about measuring surface
curvature.)

Example 2-18 shows the recursive routine that subdivides a triangle either until the maximum depth is
reached or until the maximum curvature at the three vertices is less than some cutoff.

Example 2-18 : Generalized Subdivision

void subdivide(float u1[2], float u2[2], float u3[2],
 float cutoff, long depth)
{
 GLfloat v1[3], v2[3], v3[3], n1[3], n2[3], n3[3];
 GLfloat u12[2], u23[2], u32[2];
 GLint i;

 if (depth == maxdepth || (curv(u1) < cutoff &&
 curv(u2) < cutoff && curv(u3) < cutoff)) {
 surf(u1, v1, n1); surf(u2, v2, n2); surf(u3, v3, n3);
 glBegin(GL_POLYGON);
 glNormal3fv(n1); glVertex3fv(v1);
 glNormal3fv(n2); glVertex3fv(v2);
 glNormal3fv(n3); glVertex3fv(v3);
 glEnd();
 return;
 }
 for (i = 0; i < 2; i++) {
 u12[i] = (u1[i] + u2[i])/2.0;
 u23[i] = (u2[i] + u3[i])/2.0;
 u31[i] = (u3[i] + u1[i])/2.0;
 }
 subdivide(u1, u12, u31, cutoff, depth+1);
 subdivide(u2, u23, u12, cutoff, depth+1);
 subdivide(u3, u31, u23, cutoff, depth+1);
 subdivide(u12, u23, u31, cutoff, depth+1);
}

 OpenGL Programming Guide (Addison-Wesley
Publishing Company)

 OpenGL Programming Guide (Addison-Wesley
Publishing Company)

Chapter 3
Viewing
Chapter Objectives

After reading this chapter, you’ll be able to do the following:

View a geometric model in any orientation by transforming it in three-dimensional space

Control the location in three-dimensional space from which the model is viewed

Clip undesired portions of the model out of the scene that’s to be viewed

Manipulate the appropriate matrix stacks that control model transformation for viewing and
project the model onto the screen

Combine multiple transformations to mimic sophisticated systems in motion, such as a solar
system or an articulated robot arm

Reverse or mimic the operations of the geometric processing pipeline

Chapter 2 explained how to instruct OpenGL to draw the geometric models you want displayed in your
scene. Now you must decide how you want to position the models in the scene, and you must choose a
vantage point from which to view the scene. You can use the default positioning and vantage point, but
most likely you want to specify them.

Look at the image on the cover of this book. The program that produced that image contained a single
geometric description of a building block. Each block was carefully positioned in the scene: Some
blocks were scattered on the floor, some were stacked on top of each other on the table, and some were
assembled to make the globe. Also, a particular viewpoint had to be chosen. Obviously, we wanted to
look at the corner of the room containing the globe. But how far away from the scene - and where
exactly - should the viewer be? We wanted to make sure that the final image of the scene contained a
good view out the window, that a portion of the floor was visible, and that all the objects in the scene
were not only visible but presented in an interesting arrangement. This chapter explains how to use
OpenGL to accomplish these tasks: how to position and orient models in three-dimensional space and
how to establish the location - also in three-dimensional space - of the viewpoint. All of these factors
help determine exactly what image appears on the screen.

You want to remember that the point of computer graphics is to create a two-dimensional image of
three-dimensional objects (it has to be two-dimensional because it’s drawn on a flat screen), but you
need to think in three-dimensional coordinates while making many of the decisions that determine what

gets drawn on the screen. A common mistake people make when creating three-dimensional graphics is
to start thinking too soon that the final image appears on a flat, two-dimensional screen. Avoid thinking
about which pixels need to be drawn, and instead try to visualize three-dimensional space. Create your
models in some three-dimensional universe that lies deep inside your computer, and let the computer do
its job of calculating which pixels to color.

A series of three computer operations convert an object’s three-dimensional coordinates to pixel
positions on the screen.

Transformations, which are represented by matrix multiplication, include modeling, viewing, and
projection operations. Such operations include rotation, translation, scaling, reflecting,
orthographic projection, and perspective projection. Generally, you use a combination of several
transformations to draw a scene.

Since the scene is rendered on a rectangular window, objects (or parts of objects) that lie outside
the window must be clipped. In three-dimensional computer graphics, clipping occurs by throwing
out objects on one side of a clipping plane.

Finally, a correspondence must be established between the transformed coordinates and screen
pixels. This is known as a viewport transformation.

This chapter describes all of these operations, and how to control them, in the following major sections:

"Overview: The Camera Analogy" gives an overview of the transformation process by describing
the analogy of taking a photograph with a camera, presents a simple example program that
transforms an object, and briefly describes the basic OpenGL transformation commands.

"Viewing and Modeling Transformations" explains in detail how to specify and to imagine the
effect of viewing and modeling transformations. These transformations orient the model and the
camera relative to each other to obtain the desired final image.

"Projection Transformations" describes how to specify the shape and orientation of the viewing
volume. The viewing volume determines how a scene is projected onto the screen (with a
perspective or orthographic projection) and which objects or parts of objects are clipped out of the
scene.

"Viewport Transformation" explains how to control the conversion of three-dimensional model
coordinates to screen coordinates.

"Troubleshooting Transformations" presents some tips for discovering why you might not be
getting the desired effect from your modeling, viewing, projection, and viewport transformations.

"Manipulating the Matrix Stacks" discusses how to save and restore certain transformations. This
is particularly useful when you’re drawing complicated objects that are built up from simpler ones.

"Additional Clipping Planes" describes how to specify additional clipping planes beyond those
defined by the viewing volume.

"Examples of Composing Several Transformations" walks you through a couple of more
complicated uses for transformations.

"Reversing or Mimicking Transformations" shows you how to take a transformed point in window
coordinates and reverse the transformation to obtain its original object coordinates. The
transformation itself (without reversal) can also be emulated.

Overview: The Camera Analogy

The transformation process to produce the desired scene for viewing is analogous to taking a photograph
with a camera. As shown in Figure 3-1, the steps with a camera (or a computer) might be the following.

1. Set up your tripod and pointing the camera at the scene (viewing transformation).

2. Arrange the scene to be photographed into the desired composition (modeling transformation).

3. Choose a camera lens or adjust the zoom (projection transformation).

4. Determine how large you want the final photograph to be - for example, you might want it
enlarged (viewport transformation).

After these steps are performed, the picture can be snapped or the scene can be drawn.

Figure 3-1 : The Camera Analogy

Note that these steps correspond to the order in which you specify the desired transformations in your
program, not necessarily the order in which the relevant mathematical operations are performed on an
object’s vertices. The viewing transformations must precede the modeling transformations in your code,
but you can specify the projection and viewport transformations at any point before drawing occurs.
Figure 3-2 shows the order in which these operations occur on your computer.

Figure 3-2 : Stages of Vertex Transformation

To specify viewing, modeling, and projection transformations, you construct a 4 × 4 matrix M, which is
then multiplied by the coordinates of each vertex v in the scene to accomplish the transformation

v’=Mv

(Remember that vertices always have four coordinates (x, y, z, w), though in most cases w is 1 and for
two-dimensional data z is 0.) Note that viewing and modeling transformations are automatically applied
to surface normal vectors, in addition to vertices. (Normal vectors are used only in eye coordinates.)
This ensures that the normal vector’s relationship to the vertex data is properly preserved.

The viewing and modeling transformations you specify are combined to form the modelview matrix,
which is applied to the incoming object coordinates to yield eye coordinates. Next, if you’ve specified
additional clipping planes to remove certain objects from the scene or to provide cutaway views of
objects, these clipping planes are applied.

After that, OpenGL applies the projection matrix to yield clip coordinates. This transformation defines a
viewing volume; objects outside this volume are clipped so that they’re not drawn in the final scene.
After this point, the perspective division is performed by dividing coordinate values by w, to produce
normalized device coordinates. (See Appendix F for more information about the meaning of the w
coordinate and how it affects matrix transformations.) Finally, the transformed coordinates are converted
to window coordinates by applying the viewport transformation. You can manipulate the dimensions of
the viewport to cause the final image to be enlarged, shrunk, or stretched.

You might correctly suppose that the x and y coordinates are sufficient to determine which pixels need
to be drawn on the screen. However, all the transformations are performed on the z coordinates as well.
This way, at the end of this transformation process, the z values correctly reflect the depth of a given
vertex (measured in distance away from the screen). One use for this depth value is to eliminate
unnecessary drawing. For example, suppose two vertices have the same x and y values but different z
values. OpenGL can use this information to determine which surfaces are obscured by other surfaces
and can then avoid drawing the hidden surfaces. (See Chapter 10 for more information about this
technique, which is called hidden-surface removal.)

As you’ve probably guessed by now, you need to know a few things about matrix mathematics to get the
most out of this chapter. If you want to brush up on your knowledge in this area, you might consult a

textbook on linear algebra.

A Simple Example: Drawing a Cube

Example 3-1 draws a cube that’s scaled by a modeling transformation (see Figure 3-3). The viewing
transformation, gluLookAt(), positions and aims the camera towards where the cube is drawn. A
projection transformation and a viewport transformation are also specified. The rest of this section walks
you through Example 3-1 and briefly explains the transformation commands it uses. The succeeding
sections contain the complete, detailed discussion of all OpenGL’s transformation commands.

Figure 3-3 : Transformed Cube

Example 3-1 : Transformed Cube: cube.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>

void init(void)
{
 glClearColor (0.0, 0.0, 0.0, 0.0);
 glShadeModel (GL_FLAT);
}

void display(void)
{
 glClear (GL_COLOR_BUFFER_BIT);
 glColor3f (1.0, 1.0, 1.0);
 glLoadIdentity (); /* clear the matrix */
 /* viewing transformation */
 gluLookAt (0.0, 0.0, 5.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);
 glScalef (1.0, 2.0, 1.0); /* modeling transformation */
 glutWireCube (1.0);
 glFlush ();
}

void reshape (int w, int h)
{
 glViewport (0, 0, (GLsizei) w, (GLsizei) h);
 glMatrixMode (GL_PROJECTION);
 glLoadIdentity ();
 glFrustum (-1.0, 1.0, -1.0, 1.0, 1.5, 20.0);
 glMatrixMode (GL_MODELVIEW);
}

int main(int argc, char** argv)
{
 glutInit(&argc, argv);

 glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);
 glutInitWindowSize (500, 500);
 glutInitWindowPosition (100, 100);
 glutCreateWindow (argv[0]);
 init ();
 glutDisplayFunc(display);
 glutReshapeFunc(reshape);
 glutMainLoop();
 return 0;
}

The Viewing Transformation

Recall that the viewing transformation is analogous to positioning and aiming a camera. In this code
example, before the viewing transformation can be specified, the current matrix is set to the identity
matrix with glLoadIdentity(). This step is necessary since most of the transformation commands
multiply the current matrix by the specified matrix and then set the result to be the current matrix. If you
don’t clear the current matrix by loading it with the identity matrix, you continue to combine previous
transformation matrices with the new one you supply. In some cases, you do want to perform such
combinations, but you also need to clear the matrix sometimes.

In Example 3-1, after the matrix is initialized, the viewing transformation is specified with gluLookAt().
The arguments for this command indicate where the camera (or eye position) is placed, where it is
aimed, and which way is up. The arguments used here place the camera at (0, 0, 5), aim the camera lens
towards (0, 0, 0), and specify the up-vector as (0, 1, 0). The up-vector defines a unique orientation for
the camera.

If gluLookAt() was not called, the camera has a default position and orientation. By default, the camera
is situated at the origin, points down the negative z-axis, and has an up-vector of (0, 1, 0). So in Example
3-1, the overall effect is that gluLookAt() moves the camera 5 units along the z-axis. (See "Viewing and
Modeling Transformations" for more information about viewing transformations.)

The Modeling Transformation

You use the modeling transformation to position and orient the model. For example, you can rotate,
translate, or scale the model - or perform some combination of these operations. In Example 3-1,
glScalef() is the modeling transformation that is used. The arguments for this command specify how
scaling should occur along the three axes. If all the arguments are 1.0, this command has no effect. In
Example 3-1, the cube is drawn twice as large in the y direction. Thus, if one corner of the cube had
originally been at (3.0, 3.0, 3.0), that corner would wind up being drawn at (3.0, 6.0, 3.0). The effect of
this modeling transformation is to transform the cube so that it isn’t a cube but a rectangular box.

Try This

Change the gluLookAt() call in Example 3-1 to the modeling transformation glTranslatef() with
parameters (0.0, 0.0, -5.0). The result should look exactly the same as when you used gluLookAt().
Why are the effects of these two commands similar?

Note that instead of moving the camera (with a viewing transformation) so that the cube could be
viewed, you could have moved the cube away from the camera (with a modeling transformation). This

duality in the nature of viewing and modeling transformations is why you need to think about the effect
of both types of transformations simultaneously. It doesn’t make sense to try to separate the effects, but
sometimes it’s easier to think about them one way rather than the other. This is also why modeling and
viewing transformations are combined into the modelview matrix before the transformations are applied.
(See "Viewing and Modeling Transformations" for more detail on how to think about modeling and
viewing transformations and how to specify them to get the result you want.)

Also note that the modeling and viewing transformations are included in the display() routine, along
with the call that’s used to draw the cube, glutWireCube(). This way, display() can be used repeatedly
to draw the contents of the window if, for example, the window is moved or uncovered, and you’ve
ensured that each time, the cube is drawn in the desired way, with the appropriate transformations. The
potential repeated use of display() underscores the need to load the identity matrix before performing
the viewing and modeling transformations, especially when other transformations might be performed
between calls to display().

The Projection Transformation

Specifying the projection transformation is like choosing a lens for a camera. You can think of this
transformation as determining what the field of view or viewing volume is and therefore what objects
are inside it and to some extent how they look. This is equivalent to choosing among wide-angle,
normal, and telephoto lenses, for example. With a wide-angle lens, you can include a wider scene in the
final photograph than with a telephoto lens, but a telephoto lens allows you to photograph objects as
though they’re closer to you than they actually are. In computer graphics, you don’t have to pay $10,000
for a 2000-millimeter telephoto lens; once you’ve bought your graphics workstation, all you need to do
is use a smaller number for your field of view.

In addition to the field-of-view considerations, the projection transformation determines how objects are
projected onto the screen, as its name suggests. Two basic types of projections are provided for you by
OpenGL, along with several corresponding commands for describing the relevant parameters in
different ways. One type is the perspective projection, which matches how you see things in daily life.
Perspective makes objects that are farther away appear smaller; for example, it makes railroad tracks
appear to converge in the distance. If you’re trying to make realistic pictures, you’ll want to choose
perspective projection, which is specified with the glFrustum() command in this code example.

The other type of projection is orthographic, which maps objects directly onto the screen without
affecting their relative size. Orthographic projection is used in architectural and computer-aided design
applications where the final image needs to reflect the measurements of objects rather than how they
might look. Architects create perspective drawings to show how particular buildings or interior spaces
look when viewed from various vantage points; the need for orthographic projection arises when
blueprint plans or elevations are generated, which are used in the construction of buildings. (See
"Projection Transformations" for a discussion of ways to specify both kinds of projection
transformations.)

Before glFrustum() can be called to set the projection transformation, some preparation needs to
happen. As shown in the reshape() routine in Example 3-1, the command called glMatrixMode() is
used first, with the argument GL_PROJECTION. This indicates that the current matrix specifies the
projection transformation; the following transformation calls then affect the projection matrix. As you
can see, a few lines later glMatrixMode() is called again, this time with GL_MODELVIEW as the

argument. This indicates that succeeding transformations now affect the modelview matrix instead of the
projection matrix. (See "Manipulating the Matrix Stacks" for more information about how to control the
projection and modelview matrices.)

Note that glLoadIdentity() is used to initialize the current projection matrix so that only the specified
projection transformation has an effect. Now glFrustum() can be called, with arguments that define the
parameters of the projection transformation. In this example, both the projection transformation and the
viewport transformation are contained in the reshape() routine, which is called when the window is first
created and whenever the window is moved or reshaped. This makes sense, since both projecting (the
width to height aspect ratio of the projection viewing volume) and applying the viewport relate directly
to the screen, and specifically to the size or aspect ratio of the window on the screen.

Try This

Change the glFrustum() call in Example 3-1 to the more commonly used Utility Library routine
gluPerspective() with parameters (60.0, 1.0, 1.5, 20.0). Then experiment with different values,
especially for fovy and aspect.

The Viewport Transformation

Together, the projection transformation and the viewport transformation determine how a scene gets
mapped onto the computer screen. The projection transformation specifies the mechanics of how the
mapping should occur, and the viewport indicates the shape of the available screen area into which the
scene is mapped. Since the viewport specifies the region the image occupies on the computer screen,
you can think of the viewport transformation as defining the size and location of the final processed
photograph - for example, whether the photograph should be enlarged or shrunk.

The arguments to glViewport() describe the origin of the available screen space within the window - (0,
0) in this example - and the width and height of the available screen area, all measured in pixels on the
screen. This is why this command needs to be called within reshape() - if the window changes size, the
viewport needs to change accordingly. Note that the width and height are specified using the actual
width and height of the window; often, you want to specify the viewport this way rather than giving an
absolute size. (See "Viewport Transformation" for more information about how to define the viewport.)

Drawing the Scene

Once all the necessary transformations have been specified, you can draw the scene (that is, take the
photograph). As the scene is drawn, OpenGL transforms each vertex of every object in the scene by the
modeling and viewing transformations. Each vertex is then transformed as specified by the projection
transformation and clipped if it lies outside the viewing volume described by the projection
transformation. Finally, the remaining transformed vertices are divided by w and mapped onto the
viewport.

General-Purpose Transformation Commands

This section discusses some OpenGL commands that you might find useful as you specify desired
transformations. You’ve already seen a couple of these commands, glMatrixMode() and
glLoadIdentity(). The other two commands described here - glLoadMatrix*() and glMultMatrix*() -

allow you to specify any transformation matrix directly and then to multiply the current matrix by that
specified matrix. More specific transformation commands - such as gluLookAt() and glScale*() - are
described in later sections.

As described in the preceding section, you need to state whether you want to modify the modelview or
projection matrix before supplying a transformation command. You choose the matrix with
glMatrixMode(). When you use nested sets of OpenGL commands that might be called repeatedly,
remember to reset the matrix mode correctly. (The glMatrixMode() command can also be used to
indicate the texture matrix; texturing is discussed in detail in "The Texture Matrix Stack" in Chapter 9.)

void glMatrixMode(GLenum mode);
Specifies whether the modelview, projection, or texture matrix will be modified, using the
argument GL_MODELVIEW, GL_PROJECTION, or GL_TEXTURE for mode. Subsequent
transformation commands affect the specified matrix. Note that only one matrix can be modified at
a time. By default, the modelview matrix is the one that’s modifiable, and all three matrices
contain the identity matrix.

You use the glLoadIdentity() command to clear the currently modifiable matrix for future
transformation commands, since these commands modify the current matrix. Typically, you always call
this command before specifying projection or viewing transformations, but you might also call it before
specifying a modeling transformation.

void glLoadIdentity(void);
Sets the currently modifiable matrix to the 4 × 4 identity matrix.

If you want to specify explicitly a particular matrix to be loaded as the current matrix, use
glLoadMatrix*(). Similarly, use glMultMatrix*() to multiply the current matrix by the matrix passed
in as an argument. The argument for both these commands is a vector of sixteen values (m1, m2, ... ,
m16) that specifies a matrix M as follows:

Remember that you might be able to maximize efficiency by using display lists to store frequently used
matrices (and their inverses) rather than recomputing them. (See "Display-List Design Philosophy" in
Chapter 7.) (OpenGL implementations often must compute the inverse of the modelview matrix so that
normals and clipping planes can be correctly transformed to eye coordinates.)

Caution: If you’re programming in C and you declare a matrix as m[4][4], then the element m[i][j] is in
the ith column and jth row of the OpenGL transformation matrix. This is the reverse of the standard C
convention in which m[i][j] is in row i and column j. To avoid confusion, you should declare your
matrices as m[16].

void glLoadMatrix{fd}(const TYPE *m);
Sets the sixteen values of the current matrix to those specified by m.

void glMultMatrix{fd}(const TYPE *m);
Multiplies the matrix specified by the sixteen values pointed to by m by the current matrix and
stores the result as the current matrix.

Note: All matrix multiplication with OpenGL occurs as follows: Suppose the current matrix is C and the
matrix specified with glMultMatrix*() or any of the transformation commands is M. After
multiplication, the final matrix is always CM. Since matrix multiplication isn’t generally commutative,
the order makes a difference.

Viewing and Modeling Transformations

Viewing and modeling transformations are inextricably related in OpenGL and are in fact combined into
a single modelview matrix. (See "A Simple Example: Drawing a Cube.") One of the toughest problems
newcomers to computer graphics face is understanding the effects of combined three-dimensional
transformations. As you’ve already seen, there are alternative ways to think about transformations - do
you want to move the camera in one direction, or move the object in the opposite direction? Each way of
thinking about transformations has advantages and disadvantages, but in some cases one way more
naturally matches the effect of the intended transformation. If you can find a natural approach for your
particular application, it’s easier to visualize the necessary transformations and then write the
corresponding code to specify the matrix manipulations. The first part of this section discusses how to
think about transformations; later, specific commands are presented. For now, we use only the
matrix-manipulation commands you’ve already seen. Finally, keep in mind that you must call
glMatrixMode() with GL_MODELVIEW as its argument prior to performing modeling or viewing
transformations.

Thinking about Transformations

Let’s start with a simple case of two transformations: a 45-degree counterclockwise rotation about the
origin around the z-axis, and a translation down the x-axis. Suppose that the object you’re drawing is
small compared to the translation (so that you can see the effect of the translation), and that it’s
originally located at the origin. If you rotate the object first and then translate it, the rotated object
appears on the x-axis. If you translate it down the x-axis first, however, and then rotate about the origin,
the object is on the line y=x, as shown in Figure 3-4. In general, the order of transformations is critical.
If you do transformation A and then transformation B, you almost always get something different than if
you do them in the opposite order.

Figure 3-4 : Rotating First or Translating First

Now let’s talk about the order in which you specify a series of transformations. All viewing and
modeling transformations are represented as 4 × 4 matrices. Each successive glMultMatrix*() or
transformation command multiplies a new 4 × 4 matrix M by the current modelview matrix C to yield
CM. Finally, vertices v are multiplied by the current modelview matrix. This process means that the last
transformation command called in your program is actually the first one applied to the vertices: CMv.
Thus, one way of looking at it is to say that you have to specify the matrices in the reverse order. Like
many other things, however, once you’ve gotten used to thinking about this correctly, backward will
seem like forward.

Consider the following code sequence, which draws a single point using three transformations:

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glMultMatrixf(N); /* apply transformation N */
glMultMatrixf(M); /* apply transformation M */
glMultMatrixf(L); /* apply transformation L */
glBegin(GL_POINTS);
glVertex3f(v); /* draw transformed vertex v */
glEnd();

With this code, the modelview matrix successively contains I, N, NM, and finally NML, where I
represents the identity matrix. The transformed vertex is NMLv. Thus, the vertex transformation is
N(M(Lv)) - that is, v is multiplied first by L, the resulting Lv is multiplied by M, and the resulting MLv
is multiplied by N. Notice that the transformations to vertex v effectively occur in the opposite order
than they were specified. (Actually, only a single multiplication of a vertex by the modelview matrix
occurs; in this example, the N, M, and L matrices are already multiplied into a single matrix before it’s
applied to v.)

Grand, Fixed Coordinate System

Thus, if you like to think in terms of a grand, fixed coordinate system - in which matrix multiplications
affect the position, orientation, and scaling of your model - you have to think of the multiplications as
occurring in the opposite order from how they appear in the code. Using the simple example shown on
the left side of Figure 3-4 (a rotation about the origin and a translation along the x-axis), if you want the

object to appear on the axis after the operations, the rotation must occur first, followed by the
translation. To do this, you’ll need to reverse the order of operations, so the code looks something like
this (where R is the rotation matrix and T is the translation matrix):

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glMultMatrixf(T); /* translation */
glMultMatrixf(R); /* rotation */
draw_the_object();

Moving a Local Coordinate System

Another way to view matrix multiplications is to forget about a grand, fixed coordinate system in which
your model is transformed and instead imagine that a local coordinate system is tied to the object you’re
drawing. All operations occur relative to this changing coordinate system. With this approach, the
matrix multiplications now appear in the natural order in the code. (Regardless of which analogy you’re
using, the code is the same, but how you think about it differs.) To see this in the translation-rotation
example, begin by visualizing the object with a coordinate system tied to it. The translation operation
moves the object and its coordinate system down the x-axis. Then, the rotation occurs about the
(now-translated) origin, so the object rotates in place in its position on the axis.

This approach is what you should use for applications such as articulated robot arms, where there are
joints at the shoulder, elbow, and wrist, and on each of the fingers. To figure out where the tips of the
fingers go relative to the body, you’d like to start at the shoulder, go down to the wrist, and so on,
applying the appropriate rotations and translations at each joint. Thinking about it in reverse would be
far more confusing.

This second approach can be problematic, however, in cases where scaling occurs, and especially so
when the scaling is nonuniform (scaling different amounts along the different axes). After uniform
scaling, translations move a vertex by a multiple of what they did before, since the coordinate system is
stretched. Nonuniform scaling mixed with rotations may make the axes of the local coordinate system
nonperpendicular.

As mentioned earlier, you normally issue viewing transformation commands in your program before any
modeling transformations. This way, a vertex in a model is first transformed into the desired orientation
and then transformed by the viewing operation. Since the matrix multiplications must be specified in
reverse order, the viewing commands need to come first. Note, however, that you don’t need to specify
either viewing or modeling transformations if you’re satisfied with the default conditions. If there’s no
viewing transformation, the "camera" is left in the default position at the origin, pointed toward the
negative z-axis; if there’s no modeling transformation, the model isn’t moved, and it retains its specified
position, orientation, and size.

Since the commands for performing modeling transformations can be used to perform viewing
transformations, modeling transformations are discussed first, even if viewing transformations are
actually issued first. This order for discussion also matches the way many programmers think when
planning their code: Often, they write all the code necessary to compose the scene, which involves
transformations to position and orient objects correctly relative to each other. Next, they decide where
they want the viewpoint to be relative to the scene they’ve composed, and then they write the viewing
transformations accordingly.

Modeling Transformations

The three OpenGL routines for modeling transformations are glTranslate*(), glRotate*(), and
glScale*(). As you might suspect, these routines transform an object (or coordinate system, if you’re
thinking of it that way) by moving, rotating, stretching, shrinking, or reflecting it. All three commands
are equivalent to producing an appropriate translation, rotation, or scaling matrix, and then calling
glMultMatrix*() with that matrix as the argument. However, these three routines might be faster than
using glMultMatrix*(). OpenGL automatically computes the matrices for you. (See Appendix F if
you’re interested in the details.)

In the command summaries that follow, each matrix multiplication is described in terms of what it does
to the vertices of a geometric object using the fixed coordinate system approach, and in terms of what it
does to the local coordinate system that’s attached to an object.

Translate

void glTranslate{fd}(TYPEx, TYPE y, TYPEz);
Multiplies the current matrix by a matrix that moves (translates) an object by the given x, y, and z
values (or moves the local coordinate system by the same amounts).

Figure 3-5 shows the effect of glTranslate*().

Figure 3-5 : Translating an Object

Note that using (0.0, 0.0, 0.0) as the argument for glTranslate*() is the identity operation - that is, it has
no effect on an object or its local coordinate system.

Rotate

void glRotate{fd}(TYPE angle, TYPE x, TYPE y, TYPE z);
Multiplies the current matrix by a matrix that rotates an object (or the local coordinate system) in
a counterclockwise direction about the ray from the origin through the point (x, y, z). The angle
parameter specifies the angle of rotation in degrees.

The effect of glRotatef(45.0, 0.0, 0.0, 1.0), which is a rotation of 45 degrees about the z-axis, is shown
in Figure 3-6.

Figure 3-6 : Rotating an Object

Note that an object that lies farther from the axis of rotation is more dramatically rotated (has a larger
orbit) than an object drawn near the axis. Also, if the angle argument is zero, the glRotate*() command
has no effect.

Scale

void glScale{fd}(TYPEx, TYPE y, TYPEz);
Multiplies the current matrix by a matrix that stretches, shrinks, or reflects an object along the
axes. Each x, y, and z coordinate of every point in the object is multiplied by the corresponding
argument x, y, or z. With the local coordinate system approach, the local coordinate axes are
stretched, shrunk, or reflected by the x, y, and z factors, and the associated object is transformed
with them.

Figure 3-7 shows the effect of glScalef(2.0, -0.5, 1.0).

Figure 3-7 : Scaling and Reflecting an Object

glScale*() is the only one of the three modeling transformations that changes the apparent size of an
object: Scaling with values greater than 1.0 stretches an object, and using values less than 1.0 shrinks it.
Scaling with a -1.0 value reflects an object across an axis. The identity values for scaling are (1.0, 1.0,
1.0). In general, you should limit your use of glScale*() to those cases where it is necessary. Using
glScale*() decreases the performance of lighting calculations, because the normal vectors have to be
renormalized after transformation.

Note: A scale value of zero collapses all object coordinates along that axis to zero. It’s usually not a
good idea to do this, because such an operation cannot be undone. Mathematically speaking, the matrix
cannot be inverted, and inverse matrices are required for certain lighting operations. (See Chapter 5.)
Sometimes collapsing coordinates does make sense, however; the calculation of shadows on a planar
surface is a typical application. (See "Shadows" in Chapter 14.) In general, if a coordinate system is to
be collapsed, the projection matrix should be used rather than the modelview matrix.

A Modeling Transformation Code Example

Example 3-2 is a portion of a program that renders a triangle four times, as shown in Figure 3-8. These
are the four transformed triangles.

A solid wireframe triangle is drawn with no modeling transformation.

The same triangle is drawn again, but with a dashed line stipple and translated (to the left - along
the negative x-axis).

A triangle is drawn with a long dashed line stipple, with its height (y-axis) halved and its width
(x-axis) increased by 50%.

A rotated triangle, made of dotted lines, is drawn.

Figure 3-8 : Modeling Transformation Example

Example 3-2 : Using Modeling Transformations: model.c

glLoadIdentity();
glColor3f(1.0, 1.0, 1.0);
draw_triangle(); /* solid lines */

glEnable(GL_LINE_STIPPLE); /* dashed lines */
glLineStipple(1, 0xF0F0);
glLoadIdentity();
glTranslatef(-20.0, 0.0, 0.0);
draw_triangle();

glLineStipple(1, 0xF00F); /*long dashed lines */
glLoadIdentity();
glScalef(1.5, 0.5, 1.0);
draw_triangle();

glLineStipple(1, 0x8888); /* dotted lines */
glLoadIdentity();
glRotatef (90.0, 0.0, 0.0, 1.0);
draw_triangle ();
glDisable (GL_LINE_STIPPLE);

Note the use of glLoadIdentity() to isolate the effects of modeling transformations; initializing the
matrix values prevents successive transformations from having a cumulative effect. Even though using
glLoadIdentity() repeatedly has the desired effect, it may be inefficient, because you may have to
respecify viewing or modeling transformations. (See "Manipulating the Matrix Stacks" for a better way
to isolate transformations.)

Note: Sometimes, programmers who want a continuously rotating object attempt to achieve this by
repeatedly applying a rotation matrix that has small values. The problem with this technique is that
because of round-off errors, the product of thousands of tiny rotations gradually drifts away from the
value you really want (it might even become something that isn’t a rotation). Instead of using this
technique, increment the angle and issue a new rotation command with the new angle at each update
step.

Viewing Transformations

A viewing transformation changes the position and orientation of the viewpoint. If you recall the camera
analogy, the viewing transformation positions the camera tripod, pointing the camera toward the model.
Just as you move the camera to some position and rotate it until it points in the desired direction,
viewing transformations are generally composed of translations and rotations. Also remember that to
achieve a certain scene composition in the final image or photograph, you can either move the camera or
move all the objects in the opposite direction. Thus, a modeling transformation that rotates an object
counterclockwise is equivalent to a viewing transformation that rotates the camera clockwise, for
example. Finally, keep in mind that the viewing transformation commands must be called before any
modeling transformations are performed, so that the modeling transformations take effect on the objects
first.

You can manufacture a viewing transformation in any of several ways, as described next. You can also
choose to use the default location and orientation of the viewpoint, which is at the origin, looking down
the negative z-axis.

Use one or more modeling transformation commands (that is, glTranslate*() and glRotate*()).
You can think of the effect of these transformations as moving the camera position or as moving
all the objects in the world, relative to a stationary camera.

Use the Utility Library routine gluLookAt() to define a line of sight. This routine encapsulates a
series of rotation and translation commands.

Create your own utility routine that encapsulates rotations and translations. Some applications
might require custom routines that allow you to specify the viewing transformation in a convenient

way. For example, you might want to specify the roll, pitch, and heading rotation angles of a plane
in flight, or you might want to specify a transformation in terms of polar coordinates for a camera
that’s orbiting around an object.

Using glTranslate*() and glRotate*()

When you use modeling transformation commands to emulate viewing transformations, you’re trying to
move the viewpoint in a desired way while keeping the objects in the world stationary. Since the
viewpoint is initially located at the origin and since objects are often most easily constructed there as
well (see Figure 3-9), in general you have to perform some transformation so that the objects can be
viewed. Note that, as shown in the figure, the camera initially points down the negative z-axis. (You’re
seeing the back of the camera.)

Figure 3-9 : Object and Viewpoint at the Origin

In the simplest case, you can move the viewpoint backward, away from the objects; this has the same
effect as moving the objects forward, or away from the viewpoint. Remember that by default forward is
down the negative z-axis; if you rotate the viewpoint, forward has a different meaning. So, to put 5 units
of distance between the viewpoint and the objects by moving the viewpoint, as shown in Figure 3-10,
use

glTranslatef(0.0, 0.0, -5.0);

This routine moves the objects in the scene -5 units along the z axis. This is also equivalent to moving
the camera +5 units along the z axis.

Figure 3-10 : Separating the Viewpoint and the Object

Now suppose you want to view the objects from the side. Should you issue a rotate command before or
after the translate command? If you’re thinking in terms of a grand, fixed coordinate system, first
imagine both the object and the camera at the origin. You could rotate the object first and then move it
away from the camera so that the desired side is visible. Since you know that with the fixed coordinate
system approach, commands have to be issued in the opposite order in which they should take effect,
you know that you need to write the translate command first in your code and follow it with the rotate
command.

Now let’s use the local coordinate system approach. In this case, think about moving the object and its
local coordinate system away from the origin; then, the rotate command is carried out using the
now-translated coordinate system. With this approach, commands are issued in the order in which
they’re applied, so once again the translate command comes first. Thus, the sequence of transformation
commands to produce the desired result is

glTranslatef(0.0, 0.0, -5.0);
glRotatef(90.0, 0.0, 1.0, 0.0);

If you’re having trouble keeping track of the effect of successive matrix multiplications, try using both
the fixed and local coordinate system approaches and see whether one makes more sense to you. Note
that with the fixed coordinate system, rotations always occur about the grand origin, whereas with the
local coordinate system, rotations occur about the origin of the local system. You might also try using
the gluLookAt() utility routine described in the next section.

Using the gluLookAt() Utility Routine

Often, programmers construct a scene around the origin or some other convenient location, then they
want to look at it from an arbitrary point to get a good view of it. As its name suggests, the gluLookAt()
utility routine is designed for just this purpose. It takes three sets of arguments, which specify the
location of the viewpoint, define a reference point toward which the camera is aimed, and indicate which

direction is up. Choose the viewpoint to yield the desired view of the scene. The reference point is
typically somewhere in the middle of the scene. (If you’ve built your scene at the origin, the reference
point is probably the origin.) It might be a little trickier to specify the correct up-vector. Again, if you’ve
built some real-world scene at or around the origin and if you’ve been taking the positive y-axis to point
upward, then that’s your up-vector for gluLookAt(). However, if you’re designing a flight simulator, up
is the direction perpendicular to the plane’s wings, from the plane toward the sky when the plane is
right-side up on the ground.

The gluLookAt() routine is particularly useful when you want to pan across a landscape, for instance.
With a viewing volume that’s symmetric in both x and y, the (eyex, eyey, eyez) point specified is always
in the center of the image on the screen, so you can use a series of commands to move this point slightly,
thereby panning across the scene.

void gluLookAt(GLdouble eyex, GLdouble eyey, GLdouble eyez, GLdouble centerx, GLdouble centery,
GLdouble centerz, GLdouble upx, GLdouble upy, GLdouble upz);

Defines a viewing matrix and multiplies it to the right of the current matrix. The desired viewpoint
is specified by eyex, eyey, and eyez. The centerx, centery, and centerz arguments specify any point
along the desired line of sight, but typically they’re some point in the center of the scene being
looked at. The upx, upy, and upz arguments indicate which direction is up (that is, the direction
from the bottom to the top of the viewing volume).

In the default position, the camera is at the origin, is looking down the negative z-axis, and has the
positive y-axis as straight up. This is the same as calling

gluLookat (0.0, 0.0, 0.0, 0.0, 0.0, -100.0, 0.0, 1.0, 0.0);

The z value of the reference point is -100.0, but could be any negative z, because the line of sight will
remain the same. In this case, you don’t actually want to call gluLookAt(), because this is the default
(see Figure 3-11) and you are already there! (The lines extending from the camera represent the viewing
volume, which indicates its field of view.)

Figure 3-11 : Default Camera Position

Figure 3-12 shows the effect of a typical gluLookAt() routine. The camera position (eyex, eyey, eyez) is
at (4, 2, 1). In this case, the camera is looking right at the model, so the reference point is at (2, 4, -3).

An orientation vector of (2, 2, -1) is chosen to rotate the viewpoint to this 45-degree angle.

Figure 3-12 : Using gluLookAt()

So, to achieve this effect, call

gluLookAt(4.0, 2.0, 1.0, 2.0, 4.0, -3.0, 2.0, 2.0, -1.0);

Note that gluLookAt() is part of the Utility Library rather than the basic OpenGL library. This isn’t
because it’s not useful, but because it encapsulates several basic OpenGL commands - specifically,
glTranslate*() and glRotate*(). To see this, imagine a camera located at an arbitrary viewpoint and
oriented according to a line of sight, both as specified with gluLookAt() and a scene located at the
origin. To "undo" what gluLookAt() does, you need to transform the camera so that it sits at the origin
and points down the negative z-axis, the default position. A simple translate moves the camera to the
origin. You can easily imagine a series of rotations about each of the three axes of a fixed coordinate
system that would orient the camera so that it pointed toward negative z values. Since OpenGL allows
rotation about an arbitrary axis, you can accomplish any desired rotation of the camera with a single
glRotate*() command.

Note: You can have only one active viewing transformation. You cannot try to combine the effects of
two viewing transformations, any more than a camera can have two tripods. If you want to change the
position of the camera, make sure you call glLoadIdentity() to wipe away the effects of any current
viewing transformation.

Advanced

To transform any arbitrary vector so that it’s coincident with another arbitrary vector (for instance, the
negative z-axis), you need to do a little mathematics. The axis about which you want to rotate is given
by the cross product of the two normalized vectors. To find the angle of rotation, normalize the initial
two vectors. The cosine of the desired angle between the vectors is equal to the dot product of the
normalized vectors. The angle of rotation around the axis given by the cross product is always between 0
and 180 degrees. (See Appendix E for definitions of cross and dot products.)

Note that computing the angle between two normalized vectors by taking the inverse cosine of their dot
product is not very accurate, especially for small angles. But it should work well enough to get you

started.

Creating a Custom Utility Routine

Advanced

For some specialized applications, you might want to define your own transformation routine. Since this
is rarely done and in any case is a fairly advanced topic, it’s left mostly as an exercise for the reader. The
following exercises suggest two custom viewing transformations that might be useful.

Try This

Suppose you’re writing a flight simulator and you’d like to display the world from the point of
view of the pilot of a plane. The world is described in a coordinate system with the origin on the
runway and the plane at coordinates (x, y, z). Suppose further that the plane has some roll , pitch,
and heading (these are rotation angles of the plane relative to its center of gravity).

Show that the following routine could serve as the viewing transformation:

void pilotView{GLdouble planex, GLdouble planey,
 GLdouble planez, GLdouble roll,
 GLdouble pitch, GLdouble heading)
{
 glRotated(roll, 0.0, 0.0, 1.0);
 glRotated(pitch, 0.0, 1.0, 0.0);
 glRotated(heading, 1.0, 0.0, 0.0);
 glTranslated(-planex, -planey, -planez);
}

Suppose your application involves orbiting the camera around an object that’s centered at the
origin. In this case, you’d like to specify the viewing transformation by using polar coordinates.
Let the distance variable define the radius of the orbit, or how far the camera is from the origin.
(Initially, the camera is moved distance units along the positive z-axis.) The azimuth describes the
angle of rotation of the camera about the object in the x-y plane, measured from the positive y-axis.
Similarly, elevation is the angle of rotation of the camera in the y-z plane, measured from the
positive z-axis. Finally, twist represents the rotation of the viewing volume around its line of sight.

Show that the following routine could serve as the viewing transformation:

void polarView{GLdouble distance, GLdouble twist,
 GLdouble elevation, GLdouble azimuth)
{
 glTranslated(0.0, 0.0, -distance);
 glRotated(-twist, 0.0, 0.0, 1.0);
 glRotated(-elevation, 1.0, 0.0, 0.0);
 glRotated(azimuth, 0.0, 0.0, 1.0);
}

Projection Transformations

The previous section described how to compose the desired modelview matrix so that the correct
modeling and viewing transformations are applied. This section explains how to define the desired
projection matrix, which is also used to transform the vertices in your scene. Before you issue any of the
transformation commands described in this section, remember to call

glMatrixMode(GL_PROJECTION);
glLoadIdentity();

so that the commands affect the projection matrix rather than the modelview matrix and so that you
avoid compound projection transformations. Since each projection transformation command completely
describes a particular transformation, typically you don’t want to combine a projection transformation
with another transformation.

The purpose of the projection transformation is to define a viewing volume, which is used in two ways.
The viewing volume determines how an object is projected onto the screen (that is, by using a
perspective or an orthographic projection), and it defines which objects or portions of objects are clipped
out of the final image. You can think of the viewpoint we’ve been talking about as existing at one end of
the viewing volume. At this point, you might want to reread "A Simple Example: Drawing a Cube" for
its overview of all the transformations, including projection transformations.

Perspective Projection

The most unmistakable characteristic of perspective projection is foreshortening: the farther an object is
from the camera, the smaller it appears in the final image. This occurs because the viewing volume for a
perspective projection is a frustum of a pyramid (a truncated pyramid whose top has been cut off by a
plane parallel to its base). Objects that fall within the viewing volume are projected toward the apex of
the pyramid, where the camera or viewpoint is. Objects that are closer to the viewpoint appear larger
because they occupy a proportionally larger amount of the viewing volume than those that are farther
away, in the larger part of the frustum. This method of projection is commonly used for animation,
visual simulation, and any other applications that strive for some degree of realism because it’s similar
to how our eye (or a camera) works.

The command to define a frustum, glFrustum(), calculates a matrix that accomplishes perspective
projection and multiplies the current projection matrix (typically the identity matrix) by it. Recall that
the viewing volume is used to clip objects that lie outside of it; the four sides of the frustum, its top, and
its base correspond to the six clipping planes of the viewing volume, as shown in Figure 3-13. Objects or
parts of objects outside these planes are clipped from the final image. Note that glFrustum() doesn’t
require you to define a symmetric viewing volume.

Figure 3-13 : Perspective Viewing Volume Specified by glFrustum()

void glFrustum(GLdouble left, GLdouble right, GLdouble bottom,
GLdouble top, GLdouble near, GLdouble far);

Creates a matrix for a perspective-view frustum and multiplies the current matrix by it. The
frustum’s viewing volume is defined by the parameters: (left, bottom, -near) and (right, top, -near)
specify the (x, y, z) coordinates of the lower-left and upper-right corners of the near clipping
plane; near and far give the distances from the viewpoint to the near and far clipping planes.
They should always be positive.

The frustum has a default orientation in three-dimensional space. You can perform rotations or
translations on the projection matrix to alter this orientation, but this is tricky and nearly always
avoidable.

Advanced

Also, the frustum doesn’t have to be symmetrical, and its axis isn’t necessarily aligned with the z-axis.
For example, you can use glFrustum() to draw a picture as if you were looking through a rectangular
window of a house, where the window was above and to the right of you. Photographers use such a
viewing volume to create false perspectives. You might use it to have the hardware calculate images at
much higher than normal resolutions, perhaps for use on a printer. For example, if you want an image
that has twice the resolution of your screen, draw the same picture four times, each time using the
frustum to cover the entire screen with one-quarter of the image. After each quarter of the image is
rendered, you can read the pixels back to collect the data for the higher-resolution image. (See Chapter 8
for more information about reading pixel data.)

Although it’s easy to understand conceptually, glFrustum() isn’t intuitive to use. Instead, you might try
the Utility Library routine gluPerspective(). This routine creates a viewing volume of the same shape as
glFrustum() does, but you specify it in a different way. Rather than specifying corners of the near
clipping plane, you specify the angle of the field of view (&THgr; , or theta, in Figure 3-14) in the y
direction and the aspect ratio of the width to height (x/y). (For a square portion of the screen, the aspect
ratio is 1.0.) These two parameters are enough to determine an untruncated pyramid along the line of
sight, as shown in Figure 3-14. You also specify the distance between the viewpoint and the near and far

clipping planes, thereby truncating the pyramid. Note that gluPerspective() is limited to creating
frustums that are symmetric in both the x- and y-axes along the line of sight, but this is usually what you
want.

Figure 3-14 : Perspective Viewing Volume Specified by gluPerspective()

void gluPerspective(GLdouble fovy, GLdouble aspect,
GLdouble near, GLdouble far);

Creates a matrix for a symmetric perspective-view frustum and multiplies the current matrix by it.
fovy is the angle of the field of view in the x-z plane; its value must be in the range [0.0,180.0].
aspect is the aspect ratio of the frustum, its width divided by its height. near and far values the
distances between the viewpoint and the clipping planes, along the negative z-axis. They should
always be positive.

Just as with glFrustum(), you can apply rotations or translations to change the default orientation of the
viewing volume created by gluPerspective(). With no such transformations, the viewpoint remains at
the origin, and the line of sight points down the negative z-axis.

With gluPerspective(), you need to pick appropriate values for the field of view, or the image may look
distorted. For example, suppose you’re drawing to the entire screen, which happens to be 11 inches high.
If you choose a field of view of 90 degrees, your eye has to be about 7.8 inches from the screen for the
image to appear undistorted. (This is the distance that makes the screen subtend 90 degrees.) If your eye
is farther from the screen, as it usually is, the perspective doesn’t look right. If your drawing area
occupies less than the full screen, your eye has to be even closer. To get a perfect field of view, figure
out how far your eye normally is from the screen and how big the window is, and calculate the angle the
window subtends at that size and distance. It’s probably smaller than you would guess. Another way to
think about it is that a 94-degree field of view with a 35-millimeter camera requires a 20-millimeter lens,
which is a very wide-angle lens. (See "Troubleshooting Transformations" for more details on how to
calculate the desired field of view.)

The preceding paragraph mentions inches and millimeters - do these really have anything to do with
OpenGL? The answer is, in a word, no. The projection and other transformations are inherently unitless.
If you want to think of the near and far clipping planes as located at 1.0 and 20.0 meters, inches,
kilometers, or leagues, it’s up to you. The only rule is that you have to use a consistent unit of

measurement. Then the resulting image is drawn to scale.

Orthographic Projection

With an orthographic projection, the viewing volume is a rectangular parallelepiped, or more informally,
a box (see Figure 3-15). Unlike perspective projection, the size of the viewing volume doesn’t change
from one end to the other, so distance from the camera doesn’t affect how large an object appears. This
type of projection is used for applications such as creating architectural blueprints and computer-aided
design, where it’s crucial to maintain the actual sizes of objects and angles between them as they’re
projected.

Figure 3-15 : Orthographic Viewing Volume

The command glOrtho() creates an orthographic parallel viewing volume. As with glFrustum(), you
specify the corners of the near clipping plane and the distance to the far clipping plane.

void glOrtho(GLdouble left, GLdouble right, GLdouble bottom,
GLdouble top, GLdouble near, GLdouble far);

Creates a matrix for an orthographic parallel viewing volume and multiplies the current matrix by
it. (left, bottom, -near) and (right, top, -near) are points on the near clipping plane that are
mapped to the lower-left and upper-right corners of the viewport window, respectively. (left,
bottom, -far) and (right, top, -far) are points on the far clipping plane that are mapped to the same
respective corners of the viewport. Both near and far can be positive or negative.

With no other transformations, the direction of projection is parallel to the z-axis, and the viewpoint
faces toward the negative z-axis. Note that this means that the values passed in for far and near are used
as negative z values if these planes are in front of the viewpoint, and positive if they’re behind the
viewpoint.

For the special case of projecting a two-dimensional image onto a two-dimensional screen, use the
Utility Library routine gluOrtho2D(). This routine is identical to the three-dimensional version,
glOrtho(), except that all the z coordinates for objects in the scene are assumed to lie between -1.0 and
1.0. If you’re drawing two-dimensional objects using the two-dimensional vertex commands, all the z
coordinates are zero; thus, none of the objects are clipped because of their z values.

void gluOrtho2D(GLdouble left, GLdouble right,
GLdouble bottom, GLdouble top);

Creates a matrix for projecting two-dimensional coordinates onto the screen and multiplies the
current projection matrix by it. The clipping region is a rectangle with the lower-left corner at
(left, bottom) and the upper-right corner at (right, top).

Viewing Volume Clipping

After the vertices of the objects in the scene have been transformed by the modelview and projection
matrices, any primitives that lie outside the viewing volume are clipped. The six clipping planes used are
those that define the sides and ends of the viewing volume. You can specify additional clipping planes
and locate them wherever you choose. (See "Additional Clipping Planes" for information about this
relatively advanced topic.) Keep in mind that OpenGL reconstructs the edges of polygons that get
clipped.

Viewport Transformation

Recalling the camera analogy, you know that the viewport transformation corresponds to the stage
where the size of the developed photograph is chosen. Do you want a wallet-size or a poster-size
photograph? Since this is computer graphics, the viewport is the rectangular region of the window where
the image is drawn. Figure 3-16 shows a viewport that occupies most of the screen. The viewport is
measured in window coordinates, which reflect the position of pixels on the screen relative to the
lower-left corner of the window. Keep in mind that all vertices have been transformed by the modelview
and projection matrices by this point, and vertices outside the viewing volume have been clipped.

Figure 3-16 : Viewport Rectangle

Defining the Viewport

The window system, not OpenGL, is responsible for opening a window on the screen. However, by
default the viewport is set to the entire pixel rectangle of the window that’s opened. You use the
glViewport() command to choose a smaller drawing region; for example, you can subdivide the window
to create a split-screen effect for multiple views in the same window.

void glViewport(GLint x, GLint y, GLsizei width, GLsizei height);

Defines a pixel rectangle in the window into which the final image is mapped. The (x, y) parameter
specifies the lower-left corner of the viewport, and width and height are the size of the viewport
rectangle. By default, the initial viewport values are (0, 0, winWidth, winHeight), where winWidth
and winHeight are the size of the window.

The aspect ratio of a viewport should generally equal the aspect ratio of the viewing volume. If the two
ratios are different, the projected image will be distorted when mapped to the viewport, as shown in
Figure 3-17. Note that subsequent changes to the size of the window don’t explicitly affect the viewport.
Your application should detect window resize events and modify the viewport appropriately.

Figure 3-17 : Mapping the Viewing Volume to the Viewport

In Figure 3-17, the left figure shows a projection that maps a square image onto a square viewport using
these routines:

gluPerspective(fovy, 1.0, near, far);
glViewport(0, 0, 400, 400);

However, in the right figure, the window has been resized to a nonequilateral rectangular viewport, but
the projection is unchanged. The image appears compressed along the x-axis.

gluPerspective(fovy, 1.0, near, far);
glViewport (0, 0, 400, 200);

To avoid the distortion, modify the aspect ratio of the projection to match the viewport:

gluPerspective(fovy, 2.0, near, far);
glViewport(0, 0, 400, 200);

Try This

Modify an existing program so that an object is drawn twice, in different viewports. You might draw the

object with different projection and/or viewing transformations for each viewport. To create two
side-by-side viewports, you might issue these commands, along with the appropriate modeling, viewing,
and projection transformations:

glViewport (0, 0, sizex/2, sizey);
 .
 .
 .
glViewport (sizex/2, 0, sizex/2, sizey);

The Transformed Depth Coordinate

The depth (z) coordinate is encoded during the viewport transformation (and later stored in the depth
buffer). You can scale z values to lie within a desired range with the glDepthRange() command.
(Chapter 10 discusses the depth buffer and the corresponding uses for the depth coordinate.) Unlike x
and y window coordinates, z window coordinates are treated by OpenGL as though they always range
from 0.0 to 1.0.

void glDepthRange(GLclampd near, GLclampd far);
Defines an encoding for z coordinates that’s performed during the viewport transformation. The
near and far values represent adjustments to the minimum and maximum values that can be stored
in the depth buffer. By default, they’re 0.0 and 1.0, respectively, which work for most applications.
These parameters are clamped to lie within [0,1].

In perspective projection, the transformed depth coordinate (like the x and y coordinates) is subject to
perspective division by the w coordinate. As the transformed depth coordinate moves farther away from
the near clipping plane, its location becomes increasingly less precise. (See Figure 3-18.)

Figure 3-18 : Perspective Projection and Transformed Depth Coordinates

Therefore, perspective division affects the accuracy of operations which rely upon the transformed depth
coordinate, especially depth-buffering, which is used for hidden surface removal.

Troubleshooting Transformations

It’s pretty easy to get a camera pointed in the right direction, but in computer graphics, you have to
specify position and direction with coordinates and angles. As we can attest, it’s all too easy to achieve

the well-known black-screen effect. Although any number of things can go wrong, often you get this
effect - which results in absolutely nothing being drawn in the window you open on the screen - from
incorrectly aiming the "camera" and taking a picture with the model behind you. A similar problem
arises if you don’t choose a field of view that’s wide enough to view your objects but narrow enough so
they appear reasonably large.

If you find yourself exerting great programming effort only to create a black window, try these
diagnostic steps.

1. Check the obvious possibilities. Make sure your system is plugged in. Make sure you’re drawing
your objects with a color that’s different from the color with which you’re clearing the screen.
Make sure that whatever states you’re using (such as lighting, texturing, alpha blending, logical
operations, or antialiasing) are correctly turned on or off, as desired.

2. Remember that with the projection commands, the near and far coordinates measure distance from
the viewpoint and that (by default) you’re looking down the negative z axis. Thus, if the near value
is 1.0 and the far 3.0, objects must have z coordinates between -1.0 and -3.0 in order to be visible.
To ensure that you haven’t clipped everything out of your scene, temporarily set the near and far
clipping planes to some absurdly inclusive values, such as 0.001 and 1000000.0. This alters
appearance for operations such as depth-buffering and fog, but it might uncover inadvertently
clipped objects.

3. Determine where the viewpoint is, in which direction you’re looking, and where your objects are.
It might help to create a real three-dimensional space - using your hands, for instance - to figure
these things out.

4. Make sure you know where you’re rotating about. You might be rotating about some arbitrary
location unless you translated back to the origin first. It’s OK to rotate about any point unless
you’re expecting to rotate about the origin.

5. Check your aim. Use gluLookAt() to aim the viewing volume at your objects. Or draw your
objects at or near the origin, and use glTranslate*() as a viewing transformation to move the
camera far enough in the z direction only so that the objects fall within the viewing volume. Once
you’ve managed to make your objects visible, try to change the viewing volume incrementally to
achieve the exact result you want, as described next.

Even after you’ve aimed the camera in the correct direction and you can see your objects, they might
appear too small or too large. If you’re using gluPerspective(), you might need to alter the angle
defining the field of view by changing the value of the first parameter for this command. You can use
trigonometry to calculate the desired field of view given the size of the object and its distance from the
viewpoint: The tangent of half the desired angle is half the size of the object divided by the distance to
the object (see Figure 3-19). Thus, you can use an arctangent routine to compute half the desired angle.
Example 3-3 assumes such a routine, atan2(), which calculates the arctangent given the length of the
opposite and adjacent sides of a right triangle. This result then needs to be converted from radians to
degrees.

Figure 3-19 : Using Trigonometry to Calculate the Field of View

Example 3-3 : Calculating Field of View

#define PI 3.1415926535

double calculateAngle(double size, double distance)
{
 double radtheta, degtheta;

 radtheta = 2.0 * atan2 (size/2.0, distance);
 degtheta = (180.0 * radtheta) / PI;
 return (degtheta);
}

Of course, typically you don’t know the exact size of an object, and the distance can only be determined
between the viewpoint and a single point in your scene. To obtain a fairly good approximate value, find
the bounding box for your scene by determining the maximum and minimum x, y, and z coordinates of
all the objects in your scene. Then calculate the radius of a bounding sphere for that box, and use the
center of the sphere to determine the distance and the radius to determine the size.

For example, suppose all the coordinates in your object satisfy the equations -1 ≤ x ≤ 3, 5 ≤ y
≤ 7, and -5 ≤ z ≤ 5. Then the center of the bounding box is (1, 6, 0), and the radius of a
bounding sphere is the distance from the center of the box to any corner - say (3, 7, 5) - or

If the viewpoint is at (8, 9, 10), the distance between it and the center is

The tangent of the half angle is 5.477 divided by 12.570, which equals 0.4357, so the half angle is 23.54
degrees.

Remember that the field-of-view angle affects the optimal position for the viewpoint, if you’re trying to
achieve a realistic image. For example, if your calculations indicate that you need a 179-degree field of

view, the viewpoint must be a fraction of an inch from the screen to achieve realism. If your calculated
field of view is too large, you might need to move the viewpoint farther away from the object.

Manipulating the Matrix Stacks

The modelview and projection matrices you’ve been creating, loading, and multiplying have only been
the visible tips of their respective icebergs. Each of these matrices is actually the topmost member of a
stack of matrices (see Figure 3-20).

Figure 3-20 : Modelview and Projection Matrix Stacks

A stack of matrices is useful for constructing hierarchical models, in which complicated objects are
constructed from simpler ones. For example, suppose you’re drawing an automobile that has four
wheels, each of which is attached to the car with five bolts. You have a single routine to draw a wheel
and another to draw a bolt, since all the wheels and all the bolts look the same. These routines draw a
wheel or a bolt in some convenient position and orientation, say centered at the origin with its axis
coincident with the z axis. When you draw the car, including the wheels and bolts, you want to call the
wheel-drawing routine four times with different transformations in effect each time to position the
wheels correctly. As you draw each wheel, you want to draw the bolts five times, each time translated
appropriately relative to the wheel.

Suppose for a minute that all you have to do is draw the car body and the wheels. The English
description of what you want to do might be something like this:

Draw the car body. Remember where you are, and translate to the right front wheel. Draw the
wheel and throw away the last translation so your current position is back at the origin of the car
body. Remember where you are, and translate to the left front wheel....

Similarly, for each wheel, you want to draw the wheel, remember where you are, and successively
translate to each of the positions that bolts are drawn, throwing away the transformations after each bolt
is drawn.

Since the transformations are stored as matrices, a matrix stack provides an ideal mechanism for doing
this sort of successive remembering, translating, and throwing away. All the matrix operations that have
been described so far (glLoadMatrix(), glMultMatrix(), glLoadIdentity() and the commands that

create specific transformation matrices) deal with the current matrix, or the top matrix on the stack. You
can control which matrix is on top with the commands that perform stack operations: glPushMatrix(),
which copies the current matrix and adds the copy to the top of the stack, and glPopMatrix(), which
discards the top matrix on the stack, as shown in Figure 3-21. (Remember that the current matrix is
always the matrix on the top.) In effect, glPushMatrix() means "remember where you are" and
glPopMatrix() means "go back to where you were."

Figure 3-21 : Pushing and Popping the Matrix Stack

void glPushMatrix(void);
Pushes all matrices in the current stack down one level. The current stack is determined by
glMatrixMode(). The topmost matrix is copied, so its contents are duplicated in both the top and
second-from-the-top matrix. If too many matrices are pushed, an error is generated.

void glPopMatrix(void);
Pops the top matrix off the stack, destroying the contents of the popped matrix. What was the
second-from-the-top matrix becomes the top matrix. The current stack is determined by
glMatrixMode(). If the stack contains a single matrix, calling glPopMatrix() generates an error.

Example 3-4 draws an automobile, assuming the existence of routines that draw the car body, a wheel,
and a bolt.

Example 3-4 : Pushing and Popping the Matrix

draw_wheel_and_bolts()
{
 long i;

 draw_wheel();
 for(i=0;i<5;i++){
 glPushMatrix();
 glRotatef(72.0*i,0.0,0.0,1.0);
 glTranslatef(3.0,0.0,0.0);
 draw_bolt();
 glPopMatrix();
 }
}

draw_body_and_wheel_and_bolts()
{
 draw_car_body();
 glPushMatrix();
 glTranslatef(40,0,30); /*move to first wheel position*/

 draw_wheel_and_bolts();
 glPopMatrix();
 glPushMatrix();
 glTranslatef(40,0,-30); /*move to 2nd wheel position*/
 draw_wheel_and_bolts();
 glPopMatrix();
 ... /*draw last two wheels similarly*/
}

This code assumes the wheel and bolt axes are coincident with the z-axis, that the bolts are evenly
spaced every 72 degrees, 3 units (maybe inches) from the center of the wheel, and that the front wheels
are 40 units in front of and 30 units to the right and left of the car’s origin.

A stack is more efficient than an individual matrix, especially if the stack is implemented in hardware.
When you push a matrix, you don’t need to copy the current data back to the main process, and the
hardware may be able to copy more than one element of the matrix at a time. Sometimes you might want
to keep an identity matrix at the bottom of the stack so that you don’t need to call glLoadIdentity()
repeatedly.

The Modelview Matrix Stack

As you’ve seen earlier in "Viewing and Modeling Transformations," the modelview matrix contains the
cumulative product of multiplying viewing and modeling transformation matrices. Each viewing or
modeling transformation creates a new matrix that multiplies the current modelview matrix; the result,
which becomes the new current matrix, represents the composite transformation. The modelview matrix
stack contains at least thirty-two 4 × 4 matrices; initially, the topmost matrix is the identity matrix. Some
implementations of OpenGL may support more than thirty-two matrices on the stack. To find the
maximum allowable number of matrices, you can use the query command
glGetIntegerv(GL_MAX_MODELVIEW_STACK_DEPTH, GLint * params).

The Projection Matrix Stack

The projection matrix contains a matrix for the projection transformation, which describes the viewing
volume. Generally, you don’t want to compose projection matrices, so you issue glLoadIdentity()
before performing a projection transformation. Also for this reason, the projection matrix stack need be
only two levels deep; some OpenGL implementations may allow more than two 4 × 4 matrices. To find
the stack depth, call glGetIntegerv(GL_MAX_PROJECTION_STACK_DEPTH, GLint * params).

One use for a second matrix in the stack would be an application that needs to display a help window
with text in it, in addition to its normal window showing a three-dimensional scene. Since text is most
easily positioned with an orthographic projection, you could change temporarily to an orthographic
projection, display the help, and then return to your previous projection:

glMatrixMode(GL_PROJECTION);
glPushMatrix(); /*save the current projection*/
 glLoadIdentity();
 glOrtho(...); /*set up for displaying help*/
 display_the_help();
glPopMatrix();

Note that you’d probably have to also change the modelview matrix appropriately.

Advanced

If you know enough mathematics, you can create custom projection matrices that perform arbitrary
projective transformations. For example, the OpenGL and its Utility Library have no built-in mechanism
for two-point perspective. If you were trying to emulate the drawings in drafting texts, you might need
such a projection matrix.

Additional Clipping Planes

In addition to the six clipping planes of the viewing volume (left, right, bottom, top, near, and far), you
can define up to six additional clipping planes to further restrict the viewing volume, as shown in Figure
3-22. This is useful for removing extraneous objects in a scene - for example, if you want to display a
cutaway view of an object.

Each plane is specified by the coefficients of its equation: Ax+By+Cz+D = 0. The clipping planes are
automatically transformed appropriately by modeling and viewing transformations. The clipping volume
becomes the intersection of the viewing volume and all half-spaces defined by the additional clipping
planes. Remember that polygons that get clipped automatically have their edges reconstructed
appropriately by OpenGL.

Figure 3-22 : Additional Clipping Planes and the Viewing Volume

void glClipPlane(GLenum plane, const GLdouble *equation);
Defines a clipping plane. The equation argument points to the four coefficients of the plane
equation, Ax+By+Cz+D = 0. All points with eye coordinates (xe, ye, ze, we) that satisfy (A B C
D)M-1 (xe ye ze we)T >= 0 lie in the half-space defined by the plane, where M is the current
modelview matrix at the time glClipPlane() is called. All points not in this half-space are clipped
away. The plane argument is GL_CLIP_PLANEi, where i is an integer specifying which of the
available clipping planes to define. i is a number between 0 and one less than the maximum
number of additional clipping planes.

You need to enable each additional clipping plane you define:

glEnable(GL_CLIP_PLANEi);

You can disable a plane with

glDisable(GL_CLIP_PLANEi);

All implementations of OpenGL must support at least six additional clipping planes, although some
implementations may allow more. You can use glGetIntegerv() with GL_MAX_CLIP_PLANES to find
how many clipping planes are supported.

Note: Clipping performed as a result of glClipPlane() is done in eye coordinates, not in clip
coordinates. This difference is noticeable if the projection matrix is singular (that is, a real projection
matrix that flattens three-dimensional coordinates to two-dimensional ones). Clipping performed in eye
coordinates continues to take place in three dimensions even when the projection matrix is singular.

A Clipping Plane Code Example

Example 3-5 renders a wireframe sphere with two clipping planes that slice away three-quarters of the
original sphere, as shown in Figure 3-23.

Figure 3-23 : Clipped Wireframe Sphere

Example 3-5 : Wireframe Sphere with Two Clipping Planes: clip.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>

void init(void)
{
 glClearColor (0.0, 0.0, 0.0, 0.0);
 glShadeModel (GL_FLAT);
}

void display(void)
{
 GLdouble eqn[4] = {0.0, 1.0, 0.0, 0.0};
 GLdouble eqn2[4] = {1.0, 0.0, 0.0, 0.0};

 glClear(GL_COLOR_BUFFER_BIT);
 glColor3f (1.0, 1.0, 1.0);
 glPushMatrix();
 glTranslatef (0.0, 0.0, -5.0);

/* clip lower half -- y < 0 */
 glClipPlane (GL_CLIP_PLANE0, eqn);
 glEnable (GL_CLIP_PLANE0);

/* clip left half -- x < 0 */
 glClipPlane (GL_CLIP_PLANE1, eqn2);
 glEnable (GL_CLIP_PLANE1);

 glRotatef (90.0, 1.0, 0.0, 0.0);
 glutWireSphere(1.0, 20, 16);
 glPopMatrix();
 glFlush ();
}

void reshape (int w, int h)
{
 glViewport (0, 0, (GLsizei) w, (GLsizei) h);
 glMatrixMode (GL_PROJECTION);
 glLoadIdentity ();
 gluPerspective(60.0, (GLfloat) w/(GLfloat) h, 1.0, 20.0);
 glMatrixMode (GL_MODELVIEW);
}

int main(int argc, char** argv)
{
 glutInit(&argc, argv);
 glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);
 glutInitWindowSize (500, 500);
 glutInitWindowPosition (100, 100);
 glutCreateWindow (argv[0]);
 init ();
 glutDisplayFunc(display);
 glutReshapeFunc(reshape);
 glutMainLoop();
 return 0;
}

Try This

Try changing the coefficients that describe the clipping planes in Example 3-5.

Try calling a modeling transformation, such as glRotate*(), to affect glClipPlane(). Make the
clipping plane move independently of the objects in the scene.

Examples of Composing Several Transformations

This section demonstrates how to combine several transformations to achieve a particular result. The
two examples discussed are a solar system, in which objects need to rotate on their axes as well as in
orbit around each other, and a robot arm, which has several joints that effectively transform coordinate
systems as they move relative to each other.

Building a Solar System

The program described in this section draws a simple solar system with a planet and a sun, both using
the same sphere-drawing routine. To write this program, you need to use glRotate*() for the revolution
of the planet around the sun and for the rotation of the planet around its own axis. You also need

glTranslate*() to move the planet out to its orbit, away from the origin of the solar system. Remember
that you can specify the desired size of the two spheres by supplying the appropriate arguments for the
glutWireSphere() routine.

To draw the solar system, you first want to set up a projection and a viewing transformation. For this
example, gluPerspective() and gluLookAt() are used.

Drawing the sun is straightforward, since it should be located at the origin of the grand, fixed coordinate
system, which is where the sphere routine places it. Thus, drawing the sun doesn’t require translation;
you can use glRotate*() to make the sun rotate about an arbitrary axis. To draw a planet rotating around
the sun, as shown in Figure 3-24, requires several modeling transformations. The planet needs to rotate
about its own axis once a day. And once a year, the planet completes one revolution around the sun.

Figure 3-24 : Planet and Sun

To determine the order of modeling transformations, visualize what happens to the local coordinate
system. An initial glRotate*() rotates the local coordinate system that initially coincides with the grand
coordinate system. Next, glTranslate*() moves the local coordinate system to a position on the planet’s
orbit; the distance moved should equal the radius of the orbit. Thus, the initial glRotate*() actually
determines where along the orbit the planet is (or what time of year it is).

A second glRotate*() rotates the local coordinate system around the local axes, thus determining the
time of day for the planet. Once you’ve issued all these transformation commands, the planet can be
drawn.

In summary, these are the OpenGL commands to draw the sun and planet; the full program is shown in
Example 3-6.

glPushMatrix();
glutWireSphere(1.0, 20, 16); /* draw sun */
glRotatef ((GLfloat) year, 0.0, 1.0, 0.0);
glTranslatef (2.0, 0.0, 0.0);
glRotatef ((GLfloat) day, 0.0, 1.0, 0.0);
glutWireSphere(0.2, 10, 8); /* draw smaller planet */
glPopMatrix();

Example 3-6 : Planetary System: planet.c

#include <GL/gl.h>
#include <GL/glu.h>

#include <GL/glut.h>

static int year = 0, day = 0;

void init(void)
{
 glClearColor (0.0, 0.0, 0.0, 0.0);
 glShadeModel (GL_FLAT);
}

void display(void)
{
 glClear (GL_COLOR_BUFFER_BIT);
 glColor3f (1.0, 1.0, 1.0);

 glPushMatrix();
 glutWireSphere(1.0, 20, 16); /* draw sun */
 glRotatef ((GLfloat) year, 0.0, 1.0, 0.0);
 glTranslatef (2.0, 0.0, 0.0);
 glRotatef ((GLfloat) day, 0.0, 1.0, 0.0);
 glutWireSphere(0.2, 10, 8); /* draw smaller planet */
 glPopMatrix();
 glutSwapBuffers();
}

void reshape (int w, int h)
{
 glViewport (0, 0, (GLsizei) w, (GLsizei) h);
 glMatrixMode (GL_PROJECTION);
 glLoadIdentity ();
 gluPerspective(60.0, (GLfloat) w/(GLfloat) h, 1.0, 20.0);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 gluLookAt (0.0, 0.0, 5.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);
}

void keyboard (unsigned char key, int x, int y)
{
 switch (key) {
 case ‘d’:
 day = (day + 10) % 360;
 glutPostRedisplay();
 break;
 case ‘D’:
 day = (day - 10) % 360;
 glutPostRedisplay();
 break;
 case ‘y’:
 year = (year + 5) % 360;
 glutPostRedisplay();
 break;
 case ‘Y’:
 year = (year - 5) % 360;
 glutPostRedisplay();
 break;
 default:
 break;
 }
}

int main(int argc, char** argv)

{
 glutInit(&argc, argv);
 glutInitDisplayMode (GLUT_DOUBLE | GLUT_RGB);
 glutInitWindowSize (500, 500);
 glutInitWindowPosition (100, 100);
 glutCreateWindow (argv[0]);
 init ();
 glutDisplayFunc(display);
 glutReshapeFunc(reshape);
 glutKeyboardFunc(keyboard);
 glutMainLoop();
 return 0;
}

Try This

Try adding a moon to the planet. Or try several moons and additional planets. Hint: Use
glPushMatrix() and glPopMatrix() to save and restore the position and orientation of the
coordinate system at appropriate moments. If you’re going to draw several moons around a planet,
you need to save the coordinate system prior to positioning each moon and restore the coordinate
system after each moon is drawn.

Try tilting the planet’s axis.

Building an Articulated Robot Arm

This section discusses a program that creates an articulated robot arm with two or more segments. The
arm should be connected with pivot points at the shoulder, elbow, or other joints. Figure 3-25 shows a
single joint of such an arm.

Figure 3-25 : Robot Arm

You can use a scaled cube as a segment of the robot arm, but first you must call the appropriate
modeling transformations to orient each segment. Since the origin of the local coordinate system is
initially at the center of the cube, you need to move the local coordinate system to one edge of the cube.
Otherwise, the cube rotates about its center rather than the pivot point.

After you call glTranslate*() to establish the pivot point and glRotate*() to pivot the cube, translate
back to the center of the cube. Then the cube is scaled (flattened and widened) before it is drawn. The
glPushMatrix() and glPopMatrix() restrict the effect of glScale*(). Here’s what your code might look
like for this first segment of the arm (the entire program is shown in Example 3-7):

glTranslatef (-1.0, 0.0, 0.0);
glRotatef ((GLfloat) shoulder, 0.0, 0.0, 1.0);
glTranslatef (1.0, 0.0, 0.0);

glPushMatrix();
glScalef (2.0, 0.4, 1.0);
glutWireCube (1.0);
glPopMatrix();

To build a second segment, you need to move the local coordinate system to the next pivot point. Since
the coordinate system has previously been rotated, the x-axis is already oriented along the length of the
rotated arm. Therefore, translating along the x-axis moves the local coordinate system to the next pivot
point. Once it’s at that pivot point, you can use the same code to draw the second segment as you used
for the first one. This can be continued for an indefinite number of segments (shoulder, elbow, wrist,
fingers).

glTranslatef (1.0, 0.0, 0.0);
glRotatef ((GLfloat) elbow, 0.0, 0.0, 1.0);
glTranslatef (1.0, 0.0, 0.0);
glPushMatrix();
glScalef (2.0, 0.4, 1.0);
glutWireCube (1.0);
glPopMatrix();

Example 3-7 : Robot Arm: robot.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>

static int shoulder = 0, elbow = 0;

void init(void)
{
 glClearColor (0.0, 0.0, 0.0, 0.0);
 glShadeModel (GL_FLAT);
}

void display(void)
{
 glClear (GL_COLOR_BUFFER_BIT);
 glPushMatrix();
 glTranslatef (-1.0, 0.0, 0.0);
 glRotatef ((GLfloat) shoulder, 0.0, 0.0, 1.0);
 glTranslatef (1.0, 0.0, 0.0);
 glPushMatrix();
 glScalef (2.0, 0.4, 1.0);
 glutWireCube (1.0);
 glPopMatrix();

 glTranslatef (1.0, 0.0, 0.0);
 glRotatef ((GLfloat) elbow, 0.0, 0.0, 1.0);
 glTranslatef (1.0, 0.0, 0.0);
 glPushMatrix();
 glScalef (2.0, 0.4, 1.0);
 glutWireCube (1.0);
 glPopMatrix();

 glPopMatrix();
 glutSwapBuffers();
}

void reshape (int w, int h)

{
 glViewport (0, 0, (GLsizei) w, (GLsizei) h);
 glMatrixMode (GL_PROJECTION);
 glLoadIdentity ();
 gluPerspective(65.0, (GLfloat) w/(GLfloat) h, 1.0, 20.0);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 glTranslatef (0.0, 0.0, -5.0);
}

void keyboard (unsigned char key, int x, int y)
{
 switch (key) {
 case ‘s’: /* s key rotates at shoulder */
 shoulder = (shoulder + 5) % 360;
 glutPostRedisplay();
 break;
 case ‘S’:
 shoulder = (shoulder - 5) % 360;
 glutPostRedisplay();
 break;
 case ‘e’: /* e key rotates at elbow */
 elbow = (elbow + 5) % 360;
 glutPostRedisplay();
 break;
 case ‘E’:
 elbow = (elbow - 5) % 360;
 glutPostRedisplay();
 break;
 default:
 break;
 }
}

int main(int argc, char** argv)
{
 glutInit(&argc, argv);
 glutInitDisplayMode (GLUT_DOUBLE | GLUT_RGB);
 glutInitWindowSize (500, 500);
 glutInitWindowPosition (100, 100);
 glutCreateWindow (argv[0]);
 init ();
 glutDisplayFunc(display);
 glutReshapeFunc(reshape);
 glutKeyboardFunc(keyboard);
 glutMainLoop();
 return 0;
}

Try This

Modify Example 3-7 to add additional segments onto the robot arm.

Modify Example 3-7 to add additional segments at the same position. For example, give the robot
arm several "fingers" at the wrist, as shown in Figure 3-26. Hint: Use glPushMatrix() and
glPopMatrix() to save and restore the position and orientation of the coordinate system at the
wrist. If you’re going to draw fingers at the wrist, you need to save the current matrix prior to
positioning each finger and restore the current matrix after each finger is drawn.

Figure 3-26 : Robot Arm with Fingers

Reversing or Mimicking Transformations

The geometric processing pipeline is very good at using viewing and projection matrices and a viewport
for clipping to transform the world (or object) coordinates of a vertex into window (or screen)
coordinates. However, there are situations in which you want to reverse that process. A common
situation is when an application user utilizes the mouse to choose a location in three dimensions. The
mouse returns only a two-dimensional value, which is the screen location of the cursor. Therefore, the
application will have to reverse the transformation process to determine from where in
three-dimensional space this screen location originated.

The Utility Library routine gluUnProject() performs this reversal of the transformations. Given the
three-dimensional window coordinates for a location and all the transformations that affected them,
gluUnProject() returns the world coordinates from where it originated.

int gluUnProject(GLdouble winx, GLdouble winy, GLdouble winz, const GLdouble modelMatrix[16],
const GLdouble projMatrix[16], const GLint viewport[4], GLdouble *objx, GLdouble *objy, GLdouble
*objz);

Map the specified window coordinates (winx, winy, winz) into object coordinates, using
transformations defined by a modelview matrix (modelMatrix), projection matrix (projMatrix),
and viewport (viewport). The resulting object coordinates are returned in objx, objy, and objz. The
function returns GL_TRUE, indicating success, or GL_FALSE, indicating failure (such as an
noninvertible matrix). This operation does not attempt to clip the coordinates to the viewport or
eliminate depth values that fall outside of glDepthRange().

There are inherent difficulties in trying to reverse the transformation process. A two-dimensional screen
location could have originated from anywhere on an entire line in three-dimensional space. To
disambiguate the result, gluUnProject() requires that a window depth coordinate (winz) be provided and
that winz be specified in terms of glDepthRange(). For the default values of glDepthRange(), winz at
0.0 will request the world coordinates of the transformed point at the near clipping plane, while winz at
1.0 will request the point at the far clipping plane.

Example 3-8 demonstrates gluUnProject() by reading the mouse position and determining the
three-dimensional points at the near and far clipping planes from which it was transformed. The

computed world coordinates are printed to standard output, but the rendered window itself is just black.

Example 3-8 : Reversing the Geometric Processing Pipeline: unproject.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>
#include <stdlib.h>
#include <stdio.h>

void display(void)
{
 glClear(GL_COLOR_BUFFER_BIT);
 glFlush();
}

void reshape(int w, int h)
{
 glViewport (0, 0, (GLsizei) w, (GLsizei) h);
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluPerspective (45.0, (GLfloat) w/(GLfloat) h, 1.0, 100.0);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
}

void mouse(int button, int state, int x, int y)
{
 GLint viewport[4];
 GLdouble mvmatrix[16], projmatrix[16];
 GLint realy; /* OpenGL y coordinate position */
 GLdouble wx, wy, wz; /* returned world x, y, z coords */

 switch (button) {
 case GLUT_LEFT_BUTTON:
 if (state == GLUT_DOWN) {
 glGetIntegerv (GL_VIEWPORT, viewport);
 glGetDoublev (GL_MODELVIEW_MATRIX, mvmatrix);
 glGetDoublev (GL_PROJECTION_MATRIX, projmatrix);
/* note viewport[3] is height of window in pixels */
 realy = viewport[3] - (GLint) y - 1;
 printf ("Coordinates at cursor are (%4d, %4d)\n",
 x, realy);
 gluUnProject ((GLdouble) x, (GLdouble) realy, 0.0,
 mvmatrix, projmatrix, viewport, &wx, &wy, &wz);
 printf ("World coords at z=0.0 are (%f, %f, %f)\n",
 wx, wy, wz);
 gluUnProject ((GLdouble) x, (GLdouble) realy, 1.0,
 mvmatrix, projmatrix, viewport, &wx, &wy, &wz);
 printf ("World coords at z=1.0 are (%f, %f, %f)\n",
 wx, wy, wz);
 }
 break;
 case GLUT_RIGHT_BUTTON:
 if (state == GLUT_DOWN)
 exit(0);
 break;
 default:
 break;
 }

}

int main(int argc, char** argv)
{
 glutInit(&argc, argv);
 glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);
 glutInitWindowSize (500, 500);
 glutInitWindowPosition (100, 100);
 glutCreateWindow (argv[0]);
 glutDisplayFunc(display);
 glutReshapeFunc(reshape);
 glutMouseFunc(mouse);
 glutMainLoop();
 return 0;
}

gluProject() is another Utility Library routine, which is related to gluUnProject().gluProject() mimics
the actions of the transformation pipeline. Given three-dimensional world coordinates and all the
transformations that affect them, gluProject() returns the transformed window coordinates.

int gluProject(GLdouble objx, GLdouble objy, GLdouble objz, const GLdouble modelMatrix[16], const
GLdouble projMatrix[16], const GLint viewport[4], GLdouble *winx, GLdouble *winy, GLdouble
*winz);

Map the specified object coordinates (objx, objy, objz) into window coordinates, using
transformations defined by a modelview matrix (modelMatrix), projection matrix (projMatrix),
and viewport (viewport). The resulting window coordinates are returned in winx, winy, and winz.
The function returns GL_TRUE, indicating success, or GL_FALSE, indicating failure.

 OpenGL Programming Guide (Addison-Wesley
Publishing Company)

 OpenGL Programming Guide
(Addison-Wesley Publishing Company)

Chapter 4
Color
Chapter Objectives

After reading this chapter, you’ll be able to do the following:

Decide between using RGBA or color-index mode for your application

Specify desired colors for drawing objects

Use smooth shading to draw a single polygon with more than one color

The goal of almost all OpenGL applications is to draw color pictures in a window on the screen.
The window is a rectangular array of pixels, each of which contains and displays its own color.
Thus, in a sense, the point of all the calculations performed by an OpenGL implementation -
calculations that take into account OpenGL commands, state information, and values of parameters
- is to determine the final color of every pixel that’s to be drawn in the window. This chapter
explains the commands for specifying colors and how OpenGL interprets them in the following
major sections:

"Color Perception" discusses how the eye perceives color.

"Computer Color" describes the relationship between pixels on a computer monitor and their
colors; it also defines the two display modes, RGBA and color index.

"RGBA versus Color-Index Mode" explains how the two display modes use graphics
hardware and how to decide which mode to use.

"Specifying a Color and a Shading Model" describes the OpenGL commands you use to
specify the desired color or shading model.

Color Perception

Physically, light is composed of photons - tiny particles of light, each traveling along its own path,
and each vibrating at its own frequency (or wavelength, or energy - any one of frequency,
wavelength, or energy determines the others). A photon is completely characterized by its position,
direction, and frequency/wavelength/energy. Photons with wavelengths ranging from about 390
nanometers (nm) (violet) and 720 nm (red) cover the colors of the visible spectrum, forming the
colors of a rainbow (violet, indigo, blue, green, yellow, orange, red). However, your eyes perceive
lots of colors that aren’t in the rainbow - white, black, brown, and pink, for example. How does this

happen?

What your eye actually sees is a mixture of photons of different frequencies. Real light sources are
characterized by the distribution of photon frequencies they emit. Ideal white light consists of an
equal amount of light of all frequencies. Laser light is usually very pure, and all photons have
almost identical frequencies (and direction and phase, as well). Light from a sodium-vapor lamp
has more light in the yellow frequency. Light from most stars in space has a distribution that
depends heavily on their temperatures (black-body radiation). The frequency distribution of light
from most sources in your immediate environment is more complicated.

The human eye perceives color when certain cells in the retina (called cone cells, or just cones)
become excited after being struck by photons. The three different kinds of cone cells respond best
to three different wavelengths of light: one type of cone cell responds best to red light, one type to
green, and the other to blue. (A person who is color-blind is usually missing one or more types of
cone cells.) When a given mixture of photons enters the eye, the cone cells in the retina register
different degrees of excitation depending on their types, and if a different mixture of photons comes
in that happens to excite the three types of cone cells to the same degrees, its color is
indistinguishable from that of the first mixture.

Since each color is recorded by the eye as the levels of excitation of the cone cells by the incoming
photons, the eye can perceive colors that aren’t in the spectrum produced by a prism or rainbow.
For example, if you send a mixture of red and blue photons so that both the red and blue cones in
the retina are excited, your eye sees it as magenta, which isn’t in the spectrum. Other combinations
give browns, turquoises, and mauves, none of which appear in the color spectrum.

A computer-graphics monitor emulates visible colors by lighting pixels with a combination of red,
green, and blue light in proportions that excite the red-, green-, and blue-sensitive cones in the
retina in such a way that it matches the excitation levels generated by the photon mix it’s trying to
emulate. If humans had more types of cone cells, some that were yellow-sensitive for example,
color monitors would probably have a yellow gun as well, and we’d use RGBY (red, green, blue,
yellow) quadruples to specify colors. And if everyone were color-blind in the same way, this
chapter would be simpler.

To display a particular color, the monitor sends the right amounts of red, green, and blue light to
appropriately stimulate the different types of cone cells in your eye. A color monitor can send
different proportions of red, green, and blue to each of the pixels, and the eye sees a million or so
pinpoints of light, each with its own color.

This section considers only how the eye perceives combinations of photons that enter it. The
situation for light bouncing off materials and entering the eye is even more complex - white light
bouncing off a red ball will appear red, or yellow light shining through blue glass appears almost
black, for example. (See "Real-World and OpenGL Lighting" in Chapter 5 for a discussion of these
effects.)

Computer Color

On a color computer screen, the hardware causes each pixel on the screen to emit different amounts
of red, green, and blue light. These are called the R, G, and B values. They’re often packed together
(sometimes with a fourth value, called alpha, or A), and the packed value is called the RGB (or
RGBA) value. (See "Blending" in Chapter 6 for an explanation of the alpha values.) The color

information at each pixel can be stored either in RGBA mode, in which the R, G, B, and possibly A
values are kept for each pixel, or in color-index mode, in which a single number (called the color
index) is stored for each pixel. Each color index indicates an entry in a table that defines a particular
set of R, G, and B values. Such a table is called a color map.

In color-index mode, you might want to alter the values in the color map. Since color maps are
controlled by the window system, there are no OpenGL commands to do this. All the examples in
this book initialize the color-display mode at the time the window is opened by using routines from
the GLUT library. (See Appendix D for details.)

There is a great deal of variation among the different graphics hardware platforms in both the size
of the pixel array and the number of colors that can be displayed at each pixel. On any graphics
system, each pixel has the same amount of memory for storing its color, and all the memory for all
the pixels is called the color buffer. The size of a buffer is usually measured in bits, so an 8-bit
buffer could store 8 bits of data (256 possible different colors) for each pixel. The size of the
possible buffers varies from machine to machine. (See Chapter 10 for more information.)

The R, G, and B values can range from 0.0 (none) to 1.0 (full intensity). For example, R = 0.0, G =
0.0, and B = 1.0 represents the brightest possible blue. If R, G, and B are all 0.0, the pixel is black;
if all are 1.0, the pixel is drawn in the brightest white that can be displayed on the screen. Blending
green and blue creates shades of cyan. Blue and red combine for magenta. Red and green create
yellow. To help you create the colors you want from the R, G, and B components, look at the color
cube shown in Plate 12. The axes of this cube represent intensities of red, blue, and green. A
black-and-white version of the cube is shown in Figure 4-1.

Figure 4-1 : The Color Cube in Black and White

The commands to specify a color for an object (in this case, a point) can be as simple as this:

glColor3f (1.0, 0.0, 0.0); /* the current RGB color is red: */
 /* full red, no green, no blue. */
glBegin (GL_POINTS);
 glVertex3fv (point_array);
glEnd ();

In certain modes (for example, if lighting or texturing calculations are performed), the assigned
color might go through other operations before arriving in the framebuffer as a value representing a
color for a pixel. In fact, the color of a pixel is determined by a lengthy sequence of operations.

Early in a program’s execution, the color-display mode is set to either RGBA mode or color-index
mode. Once the color-display mode is initialized, it can’t be changed. As the program executes, a
color (either a color index or an RGBA value) is determined on a per-vertex basis for each
geometric primitive. This color is either a color you’ve explicitly specified for a vertex or, if
lighting is enabled, is determined from the interaction of the transformation matrices with the
surface normals and other material properties. In other words, a red ball with a blue light shining on
it looks different from the same ball with no light on it. (See Chapter 5 for details.) After the
relevant lighting calculations are performed, the chosen shading model is applied. As explained in
"Specifying a Color and a Shading Model," you can choose flat or smooth shading, each of which
has different effects on the eventual color of a pixel.

Next, the primitives are rasterized, or converted to a two-dimensional image. Rasterizing involves
determining which squares of an integer grid in window coordinates are occupied by the primitive
and then assigning color and other values to each such square. A grid square along with its
associated values of color, z (depth), and texture coordinates is called a fragment. Pixels are
elements of the framebuffer; a fragment comes from a primitive and is combined with its
corresponding pixel to yield a new pixel. Once a fragment is constructed, texturing, fog, and
antialiasing are applied - if they’re enabled - to the fragments. After that, any specified alpha
blending, dithering, and bitwise logical operations are carried out using the fragment and the pixel
already stored in the framebuffer. Finally, the fragment’s color value (either color index or RGBA)
is written into the pixel and displayed in the window using the window’s color-display mode.

RGBA versus Color-Index Mode

In either color-index or RGBA mode, a certain amount of color data is stored at each pixel. This
amount is determined by the number of bitplanes in the framebuffer. A bitplane contains 1 bit of
data for each pixel. If there are 8color bitplanes, there are 8 color bits per pixel, and hence 28 = 256
different values or colors that can be stored at the pixel.

Bitplanes are often divided evenly into storage for R, G, and B components (that is, a 24-bitplane
system devotes 8 bits each to red, green, and blue), but this isn’t always true. To find out the
number of bitplanes available on your system for red, green, blue, alpha, or color-index values, use
glGetIntegerv() with GL_RED_BITS, GL_GREEN_BITS, GL_BLUE_BITS, GL_ALPHA_BITS,
and GL_INDEX_BITS.

Note: Color intensities on most computer screens aren’t perceived as linear by the human eye.
Consider colors consisting of just a red component, with green and blue set to zero. As the intensity
varies from 0.0 (off) to 1.0 (full on), the number of electrons striking the pixels increases, but the
question is, does 0.5 look like halfway between 0.0 and 1.0? To test this, write a program that draws
alternate pixels in a checkerboard pattern to intensities 0.0 and 1.0, and compare it with a region
drawn solidly in color 0.5. From a reasonable distance from the screen, the two regions should
appear to have the same intensity. If they look noticeably different, you need to use whatever
correction mechanism is provided on your particular system. For example, many systems have a
table to adjust intensities so that 0.5 appears to be halfway between 0.0 and 1.0. The mapping
generally used is an exponential one, with the exponent referred to as gamma (hence the term
gamma correction). Using the same gamma for the red, green, and blue components gives pretty
good results, but three different gamma values might give slightly better results. (For more details
on this topic, see Foley, van Dam, et al. Computer Graphics: Principles and Practice. Reading,
MA: Addison-Wesley Developers Press, 1990.)

RGBA Display Mode

In RGBA mode, the hardware sets aside a certain number of bitplanes for each of the R, G, B, and
A components (not necessarily the same number for each component) as shown in Figure 4-2. The
R, G, and B values are typically stored as integers rather than floating-point numbers, and they’re
scaled to the number of available bits for storage and retrieval. For example, if a system has 8 bits
available for the R component, integers between 0 and 255 can be stored; thus, 0, 1, 2, ..., 255 in the
bitplanes would correspond to R values of 0/255 = 0.0, 1/255, 2/255, ..., 255/255 = 1.0. Regardless
of the number of bitplanes, 0.0 specifies the minimum intensity, and 1.0 specifies the maximum
intensity.

Figure 4-2 : RGB Values from the Bitplanes

Note: The alpha value (the A in RGBA) has no direct effect on the color displayed on the screen. It
can be used for many things, including blending and transparency, and it can have an effect on the
values of R, G, and B that are written. (See "Blending" in Chapter 6 for more information about
alpha values.)

The number of distinct colors that can be displayed at a single pixel depends on the number of
bitplanes and the capacity of the hardware to interpret those bitplanes. The number of distinct
colors can’t exceed 2n, where n is the number of bitplanes. Thus, a machine with 24 bitplanes for
RGB can display up to 16.77 million distinct colors.

Dithering

Advanced

Some graphics hardware uses dithering to increase the number of apparent colors. Dithering is the
technique of using combinations of some colors to create the effect of other colors. To illustrate
how dithering works, suppose your system has only 1 bit each for R, G, and B and thus can display
only eight colors: black, white, red, blue, green, yellow, cyan, and magenta. To display a pink
region, the hardware can fill the region in a checkerboard manner, alternating red and white pixels.
If your eye is far enough away from the screen that it can’t distinguish individual pixels, the region
appears pink - the average of red and white. Redder pinks can be achieved by filling a higher
proportion of the pixels with red, whiter pinks would use more white pixels, and so on.

With this technique, there are no pink pixels. The only way to achieve the effect of "pinkness" is to

cover a region consisting of multiple pixels - you can’t dither a single pixel. If you specify an RGB
value for an unavailable color and fill a polygon, the hardware fills the pixels in the interior of the
polygon with a mixture of nearby colors whose average appears to your eye to be the color you
want. (Remember, though, that if you’re reading pixel information out of the framebuffer, you get
the actual red and white pixel values, since there aren’t any pink ones. See Chapter 8 for more
information about reading pixel values.)

Figure 4-3 illustrates some simple dithering of black and white pixels to make shades of gray. From
left to right, the 4 × 4 patterns at the top represent dithering patterns for 50 percent, 19 percent, and
69 percent gray. Under each pattern, you can see repeated reduced copies of each pattern, but these
black and white squares are still bigger than most pixels. If you look at them from across the room,
you can see that they blur together and appear as three levels of gray.

Figure 4-3 : Dithering Black and White to Create Gray

With about 8 bits each of R, G, and B, you can get a fairly high-quality image without dithering.
Just because your machine has 24 color bitplanes, however, doesn’t mean that dithering won’t be
desirable. For example, if you are running in double-buffer mode, the bitplanes might be divided
into two sets of twelve, so there are really only 4 bits each per R, G, and B component. Without
dithering, 4-bit-per-component color can give less than satisfactory results in many situations.

You enable or disable dithering by passing GL_DITHER to glEnable() or glDisable(). Note that
dithering, unlike many other features, is enabled by default.

Color-Index Display Mode

With color-index mode, OpenGL uses a color map (or lookup table), which is similar to using a
palette to mix paints to prepare for a paint-by-number scene. A painter’s palette provides spaces to
mix paints together; similarly, a computer’s color map provides indices where the primary red,
green, and blue values can be mixed, as shown in Figure 4-4.

Figure 4-4 : A Color Map

A painter filling in a paint-by-number scene chooses a color from the color palette and fills the
corresponding numbered regions with that color. A computer stores the color index in the bitplanes
for each pixel. Then those bitplane values reference the color map, and the screen is painted with
the corresponding red, green, and blue values from the color map, as shown in Figure 4-5.

Figure 4-5 : Using a Color Map to Paint a Picture

In color-index mode, the number of simultaneously available colors is limited by the size of the
color map and the number of bitplanes available. The size of the color map is determined by the
amount of hardware dedicated to it. The size of the color map is always a power of 2, and typical
sizes range from 256 (28) to 4096 (212), where the exponent is the number of bitplanes being used.
If there are 2n indices in the color map and m available bitplanes, the number of usable entries is the
smaller of 2n and 2m.

With RGBA mode, each pixel’s color is independent of other pixels. However, in color-index
mode, each pixel with the same index stored in its bitplanes shares the same color-map location. If
the contents of an entry in the color map change, then all pixels of that color index change their
color.

Choosing between RGBA and Color-Index Mode

You should base your decision to use RGBA or color-index mode on what hardware is available
and on what your application needs. For most systems, more colors can be simultaneously

represented with RGBA mode than with color-index mode. Also, for several effects, such as
shading, lighting, texture mapping, and fog, RGBA provides more flexibility than color-index
mode.

You might prefer to use color-index mode in the following cases:

If you’re porting an existing application that makes significant use of color-index mode, it
might be easier to not change to RGBA mode.

If you have a small number of bitplanes available, RGBA mode may produce noticeably
coarse shades of colors. For example, if you have only 8 bitplanes, in RGBA mode, you may
have only 3 bits for red, 3 bits for green, and 2 bits for blue. You’d only have 8 (23) shades of
red and green, and only 4 shades of blue. The gradients between color shades are likely to be
very obvious.

In this situation, if you have limited shading requirements, you can use the color lookup table
to load more shades of colors. For example, if you need only shades of blue, you can use
color-index mode and store up to 256 (28) shades of blue in the color-lookup table, which is
much better than the 4 shades you would have in RGBA mode. Of course, this example
would use up your entire color-lookup table, so you would have no shades of red, green, or
other combined colors.

Color-index mode can be useful for various tricks, such as color-map animation and drawing
in layers. (See Chapter 14 for more information.)

In general, use RGBA mode wherever possible. It works with texture mapping and works better
with lighting, shading, fog, antialiasing, and blending.

Changing between Display Modes

In the best of all possible worlds, you might want to avoid making a choice between RGBA and
color-index display mode. For example, you may want to use color-index mode for a color-map
animation effect and then, when needed, immediately change the scene to RGBA mode for texture
mapping.

Or similarly, you may desire to switch between single and double buffering. For example, you may
have very few bitplanes; let’s say 8 bitplanes. In single-buffer mode, you’ll have 256 (28) colors,
but if you are using double-buffer mode to eliminate flickering from your animated program, you
may only have 16 (24) colors. Perhaps you want to draw a moving object without flicker and are
willing to sacrifice colors for using double-buffer mode (maybe the object is moving so fast that the
viewer won’t notice the details). But when the object comes to rest, you will want to draw it in
single-buffer mode so that you can use more colors.

Unfortunately, most window systems won’t allow an easy switch. For example, with the X Window
System, the color-display mode is an attribute of the X Visual. An X Visual must be specified
before the window is created. Once it is specified, it cannot be changed for the life of the window.
After you create a window with a double-buffered, RGBA display mode, you’re stuck with it.

A tricky solution to this problem is to create more than one window, each with a different display
mode. Then you must control the visibility of the windows (for example, mapping or unmapping an
X Window, or managing or unmanaging a Motif or Athena widget) and draw the object into the

appropriate, visible window.

Specifying a Color and a Shading Model

OpenGL maintains a current color (in RGBA mode) and a current color index (in color-index
mode). Unless you’re using a more complicated coloring model such as lighting or texture
mapping, each object is drawn using the current color (or color index). Look at the following
pseudocode sequence:

set_color(RED);
draw_item(A);
draw_item(B);
set_color(GREEN);
set_color(BLUE);
draw_item(C);

Items A and B are drawn in red, and item C is drawn in blue. The fourth line, which sets the current
color to green, has no effect (except to waste a bit of time). With no lighting or texturing, when the
current color is set, all items drawn afterward are drawn in that color until the current color is
changed to something else.

Specifying a Color in RGBA Mode

In RGBA mode, use the glColor*() command to select a current color.

void glColor3{b s i f d ub us ui} (TYPEr, TYPEg, TYPEb);
void glColor4{b s i f d ub us ui} (TYPEr, TYPEg, TYPEb, TYPEa);
void glColor3{b s i f d ub us ui}v (const TYPE*v);
void glColor4{b s i f d ub us ui}v (const TYPE*v);

Sets the current red, green, blue, and alpha values. This command can have up to three
suffixes, which differentiate variations of the parameters accepted. The first suffix is either 3
or 4, to indicate whether you supply an alpha value in addition to the red, green, and blue
values. If you don’t supply an alpha value, it’s automatically set to 1.0. The second suffix
indicates the data type for parameters: byte, short, integer, float, double, unsigned byte,
unsigned short, or unsigned integer. The third suffix is an optional v, which indicates that the
argument is a pointer to an array of values of the given data type.

For the versions of glColor*() that accept floating-point data types, the values should typically
range between 0.0 and 1.0, the minimum and maximum values that can be stored in the
framebuffer. Unsigned-integer color components, when specified, are linearly mapped to
floating-point values such that the largest representable value maps to 1.0 (full intensity), and zero
maps to 0.0 (zero intensity). Signed-integer color components, when specified, are linearly mapped
to floating-point values such that the most positive representable value maps to 1.0, and the most
negative representable value maps to -1.0 (see Table 4-1).

Neither floating-point nor signed-integer values are clamped to the range [0,1] before updating the
current color or current lighting material parameters. After lighting calculations, resulting color
values outside the range [0,1] are clamped to the range [0,1] before they are interpolated or written
into a color buffer. Even if lighting is disabled, the color components are clamped before
rasterization.

Table 4-1 : Converting Color Values to Floating-Point Numbers

Suffix Data Type Minimum Value Min
Value
Maps to

Maximum Value Max
Value
Maps to

b 1-byte integer -128 -1.0 127 1.0

s 2-byte integer -32,768 -1.0 32,767 1.0

i 4-byte integer -2,147,483,648 -1.0 2,147,483,647 1.0

ub unsigned
1-byte integer

0 0.0 255 1.0

us unsigned
2-byte integer

0 0.0 65,535 1.0

ui unsigned
4-byte integer

0 0.0 4,294,967,295 1.0

Specifying a Color in Color-Index Mode

In color-index mode, use the glIndex*() command to select a single-valued color index as the
current color index.

void glIndex{sifd ub}(TYPE c);
void glIndex{sifd ub}v(const TYPE *c);

Sets the current color index to c. The first suffix for this command indicates the data type for
parameters: short, integer, float, double, or unsigned byte. The second, optional suffix is v,
which indicates that the argument is an array of values of the given data type (the array
contains only one value).

In "Clearing the Window" in Chapter 2, you saw the specification of glClearColor(). For
color-index mode, there is a corresponding glClearIndex().

void glClearIndex(GLfloat cindex);
Sets the current clearing color in color-index mode. In a color-index mode window, a call to
glClear(GL_COLOR_BUFFER_BIT) will use cindex to clear the buffer. The default clearing
index is 0.0.

Note: OpenGL does not have any routines to load values into the color-lookup table. Window
systems typically already have such operations. GLUT has the routine glutSetColor() to call the
window-system specific commands.

Advanced

The current index is stored as a floating-point value. Integer values are converted directly to
floating-point values, with no special mapping. Index values outside the representable range of the
color-index buffer aren’t clamped. However, before an index is dithered (if enabled) and written to
the framebuffer, it’s converted to fixed-point format. Any bits in the integer portion of the resulting
fixed-point value that don’t correspond to bits in the framebuffer are masked out.

Specifying a Shading Model

A line or a filled polygon primitive can be drawn with a single color (flat shading) or with many
different colors (smooth shading, also called Gouraud shading). You specify the desired shading
technique with glShadeModel().

void glShadeModel (GLenum mode);
Sets the shading model. The mode parameter can be either GL_SMOOTH (the default) or
GL_FLAT.

With flat shading, the color of one particular vertex of an independent primitive is duplicated across
all the primitive’s vertices to render that primitive. With smooth shading, the color at each vertex is
treated individually. For a line primitive, the colors along the line segment are interpolated between
the vertex colors. For a polygon primitive, the colors for the interior of the polygon are interpolated
between the vertex colors. Example 4-1 draws a smooth-shaded triangle, as shown in "Plate 11" in
Appendix I.

Example 4-1 : Drawing a Smooth-Shaded Triangle: smooth.c

#include <GL/gl.h>
#include <GL/glut.h>

void init(void)
{
 glClearColor (0.0, 0.0, 0.0, 0.0);
 glShadeModel (GL_SMOOTH);
}

void triangle(void)
{
 glBegin (GL_TRIANGLES);
 glColor3f (1.0, 0.0, 0.0);
 glVertex2f (5.0, 5.0);
 glColor3f (0.0, 1.0, 0.0);
 glVertex2f (25.0, 5.0);
 glColor3f (0.0, 0.0, 1.0);
 glVertex2f (5.0, 25.0);
 glEnd();
}

void display(void)
{
 glClear (GL_COLOR_BUFFER_BIT);
 triangle ();
 glFlush ();
}

void reshape (int w, int h)
{
 glViewport (0, 0, (GLsizei) w, (GLsizei) h);
 glMatrixMode (GL_PROJECTION);
 glLoadIdentity ();

 if (w <= h)
 gluOrtho2D (0.0, 30.0, 0.0, 30.0*(GLfloat) h/(GLfloat) w);
 else
 gluOrtho2D (0.0, 30.0*(GLfloat) w/(GLfloat) h, 0.0, 30.0);
 glMatrixMode(GL_MODELVIEW);
}

int main(int argc, char** argv)
{
 glutInit(&argc, argv);
 glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);
 glutInitWindowSize (500, 500);
 glutInitWindowPosition (100, 100);
 glutCreateWindow (argv[0]);
 init ();
 glutDisplayFunc(display);
 glutReshapeFunc(reshape);
 glutMainLoop();
 return 0;
}

With smooth shading, neighboring pixels have slightly different color values. In RGBA mode,
adjacent pixels with slightly different values look similar, so the color changes across a polygon
appear gradual. In color-index mode, adjacent pixels may reference different locations in the
color-index table, which may not have similar colors at all. Adjacent color-index entries may
contain wildly different colors, so a smooth-shaded polygon in color-index mode can look
psychedelic.

To avoid this problem, you have to create a color ramp of smoothly changing colors among a
contiguous set of indices in the color map. Remember that loading colors into a color map is
performed through your window system rather than OpenGL. If you use GLUT, you can use
glutSetColor() to load a single index in the color map with specified red, green, and blue values.
The first argument for glutSetColor() is the index, and the others are the red, green, and blue
values. To load thirty-two contiguous color indices (from color index 16 to 47) with slightly
differing shades of yellow, you might call

for (i = 0; i < 32; i++) {
 glutSetColor (16+i, 1.0*(i/32.0), 1.0*(i/32.0), 0.0);
}

Now, if you render smooth-shaded polygons that use only the colors from index 16 to 47, those
polygons have gradually differing shades of yellow.

With flat shading, the color of a single vertex defines the color of an entire primitive. For a line
segment, the color of the line is the current color when the second (ending) vertex is specified. For
a polygon, the color used is the one that’s in effect when a particular vertex is specified, as shown
in Table 4-2. The table counts vertices and polygons starting from 1. OpenGL follows these rules
consistently, but the best way to avoid uncertainty about how a flat-shaded primitive will be drawn
is to specify only one color for the primitive.

Table 4-2 : How OpenGL Selects a Color for the ith Flat-Shaded Polygon

Type of Polygon Vertex Used to Select the Color for the ith Polygon

single polygon 1

triangle strip i+2

triangle fan i+2

independent triangle 3i

quad strip 2i+2

independent quad 4i

 OpenGL Programming Guide
(Addison-Wesley Publishing Company)

 OpenGL Programming Guide
(Addison-Wesley Publishing Company)

Chapter 5
Lighting
Chapter Objectives

After reading this chapter, you’ll be able to do the following:

Understand how real-world lighting conditions are approximated by OpenGL

Render illuminated objects by defining the desired light sources and lighting model

Define the material properties of the objects being illuminated

Manipulate the matrix stack to control the position of light sources

As you saw in Chapter 4, OpenGL computes the color of each pixel in a final, displayed scene
that’s held in the framebuffer. Part of this computation depends on what lighting is used in the
scene and on how objects in the scene reflect or absorb that light. As an example of this, recall that
the ocean has a different color on a bright, sunny day than it does on a gray, cloudy day. The
presence of sunlight or clouds determines whether you see the ocean as bright turquoise or murky
gray-green. In fact, most objects don’t even look three-dimensional until they’re lit. Figure 5-1
shows two versions of the exact same scene (a single sphere), one with lighting and one without.

Figure 5-1 : A Lit and an Unlit Sphere

As you can see, an unlit sphere looks no different from a two-dimensional disk. This demonstrates
how critical the interaction between objects and light is in creating a three-dimensional scene.

With OpenGL, you can manipulate the lighting and objects in a scene to create many different

kinds of effects. This chapter begins with a primer on hidden-surface removal. Then it explains how
to control the lighting in a scene, discusses the OpenGL conceptual model of lighting, and describes
in detail how to set the numerous illumination parameters to achieve certain effects. Toward the end
of the chapter, the mathematical computations that determine how lighting affects color are
presented.

This chapter contains the following major sections:

"A Hidden-Surface Removal Survival Kit" describes the basics of removing hidden surfaces
from view.

"Real-World and OpenGL Lighting" explains in general terms how light behaves in the world
and how OpenGL models this behavior.

"A Simple Example: Rendering a Lit Sphere" introduces the OpenGL lighting facility by
presenting a short program that renders a lit sphere.

"Creating Light Sources" explains how to define and position light sources.

"Selecting a Lighting Model" discusses the elements of a lighting model and how to specify
them.

"Defining Material Properties" explains how to describe the properties of objects so that they
interact with light in a desired way.

"The Mathematics of Lighting" presents the mathematical calculations used by OpenGL to
determine the effect of lights in a scene.

"Lighting in Color-Index Mode" discusses the differences between using RGBA mode and
color-index mode for lighting.

A Hidden-Surface Removal Survival Kit

With this section, you begin to draw shaded, three-dimensional objects, in earnest. With shaded
polygons, it becomes very important to draw the objects that are closer to our viewing position and
to eliminate objects obscured by others nearer to the eye.

When you draw a scene composed of three-dimensional objects, some of them might obscure all or
parts of others. Changing your viewpoint can change the obscuring relationship. For example, if
you view the scene from the opposite direction, any object that was previously in front of another is
now behind it. To draw a realistic scene, these obscuring relationships must be maintained. Suppose
your code works like this:

while (1) {
 get_viewing_point_from_mouse_position();
 glClear(GL_COLOR_BUFFER_BIT);
 draw_3d_object_A();
 draw_3d_object_B();
}

For some mouse positions, object A might obscure object B. For others, the reverse may hold. If
nothing special is done, the preceding code always draws object B second (and thus on top of object
A) no matter what viewing position is selected. In a worst case scenario, if objects A and B
intersect one another so that part of object A obscures object B and part of B obscures A, changing
the drawing order does not provide a solution.

The elimination of parts of solid objects that are obscured by others is called hidden-surface
removal. (Hidden-line removal, which does the same job for objects represented as wireframe
skeletons, is a bit trickier and isn’t discussed here. See "Hidden-Line Removal" in Chapter 14 for
details.) The easiest way to achieve hidden-surface removal is to use the depth buffer (sometimes
called a z-buffer). (Also see Chapter 10.)

A depth buffer works by associating a depth, or distance, from the view plane (usually the near
clipping plane), with each pixel on the window. Initially, the depth values for all pixels are set to
the largest possible distance (usually the far clipping plane) using the glClear() command with
GL_DEPTH_BUFFER_BIT. Then the objects in the scene are drawn in any order.

Graphical calculations in hardware or software convert each surface that’s drawn to a set of pixels
on the window where the surface will appear if it isn’t obscured by something else. In addition, the
distance from the view plane is computed. With depth buffering enabled, before each pixel is drawn
a comparison is done with the depth value already stored at the pixel. If the new pixel is closer than
(in front of) what’s there, the new pixel’s color and depth values replace those that are currently
written into the pixel. If the new pixel’s depth is greater than what’s currently there, the new pixel
is obscured, and the color and depth information for the incoming pixel is discarded.

To use depth buffering, you need to enable depth buffering. This has to be done only once. Before
drawing, each time you draw the scene, you need to clear the depth buffer and then draw the objects
in the scene in any order.

To convert the preceding code example so that it performs hidden-surface removal, modify it to the
following:

glutInitDisplayMode (GLUT_DEPTH |);
glEnable(GL_DEPTH_TEST);
...
while (1) {
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 get_viewing_point_from_mouse_position();
 draw_3d_object_A();
 draw_3d_object_B();
}

The argument to glClear() clears both the depth and color buffers.

Depth-buffer testing can affect the performance of your application. Since information is discarded
rather than used for drawing, hidden-surface removal can increase your performance slightly.
However, the implementation of your depth buffer probably has the greatest effect on performance.
A "software" depth buffer (implemented with processor memory) may be much slower than one
implemented with a specialized hardware depth buffer.

Real-World and OpenGL Lighting

When you look at a physical surface, your eye’s perception of the color depends on the distribution
of photon energies that arrive and trigger your cone cells. (See "Color Perception" in Chapter 4.)
Those photons come from a light source or combination of sources, some of which are absorbed
and some of which are reflected by the surface. In addition, different surfaces may have very
different properties - some are shiny and preferentially reflect light in certain directions, while
others scatter incoming light equally in all directions. Most surfaces are somewhere in between.

OpenGL approximates light and lighting as if light can be broken into red, green, and blue
components. Thus, the color of light sources is characterized by the amount of red, green, and blue
light they emit, and the material of surfaces is characterized by the percentage of the incoming red,
green, and blue components that is reflected in various directions. The OpenGL lighting equations
are just an approximation but one that works fairly well and can be computed relatively quickly. If
you desire a more accurate (or just different) lighting model, you have to do your own calculations
in software. Such software can be enormously complex, as a few hours of reading any optics
textbook should convince you.

In the OpenGL lighting model, the light in a scene comes from several light sources that can be
individually turned on and off. Some light comes from a particular direction or position, and some
light is generally scattered about the scene. For example, when you turn on a light bulb in a room,
most of the light comes from the bulb, but some light comes after bouncing off one, two, three, or
more walls. This bounced light (called ambient) is assumed to be so scattered that there is no way to
tell its original direction, but it disappears if a particular light source is turned off.

Finally, there might be a general ambient light in the scene that comes from no particular source, as
if it had been scattered so many times that its original source is impossible to determine.

In the OpenGL model, the light sources have an effect only when there are surfaces that absorb and
reflect light. Each surface is assumed to be composed of a material with various properties. A
material might emit its own light (like headlights on an automobile), it might scatter some incoming
light in all directions, and it might reflect some portion of the incoming light in a preferential
direction like a mirror or other shiny surface.

The OpenGL lighting model considers the lighting to be divided into four independent components:
emissive, ambient, diffuse, and specular. All four components are computed independently and then
added together.

Ambient, Diffuse, and Specular Light

Ambient illumination is light that’s been scattered so much by the environment that its direction is
impossible to determine - it seems to come from all directions. Backlighting in a room has a large
ambient component, since most of the light that reaches your eye has first bounced off many
surfaces. A spotlight outdoors has a tiny ambient component; most of the light travels in the same
direction, and since you’re outdoors, very little of the light reaches your eye after bouncing off
other objects. When ambient light strikes a surface, it’s scattered equally in all directions.

The diffuse component is the light that comes from one direction, so it’s brighter if it comes
squarely down on a surface than if it barely glances off the surface. Once it hits a surface, however,
it’s scattered equally in all directions, so it appears equally bright, no matter where the eye is
located. Any light coming from a particular position or direction probably has a diffuse component.

Finally, specular light comes from a particular direction, and it tends to bounce off the surface in a

preferred direction. A well-collimated laser beam bouncing off a high-quality mirror produces
almost 100 percent specular reflection. Shiny metal or plastic has a high specular component, and
chalk or carpet has almost none. You can think of specularity as shininess.

Although a light source delivers a single distribution of frequencies, the ambient, diffuse, and
specular components might be different. For example, if you have a white light in a room with red
walls, the scattered light tends to be red, although the light directly striking objects is white.
OpenGL allows you to set the red, green, and blue values for each component of light
independently.

Material Colors

The OpenGL lighting model makes the approximation that a material’s color depends on the
percentages of the incoming red, green, and blue light it reflects. For example, a perfectly red ball
reflects all the incoming red light and absorbs all the green and blue light that strikes it. If you view
such a ball in white light (composed of equal amounts of red, green, and blue light), all the red is
reflected, and you see a red ball. If the ball is viewed in pure red light, it also appears to be red. If,
however, the red ball is viewed in pure green light, it appears black (all the green is absorbed, and
there’s no incoming red, so no light is reflected).

Like lights, materials have different ambient, diffuse, and specular colors, which determine the
ambient, diffuse, and specular reflectances of the material. A material’s ambient reflectance is
combined with the ambient component of each incoming light source, the diffuse reflectance with
the light’s diffuse component, and similarly for the specular reflectance and component. Ambient
and diffuse reflectances define the color of the material and are typically similar if not identical.
Specular reflectance is usually white or gray, so that specular highlights end up being the color of
the light source’s specular intensity. If you think of a white light shining on a shiny red plastic
sphere, most of the sphere appears red, but the shiny highlight is white.

In addition to ambient, diffuse, and specular colors, materials have an emissive color, which
simulates light originating from an object. In the OpenGL lighting model, the emissive color of a
surface adds intensity to the object, but is unaffected by any light sources. Also, the emissive color
does not introduce any additional light into the overall scene.

RGB Values for Lights and Materials

The color components specified for lights mean something different than for materials. For a light,
the numbers correspond to a percentage of full intensity for each color. If the R, G, and B values for
a light’s color are all 1.0, the light is the brightest possible white. If the values are 0.5, the color is
still white, but only at half intensity, so it appears gray. If R=G=1 and B=0 (full red and green with
no blue), the light appears yellow.

For materials, the numbers correspond to the reflected proportions of those colors. So if R=1,
G=0.5, and B=0 for a material, that material reflects all the incoming red light, half the incoming
green, and none of the incoming blue light. In other words, if an OpenGL light has components
(LR, LG, LB), and a material has corresponding components (MR, MG, MB), then, ignoring all
other reflectivity effects, the light that arrives at the eye is given by (LR*MR, LG*MG, LB*MB).

Similarly, if you have two lights that send (R1, G1, B1) and (R2, G2, B2) to the eye, OpenGL adds
the components, giving (R1+R2, G1+G2, B1+B2). If any of the sums are greater than 1
(corresponding to a color brighter than the equipment can display), the component is clamped to 1.

A Simple Example: Rendering a Lit Sphere

These are the steps required to add lighting to your scene.

1. Define normal vectors for each vertex of all the objects. These normals determine the
orientation of the object relative to the light sources.

2. Create, select, and position one or more light sources.

3. Create and select a lighting model, which defines the level of global ambient light and the
effective location of the viewpoint (for the purposes of lighting calculations).

4. Define material properties for the objects in the scene.

Example 5-1 accomplishes these tasks. It displays a sphere illuminated by a single light source, as
shown earlier in Figure 5-1.

Example 5-1 : Drawing a Lit Sphere: light.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>

void init(void)
{
 GLfloat mat_specular[] = { 1.0, 1.0, 1.0, 1.0 };
 GLfloat mat_shininess[] = { 50.0 };
 GLfloat light_position[] = { 1.0, 1.0, 1.0, 0.0 };
 glClearColor (0.0, 0.0, 0.0, 0.0);
 glShadeModel (GL_SMOOTH);

 glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);
 glMaterialfv(GL_FRONT, GL_SHININESS, mat_shininess);
 glLightfv(GL_LIGHT0, GL_POSITION, light_position);

 glEnable(GL_LIGHTING);
 glEnable(GL_LIGHT0);
 glEnable(GL_DEPTH_TEST);
}

void display(void)
{
 glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 glutSolidSphere (1.0, 20, 16);
 glFlush ();
}

void reshape (int w, int h)
{
 glViewport (0, 0, (GLsizei) w, (GLsizei) h);
 glMatrixMode (GL_PROJECTION);
 glLoadIdentity();
 if (w <= h)
 glOrtho (-1.5, 1.5, -1.5*(GLfloat)h/(GLfloat)w,
 1.5*(GLfloat)h/(GLfloat)w, -10.0, 10.0);
 else
 glOrtho (-1.5*(GLfloat)w/(GLfloat)h,

 1.5*(GLfloat)w/(GLfloat)h, -1.5, 1.5, -10.0, 10.0);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
}

int main(int argc, char** argv)
{
 glutInit(&argc, argv);
 glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);
 glutInitWindowSize (500, 500);
 glutInitWindowPosition (100, 100);
 glutCreateWindow (argv[0]);
 init ();
 glutDisplayFunc(display);
 glutReshapeFunc(reshape);
 glutMainLoop();
 return 0;
}

The lighting-related calls are in the init() command; they’re discussed briefly in the following
paragraphs and in more detail later in the chapter. One thing to note about Example 5-1 is that it
uses RGBA color mode, not color-index mode. The OpenGL lighting calculation is different for the
two modes, and in fact the lighting capabilities are more limited in color-index mode. Thus, RGBA
is the preferred mode when doing lighting, and all the examples in this chapter use it. (See
"Lighting in Color-Index Mode" for more information about lighting in color-index mode.)

Define Normal Vectors for Each Vertex of Every Object

An object’s normals determine its orientation relative to the light sources. For each vertex, OpenGL
uses the assigned normal to determine how much light that particular vertex receives from each
light source. In this example, the normals for the sphere are defined as part of the
glutSolidSphere() routine. (See "Normal Vectors" in Chapter 2 for more details on how to define
normals.)

Create, Position, and Enable One or More Light Sources

Example 5-1 uses only one, white light source; its location is specified by the glLightfv() call. This
example uses the default color for light zero (GL_LIGHT0), which is white; if you want a
differently colored light, use glLight*() to indicate this. You can include at least eight different
light sources in your scene of various colors; the default color of these other lights is black. (The
particular implementation of OpenGL you’re using might allow more than eight.) You can also
locate the lights wherever you desire - you can position them near the scene, as a desk lamp would
be, or an infinite distance away, like the sun. In addition, you can control whether a light produces a
narrow, focused beam or a wider beam. Remember that each light source adds significantly to the
calculations needed to render the scene, so performance is affected by the number of lights in the
scene. (See "Creating Light Sources" for more information about how to create lights with the
desired characteristics.)

After you’ve defined the characteristics of the lights you want, you have to turn them on with the
glEnable() command. You also need to call glEnable() with GL_LIGHTING as a parameter to
prepare OpenGL to perform lighting calculations. (See "Enabling Lighting" for more information.)

Select a Lighting Model

As you might expect, the glLightModel*() command describes the parameters of a lighting model.

In Example 5-1, the only element of the lighting model that’s defined explicitly is the global
ambient light. The lighting model also defines whether the viewer of the scene should be
considered to be an infinite distance away or local to the scene, and whether lighting calculations
should be performed differently for the front and back surfaces of objects in the scene. Example 5-1
uses the default settings for these two aspects of the model - an infinite viewer and one-sided
lighting. Using a local viewer adds significantly to the complexity of the calculations that must be
performed, because OpenGL must calculate the angle between the viewpoint and each object. With
an infinite viewer, however, the angle is ignored, and the results are slightly less realistic. Further,
since in this example, the back surface of the sphere is never seen (it’s the inside of the sphere),
one-sided lighting is sufficient. (See "Selecting a Lighting Model" for a more detailed description
of the elements of an OpenGL lighting model.)

Define Material Properties for the Objects in the Scene

An object’s material properties determine how it reflects light and therefore what material it seems
to be made of. Because the interaction between an object’s material surface and incident light is
complex, specifying material properties so that an object has a certain desired appearance is an art.
You can specify a material’s ambient, diffuse, and specular colors and how shiny it is. In this
example, only these last two material properties - the specular material color and shininess - are
explicitly specified (with the glMaterialfv() calls). (See "Defining Material Properties" for a
description and examples of all the material-property parameters.)

Some Important Notes

As you write your own lighting program, remember that you can use the default values for some
lighting parameters; others need to be changed. Also, don’t forget to enable whatever lights you
define and to enable lighting calculations. Finally, remember that you might be able to use display
lists to maximize efficiency as you change lighting conditions. (See "Display-List Design
Philosophy" in Chapter 7.)

Creating Light Sources

Light sources have a number of properties, such as color, position, and direction. The following
sections explain how to control these properties and what the resulting light looks like. The
command used to specify all properties of lights is glLight*(); it takes three arguments: to identify
the light whose property is being specified, the property, and the desired value for that property.

void glLight{if}(GLenum light, GLenum pname, TYPEparam);
void glLight{if}v(GLenum light, GLenum pname, TYPE *param);

Creates the light specified by light, which can be GL_LIGHT0, GL_LIGHT1, ... , or
GL_LIGHT7. The characteristic of the light being set is defined by pname, which specifies a
named parameter (see Table 5-1). param indicates the values to which the pname
characteristic is set; it’s a pointer to a group of values if the vector version is used, or the
value itself if the nonvector version is used. The nonvector version can be used to set only
single-valued light characteristics.

Table 5-1 : Default Values for pname Parameter of glLight*()

Parameter Name Default Value Meaning

GL_AMBIENT (0.0, 0.0, 0.0, 1.0) ambient RGBA intensity of light

GL_DIFFUSE (1.0, 1.0, 1.0, 1.0) diffuse RGBA intensity of light

GL_SPECULAR (1.0, 1.0, 1.0, 1.0) specular RGBA intensity of
light

GL_POSITION (0.0, 0.0, 1.0, 0.0) (x, y, z, w) position of light

GL_SPOT_DIRECTION (0.0, 0.0, -1.0) (x, y, z) direction of spotlight

GL_SPOT_EXPONENT 0.0 spotlight exponent

GL_SPOT_CUTOFF 180.0 spotlight cutoff angle

GL_CONSTANT_ATTENUATION 1.0 constant attenuation factor

GL_LINEAR_ATTENUATION 0.0 linear attenuation factor

GL_QUADRATIC_ATTENUATION 0.0 quadratic attenuation factor

Note: The default values listed for GL_DIFFUSE and GL_SPECULAR in Table 5-1 apply only to
GL_LIGHT0. For other lights, the default value is (0.0, 0.0, 0.0, 1.0) for both GL_DIFFUSE and
GL_SPECULAR.

Example 5-2 shows how to use glLight*():

Example 5-2 : Defining Colors and Position for a Light Source

GLfloat light_ambient[] = { 0.0, 0.0, 0.0, 1.0 };
GLfloat light_diffuse[] = { 1.0, 1.0, 1.0, 1.0 };
GLfloat light_specular[] = { 1.0, 1.0, 1.0, 1.0 };
GLfloat light_position[] = { 1.0, 1.0, 1.0, 0.0 };

glLightfv(GL_LIGHT0, GL_AMBIENT, light_ambient);
glLightfv(GL_LIGHT0, GL_DIFFUSE, light_diffuse);
glLightfv(GL_LIGHT0, GL_SPECULAR, light_specular);
glLightfv(GL_LIGHT0, GL_POSITION, light_position);

As you can see, arrays are defined for the parameter values, and glLightfv() is called repeatedly to
set the various parameters. In this example, the first three calls to glLightfv() are superfluous, since
they’re being used to specify the default values for the GL_AMBIENT, GL_DIFFUSE, and
GL_SPECULAR parameters.

Note: Remember to turn on each light with glEnable(). (See "Enabling Lighting" for more
information about how to do this.)

All the parameters for glLight*() and their possible values are explained in the following sections.
These parameters interact with those that define the overall lighting model for a particular scene
and an object’s material properties. (See "Selecting a Lighting Model" and "Defining Material
Properties" for more information about these two topics. "The Mathematics of Lighting" explains
how all these parameters interact mathematically.)

Color

OpenGL allows you to associate three different color-related parameters - GL_AMBIENT,
GL_DIFFUSE, and GL_SPECULAR - with any particular light. The GL_AMBIENT parameter
refers to the RGBA intensity of the ambient light that a particular light source adds to the scene. As
you can see in Table 5-1, by default there is no ambient light since GL_AMBIENT is (0.0, 0.0, 0.0,
1.0). This value was used in Example 5-1. If this program had specified blue ambient light as

GLfloat light_ambient[] = { 0.0, 0.0, 1.0, 1.0};
glLightfv(GL_LIGHT0, GL_AMBIENT, light_ambient);

the result would have been as shown in the left side of "Plate 13" in Appendix I.

The GL_DIFFUSE parameter probably most closely correlates with what you naturally think of as
"the color of a light." It defines the RGBA color of the diffuse light that a particular light source
adds to a scene. By default, GL_DIFFUSE is (1.0, 1.0, 1.0, 1.0) for GL_LIGHT0, which produces a
bright, white light as shown in the left side of "Plate 13" in Appendix I. The default value for any
other light (GL_LIGHT1, ... , GL_LIGHT7) is (0.0, 0.0, 0.0, 0.0).

The GL_SPECULAR parameter affects the color of the specular highlight on an object. Typically,
a real-world object such as a glass bottle has a specular highlight that’s the color of the light shining
on it (which is often white). Therefore, if you want to create a realistic effect, set the
GL_SPECULAR parameter to the same value as the GL_DIFFUSE parameter. By default,
GL_SPECULAR is (1.0, 1.0, 1.0, 1.0) for GL_LIGHT0 and (0.0, 0.0, 0.0, 0.0) for any other light.

Note: The alpha component of these colors is not used until blending is enabled. (See Chapter 6.)
Until then, the alpha value can be safely ignored.

Position and Attenuation

As previously mentioned, you can choose whether to have a light source that’s treated as though it’s
located infinitely far away from the scene or one that’s nearer to the scene. The first type is referred
to as a directional light source; the effect of an infinite location is that the rays of light can be
considered parallel by the time they reach an object. An example of a real-world directional light
source is the sun. The second type is called a positional light source, since its exact position within
the scene determines the effect it has on a scene and, specifically, the direction from which the light
rays come. A desk lamp is an example of a positional light source. You can see the difference
between directional and positional lights in "Plate 12" in Appendix I. The light used in Example 5-1
is a directional one:

GLfloat light_position[] = { 1.0, 1.0, 1.0, 0.0 };
glLightfv(GL_LIGHT0, GL_POSITION, light_position);

As shown, you supply a vector of four values (x, y, z, w) for the GL_POSITION parameter. If the
last value, w, is zero, the corresponding light source is a directional one, and the (x, y, z) values
describe its direction. This direction is transformed by the modelview matrix. By default,

GL_POSITION is (0, 0, 1, 0), which defines a directional light that points along the negative z-axis.
(Note that nothing prevents you from creating a directional light with the direction of (0, 0, 0), but
such a light won’t help you much.)

If the w value is nonzero, the light is positional, and the (x, y, z) values specify the location of the
light in homogeneous object coordinates. (See Appendix F.) This location is transformed by the
modelview matrix and stored in eye coordinates. (See "Controlling a Light’s Position and
Direction" for more information about how to control the transformation of the light’s location.)
Also, by default, a positional light radiates in all directions, but you can restrict it to producing a
cone of illumination by defining the light as a spotlight. (See "Spotlights" for an explanation of how
to define a light as a spotlight.)

Note: Remember that the colors across the face of a smooth-shaded polygon are determined by the
colors calculated for the vertices. Because of this, you probably want to avoid using large polygons
with local lights. If you locate the light near the middle of the polygon, the vertices might be too far
away to receive much light, and the whole polygon will look darker than you intended. To avoid
this problem, break up the large polygon into smaller ones.

For real-world lights, the intensity of light decreases as distance from the light increases. Since a
directional light is infinitely far away, it doesn’t make sense to attenuate its intensity over distance,
so attenuation is disabled for a directional light. However, you might want to attenuate the light
from a positional light. OpenGL attenuates a light source by multiplying the contribution of that
source by an attenuation factor:

where

d = distance between the light’s position and the vertex

kc = GL_CONSTANT_ATTENUATION

kl = GL_LINEAR_ATTENUATION

kq = GL_QUADRATIC_ATTENUATION

By default, kc is 1.0 and both kl and kq are zero, but you can give these parameters different values:

glLightf(GL_LIGHT0, GL_CONSTANT_ATTENUATION, 2.0);
glLightf(GL_LIGHT0, GL_LINEAR_ATTENUATION, 1.0);
glLightf(GL_LIGHT0, GL_QUADRATIC_ATTENUATION, 0.5);

Note that the ambient, diffuse, and specular contributions are all attenuated. Only the emission and
global ambient values aren’t attenuated. Also note that since attenuation requires an additional
division (and possibly more math) for each calculated color, using attenuated lights may slow down
application performance.

Spotlights

As previously mentioned, you can have a positional light source act as a spotlight - that is, by

restricting the shape of the light it emits to a cone. To create a spotlight, you need to determine the
spread of the cone of light you desire. (Remember that since spotlights are positional lights, you
also have to locate them where you want them. Again, note that nothing prevents you from creating
a directional spotlight, but it won’t give you the result you want.) To specify the angle between the
axis of the cone and a ray along the edge of the cone, use the GL_SPOT_CUTOFF parameter. The
angle of the cone at the apex is then twice this value, as shown in Figure 5-2.

Figure 5-2 : GL_SPOT_CUTOFF Parameter

Note that no light is emitted beyond the edges of the cone. By default, the spotlight feature is
disabled because the GL_SPOT_CUTOFF parameter is 180.0. This value means that light is
emitted in all directions (the angle at the cone’s apex is 360 degrees, so it isn’t a cone at all). The
value for GL_SPOT_CUTOFF is restricted to being within the range [0.0,90.0] (unless it has the
special value 180.0). The following line sets the cutoff parameter to 45 degrees:

glLightf(GL_LIGHT0, GL_SPOT_CUTOFF, 45.0);

You also need to specify a spotlight’s direction, which determines the axis of the cone of light:

GLfloat spot_direction[] = { -1.0, -1.0, 0.0 };
glLightfv(GL_LIGHT0, GL_SPOT_DIRECTION, spot_direction);

The direction is specified in object coordinates. By default, the direction is (0.0, 0.0, -1.0), so if you
don’t explicitly set the value of GL_SPOT_DIRECTION, the light points down the negative z-axis.
Also, keep in mind that a spotlight’s direction is transformed by the modelview matrix just as
though it were a normal vector, and the result is stored in eye coordinates. (See "Controlling a
Light’s Position and Direction" for more information about such transformations.)

In addition to the spotlight’s cutoff angle and direction, there are two ways you can control the
intensity distribution of the light within the cone. First, you can set the attenuation factor described
earlier, which is multiplied by the light’s intensity. You can also set the GL_SPOT_EXPONENT
parameter, which by default is zero, to control how concentrated the light is. The light’s intensity is
highest in the center of the cone. It’s attenuated toward the edges of the cone by the cosine of the
angle between the direction of the light and the direction from the light to the vertex being lit, raised
to the power of the spot exponent. Thus, higher spot exponents result in a more focused light
source. (See "The Mathematics of Lighting" for more details on the equations used to calculate light
intensity.)

Multiple Lights

As mentioned, you can have at least eight lights in your scene (possibly more, depending on your
OpenGL implementation). Since OpenGL needs to perform calculations to determine how much
light each vertex receives from each light source, increasing the number of lights adversely affects
performance. The constants used to refer to the eight lights are GL_LIGHT0, GL_LIGHT1,
GL_LIGHT2, GL_LIGHT3, and so on. In the preceding discussions, parameters related to
GL_LIGHT0 were set. If you want an additional light, you need to specify its parameters; also,
remember that the default values are different for these other lights than they are for GL_LIGHT0,
as explained in Table 5-1. Example 5-3 defines a white attenuated spotlight.

Example 5-3 : Second Light Source

GLfloat light1_ambient[] = { 0.2, 0.2, 0.2, 1.0 };
GLfloat light1_diffuse[] = { 1.0, 1.0, 1.0, 1.0 };
GLfloat light1_specular[] = { 1.0, 1.0, 1.0, 1.0 };
GLfloat light1_position[] = { -2.0, 2.0, 1.0, 1.0 };
GLfloat spot_direction[] = { -1.0, -1.0, 0.0 };

glLightfv(GL_LIGHT1, GL_AMBIENT, light1_ambient);
glLightfv(GL_LIGHT1, GL_DIFFUSE, light1_diffuse);
glLightfv(GL_LIGHT1, GL_SPECULAR, light1_specular);
glLightfv(GL_LIGHT1, GL_POSITION, light1_position);
glLightf(GL_LIGHT1, GL_CONSTANT_ATTENUATION, 1.5);
glLightf(GL_LIGHT1, GL_LINEAR_ATTENUATION, 0.5);
glLightf(GL_LIGHT1, GL_QUADRATIC_ATTENUATION, 0.2);

glLightf(GL_LIGHT1, GL_SPOT_CUTOFF, 45.0);
glLightfv(GL_LIGHT1, GL_SPOT_DIRECTION, spot_direction);
glLightf(GL_LIGHT1, GL_SPOT_EXPONENT, 2.0);

glEnable(GL_LIGHT1);

If these lines were added to Example 5-1, the sphere would be lit with two lights, one directional
and one spotlight.

Try This

Modify Example 5-1 in the following manner:

Change the first light to be a positional colored light rather than a directional white one.

Add an additional colored spotlight. Hint: Use some of the code shown in the preceding
section.

Measure how these two changes affect performance.

Controlling a Light’s Position and Direction

OpenGL treats the position and direction of a light source just as it treats the position of a geometric
primitive. In other words, a light source is subject to the same matrix transformations as a primitive.
More specifically, when glLight*() is called to specify the position or the direction of a light
source, the position or direction is transformed by the current modelview matrix and stored in eye
coordinates. This means you can manipulate a light source’s position or direction by changing the
contents of the modelview matrix. (The projection matrix has no effect on a light’s position or
direction.) This section explains how to achieve the following three different effects by changing
the point in the program at which the light position is set, relative to modeling or viewing

transformations:

A light position that remains fixed

A light that moves around a stationary object

A light that moves along with the viewpoint

Keeping the Light Stationary

In the simplest example, as in Example 5-1, the light position remains fixed. To achieve this effect,
you need to set the light position after whatever viewing and/or modeling transformation you use.
In Example 5-4, the relevant code from the init() and reshape() routines might look like this.

Example 5-4 : Stationary Light Source

glViewport (0, 0, (GLsizei) w, (GLsizei) h);
glMatrixMode (GL_PROJECTION);
glLoadIdentity();
if (w <= h)
 glOrtho (-1.5, 1.5, -1.5*h/w, 1.5*h/w, -10.0, 10.0);
else
 glOrtho (-1.5*w/h, 1.5*w/h, -1.5, 1.5, -10.0, 10.0);
glMatrixMode (GL_MODELVIEW);
glLoadIdentity();

/* later in init() */
GLfloat light_position[] = { 1.0, 1.0, 1.0, 1.0 };
glLightfv(GL_LIGHT0, GL_POSITION, position);

As you can see, the viewport and projection matrices are established first. Then, the identity matrix
is loaded as the modelview matrix, after which the light position is set. Since the identity matrix is
used, the originally specified light position (1.0, 1.0, 1.0) isn’t changed by being multiplied by the
modelview matrix. Then, since neither the light position nor the modelview matrix is modified after
this point, the direction of the light remains (1.0, 1.0, 1.0).

Independently Moving the Light

Now suppose you want to rotate or translate the light position so that the light moves relative to a
stationary object. One way to do this is to set the light position after the modeling transformation,
which is itself changed specifically to modify the light position. You can begin with the same series
of calls in init() early in the program. Then you need to perform the desired modeling
transformation (on the modelview stack) and reset the light position, probably in display().
Example 5-5 shows what display() might be.

Example 5-5 : Independently Moving Light Source

static GLdouble spin;

void display(void)
{
 GLfloat light_position[] = { 0.0, 0.0, 1.5, 1.0 };
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 glPushMatrix();
 gluLookAt (0.0, 0.0, 5.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);

 glPushMatrix();
 glRotated(spin, 1.0, 0.0, 0.0);
 glLightfv(GL_LIGHT0, GL_POSITION, light_position);
 glPopMatrix();
 glutSolidTorus (0.275, 0.85, 8, 15);
 glPopMatrix();
 glFlush();
}

spin is a global variable and is probably controlled by an input device. display() causes the scene to
be redrawn with the light rotated spin degrees around a stationary torus. Note the two pairs of
glPushMatrix() and glPopMatrix() calls, which are used to isolate the viewing and modeling
transformations, all of which occur on the modelview stack. Since in Example 5-5 the viewpoint
remains constant, the current matrix is pushed down the stack and then the desired viewing
transformation is loaded with gluLookAt(). The matrix stack is pushed again before the modeling
transformation glRotated() is specified. Then the light position is set in the new, rotated coordinate
system so that the light itself appears to be rotated from its previous position. (Remember that the
light position is stored in eye coordinates, which are obtained after transformation by the
modelview matrix.) After the rotated matrix is popped off the stack, the torus is drawn.

Example 5-6 is a program that rotates a light source around an object. When the left mouse button
is pressed, the light position rotates an additional 30 degrees. A small, unlit, wireframe cube is
drawn to represent the position of the light in the scene.

Example 5-6 : Moving a Light with Modeling Transformations: movelight.c

#include <GL/gl.h>
#include <GL/glu.h>
#include "glut.h"

static int spin = 0;

void init(void)
{
 glClearColor (0.0, 0.0, 0.0, 0.0);
 glShadeModel (GL_SMOOTH);
 glEnable(GL_LIGHTING);
 glEnable(GL_LIGHT0);
 glEnable(GL_DEPTH_TEST);
}

/* Here is where the light position is reset after the modeling
 * transformation (glRotated) is called. This places the
 * light at a new position in world coordinates. The cube
 * represents the position of the light.
 */
void display(void)
{
 GLfloat position[] = { 0.0, 0.0, 1.5, 1.0 };

 glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 glPushMatrix ();
 glTranslatef (0.0, 0.0, -5.0);

 glPushMatrix ();
 glRotated ((GLdouble) spin, 1.0, 0.0, 0.0);
 glLightfv (GL_LIGHT0, GL_POSITION, position);

 glTranslated (0.0, 0.0, 1.5);
 glDisable (GL_LIGHTING);

 glColor3f (0.0, 1.0, 1.0);
 glutWireCube (0.1);
 glEnable (GL_LIGHTING);
 glPopMatrix ();

 glutSolidTorus (0.275, 0.85, 8, 15);
 glPopMatrix ();
 glFlush ();
}

void reshape (int w, int h)
{
 glViewport (0, 0, (GLsizei) w, (GLsizei) h);
 glMatrixMode (GL_PROJECTION);
 glLoadIdentity();
 gluPerspective(40.0, (GLfloat) w/(GLfloat) h, 1.0, 20.0);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
}

void mouse(int button, int state, int x, int y)
{
 switch (button) {
 case GLUT_LEFT_BUTTON:
 if (state == GLUT_DOWN) {
 spin = (spin + 30) % 360;
 glutPostRedisplay();
 }
 break;
 default:
 break;
 }
}
int main(int argc, char** argv)
{
 glutInit(&argc, argv);
 glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);
 glutInitWindowSize (500, 500);
 glutInitWindowPosition (100, 100);
 glutCreateWindow (argv[0]);
 init ();
 glutDisplayFunc(display);
 glutReshapeFunc(reshape);
 glutMouseFunc(mouse);
 glutMainLoop();
 return 0;
}

Moving the Light Source Together with Your Viewpoint

To create a light that moves along with the viewpoint, you need to set the light position before the
viewing transformation. Then the viewing transformation affects both the light and the viewpoint in
the same way. Remember that the light position is stored in eye coordinates, and this is one of the
few times when eye coordinates are critical. In Example 5-7, the light position is defined in init(),
which stores the light position at (0, 0, 0) in eye coordinates. In other words, the light is shining
from the lens of the camera.

Example 5-7 : Light Source That Moves with the Viewpoint

GLfloat light_position() = { 0.0, 0.0, 0.0, 1.0 };

glViewport(0, 0, (GLint) w, (GLint) h);

glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluPerspective(40.0, (GLfloat) w/(GLfloat) h, 1.0, 100.0);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glLightfv(GL_LIGHT0, GL_POSITION, light_position);

If the viewpoint is now moved, the light will move along with it, maintaining (0, 0, 0) distance,
relative to the eye. In the continuation of Example 5-7, which follows next, the global variables (ex,
ey, ez) and (upx, upy, upz) control the position of the viewpoint and up vector. The display() routine
that’s called from the event loop to redraw the scene might be this:

static GLdouble ex, ey, ez, upx, upy, upz;

void display(void)
{
 glClear(GL_COLOR_BUFFER_MASK | GL_DEPTH_BUFFER_MASK);
 glPushMatrix();
 gluLookAt (ex, ey, ez, 0.0, 0.0, 0.0, upx, upy, upz);
 glutSolidTorus (0.275, 0.85, 8, 15);
 glPopMatrix();
 glFlush();
}

When the lit torus is redrawn, both the light position and the viewpoint are moved to the same
location. As the values passed to gluLookAt() change and the eye moves, the object will never
appear dark, because it is always being illuminated from the eye position. Even though you haven’t
respecified the light position, the light moves because the eye coordinate system has changed.

This method of moving the light can be very useful for simulating the illumination from a miner’s
hat. Another example would be carrying a candle or lantern. The light position specified by the call
to glLightfv(GL_LIGHTi, GL_POSITION, position) would be the x, y, and z distance from the eye
position to the illumination source. Then as the eye position moves, the light will remain the same
relative distance away.

Try This

Modify Example 5-6 in the following manner:

Make the light translate past the object instead of rotating around it. Hint: Use glTranslated()
rather than the first glRotated() in display(), and choose an appropriate value to use instead
of spin.

Change the attenuation so that the light decreases in intensity as it’s moved away from the
object. Hint: Add calls to glLight*() to set the desired attenuation parameters.

Selecting a Lighting Model

The OpenGL notion of a lighting model has three components:

The global ambient light intensity

Whether the viewpoint position is local to the scene or whether it should be considered to be
an infinite distance away

Whether lighting calculations should be performed differently for both the front and back
faces of objects

This section explains how to specify a lighting model. It also discusses how to enable lighting - that
is, how to tell OpenGL that you want lighting calculations performed.

The command used to specify all properties of the lighting model is glLightModel*().
glLightModel*() has two arguments: the lighting model property and the desired value for that
property.

void glLightModel{if}(GLenum pname, TYPEparam);
void glLightModel{if}v(GLenum pname, TYPE *param);

Sets properties of the lighting model. The characteristic of the lighting model being set is
defined by pname, which specifies a named parameter (see Table 5-2). param indicates the
values to which the pname characteristic is set; it’s a pointer to a group of values if the
vector version is used, or the value itself if the nonvector version is used. The nonvector
version can be used to set only single-valued lighting model characteristics, not for
GL_LIGHT_MODEL_AMBIENT.

Table 5-2 : Default Values for pname Parameter of glLightModel*()

Parameter Name Default Value Meaning

GL_LIGHT_MODEL_AMBIENT (0.2, 0.2, 0.2, 1.0) ambient RGBA intensity of
the entire scene

GL_LIGHT_MODEL_LOCAL_VIEWER 0.0 or GL_FALSE how specular reflection
angles are computed

GL_LIGHT_MODEL_TWO_SIDE 0.0 or GL_FALSE choose between one-sided
or two-sided lighting

Global Ambient Light

As discussed earlier, each light source can contribute ambient light to a scene. In addition, there can
be other ambient light that’s not from any particular source. To specify the RGBA intensity of such
global ambient light, use the GL_LIGHT_MODEL_AMBIENT parameter as follows:

GLfloat lmodel_ambient[] = { 0.2, 0.2, 0.2, 1.0 };
glLightModelfv(GL_LIGHT_MODEL_AMBIENT, lmodel_ambient);

In this example, the values used for lmodel_ambient are the default values for
GL_LIGHT_MODEL_AMBIENT. Since these numbers yield a small amount of white ambient
light, even if you don’t add a specific light source to your scene, you can still see the objects in the
scene. "Plate 14" in Appendix I shows the effect of different amounts of global ambient light.

Local or Infinite Viewpoint

The location of the viewpoint affects the calculations for highlights produced by specular
reflectance. More specifically, the intensity of the highlight at a particular vertex depends on the
normal at that vertex, the direction from the vertex to the light source, and the direction from the
vertex to the viewpoint. Keep in mind that the viewpoint isn’t actually being moved by calls to
lighting commands (you need to change the projection transformation, as described in "Projection
Transformations" in Chapter 3); instead, different assumptions are made for the lighting
calculations as if the viewpoint were moved.

With an infinite viewpoint, the direction between it and any vertex in the scene remains constant. A
local viewpoint tends to yield more realistic results, but since the direction has to be calculated for
each vertex, overall performance is decreased with a local viewpoint. By default, an infinite
viewpoint is assumed. Here’s how to change to a local viewpoint:

glLightModeli(GL_LIGHT_MODEL_LOCAL_VIEWER, GL_TRUE);

This call places the viewpoint at (0, 0, 0) in eye coordinates. To switch back to an infinite
viewpoint, pass in GL_FALSE as the argument.

Two-sided Lighting

Lighting calculations are performed for all polygons, whether they’re front-facing or back-facing.
Since you usually set up lighting conditions with the front-facing polygons in mind, however, the
back-facing ones typically aren’t correctly illuminated. In Example 5-1 where the object is a sphere,
only the front faces are ever seen, since they’re the ones on the outside of the sphere. So, in this
case, it doesn’t matter what the back-facing polygons look like. If the sphere is going to be cut
away so that its inside surface will be visible, however, you might want to have the inside surface
be fully lit according to the lighting conditions you’ve defined; you might also want to supply a
different material description for the back faces. When you turn on two-sided lighting with

glLightModeli(GL_LIGHT_MODEL_TWO_SIDE, GL_TRUE);

OpenGL reverses the surface normals for back-facing polygons; typically, this means that the
surface normals of visible back- and front-facing polygons face the viewer, rather than pointing
away. As a result, all polygons are illuminated correctly. However, these additional operations
usually make two-sided lighting perform more slowly than the default one-sided lighting.

To turn two-sided lighting off, pass in GL_FALSE as the argument in the preceding call. (See
"Defining Material Properties" for information about how to supply material properties for both
faces.) You can also control which faces OpenGL considers to be front-facing with the command
glFrontFace(). (See "Reversing and Culling Polygon Faces" in Chapter 2 for more information.)

Enabling Lighting

With OpenGL, you need to explicitly enable (or disable) lighting. If lighting isn’t enabled, the
current color is simply mapped onto the current vertex, and no calculations concerning normals,
light sources, the lighting model, and material properties are performed. Here’s how to enable
lighting:

glEnable(GL_LIGHTING);

To disable lighting, call glDisable() with GL_LIGHTING as the argument.

You also need to explicitly enable each light source that you define, after you’ve specified the
parameters for that source. Example 5-1 uses only one light, GL_LIGHT0:

glEnable(GL_LIGHT0);

Defining Material Properties

You’ve seen how to create light sources with certain characteristics and how to define the desired
lighting model. This section describes how to define the material properties of the objects in the
scene: the ambient, diffuse, and specular colors, the shininess, and the color of any emitted light.
(See "The Mathematics of Lighting" for the equations used in the lighting and material-property
calculations.) Most of the material properties are conceptually similar to ones you’ve already used
to create light sources. The mechanism for setting them is similar, except that the command used is
called glMaterial*().

void glMaterial{if}(GLenum face, GLenum pname, TYPEparam);
void glMaterial{if}v(GLenum face, GLenum pname, TYPE *param);

Specifies a current material property for use in lighting calculations. face can be
GL_FRONT, GL_BACK, or GL_FRONT_AND_BACK to indicate which face of the object the
material should be applied to. The particular material property being set is identified by
pname and the desired values for that property are given by param, which is either a pointer
to a group of values (if the vector version is used) or the actual value (if the nonvector version
is used). The nonvector version works only for setting GL_SHININESS. The possible values
for pname are shown in Table 5-3. Note that GL_AMBIENT_AND_DIFFUSE allows you to
set both the ambient and diffuse material colors simultaneously to the same RGBA value.

Table 5-3 : Default Values for pname Parameter of glMaterial*()

Parameter Name Default Value Meaning

GL_AMBIENT (0.2, 0.2, 0.2, 1.0) ambient color of material

GL_DIFFUSE (0.8, 0.8, 0.8, 1.0) diffuse color of material

GL_AMBIENT_AND_DIFFUSE ambient and diffuse color of material

GL_SPECULAR (0.0, 0.0, 0.0, 1.0) specular color of material

GL_SHININESS 0.0 specular exponent

GL_EMISSION (0.0, 0.0, 0.0, 1.0) emissive color of material

GL_COLOR_INDEXES (0,1,1) ambient, diffuse, and specular color
indices

As discussed in "Selecting a Lighting Model," you can choose to have lighting calculations
performed differently for the front- and back-facing polygons of objects. If the back faces might
indeed be seen, you can supply different material properties for the front and the back surfaces by
using the face parameter of glMaterial*(). See "Plate 14" in Appendix I for an example of an
object drawn with different inside and outside material properties.

To give you an idea of the possible effects you can achieve by manipulating material properties, see
"Plate 16" in Appendix I. This figure shows the same object drawn with several different sets of
material properties. The same light source and lighting model are used for the entire figure. The
sections that follow discuss the specific properties used to draw each of these spheres.

Note that most of the material properties set with glMaterial*() are (R, G, B, A) colors. Regardless
of what alpha values are supplied for other parameters, the alpha value at any particular vertex is
the diffuse-material alpha value (that is, the alpha value given to GL_DIFFUSE with the
glMaterial*() command, as described in the next section). (See "Blending" in Chapter 6 for a
complete discussion of alpha values.) Also, none of the RGBA material properties apply in
color-index mode. (See "Lighting in Color-Index Mode" for more information about what
parameters are relevant in color-index mode.)

Diffuse and Ambient Reflection

The GL_DIFFUSE and GL_AMBIENT parameters set with glMaterial*() affect the color of the
diffuse and ambient light reflected by an object. Diffuse reflectance plays the most important role in
determining what you perceive the color of an object to be. It’s affected by the color of the incident
diffuse light and the angle of the incident light relative to the normal direction. (It’s most intense
where the incident light falls perpendicular to the surface.) The position of the viewpoint doesn’t
affect diffuse reflectance at all.

Ambient reflectance affects the overall color of the object. Because diffuse reflectance is brightest

where an object is directly illuminated, ambient reflectance is most noticeable where an object
receives no direct illumination. An object’s total ambient reflectance is affected by the global
ambient light and ambient light from individual light sources. Like diffuse reflectance, ambient
reflectance isn’t affected by the position of the viewpoint.

For real-world objects, diffuse and ambient reflectance are normally the same color. For this reason,
OpenGL provides you with a convenient way of assigning the same value to both simultaneously
with glMaterial*():

GLfloat mat_amb_diff[] = { 0.1, 0.5, 0.8, 1.0 };
glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE,
 mat_amb_diff);

In this example, the RGBA color (0.1, 0.5, 0.8, 1.0) - a deep blue color - represents the current
ambient and diffuse reflectance for both the front- and back-facing polygons.

In "Plate 16" in Appendix I, the first row of spheres has no ambient reflectance (0.0, 0.0, 0.0, 0.0),
and the second row has a significant amount of it (0.7, 0.7, 0.7, 1.0).

Specular Reflection

Specular reflection from an object produces highlights. Unlike ambient and diffuse reflection, the
amount of specular reflection seen by a viewer does depend on the location of the viewpoint - it’s
brightest along the direct angle of reflection. To see this, imagine looking at a metallic ball outdoors
in the sunlight. As you move your head, the highlight created by the sunlight moves with you to
some extent. However, if you move your head too much, you lose the highlight entirely.

OpenGL allows you to set the effect that the material has on reflected light (with GL_SPECULAR)
and control the size and brightness of the highlight (with GL_SHININESS). You can assign a
number in the range of [0.0, 128.0] to GL_SHININESS - the higher the value, the smaller and
brighter (more focused) the highlight. (See "The Mathematics of Lighting" for the details of how
specular highlights are calculated.)

In "Plate 16" in Appendix I, the spheres in the first column have no specular reflection. In the
second column, GL_SPECULAR and GL_SHININESS are assigned values as follows:

GLfloat mat_specular[] = { 1.0, 1.0, 1.0, 1.0 };
GLfloat low_shininess[] = { 5.0 };
glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);
glMaterialfv(GL_FRONT, GL_SHININESS, low_shininess);

In the third column, the GL_SHININESS parameter is increased to 100.0.

Emission

By specifying an RGBA color for GL_EMISSION, you can make an object appear to be giving off
light of that color. Since most real-world objects (except lights) don’t emit light, you’ll probably
use this feature mostly to simulate lamps and other light sources in a scene. In "Plate 16" in
Appendix I, the spheres in the fourth column have a reddish, grey value for GL_EMISSION:

GLfloat mat_emission[] = {0.3, 0.2, 0.2, 0.0};
glMaterialfv(GL_FRONT, GL_EMISSION, mat_emission);

Notice that the spheres appear to be slightly glowing; however, they’re not actually acting as light
sources. You would need to create a light source and position it at the same location as the sphere to
create that effect.

Changing Material Properties

Example 5-1 uses the same material properties for all vertices of the only object in the scene (the
sphere). In other situations, you might want to assign different material properties for different
vertices on the same object. More likely, you have more than one object in the scene, and each
object has different material properties. For example, the code that produced "Plate 16" in
Appendix I has to draw twelve different objects (all spheres), each with different material
properties. Example 5-8 shows a portion of the code in display().

Example 5-8 : Different Material Properties: material.c

 GLfloat no_mat[] = { 0.0, 0.0, 0.0, 1.0 };
 GLfloat mat_ambient[] = { 0.7, 0.7, 0.7, 1.0 };
 GLfloat mat_ambient_color[] = { 0.8, 0.8, 0.2, 1.0 };
 GLfloat mat_diffuse[] = { 0.1, 0.5, 0.8, 1.0 };
 GLfloat mat_specular[] = { 1.0, 1.0, 1.0, 1.0 };
 GLfloat no_shininess[] = { 0.0 };
 GLfloat low_shininess[] = { 5.0 };
 GLfloat high_shininess[] = { 100.0 };
 GLfloat mat_emission[] = {0.3, 0.2, 0.2, 0.0};

 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

/* draw sphere in first row, first column
 * diffuse reflection only; no ambient or specular
 */
 glPushMatrix();
 glTranslatef (-3.75, 3.0, 0.0);
 glMaterialfv(GL_FRONT, GL_AMBIENT, no_mat);
 glMaterialfv(GL_FRONT, GL_DIFFUSE, mat_diffuse);
 glMaterialfv(GL_FRONT, GL_SPECULAR, no_mat);
 glMaterialfv(GL_FRONT, GL_SHININESS, no_shininess);
 glMaterialfv(GL_FRONT, GL_EMISSION, no_mat);
 glutSolidSphere(1.0, 16, 16);
 glPopMatrix();

/* draw sphere in first row, second column
 * diffuse and specular reflection; low shininess; no ambient
 */
 glPushMatrix();
 glTranslatef (-1.25, 3.0, 0.0);
 glMaterialfv(GL_FRONT, GL_AMBIENT, no_mat);
 glMaterialfv(GL_FRONT, GL_DIFFUSE, mat_diffuse);
 glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);
 glMaterialfv(GL_FRONT, GL_SHININESS, low_shininess);
 glMaterialfv(GL_FRONT, GL_EMISSION, no_mat);
 glutSolidSphere(1.0, 16, 16);
 glPopMatrix();

/* draw sphere in first row, third column
 * diffuse and specular reflection; high shininess; no ambient
 */
 glPushMatrix();
 glTranslatef (1.25, 3.0, 0.0);
 glMaterialfv(GL_FRONT, GL_AMBIENT, no_mat);
 glMaterialfv(GL_FRONT, GL_DIFFUSE, mat_diffuse);
 glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);

 glMaterialfv(GL_FRONT, GL_SHININESS, high_shininess);
 glMaterialfv(GL_FRONT, GL_EMISSION, no_mat);
 glutSolidSphere(1.0, 16, 16);
 glPopMatrix();

/* draw sphere in first row, fourth column
 * diffuse reflection; emission; no ambient or specular refl.
 */
 glPushMatrix();
 glTranslatef (3.75, 3.0, 0.0);
 glMaterialfv(GL_FRONT, GL_AMBIENT, no_mat);
 glMaterialfv(GL_FRONT, GL_DIFFUSE, mat_diffuse);
 glMaterialfv(GL_FRONT, GL_SPECULAR, no_mat);
 glMaterialfv(GL_FRONT, GL_SHININESS, no_shininess);
 glMaterialfv(GL_FRONT, GL_EMISSION, mat_emission);
 glutSolidSphere(1.0, 16, 16);
 glPopMatrix();

As you can see, glMaterialfv() is called repeatedly to set the desired material property for each
sphere. Note that it only needs to be called to change a property that needs to be respecified. The
second, third, and fourth spheres use the same ambient and diffuse properties as the first sphere, so
these properties do not need to be respecified. Since glMaterial*() has a performance cost
associated with its use, Example 5-8 could be rewritten to minimize material-property changes.

Another technique for minimizing performance costs associated with changing material properties
is to use glColorMaterial().

void glColorMaterial(GLenum face, GLenum mode);
Causes the material property (or properties) specified by mode of the specified material face
(or faces) specified by face to track the value of the current color at all times. A change to the
current color (using glColor*()) immediately updates the specified material properties. The
face parameter can be GL_FRONT, GL_BACK, or GL_FRONT_AND_BACK (the default).
The mode parameter can be GL_AMBIENT, GL_DIFFUSE, GL_AMBIENT_AND_DIFFUSE
(the default), GL_SPECULAR, or GL_EMISSION. At any given time, only one mode is active.
glColorMaterial() has no effect on color-index lighting.

Note that glColorMaterial() specifies two independent values: the first specifies which face or
faces are updated, and the second specifies which material property or properties of those faces are
updated. OpenGL does not maintain separate mode variables for each face.

After calling glColorMaterial(), you need to call glEnable() with GL_COLOR_MATERIAL as
the parameter. Then, you can change the current color using glColor*() (or other material
properties, using glMaterial*()) as needed as you draw:

glEnable(GL_COLOR_MATERIAL);
glColorMaterial(GL_FRONT, GL_DIFFUSE);
/* now glColor* changes diffuse reflection */
glColor3f(0.2, 0.5, 0.8);
/* draw some objects here */
glColorMaterial(GL_FRONT, GL_SPECULAR);
/* glColor* no longer changes diffuse reflection */
/* now glColor* changes specular reflection */
glColor3f(0.9, 0.0, 0.2);
/* draw other objects here */
glDisable(GL_COLOR_MATERIAL);

You should use glColorMaterial() whenever you need to change a single material parameter for

most vertices in your scene. If you need to change more than one material parameter, as was the
case for "Plate 16" in Appendix I, use glMaterial*(). When you don’t need the capabilities of
glColorMaterial() anymore, be sure to disable it so that you don’t get undesired material properties
and don’t incur the performance cost associated with it. The performance value in using
glColorMaterial() varies, depending on your OpenGL implementation. Some implementations
may be able to optimize the vertex routines so that they can quickly update material properties
based on the current color.

Example 5-9 shows an interactive program that uses glColorMaterial() to change material
parameters. Pressing each of the three mouse buttons changes the color of the diffuse reflection.

Example 5-9 : Using glColorMaterial(): colormat.c

#include <GL/gl.h>
#include <GL/glu.h>
#include "glut.h"

GLfloat diffuseMaterial[4] = { 0.5, 0.5, 0.5, 1.0 };

void init(void)
{
 GLfloat mat_specular[] = { 1.0, 1.0, 1.0, 1.0 };
 GLfloat light_position[] = { 1.0, 1.0, 1.0, 0.0 };

 glClearColor (0.0, 0.0, 0.0, 0.0);
 glShadeModel (GL_SMOOTH);
 glEnable(GL_DEPTH_TEST);
 glMaterialfv(GL_FRONT, GL_DIFFUSE, diffuseMaterial);
 glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);
 glMaterialf(GL_FRONT, GL_SHININESS, 25.0);
 glLightfv(GL_LIGHT0, GL_POSITION, light_position);
 glEnable(GL_LIGHTING);
 glEnable(GL_LIGHT0);

 glColorMaterial(GL_FRONT, GL_DIFFUSE);
 glEnable(GL_COLOR_MATERIAL);
}

void display(void)
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 glutSolidSphere(1.0, 20, 16);
 glFlush ();
}

void reshape (int w, int h)
{
 glViewport (0, 0, (GLsizei) w, (GLsizei) h);
 glMatrixMode (GL_PROJECTION);
 glLoadIdentity();
 if (w <= h)
 glOrtho (-1.5, 1.5, -1.5*(GLfloat)h/(GLfloat)w,
 1.5*(GLfloat)h/(GLfloat)w, -10.0, 10.0);
 else
 glOrtho (-1.5*(GLfloat)w/(GLfloat)h,
 1.5*(GLfloat)w/(GLfloat)h, -1.5, 1.5, -10.0, 10.0);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
}

void mouse(int button, int state, int x, int y)

{
 switch (button) {
 case GLUT_LEFT_BUTTON:
 if (state == GLUT_DOWN) { /* change red */
 diffuseMaterial[0] += 0.1;
 if (diffuseMaterial[0] > 1.0)
 diffuseMaterial[0] = 0.0;
 glColor4fv(diffuseMaterial);
 glutPostRedisplay();
 }
 break;
 case GLUT_MIDDLE_BUTTON:
 if (state == GLUT_DOWN) { /* change green */
 diffuseMaterial[1] += 0.1;
 if (diffuseMaterial[1] > 1.0)
 diffuseMaterial[1] = 0.0;
 glColor4fv(diffuseMaterial);
 glutPostRedisplay();
 }
 break;
 case GLUT_RIGHT_BUTTON:
 if (state == GLUT_DOWN) { /* change blue */
 diffuseMaterial[2] += 0.1;
 if (diffuseMaterial[2] > 1.0)
 diffuseMaterial[2] = 0.0;
 glColor4fv(diffuseMaterial);
 glutPostRedisplay();
 }
 break;
 default:
 break;
 }
}

int main(int argc, char** argv)
{
 glutInit(&argc, argv);
 glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);
 glutInitWindowSize (500, 500);
 glutInitWindowPosition (100, 100);
 glutCreateWindow (argv[0]);
 init ();
 glutDisplayFunc(display);
 glutReshapeFunc(reshape);
 glutMouseFunc(mouse);
 glutMainLoop();
 return 0;
}

Try This

Modify Example 5-8 in the following manner:

Change the global ambient light in the scene. Hint: Alter the value of the
GL_LIGHT_MODEL_AMBIENT parameter.

Change the diffuse, ambient, and specular reflection parameters, the shininess exponent, and
the emission color. Hint: Use the glMaterial*() command, but avoid making excessive calls.

Use two-sided materials and add a user-defined clipping plane so that you can see the inside
and outside of a row or column of spheres. (See "Additional Clipping Planes" in Chapter 3, if
you need to recall user-defined clipping planes.) Hint: Turn on two-sided lighting with

GL_LIGHT_MODEL_TWO_SIDE, set the desired material properties, and add a clipping
plane.

Remove all the glMaterialfv() calls, and use the more efficient glColorMaterial() calls to
achieve the same lighting.

The Mathematics of Lighting

Advanced

This section presents the equations used by OpenGL to perform lighting calculations to determine
colors when in RGBA mode. (See "The Mathematics of Color-Index Mode Lighting" for
corresponding calculations for color-index mode.) You don’t need to read this section if you’re
willing to experiment to obtain the lighting conditions you want. Even after reading this section,
you’ll probably have to experiment, but you’ll have a better idea of how the values of parameters
affect a vertex’s color. Remember that if lighting is not enabled, the color of a vertex is simply the
current color; if it is enabled, the lighting computations described here are carried out in eye
coordinates.

In the following equations, mathematical operations are performed separately on the R, G, and B
components. Thus, for example, when three terms are shown as added together, the R values, the G
values, and the B values for each term are separately added to form the final RGB color
(R1+R2+R3, G1+G2+G3, B1+B2+B3). When three terms are multiplied, the calculation is
(R1R2R3, G1G2G3, B1B2B3). (Remember that the final A or alpha component at a vertex is equal
to the material’s diffuse alpha value at that vertex.)

The color produced by lighting a vertex is computed as follows:

vertex color =

the material emission at that vertex +

the global ambient light scaled by the material’s ambient property at that vertex +

the ambient, diffuse, and specular contributions from all the light sources, properly attenuated

After lighting calculations are performed, the color values are clamped (in RGBA mode) to the
range [0,1].

Note that OpenGL lighting calculations don’t take into account the possibility of one object
blocking light from another; as a result shadows aren’t automatically created. (See "Shadows" in
Chapter 14 for a technique to create shadows.) Also keep in mind that with OpenGL, illuminated
objects don’t radiate light onto other objects.

Material Emission

The material emission term is the simplest. It’s the RGB value assigned to the GL_EMISSION
parameter.

Scaled Global Ambient Light

The second term is computed by multiplying the global ambient light (as defined by the
GL_LIGHT_MODEL_AMBIENT parameter) by the material’s ambient property (GL_AMBIENT
value as assigned with glMaterial*()):

ambientlight model * ambientmaterial

Each of the R, G, and B values for these two parameters are multiplied separately to compute the
final RGB value for this term: (R1R2, G1G2, B1B2).

Contributions from Light Sources

Each light source may contribute to a vertex’s color, and these contributions are added together.
The equation for computing each light source’s contribution is as follows:

contribution = attenuation factor * spotlight effect *

(ambient term + diffuse term + specular term)

Attenuation Factor

The attenuation factor was described in "Position and Attenuation":

where

d = distance between the light’s position and the vertex

kc = GL_CONSTANT_ATTENUATION

kl = GL_LINEAR_ATTENUATION

kq = GL_QUADRATIC_ATTENUATION

If the light is a directional one, the attenuation factor is 1.

Spotlight Effect

The spotlight effect evaluates to one of three possible values, depending on whether the light is
actually a spotlight and whether the vertex lies inside or outside the cone of illumination produced
by the spotlight:

1 if the light isn’t a spotlight (GL_SPOT_CUTOFF is 180.0).

0 if the light is a spotlight, but the vertex lies outside the cone of illumination produced by the
spotlight.

(max {v · d, 0})GL_SPOT_EXPONENT where:

v = (vx, vy, vz) is the unit vector that points from the spotlight (GL_POSITION) to the vertex.

d = (dx, dy, dz) is the spotlight’s direction (GL_SPOT_DIRECTION), assuming the light is a
spotlight and the vertex lies inside the cone of illumination produced by the spotlight.

The dot product of the two vectors v and d varies as the cosine of the angle between them;
hence, objects directly in line get maximum illumination, and objects off the axis have their
illumination drop as the cosine of the angle.

To determine whether a particular vertex lies within the cone of illumination, OpenGL evaluates
(max {v · d, 0}) where v and d are as defined in the preceding discussion. If this value is less than
the cosine of the spotlight’s cutoff angle (GL_SPOT_CUTOFF), then the vertex lies outside the
cone; otherwise, it’s inside the cone.

Ambient Term

The ambient term is simply the ambient color of the light scaled by the ambient material property:

ambientlight *ambientmaterial

Diffuse Term

The diffuse term needs to take into account whether light falls directly on the vertex, the diffuse
color of the light, and the diffuse material property:

(max {L · n, 0}) * diffuselight * diffusematerial

where:

L = (Lx, Ly, Lz) is the unit vector that points from the vertex to the light position
(GL_POSITION).

n = (nx, ny, nz) is the unit normal vector at the vertex.

Specular Term

The specular term also depends on whether light falls directly on the vertex. If L · n is less than or
equal to zero, there is no specular component at the vertex. (If it’s less than zero, the light is on the
wrong side of the surface.) If there’s a specular component, it depends on the following:

The unit normal vector at the vertex (nx, ny, nz).

The sum of the two unit vectors that point between (1) the vertex and the light position (or
light direction) and (2) the vertex and the viewpoint (assuming that
GL_LIGHT_MODEL_LOCAL_VIEWER is true; if it’s not true, the vector (0, 0, 1) is used
as the second vector in the sum). This vector sum is normalized (by dividing each component
by the magnitude of the vector) to yield s = (sx, sy, sz).

The specular exponent (GL_SHININESS).

The specular color of the light (GL_SPECULARlight).

The specular property of the material (GL_SPECULARmaterial).

Using these definitions, here’s how OpenGL calculates the specular term:

(max {s · n, 0})shininess * specularlight * specularmaterial

However, if L · n = 0, the specular term is 0.

Putting It All Together

Using the definitions of terms described in the preceding paragraphs, the following represents the
entire lighting calculation in RGBA mode:

vertex color = emissionmaterial +

ambientlight model * ambientmaterial +

[ambientlight *ambientmaterial +

(max { L · n , 0}) * diffuselight * diffusematerial +

(max { s · n , 0})shininess * specularlight * specularmaterial] i

Lighting in Color-Index Mode

In color-index mode, the parameters comprising RGBA values either have no effect or have a
special interpretation. Since it’s much harder to achieve certain effects in color-index mode, you
should use RGBA whenever possible. In fact, the only light-source, lighting-model, or material
parameters in an RGBA form that are used in color-index mode are the light-source parameters
GL_DIFFUSE and GL_SPECULAR and the material parameter GL_SHININESS. GL_DIFFUSE
and GL_SPECULAR (dl and sl, respectively) are used to compute color-index diffuse and specular
light intensities (dci and sci) as follows:

dci = 0.30 R(dl) + 0.59 G(dl) + 0.11 B(dl)

sci = 0.30 R(sl) + 0.59 G(sl) + 0.11 B(sl)

where R(x), G(x), and B(x) refer to the red, green, and blue components, respectively, of color x.
The weighting values 0.30, 0.59, and 0.11 reflect the "perceptual" weights that red, green, and blue
have for your eye - your eye is most sensitive to green and least sensitive to blue.

To specify material colors in color-index mode, use glMaterial*() with the special parameter

GL_COLOR_INDEXES, as follows:

GLfloat mat_colormap[] = { 16.0, 47.0, 79.0 };
glMaterialfv(GL_FRONT, GL_COLOR_INDEXES, mat_colormap);

The three numbers supplied for GL_COLOR_INDEXES specify the color indices for the ambient,
diffuse, and specular material colors, respectively. In other words, OpenGL regards the color
associated with the first index (16.0 in this example) as the pure ambient color, with the second
index (47.0) as the pure diffuse color, and with the third index (79.0) as the pure specular color. (By
default, the ambient color index is 0.0, and the diffuse and specular color indices are both 1.0. Note
that glColorMaterial() has no effect on color-index lighting.)

As it draws a scene, OpenGL uses colors associated with indices in between these numbers to shade
objects in the scene. Therefore, you must build a color ramp between the indicated indices (in this
example, between indices 16 and 47, and then between 47 and 79). Often, the color ramp is built
smoothly, but you might want to use other formulations to achieve different effects. Here’s an
example of a smooth color ramp that starts with a black ambient color and goes through a magenta
diffuse color to a white specular color:

for (i = 0; i < 32; i++) {
 glutSetColor (16 + i, 1.0 * (i/32.0), 0.0, 1.0 * (i/32.0));
 glutSetColor (48 + i, 1.0, 1.0 * (i/32.0), 1.0);
}

The GLUT library command glutSetColor() takes four arguments. It associates the color index
indicated by the first argument to the RGB triplet specified by the last three arguments. When i = 0,
the color index 16 is assigned the RGB value (0.0, 0.0, 0.0), or black. The color ramp builds
smoothly up to the diffuse material color at index 47 (when i = 31), which is assigned the pure
magenta RGB value (1.0, 0.0, 1.0). The second loop builds the ramp between the magenta diffuse
color and the white (1.0, 1.0, 1.0) specular color (index 79). "Plate 15" in Appendix I shows the
result of using this color ramp with a single lit sphere.

The Mathematics of Color-Index Mode Lighting

Advanced

As you might expect, since the allowable parameters are different for color-index mode than for
RGBA mode, the calculations are different as well. Since there’s no material emission and no
ambient light, the only terms of interest from the RGBA equations are the diffuse and specular
contributions from the light sources and the shininess. Even these need to be modified, however, as
explained next.

Begin with the diffuse and specular terms from the RGBA equations. In the diffuse term, instead of
diffuselight * diffusematerial, substitute dci as defined in the previous section for color-index
mode. Similarly, in the specular term, instead of specularlight * specularmaterial, use sci as defined
in the previous section. (Calculate the attenuation, spotlight effect, and all other components of
these terms as before.) Call these modified diffuse and specular terms d and s, respectively. Now let
s’ = min{ s, 1 }, and then compute

c = am + d(1-s’)(dm-am) + s’(sm-am)

where am, dm, and sm are the ambient, diffuse, and specular material indexes specified using
GL_COLOR_INDEXES. The final color index is

c’ = min { c, sm }

After lighting calculations are performed, the color-index values are converted to fixed-point (with
an unspecified number of bits to the right of the binary point). Then the integer portion is masked
(bitwise ANDed) with 2n-1, where n is the number of bits in a color in the color-index buffer.

 OpenGL Programming Guide
(Addison-Wesley Publishing Company)

 OpenGL Programming Guide
(Addison-Wesley Publishing Company)

Chapter 6
Blending, Antialiasing, Fog, and Polygon
Offset
Chapter Objectives

After reading this chapter, you’ll be able to do the following:

Blend colors to achieve such effects as making objects appear translucent

Smooth jagged edges of lines and polygons with antialiasing

Create scenes with realistic atmospheric effects

Draw geometry at or near the same depth, but avoid unaesthetic artifacts from intersecting
geometry

The preceding chapters have given you the basic information you need to create a
computer-graphics scene; you’ve learned how to do the following:

Draw geometric shapes

Transform those geometric shapes so that they can be viewed from whatever perspective you
wish

Specify how the geometric shapes in your scene should be colored and shaded

Add lights and indicate how they should affect the shapes in your scene

Now you’re ready to get a little fancier. This chapter discusses four techniques that can add extra
detail and polish to your scene. None of these techniques is hard to use - in fact, it’s probably harder
to explain them than to use them. Each of these techniques is described in its own major section:

"Blending" tells you how to specify a blending function that combines color values from a
source and a destination. The final effect is that parts of your scene appear translucent.

"Antialiasing" explains this relatively subtle technique that alters colors so that the edges of
points, lines, and polygons appear smooth rather than angular and jagged.

"Fog" describes how to create the illusion of depth by computing the color values of an object
based on its distance from the viewpoint. Thus, objects that are far away appear to fade into
the background, just as they do in real life.

If you’ve tried to draw a wireframe outline atop a shaded object and used the same vertices,
you’ve probably noticed some ugly visual artifacts. "Polygon Offset" shows you how to
tweak (offset) depth values to make an outlined, shaded object look beautiful.

Blending

You’ve already seen alpha values (alpha is the A in RGBA), but they’ve been ignored until now.
Alpha values are specified with glColor*(), when using glClearColor() to specify a clearing color
and when specifying certain lighting parameters such as a material property or light-source
intensity. As you learned in Chapter 4, the pixels on a monitor screen emit red, green, and blue
light, which is controlled by the red, green, and blue color values. So how does an alpha value
affect what gets drawn in a window on the screen?

When blending is enabled, the alpha value is often used to combine the color value of the fragment
being processed with that of the pixel already stored in the framebuffer. Blending occurs after your
scene has been rasterized and converted to fragments, but just before the final pixels are drawn in
the framebuffer. Alpha values can also be used in the alpha test to accept or reject a fragment based
on its alpha value. (See Chapter 10 for more information about this process.)

Without blending, each new fragment overwrites any existing color values in the framebuffer, as
though the fragment were opaque. With blending, you can control how (and how much of) the
existing color value should be combined with the new fragment’s value. Thus you can use alpha
blending to create a translucent fragment that lets some of the previously stored color value "show
through." Color blending lies at the heart of techniques such as transparency, digital compositing,
and painting.

Note: Alpha values aren’t specified in color-index mode, so blending operations aren’t performed
in color-index mode.

The most natural way to think of blending operations is to think of the RGB components of a
fragment as representing its color and the alpha component as representing opacity. Transparent or
translucent surfaces have lower opacity than opaque ones and, therefore, lower alpha values. For
example, if you’re viewing an object through green glass, the color you see is partly green from the
glass and partly the color of the object. The percentage varies depending on the transmission
properties of the glass: If the glass transmits 80 percent of the light that strikes it (that is, has an
opacity of 20 percent), the color you see is a combination of 20 percent glass color and 80 percent
of the color of the object behind it. You can easily imagine situations with multiple translucent
surfaces. If you look at an automobile, for instance, its interior has one piece of glass between it and
your viewpoint; some objects behind the automobile are visible through two pieces of glass.

The Source and Destination Factors

During blending, color values of the incoming fragment (the source) are combined with the color
values of the corresponding currently stored pixel (the destination) in a two-stage process. First you
specify how to compute source and destination factors. These factors are RGBA quadruplets that
are multiplied by each component of the R, G, B, and A values in the source and destination,
respectively. Then the corresponding components in the two sets of RGBA quadruplets are added.
To show this mathematically, let the source and destination blending factors be (Sr, Sg, Sb, Sa) and

(Dr, Dg, Db, Da), respectively, and the RGBA values of the source and destination be indicated
with a subscript of s or d. Then the final, blended RGBA values are given by

(RsSr+RdDr, GsSg+GdDg, BsSb+BdDb, AsSa+AdDa)

Each component of this quadruplet is eventually clamped to [0,1].

Now consider how the source and destination blending factors are generated. You use
glBlendFunc() to supply two constants: one that specifies how the source factor should be
computed and one that indicates how the destination factor should be computed. To have blending
take effect, you also need to enable it:

glEnable(GL_BLEND);

Use glDisable() with GL_BLEND to disable blending. Also note that using the constants GL_ONE
(source) and GL_ZERO (destination) gives the same results as when blending is disabled; these
values are the default.

void glBlendFunc(GLenum sfactor, GLenum dfactor);
Controls how color values in the fragment being processed (the source) are combined with
those already stored in the framebuffer (the destination). The argument sfactor indicates how
to compute a source blending factor; dfactor indicates how to compute a destination blending
factor. The possible values for these arguments are explained in Table 6-1. The blend factors
are assumed to lie in the range [0,1]; after the color values in the source and destination are
combined, they’re clamped to the range [0,1].

Note: In Table 6-1, the RGBA values of the source and destination are indicated with the subscripts
s and d, respectively. Subtraction of quadruplets means subtracting them componentwise. The
Relevant Factor column indicates whether the corresponding constant can be used to specify the
source or destination blend factor.

Table 6-1 : Source and Destination Blending Factors

Constant Relevant Factor Computed Blend Factor

GL_ZERO source or destination (0, 0, 0, 0)

GL_ONE source or destination (1, 1, 1, 1)

GL_DST_COLOR source (Rd, Gd, Bd, Ad)

GL_SRC_COLOR destination (Rs, Gs, Bs, As)

GL_ONE_MINUS_DST_COLOR source (1, 1, 1, 1)-(Rd, Gd, Bd, Ad)

GL_ONE_MINUS_SRC_COLOR destination (1, 1, 1, 1)-(Rs, Gs, Bs, As)

GL_SRC_ALPHA source or destination (As, As, As, As)

GL_ONE_MINUS_SRC_ALPHA source or destination (1, 1, 1, 1)-(As, As, As, As)

GL_DST_ALPHA source or destination (Ad, Ad, Ad, Ad)

GL_ONE_MINUS_DST_ALPHA source or destination (1, 1, 1, 1)-(Ad, Ad, Ad, Ad)

GL_SRC_ALPHA_SATURATE source (f, f, f, 1); f=min(As, 1-Ad)

Sample Uses of Blending

Not all combinations of source and destination factors make sense. Most applications use a small
number of combinations. The following paragraphs describe typical uses for particular
combinations of source and destination factors. Some of these examples use only the incoming
alpha value, so they work even when alpha values aren’t stored in the framebuffer. Also note that
often there’s more than one way to achieve some of these effects.

One way to draw a picture composed half of one image and half of another, equally blended,
is to set the source factor to GL_ONE and the destination factor to GL_ZERO, and draw the
first image. Then set the source factor to GL_SRC_ALPHA and destination factor to
GL_ONE_MINUS_SRC_ALPHA, and draw the second image with alpha equal to 0.5. This
pair of factors probably represents the most commonly used blending operation. If the picture
is supposed to be blended with 0.75 of the first image and 0.25 of the second, draw the first
image as before, and draw the second with an alpha of 0.25.

To blend three different images equally, set the destination factor to GL_ONE and the source
factor to GL_SRC_ALPHA. Draw each of the images with an alpha equal to 0.3333333. With
this technique, each image is only one-third of its original brightness, which is noticeable
where the images don’t overlap.

Suppose you’re writing a paint program, and you want to have a brush that gradually adds

color so that each brush stroke blends in a little more color with whatever is currently in the
image (say 10 percent color with 90 percent image on each pass). To do this, draw the image
of the brush with alpha of 10 percent and use GL_SRC_ALPHA (source) and
GL_ONE_MINUS_SRC_ALPHA (destination). Note that you can vary the alphas across the
brush to make the brush add more of its color in the middle and less on the edges, for an
antialiased brush shape. (See "Antialiasing.") Similarly, erasers can be implemented by
setting the eraser color to the background color.

The blending functions that use the source or destination colors - GL_DST_COLOR or
GL_ONE_MINUS_DST_COLOR for the source factor and GL_SRC_COLOR or
GL_ONE_MINUS_SRC_COLOR for the destination factor - effectively allow you to
modulate each color component individually. This operation is equivalent to applying a
simple filter - for example, multiplying the red component by 80 percent, the green
component by 40 percent, and the blue component by 72 percent would simulate viewing the
scene through a photographic filter that blocks 20 percent of red light, 60 percent of green,
and 28 percent of blue.

Suppose you want to draw a picture composed of three translucent surfaces, some obscuring
others, and all over a solid background. Assume the farthest surface transmits 80 percent of
the color behind it, the next transmits 40 percent, and the closest transmits 90 percent. To
compose this picture, draw the background first with the default source and destination
factors, and then change the blending factors to GL_SRC_ALPHA (source) and
GL_ONE_MINUS_SRC_ALPHA (destination). Next, draw the farthest surface with an alpha
of 0.2, then the middle surface with an alpha of 0.6, and finally the closest surface with an
alpha of 0.1.

If your system has alpha planes, you can render objects one at a time (including their alpha
values), read them back, and then perform interesting matting or compositing operations with
the fully rendered objects. (See "Compositing 3D Rendered Images" by Tom Duff,
SIGGRAPH 1985 Proceedings, p. 41-44, for examples of this technique.) Note that objects
used for picture composition can come from any source - they can be rendered using OpenGL
commands, rendered using techniques such as ray-tracing or radiosity that are implemented in
another graphics library, or obtained by scanning in existing images.

You can create the effect of a nonrectangular raster image by assigning different alpha values
to individual fragments in the image. In most cases, you would assign an alpha of 0 to each
"invisible" fragment and an alpha of 1.0 to each opaque fragment. For example, you can draw
a polygon in the shape of a tree and apply a texture map of foliage; the viewer can see through
parts of the rectangular texture that aren’t part of the tree if you’ve assigned them alpha
values of 0. This method, sometimes called billboarding, is much faster than creating the tree
out of three-dimensional polygons. An example of this technique is shown in Figure 6-1: The
tree is a single rectangular polygon that can be rotated about the center of the trunk, as shown
by the outlines, so that it’s always facing the viewer. (See "Texture Functions" in Chapter 9
for more information about blending textures.)

Figure 6-1 : Creating a Nonrectangular Raster Image

Blending is also used for antialiasing, which is a rendering technique to reduce the jagged
appearance of primitives drawn on a raster screen. (See "Antialiasing" for more information.)

A Blending Example

Example 6-1 draws two overlapping colored triangles, each with an alpha of 0.75. Blending is
enabled and the source and destination blending factors are set to GL_SRC_ALPHA and
GL_ONE_MINUS_SRC_ALPHA, respectively.

When the program starts up, a yellow triangle is drawn on the left and then a cyan triangle is drawn
on the right so that in the center of the window, where the triangles overlap, cyan is blended with
the original yellow. You can change which triangle is drawn first by typing ‘t’ in the window.

Example 6-1 : Blending Example: alpha.c

#include <GL/gl.h>

#include <GL/glu.h>
#include <GL/glut.h>
#include <stdlib.h>

static int leftFirst = GL_TRUE;

/* Initialize alpha blending function. */
static void init(void)
{
 glEnable (GL_BLEND);
 glBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
 glShadeModel (GL_FLAT);
 glClearColor (0.0, 0.0, 0.0, 0.0);
}

static void drawLeftTriangle(void)
{
/* draw yellow triangle on LHS of screen */
 glBegin (GL_TRIANGLES);
 glColor4f(1.0, 1.0, 0.0, 0.75);
 glVertex3f(0.1, 0.9, 0.0);
 glVertex3f(0.1, 0.1, 0.0);
 glVertex3f(0.7, 0.5, 0.0);
 glEnd();
}

static void drawRightTriangle(void)
{
/* draw cyan triangle on RHS of screen */
 glBegin (GL_TRIANGLES);
 glColor4f(0.0, 1.0, 1.0, 0.75);
 glVertex3f(0.9, 0.9, 0.0);
 glVertex3f(0.3, 0.5, 0.0);
 glVertex3f(0.9, 0.1, 0.0);
 glEnd();
}

void display(void)
{
 glClear(GL_COLOR_BUFFER_BIT);

 if (leftFirst) {
 drawLeftTriangle();
 drawRightTriangle();
 }
 else {
 drawRightTriangle();
 drawLeftTriangle();
 }
 glFlush();
}

void reshape(int w, int h)
{
 glViewport(0, 0, (GLsizei) w, (GLsizei) h);
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 if (w <= h)
 gluOrtho2D (0.0, 1.0, 0.0, 1.0*(GLfloat)h/(GLfloat)w);
 else
 gluOrtho2D (0.0, 1.0*(GLfloat)w/(GLfloat)h, 0.0, 1.0);
}

void keyboard(unsigned char key, int x, int y)

{
 switch (key) {
 case ‘t’:
 case ‘T’:
 leftFirst = !leftFirst;
 glutPostRedisplay();
 break;
 case 27: /* Escape key */
 exit(0);
 break;
 default:
 break;
 }
}

int main(int argc, char** argv)
{
 glutInit(&argc, argv);
 glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);
 glutInitWindowSize (200, 200);
 glutCreateWindow (argv[0]);
 init();
 glutReshapeFunc (reshape);
 glutKeyboardFunc (keyboard);
 glutDisplayFunc (display);
 glutMainLoop();
 return 0;
}

The order in which the triangles are drawn affects the color of the overlapping region. When the left
triangle is drawn first, cyan fragments (the source) are blended with yellow fragments, which are
already in the framebuffer (the destination). When the right triangle is drawn first, yellow is
blended with cyan. Because the alpha values are all 0.75, the actual blending factors become 0.75
for the source and 1.0 - 0.75 = 0.25 for the destination. In other words, the source fragments are
somewhat translucent, but they have more effect on the final color than the destination fragments.

Three-Dimensional Blending with the Depth Buffer

As you saw in the previous example, the order in which polygons are drawn greatly affects the
blended result. When drawing three-dimensional translucent objects, you can get different
appearances depending on whether you draw the polygons from back to front or from front to back.
You also need to consider the effect of the depth buffer when determining the correct order. (See
"A Hidden-Surface Removal Survival Kit" in Chapter 5 for an introduction to the depth buffer.
Also see "Depth Test" in Chapter 10 for more information.) The depth buffer keeps track of the
distance between the viewpoint and the portion of the object occupying a given pixel in a window
on the screen; when another candidate color arrives for that pixel, it’s drawn only if its object is
closer to the viewpoint, in which case its depth value is stored in the depth buffer. With this
method, obscured (or hidden) portions of surfaces aren’t necessarily drawn and therefore aren’t
used for blending.

If you want to render both opaque and translucent objects in the same scene, then you want to use
the depth buffer to perform hidden-surface removal for any objects that lie behind the opaque
objects. If an opaque object hides either a translucent object or another opaque object, you want the
depth buffer to eliminate the more distant object. If the translucent object is closer, however, you
want to blend it with the opaque object. You can generally figure out the correct order to draw the
polygons if everything in the scene is stationary, but the problem can quickly become too hard if
either the viewpoint or the object is moving.

The solution is to enable depth buffering but make the depth buffer read-only while drawing the
translucent objects. First you draw all the opaque objects, with the depth buffer in normal operation.
Then you preserve these depth values by making the depth buffer read-only. When the translucent
objects are drawn, their depth values are still compared to the values established by the opaque
objects, so they aren’t drawn if they’re behind the opaque ones. If they’re closer to the viewpoint,
however, they don’t eliminate the opaque objects, since the depth-buffer values can’t change.
Instead, they’re blended with the opaque objects. To control whether the depth buffer is writable,
use glDepthMask(); if you pass GL_FALSE as the argument, the buffer becomes read-only,
whereas GL_TRUE restores the normal, writable operation.

Example 6-2 demonstrates how to use this method to draw opaque and translucent
three-dimensional objects. In the program, typing ‘a’ triggers an animation sequence in which a
translucent cube moves through an opaque sphere. Pressing the ‘r’ key resets the objects in the
scene to their initial positions. To get the best results when transparent objects overlap, draw the
objects from back to front.

Example 6-2 : Three-Dimensional Blending: alpha3D.c

#include <stdlib.h>
#include <stdio.h>
#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>

#define MAXZ 8.0
#define MINZ -8.0
#define ZINC 0.4
static float solidZ = MAXZ;
static float transparentZ = MINZ;
static GLuint sphereList, cubeList;

static void init(void)
{
 GLfloat mat_specular[] = { 1.0, 1.0, 1.0, 0.15 };
 GLfloat mat_shininess[] = { 100.0 };
 GLfloat position[] = { 0.5, 0.5, 1.0, 0.0 };

 glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);
 glMaterialfv(GL_FRONT, GL_SHININESS, mat_shininess);
 glLightfv(GL_LIGHT0, GL_POSITION, position);

 glEnable(GL_LIGHTING);
 glEnable(GL_LIGHT0);
 glEnable(GL_DEPTH_TEST);

 sphereList = glGenLists(1);
 glNewList(sphereList, GL_COMPILE);
 glutSolidSphere (0.4, 16, 16);
 glEndList();

 cubeList = glGenLists(1);
 glNewList(cubeList, GL_COMPILE);
 glutSolidCube (0.6);
 glEndList();
}

void display(void)
{
 GLfloat mat_solid[] = { 0.75, 0.75, 0.0, 1.0 };
 GLfloat mat_zero[] = { 0.0, 0.0, 0.0, 1.0 };

 GLfloat mat_transparent[] = { 0.0, 0.8, 0.8, 0.6 };
 GLfloat mat_emission[] = { 0.0, 0.3, 0.3, 0.6 };

 glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 glPushMatrix ();
 glTranslatef (-0.15, -0.15, solidZ);
 glMaterialfv(GL_FRONT, GL_EMISSION, mat_zero);
 glMaterialfv(GL_FRONT, GL_DIFFUSE, mat_solid);
 glCallList (sphereList);
 glPopMatrix ();

 glPushMatrix ();
 glTranslatef (0.15, 0.15, transparentZ);
 glRotatef (15.0, 1.0, 1.0, 0.0);
 glRotatef (30.0, 0.0, 1.0, 0.0);
 glMaterialfv(GL_FRONT, GL_EMISSION, mat_emission);
 glMaterialfv(GL_FRONT, GL_DIFFUSE, mat_transparent);
 glEnable (GL_BLEND);
 glDepthMask (GL_FALSE);
 glBlendFunc (GL_SRC_ALPHA, GL_ONE);
 glCallList (cubeList);
 glDepthMask (GL_TRUE);
 glDisable (GL_BLEND);
 glPopMatrix ();

 glutSwapBuffers();
}

void reshape(int w, int h)
{
 glViewport(0, 0, (GLint) w, (GLint) h);
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 if (w <= h)
 glOrtho (-1.5, 1.5, -1.5*(GLfloat)h/(GLfloat)w,
 1.5*(GLfloat)h/(GLfloat)w, -10.0, 10.0);
 else
 glOrtho (-1.5*(GLfloat)w/(GLfloat)h,
 1.5*(GLfloat)w/(GLfloat)h, -1.5, 1.5, -10.0, 10.0);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
}

void animate(void)
{
 if (solidZ <= MINZ || transparentZ >= MAXZ)
 glutIdleFunc(NULL);
 else {
 solidZ -= ZINC;
 transparentZ += ZINC;
 glutPostRedisplay();
 }
}

void keyboard(unsigned char key, int x, int y)
{
 switch (key) {
 case ‘a’:
 case ‘A’:
 solidZ = MAXZ;
 transparentZ = MINZ;
 glutIdleFunc(animate);
 break;
 case ‘r’:

 case ‘R’:
 solidZ = MAXZ;
 transparentZ = MINZ;
 glutPostRedisplay();
 break;
 case 27:
 exit(0);
 }
}

int main(int argc, char** argv)
{
 glutInit(&argc, argv);
 glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);
 glutInitWindowSize(500, 500);
 glutCreateWindow(argv[0]);
 init();
 glutReshapeFunc(reshape);
 glutKeyboardFunc(keyboard);
 glutDisplayFunc(display);
 glutMainLoop();
 return 0;
}

Antialiasing

You might have noticed in some of your OpenGL pictures that lines, especially nearly horizontal or
nearly vertical ones, appear jagged. These jaggies appear because the ideal line is approximated by
a series of pixels that must lie on the pixel grid. The jaggedness is called aliasing, and this section
describes antialiasing techniques to reduce it. Figure 6-2 shows two intersecting lines, both aliased
and antialiased. The pictures have been magnified to show the effect.

Figure 6-2 : Aliased and Antialiased Lines

Figure 6-3 shows how a diagonal line 1 pixel wide covers more of some pixel squares than others.
In fact, when performing antialiasing, OpenGL calculates a coverage value for each fragment based
on the fraction of the pixel square on the screen that it would cover. The figure shows these
coverage values for the line. In RGBA mode, OpenGL multiplies the fragment’s alpha value by its
coverage. You can then use the resulting alpha value to blend the fragment with the corresponding
pixel already in the framebuffer. In color-index mode, OpenGL sets the least significant 4 bits of
the color index based on the fragment’s coverage (0000 for no coverage and 1111 for complete
coverage). It’s up to you to load your color map and apply it appropriately to take advantage of this
coverage information.

Figure 6-3 : Determining Coverage Values

The details of calculating coverage values are complex, difficult to specify in general, and in fact
may vary slightly depending on your particular implementation of OpenGL. You can use the
glHint() command to exercise some control over the trade-off between image quality and speed,
but not all implementations will take the hint.

void glHint(GLenum target, GLenum hint);
Controls certain aspects of OpenGL behavior. The target parameter indicates which behavior
is to be controlled; its possible values are shown in Table 6-2. The hint parameter can be
GL_FASTEST to indicate that the most efficient option should be chosen, GL_NICEST to
indicate the highest-quality option, or GL_DONT_CARE to indicate no preference. The
interpretation of hints is implementation-dependent; an implementation can ignore them
entirely. (For more information about the relevant topics, see "Antialiasing" for the details on
sampling and "Fog" for details on fog.)
The GL_PERSPECTIVE_CORRECTION_HINT target parameter refers to how color values
and texture coordinates are interpolated across a primitive: either linearly in screen space (a
relatively simple calculation) or in a perspective-correct manner (which requires more
computation). Often, systems perform linear color interpolation because the results, while not
technically correct, are visually acceptable; however, in most cases textures require
perspective-correct interpolation to be visually acceptable. Thus, an implementation can
choose to use this parameter to control the method used for interpolation. (See Chapter 3 for
a discussion of perspective projection, Chapter 4 for a discussion of color, and Chapter 9 for
a discussion of texture mapping.)

Table 6-2 : Values for Use with glHint()

Parameter Meaning

GL_POINT_SMOOTH_HINT,
GL_LINE_SMOOTH_HINT,
GL_POLYGON_SMOOTH_HINT

Specify the desired sampling
quality of points, lines, or polygons
during antialiasing operations

GL_FOG_HINT Specifies whether fog calculations
are done per pixel (GL_NICEST)
or per vertex (GL_FASTEST)

GL_PERSPECTIVE_CORRECTION_HINT Specifies the desired quality of
color and texture-coordinate
interpolation

Antialiasing Points or Lines

To antialias points or lines, you need to turn on antialiasing with glEnable(), passing in
GL_POINT_SMOOTH or GL_LINE_SMOOTH, as appropriate. You might also want to provide a
quality hint with glHint(). (Remember that you can set the size of a point or the width of a line.
You can also stipple a line. See "Line Details" in Chapter 2.) Next follow the procedures described
in one of the following sections, depending on whether you’re in RGBA or color-index mode.

Antialiasing in RGBA Mode

In RGBA mode, you need to enable blending. The blending factors you most likely want to use are
GL_SRC_ALPHA (source) and GL_ONE_MINUS_SRC_ALPHA (destination). Alternatively, you
can use GL_ONE for the destination factor to make lines a little brighter where they intersect. Now
you’re ready to draw whatever points or lines you want antialiased. The antialiased effect is most
noticeable if you use a fairly high alpha value. Remember that since you’re performing blending,
you might need to consider the rendering order as described in "Three-Dimensional Blending with
the Depth Buffer." However, in most cases, the ordering can be ignored without significant adverse
effects. Example 6-3 initializes the necessary modes for antialiasing and then draws two
intersecting diagonal lines. When you run this program, press the ‘r’ key to rotate the lines so that
you can see the effect of antialiasing on lines of different slopes. Note that the depth buffer isn’t
enabled in this example.

Example 6-3 : Antialiased lines: aargb.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>
#include <stdlib.h>
#include <stdio.h>

static float rotAngle = 0.;

/* Initialize antialiasing for RGBA mode, including alpha
 * blending, hint, and line width. Print out implementation
 * specific info on line width granularity and width.
 */

void init(void)
{
 GLfloat values[2];
 glGetFloatv (GL_LINE_WIDTH_GRANULARITY, values);
 printf ("GL_LINE_WIDTH_GRANULARITY value is %3.1f\n",
 values[0]);
 glGetFloatv (GL_LINE_WIDTH_RANGE, values);
 printf ("GL_LINE_WIDTH_RANGE values are %3.1f %3.1f\n",
 values[0], values[1]);

 glEnable (GL_LINE_SMOOTH);
 glEnable (GL_BLEND);
 glBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
 glHint (GL_LINE_SMOOTH_HINT, GL_DONT_CARE);
 glLineWidth (1.5);

 glClearColor(0.0, 0.0, 0.0, 0.0);
}

/* Draw 2 diagonal lines to form an X */
void display(void)
{
 glClear(GL_COLOR_BUFFER_BIT);

 glColor3f (0.0, 1.0, 0.0);
 glPushMatrix();
 glRotatef(-rotAngle, 0.0, 0.0, 0.1);
 glBegin (GL_LINES);
 glVertex2f (-0.5, 0.5);
 glVertex2f (0.5, -0.5);
 glEnd ();
 glPopMatrix();

 glColor3f (0.0, 0.0, 1.0);
 glPushMatrix();
 glRotatef(rotAngle, 0.0, 0.0, 0.1);
 glBegin (GL_LINES);
 glVertex2f (0.5, 0.5);
 glVertex2f (-0.5, -0.5);
 glEnd ();
 glPopMatrix();

 glFlush();
}
void reshape(int w, int h)
{
 glViewport(0, 0, (GLint) w, (GLint) h);
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 if (w <= h)
 gluOrtho2D (-1.0, 1.0,
 -1.0*(GLfloat)h/(GLfloat)w, 1.0*(GLfloat)h/(GLfloat)w);
 else
 gluOrtho2D (-1.0*(GLfloat)w/(GLfloat)h,
 1.0*(GLfloat)w/(GLfloat)h, -1.0, 1.0);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
}

void keyboard(unsigned char key, int x, int y)
{
 switch (key) {
 case ‘r’:
 case ‘R’:
 rotAngle += 20.;

 if (rotAngle >= 360.) rotAngle = 0.;
 glutPostRedisplay();
 break;
 case 27: /* Escape Key */
 exit(0);
 break;
 default:
 break;
 }
}

int main(int argc, char** argv)
{
 glutInit(&argc, argv);
 glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);
 glutInitWindowSize (200, 200);
 glutCreateWindow (argv[0]);
 init();
 glutReshapeFunc (reshape);
 glutKeyboardFunc (keyboard);
 glutDisplayFunc (display);
 glutMainLoop();
 return 0;
}

Antialiasing in Color-Index Mode

The tricky part about antialiasing in color-index mode is loading and using the color map. Since the
last 4 bits of the color index indicate the coverage value, you need to load sixteen contiguous
indices with a color ramp from the background color to the object’s color. (The ramp has to start
with an index value that’s a multiple of 16.) Then you clear the color buffer to the first of the
sixteen colors in the ramp and draw your points or lines using colors in the ramp. Example 6-4
demonstrates how to construct the color ramp to draw antialiased lines in color-index mode. In this
example, two color ramps are created: one contains shades of green and the other shades of blue.

Example 6-4 : Antialiasing in Color-Index Mode: aaindex.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>
#include <stdlib.h>

#define RAMPSIZE 16
#define RAMP1START 32
#define RAMP2START 48

static float rotAngle = 0.;

/* Initialize antialiasing for color-index mode,
 * including loading a green color ramp starting
 * at RAMP1START, and a blue color ramp starting
 * at RAMP2START. The ramps must be a multiple of 16.
 */
void init(void)
{
 int i;

 for (i = 0; i < RAMPSIZE; i++) {
 GLfloat shade;
 shade = (GLfloat) i/(GLfloat) RAMPSIZE;
 glutSetColor(RAMP1START+(GLint)i, 0., shade, 0.);
 glutSetColor(RAMP2START+(GLint)i, 0., 0., shade);

 }
 glEnable (GL_LINE_SMOOTH);
 glHint (GL_LINE_SMOOTH_HINT, GL_DONT_CARE);
 glLineWidth (1.5);

 glClearIndex ((GLfloat) RAMP1START);
}
/* Draw 2 diagonal lines to form an X */
void display(void)
{
 glClear(GL_COLOR_BUFFER_BIT);

 glIndexi(RAMP1START);
 glPushMatrix();
 glRotatef(-rotAngle, 0.0, 0.0, 0.1);
 glBegin (GL_LINES);
 glVertex2f (-0.5, 0.5);
 glVertex2f (0.5, -0.5);
 glEnd ();
 glPopMatrix();

 glIndexi(RAMP2START);
 glPushMatrix();
 glRotatef(rotAngle, 0.0, 0.0, 0.1);
 glBegin (GL_LINES);
 glVertex2f (0.5, 0.5);
 glVertex2f (-0.5, -0.5);
 glEnd ();
 glPopMatrix();

 glFlush();
}

void reshape(int w, int h)
{
 glViewport(0, 0, (GLsizei) w, (GLsizei) h);
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 if (w <= h)
 gluOrtho2D (-1.0, 1.0,
 -1.0*(GLfloat)h/(GLfloat)w, 1.0*(GLfloat)h/(GLfloat)w);
 else
 gluOrtho2D (-1.0*(GLfloat)w/(GLfloat)h,
 1.0*(GLfloat)w/(GLfloat)h, -1.0, 1.0);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
}
void keyboard(unsigned char key, int x, int y)
{
 switch (key) {
 case ‘r’:
 case ‘R’:
 rotAngle += 20.;
 if (rotAngle >= 360.) rotAngle = 0.;
 glutPostRedisplay();
 break;
 case 27: /* Escape Key */
 exit(0);
 break;
 default:
 break;
 }
}

int main(int argc, char** argv)
{
 glutInit(&argc, argv);
 glutInitDisplayMode (GLUT_SINGLE | GLUT_INDEX);
 glutInitWindowSize (200, 200);
 glutCreateWindow (argv[0]);
 init();
 glutReshapeFunc (reshape);
 glutKeyboardFunc (keyboard);
 glutDisplayFunc (display);
 glutMainLoop();
 return 0;
}

Since the color ramp goes from the background color to the object’s color, the antialiased lines look
correct only in the areas where they are drawn on top of the background. When the blue line is
drawn, it erases part of the green line at the point where the lines intersect. To fix this, you would
need to redraw the area where the lines intersect using a ramp that goes from green (the color of the
line in the framebuffer) to blue (the color of the line being drawn). However, this requires
additional calculations and it is usually not worth the effort since the intersection area is small. Note
that this is not a problem in RGBA mode, since the colors of object being drawn are blended with
the color already in the framebuffer.

You may also want to enable the depth test when drawing antialiased points and lines in
color-index mode. In this example, the depth test is disabled since both of the lines lie in the same
z-plane. However, if you want to draw a three-dimensional scene, you should enable the depth
buffer so that the resulting pixel colors correspond to the "nearest" objects.

The trick described in "Three-Dimensional Blending with the Depth Buffer" can also be used to
mix antialiased points and lines with aliased, depth-buffered polygons. To do this, draw the
polygons first, then make the depth buffer read-only and draw the points and lines. The points and
lines intersect nicely with each other but will be obscured by nearer polygons.

Try This

Take a previous program, such as the robot arm or solar system examples described in "Examples
of Composing Several Transformations" in Chapter 3, and draw wireframe objects with
antialiasing. Try it in either RGBA or color-index mode. Also try different line widths or point sizes
to see their effects.

Antialiasing Polygons

Antialiasing the edges of filled polygons is similar to antialiasing points and lines. When different
polygons have overlapping edges, you need to blend the color values appropriately. You can either
use the method described in this section, or you can use the accumulation buffer to perform
antialiasing for your entire scene. Using the accumulation buffer, which is described in Chapter 10,
is easier from your point of view, but it’s much more computation-intensive and therefore slower.
However, as you’ll see, the method described here is rather cumbersome.

Note: If you draw your polygons as points at the vertices or as outlines - that is, by passing
GL_POINT or GL_LINE to glPolygonMode() - point or line antialiasing is applied, if enabled as
described earlier. The rest of this section addresses polygon antialiasing when you’re using
GL_FILL as the polygon mode.

In theory, you can antialias polygons in either RGBA or color-index mode. However, object
intersections affect polygon antialiasing more than they affect point or line antialiasing, so
rendering order and blending accuracy become more critical. In fact, they’re so critical that if
you’re antialiasing more than one polygon, you need to order the polygons from front to back and
then use glBlendFunc() with GL_SRC_ALPHA_SATURATE for the source factor and GL_ONE
for the destination factor. Thus, antialiasing polygons in color-index mode normally isn’t practical.

To antialias polygons in RGBA mode, you use the alpha value to represent coverage values of
polygon edges. You need to enable polygon antialiasing by passing GL_POLYGON_SMOOTH to
glEnable(). This causes pixels on the edges of the polygon to be assigned fractional alpha values
based on their coverage, as though they were lines being antialiased. Also, if you desire, you can
supply a value for GL_POLYGON_SMOOTH_HINT.

Now you need to blend overlapping edges appropriately. First, turn off the depth buffer so that you
have control over how overlapping pixels are drawn. Then set the blending factors to
GL_SRC_ALPHA_SATURATE (source) and GL_ONE (destination). With this specialized
blending function, the final color is the sum of the destination color and the scaled source color; the
scale factor is the smaller of either the incoming source alpha value or one minus the destination
alpha value. This means that for a pixel with a large alpha value, successive incoming pixels have
little effect on the final color because one minus the destination alpha is almost zero. With this
method, a pixel on the edge of a polygon might be blended eventually with the colors from another
polygon that’s drawn later. Finally, you need to sort all the polygons in your scene so that they’re
ordered from front to back before drawing them.

Example 6-5 shows how to antialias filled polygons; clicking the left mouse button toggles the
antialiasing on and off. Note that backward-facing polygons are culled and that the alpha values in
the color buffer are cleared to zero before any drawing. Pressing the ‘t’ key toggles the antialiasing
on and off.

Note: Your color buffer must store alpha values for this technique to work correctly. Make sure you
request GLUT_ALPHA and receive a legitimate window.

Example 6-5 : Antialiasing Filled Polygons: aapoly.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

GLboolean polySmooth = GL_TRUE;
static void init(void)
{
 glCullFace (GL_BACK);
 glEnable (GL_CULL_FACE);
 glBlendFunc (GL_SRC_ALPHA_SATURATE, GL_ONE);
 glClearColor (0.0, 0.0, 0.0, 0.0);
}

#define NFACE 6
#define NVERT 8
void drawCube(GLdouble x0, GLdouble x1, GLdouble y0,
 GLdouble y1, GLdouble z0, GLdouble z1)
{
 static GLfloat v[8][3];

 static GLfloat c[8][4] = {
 {0.0, 0.0, 0.0, 1.0}, {1.0, 0.0, 0.0, 1.0},
 {0.0, 1.0, 0.0, 1.0}, {1.0, 1.0, 0.0, 1.0},
 {0.0, 0.0, 1.0, 1.0}, {1.0, 0.0, 1.0, 1.0},
 {0.0, 1.0, 1.0, 1.0}, {1.0, 1.0, 1.0, 1.0}
 };

/* indices of front, top, left, bottom, right, back faces */
 static GLubyte indices[NFACE][4] = {
 {4, 5, 6, 7}, {2, 3, 7, 6}, {0, 4, 7, 3},
 {0, 1, 5, 4}, {1, 5, 6, 2}, {0, 3, 2, 1}
 };

 v[0][0] = v[3][0] = v[4][0] = v[7][0] = x0;
 v[1][0] = v[2][0] = v[5][0] = v[6][0] = x1;
 v[0][1] = v[1][1] = v[4][1] = v[5][1] = y0;
 v[2][1] = v[3][1] = v[6][1] = v[7][1] = y1;
 v[0][2] = v[1][2] = v[2][2] = v[3][2] = z0;
 v[4][2] = v[5][2] = v[6][2] = v[7][2] = z1;

#ifdef GL_VERSION_1_1
 glEnableClientState (GL_VERTEX_ARRAY);
 glEnableClientState (GL_COLOR_ARRAY);
 glVertexPointer (3, GL_FLOAT, 0, v);
 glColorPointer (4, GL_FLOAT, 0, c);
 glDrawElements(GL_QUADS, NFACE*4, GL_UNSIGNED_BYTE, indices);
 glDisableClientState (GL_VERTEX_ARRAY);
 glDisableClientState (GL_COLOR_ARRAY);
#else
 printf ("If this is GL Version 1.0, ");
 printf ("vertex arrays are not supported.\n");
 exit(1);
#endif
}
/* Note: polygons must be drawn from front to back
 * for proper blending.
 */
void display(void)
{
 if (polySmooth) {
 glClear (GL_COLOR_BUFFER_BIT);
 glEnable (GL_BLEND);
 glEnable (GL_POLYGON_SMOOTH);
 glDisable (GL_DEPTH_TEST);
 }
 else {
 glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 glDisable (GL_BLEND);
 glDisable (GL_POLYGON_SMOOTH);
 glEnable (GL_DEPTH_TEST);
 }

 glPushMatrix ();
 glTranslatef (0.0, 0.0, -8.0);
 glRotatef (30.0, 1.0, 0.0, 0.0);
 glRotatef (60.0, 0.0, 1.0, 0.0);
 drawCube(-0.5, 0.5, -0.5, 0.5, -0.5, 0.5);
 glPopMatrix ();

 glFlush ();
}

void reshape(int w, int h)
{
 glViewport(0, 0, (GLsizei) w, (GLsizei) h);

 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluPerspective(30.0, (GLfloat) w/(GLfloat) h, 1.0, 20.0);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
}
void keyboard(unsigned char key, int x, int y)
{
 switch (key) {
 case ‘t’:
 case ‘T’:
 polySmooth = !polySmooth;
 glutPostRedisplay();
 break;
 case 27:
 exit(0); /* Escape key */
 break;
 default:
 break;
 }
}

int main(int argc, char** argv)
{
 glutInit(&argc, argv);
 glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB
 | GLUT_ALPHA | GLUT_DEPTH);
 glutInitWindowSize(200, 200);
 glutCreateWindow(argv[0]);
 init ();
 glutReshapeFunc (reshape);
 glutKeyboardFunc (keyboard);
 glutDisplayFunc (display);
 glutMainLoop();
 return 0;
}

Fog

Computer images sometimes seem unrealistically sharp and well defined. Antialiasing makes an
object appear more realistic by smoothing its edges. Additionally, you can make an entire image
appear more natural by adding fog, which makes objects fade into the distance. Fog is a general
term that describes similar forms of atmospheric effects; it can be used to simulate haze, mist,
smoke, or pollution. (See Plate 9.) Fog is essential in visual-simulation applications, where limited
visibility needs to be approximated. It’s often incorporated into flight-simulator displays.

When fog is enabled, objects that are farther from the viewpoint begin to fade into the fog color.
You can control the density of the fog, which determines the rate at which objects fade as the
distance increases, as well as the fog’s color. Fog is available in both RGBA and color-index
modes, although the calculations are slightly different in the two modes. Since fog is applied after
matrix transformations, lighting, and texturing are performed, it affects transformed, lit, and
textured objects. Note that with large simulation programs, fog can improve performance, since you
can choose not to draw objects that would be too fogged to be visible.

All types of geometric primitives can be fogged, including points and lines. Using the fog effect on
points and lines is also called depth-cuing (as shown in Plate 2) and is popular in molecular
modeling and other applications.

Using Fog

Using fog is easy. You enable it by passing GL_FOG to glEnable(), and you choose the color and
the equation that controls the density with glFog*(). If you want, you can supply a value for
GL_FOG_HINT with glHint(), as described on Table 6-2. Example 6-6 draws five red spheres,
each at a different distance from the viewpoint. Pressing the ‘f’ key selects among the three
different fog equations, which are described in the next section.

Example 6-6 : Five Fogged Spheres in RGBA Mode: fog.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <math.h>
#include <GL/glut.h>
#include <stdlib.h>
#include <stdio.h>

static GLint fogMode;

static void init(void)
{
 GLfloat position[] = { 0.5, 0.5, 3.0, 0.0 };

 glEnable(GL_DEPTH_TEST);

 glLightfv(GL_LIGHT0, GL_POSITION, position);
 glEnable(GL_LIGHTING);
 glEnable(GL_LIGHT0);
 {
 GLfloat mat[3] = {0.1745, 0.01175, 0.01175};
 glMaterialfv (GL_FRONT, GL_AMBIENT, mat);
 mat[0] = 0.61424; mat[1] = 0.04136; mat[2] = 0.04136;
 glMaterialfv (GL_FRONT, GL_DIFFUSE, mat);
 mat[0] = 0.727811; mat[1] = 0.626959; mat[2] = 0.626959;
 glMaterialfv (GL_FRONT, GL_SPECULAR, mat);
 glMaterialf (GL_FRONT, GL_SHININESS, 0.6*128.0);
 }

 glEnable(GL_FOG);
 {
 GLfloat fogColor[4] = {0.5, 0.5, 0.5, 1.0};

 fogMode = GL_EXP;
 glFogi (GL_FOG_MODE, fogMode);
 glFogfv (GL_FOG_COLOR, fogColor);
 glFogf (GL_FOG_DENSITY, 0.35);
 glHint (GL_FOG_HINT, GL_DONT_CARE);
 glFogf (GL_FOG_START, 1.0);
 glFogf (GL_FOG_END, 5.0);
 }
 glClearColor(0.5, 0.5, 0.5, 1.0); /* fog color */
}

static void renderSphere (GLfloat x, GLfloat y, GLfloat z)
{
 glPushMatrix();
 glTranslatef (x, y, z);
 glutSolidSphere(0.4, 16, 16);
 glPopMatrix();
}

/* display() draws 5 spheres at different z positions.
 */
void display(void)
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 renderSphere (-2., -0.5, -1.0);
 renderSphere (-1., -0.5, -2.0);
 renderSphere (0., -0.5, -3.0);
 renderSphere (1., -0.5, -4.0);
 renderSphere (2., -0.5, -5.0);
 glFlush();
}

void reshape(int w, int h)
{
 glViewport(0, 0, (GLsizei) w, (GLsizei) h);
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 if (w <= h)
 glOrtho (-2.5, 2.5, -2.5*(GLfloat)h/(GLfloat)w,
 2.5*(GLfloat)h/(GLfloat)w, -10.0, 10.0);
 else
 glOrtho (-2.5*(GLfloat)w/(GLfloat)h,
 2.5*(GLfloat)w/(GLfloat)h, -2.5, 2.5, -10.0, 10.0);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity ();
}

void keyboard(unsigned char key, int x, int y)
{
 switch (key) {
 case ‘f’:
 case ‘F’:
 if (fogMode == GL_EXP) {
 fogMode = GL_EXP2;
 printf ("Fog mode is GL_EXP2\n");
 }
 else if (fogMode == GL_EXP2) {
 fogMode = GL_LINEAR;
 printf ("Fog mode is GL_LINEAR\n");
 }
 else if (fogMode == GL_LINEAR) {
 fogMode = GL_EXP;
 printf ("Fog mode is GL_EXP\n");
 }
 glFogi (GL_FOG_MODE, fogMode);
 glutPostRedisplay();
 break;
 case 27:
 exit(0);
 break;
 default:
 break;
 }
}

int main(int argc, char** argv)
{
 glutInit(&argc, argv);
 glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);
 glutInitWindowSize(500, 500);
 glutCreateWindow(argv[0]);
 init();
 glutReshapeFunc (reshape);
 glutKeyboardFunc (keyboard);

 glutDisplayFunc (display);
 glutMainLoop();
 return 0;
}

Fog Equations

Fog blends a fog color with an incoming fragment’s color using a fog blending factor. This factor,
f , is computed with one of these three equations and then clamped to the range [0,1].

In these three equations, z is the eye-coordinate distance between the viewpoint and the fragment
center. The values for density, start, and end are all specified with glFog*(). The f factor is used
differently, depending on whether you’re in RGBA mode or color-index mode, as explained in the
next subsections.

void glFog{if}(GLenum pname, TYPE param);
void glFog{if}v(GLenum pname, TYPE *params);

Sets the parameters and function for calculating fog. If pname is GL_FOG_MODE, then
param is either GL_EXP (the default), GL_EXP2, or GL_LINEAR to select one of the three
fog factors. If pname is GL_FOG_DENSITY, GL_FOG_START, or GL_FOG_END, then
param is (or points to, with the vector version of the command) a value for density, start, or
end in the equations. (The default values are 1, 0, and 1, respectively.) In RGBA mode, pname
can be GL_FOG_COLOR, in which case params points to four values that specify the fog’s
RGBA color values. The corresponding value for pname in color-index mode is
GL_FOG_INDEX, for which param is a single value specifying the fog’s color index.

Figure 6-4 plots the fog-density equations for various values of the parameters.

Figure 6-4 : Fog-Density Equations

Fog in RGBA Mode

In RGBA mode, the fog factor f is used as follows to calculate the final fogged color:

C = f Ci + (1 - f) Cf

where Ci represents the incoming fragment’s RGBA values and Cf the fog-color values assigned
with GL_FOG_COLOR.

Fog in Color-Index Mode

In color-index mode, the final fogged color index is computed as follows:

I = Ii + (1 - f) If

where Ii is the incoming fragment’s color index and If is the fog’s color index as specified with
GL_FOG_INDEX.

To use fog in color-index mode, you have to load appropriate values in a color ramp. The first color
in the ramp is the color of the object without fog, and the last color in the ramp is the color of the
completely fogged object. You probably want to use glClearIndex() to initialize the background
color index so that it corresponds to the last color in the ramp; this way, totally fogged objects blend
into the background. Similarly, before objects are drawn, you should call glIndex*() and pass in the
index of the first color in the ramp (the unfogged color). Finally, to apply fog to different colored
objects in the scene, you need to create several color ramps and call glIndex*() before each object
is drawn to set the current color index to the start of each color ramp. Example 6-7 illustrates how
to initialize appropriate conditions and then apply fog in color-index mode.

Example 6-7 : Fog in Color-Index Mode: fogindex.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <math.h>
#include <GL/glut.h>
#include <stdlib.h>
#include <stdio.h>

/* Initialize color map and fog. Set screen clear color
 * to end of color ramp.
 */
#define NUMCOLORS 32
#define RAMPSTART 16

static void init(void)
{
 int i;

 glEnable(GL_DEPTH_TEST);

 for (i = 0; i < NUMCOLORS; i++) {
 GLfloat shade;
 shade = (GLfloat) (NUMCOLORS-i)/(GLfloat) NUMCOLORS;
 glutSetColor (RAMPSTART + i, shade, shade, shade);
 }
 glEnable(GL_FOG);

 glFogi (GL_FOG_MODE, GL_LINEAR);
 glFogi (GL_FOG_INDEX, NUMCOLORS);
 glFogf (GL_FOG_START, 1.0);

 glFogf (GL_FOG_END, 6.0);
 glHint (GL_FOG_HINT, GL_NICEST);
 glClearIndex((GLfloat) (NUMCOLORS+RAMPSTART-1));
}

static void renderSphere (GLfloat x, GLfloat y, GLfloat z)
{
 glPushMatrix();
 glTranslatef (x, y, z);
 glutWireSphere(0.4, 16, 16);
 glPopMatrix();
}

/* display() draws 5 spheres at different z positions.
 */
void display(void)
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 glIndexi (RAMPSTART);

 renderSphere (-2., -0.5, -1.0);
 renderSphere (-1., -0.5, -2.0);
 renderSphere (0., -0.5, -3.0);
 renderSphere (1., -0.5, -4.0);
 renderSphere (2., -0.5, -5.0);

 glFlush();
}

void reshape(int w, int h)
{
 glViewport(0, 0, w, h);
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 if (w <= h)
 glOrtho (-2.5, 2.5, -2.5*(GLfloat)h/(GLfloat)w,
 2.5*(GLfloat)h/(GLfloat)w, -10.0, 10.0);
 else
 glOrtho (-2.5*(GLfloat)w/(GLfloat)h,
 2.5*(GLfloat)w/(GLfloat)h, -2.5, 2.5, -10.0, 10.0);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity ();
}

void keyboard(unsigned char key, int x, int y)
{

 switch (key) {
 case 27:
 exit(0);
 }
}

int main(int argc, char** argv)
{
 glutInit(&argc, argv);
 glutInitDisplayMode (GLUT_SINGLE | GLUT_INDEX | GLUT_DEPTH);
 glutInitWindowSize(500, 500);
 glutCreateWindow(argv[0]);
 init();
 glutReshapeFunc (reshape);
 glutKeyboardFunc (keyboard);
 glutDisplayFunc (display);
 glutMainLoop();
 return 0;

}

Polygon Offset

If you want to highlight the edges of a solid object, you might try to draw the object with polygon
mode GL_FILL and then draw it again, but in a different color with polygon mode GL_LINE.
However, because lines and filled polygons are not rasterized in exactly the same way, the depth
values generated for pixels on a line are usually not the same as the depth values for a polygon
edge, even between the same two vertices. The highlighting lines may fade in and out of the
coincident polygons, which is sometimes called "stitching" and is visually unpleasant.

The visual unpleasantness can be eliminated by using polygon offset, which adds an appropriate
offset to force coincident z values apart to cleanly separate a polygon edge from its highlighting
line. (The stencil buffer, described in "Stencil Test" in Chapter 10, can also be used to eliminate
stitching. However, polygon offset is almost always faster than stenciling.) Polygon offset is also
useful for applying decals to surfaces, rendering images with hidden-line removal. In addition to
lines and filled polygons, this technique can also be used with points.

There are three different ways to turn on polygon offset, one for each type of polygon rasterization
mode: GL_FILL, GL_LINE, or GL_POINT. You enable the polygon offset by passing the
appropriate parameter to glEnable(), either GL_POLYGON_OFFSET_FILL,
GL_POLYGON_OFFSET_LINE, or GL_POLYGON_OFFSET_POINT. You must also call
glPolygonMode() to set the current polygon rasterization method.

void glPolygonOffset(GLfloat factor, GLfloat units);
When enabled, the depth value of each fragment is added to a calculated offset value. The
offset is added before the depth test is performed and before the depth value is written into the
depth buffer. The offset value o is calculated by:
o = m * factor + r * units
where m is the maximum depth slope of the polygon and r is the smallest value guaranteed to
produce a resolvable difference in window coordinate depth values. The value r is an
implementation-specific constant.

To achieve a nice rendering of the highlighted solid object without visual artifacts, you can either
add a positive offset to the solid object (push it away from you) or a negative offset to the
wireframe (pull it towards you). The big question is: "How much offset is enough?" Unfortunately,
the offset required depends upon various factors, including the depth slope of each polygon and the
width of the lines in the wireframe.

OpenGL calculates the depth slope (see Figure 6-5) of a polygon for you, but it’s important that you
understand what the depth slope is, so that you choose a reasonable value for factor. The depth
slope is the change in z (depth) values divided by the change in either x or y coordinates, as you
traverse a polygon. The depth values are in window coordinates, clamped to the range [0, 1]. To
estimate the maximum depth slope of a polygon (m in the offset equation), use this formula:

Figure 6-5 : Polygons and Their Depth Slopes

For polygons that are parallel to the near and far clipping planes, the depth slope is zero. For the
polygons in your scene with a depth slope near zero, only a small, constant offset is needed. To
create a small, constant offset, you can pass factor=0.0 and units=1.0 to glPolygonOffset().

For polygons that are at a great angle to the clipping planes, the depth slope can be significantly
greater than zero, and a larger offset may be needed. Small, non-zero values for factor, such as 0.75
or 1.0, are probably enough to generate distinct depth values and eliminate the unpleasant visual
artifacts.

Example 6-8 shows a portion of code, where a display list (which presumably draws a solid object)
is first rendered with lighting, the default GL_FILL polygon mode, and polygon offset with factor
of 1.0 and units of 1.0. These values ensure that the offset is enough for all polygons in your scene,
regardless of depth slope. (These values may actually be a little more offset than the minimum
needed, but too much offset is less noticeable than too little.) Then, to highlight the edges of the
first object, the object is rendered as an unlit wireframe with the offset disabled.

Example 6-8 : Polygon Offset to Eliminate Visual Artifacts: polyoff.c

 glEnable(GL_LIGHTING);
 glEnable(GL_LIGHT0);
 glEnable(GL_POLYGON_OFFSET_FILL);
 glPolygonOffset(1.0, 1.0);
 glCallList (list);
 glDisable(GL_POLYGON_OFFSET_FILL);

 glDisable(GL_LIGHTING);
 glDisable(GL_LIGHT0);
 glColor3f (1.0, 1.0, 1.0);
 glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
 glCallList (list);
 glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);

In a few situations, the simplest values for factor and units (1.0 and 1.0) aren’t the answers. For
instance, if the width of the lines that are highlighting the edges are greater than one, then
increasing the value of factor may be necessary. Also, since depth values are unevenly transformed
into window coordinates when using perspective projection (see "The Transformed Depth
Coordinate" in Chapter 3), less offset is needed for polygons that are closer to the near clipping
plane, and more offset is needed for polygons that are further away. Once again, experimenting
with the value of factor may be warranted.

 OpenGL Programming Guide
(Addison-Wesley Publishing Company)

 OpenGL Programming Guide
(Addison-Wesley Publishing Company)

Chapter 7
Display Lists
Chapter Objectives

After reading this chapter, you’ll be able to do the following:

Understand how display lists can be used along with commands in immediate mode to
organize your data and improve performance

Maximize performance by knowing how and when to use display lists

A display list is a group of OpenGL commands that have been stored for later execution. When a
display list is invoked, the commands in it are executed in the order in which they were issued.
Most OpenGL commands can be either stored in a display list or issued in immediate mode, which
causes them to be executed immediately. You can freely mix immediate-mode programming and
display lists within a single program. The programming examples you’ve seen so far have used
immediate mode. This chapter discusses what display lists are and how best to use them. It has the
following major sections:

"Why Use Display Lists?" explains when to use display lists.

"An Example of Using a Display List" gives a brief example, showing the basic commands
for using display lists.

"Display-List Design Philosophy" explains why certain design choices were made (such as
making display lists uneditable) and what performance optimizations you might expect to see
when using display lists.

"Creating and Executing a Display List" discusses in detail the commands for creating,
executing, and deleting display lists.

"Executing Multiple Display Lists" shows how to execute several display lists in succession,
using a small character set as an example.

"Managing State Variables with Display Lists" illustrates how to use display lists to save and
restore OpenGL commands that set state variables.

Why Use Display Lists?

Display lists may improve performance since you can use them to store OpenGL commands for

later execution. It is often a good idea to cache commands in a display list if you plan to redraw the
same geometry multiple times, or if you have a set of state changes that need to be applied multiple
times. Using display lists, you can define the geometry and/or state changes once and execute them
multiple times.

To see how you can use display lists to store geometry just once, consider drawing a tricycle. The
two wheels on the back are the same size but are offset from each other. The front wheel is larger
than the back wheels and also in a different location. An efficient way to render the wheels on the
tricycle would be to store the geometry for one wheel in a display list then execute the list three
times. You would need to set the modelview matrix appropriately each time before executing the
list to calculate the correct size and location for the wheels.

When running OpenGL programs remotely to another machine on the network, it is especially
important to cache commands in a display list. In this case, the server is a different machine than
the host. (See "What Is OpenGL?" in Chapter 1 for a discussion of the OpenGL client-server
model.) Since display lists are part of the server state and therefore reside on the server machine,
you can reduce the cost of repeatedly transmitting that data over a network if you store repeatedly
used commands in a display list.

When running locally, you can often improve performance by storing frequently used commands in
a display list. Some graphics hardware may store display lists in dedicated memory or may store the
data in an optimized form that is more compatible with the graphics hardware or software. (See
"Display-List Design Philosophy" for a detailed discussion of these optimizations.)

An Example of Using a Display List

A display list is a convenient and efficient way to name and organize a set of OpenGL commands.
For example, suppose you want to draw a torus and view it from different angles. The most
efficient way to do this would be to store the torus in a display list. Then whenever you want to
change the view, you would change the modelview matrix and execute the display list to draw the
torus. Example 7-1 illustrates this.

Example 7-1 : Creating a Display List: torus.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <stdio.h>
#include <math.h>
#include <GL/glut.h>
#include <stdlib.h>

GLuint theTorus;

/* Draw a torus */
static void torus(int numc, int numt)
{
 int i, j, k;
 double s, t, x, y, z, twopi;

 twopi = 2 * (double)M_PI;
 for (i = 0; i < numc; i++) {
 glBegin(GL_QUAD_STRIP);
 for (j = 0; j <= numt; j++) {
 for (k = 1; k >= 0; k--) {

 s = (i + k) % numc + 0.5;
 t = j % numt;

 x = (1+.1*cos(s*twopi/numc))*cos(t*twopi/numt);
 y = (1+.1*cos(s*twopi/numc))*sin(t*twopi/numt);
 z = .1 * sin(s * twopi / numc);
 glVertex3f(x, y, z);
 }
 }
 glEnd();
 }
}

/* Create display list with Torus and initialize state*/
static void init(void)
{
 theTorus = glGenLists (1);
 glNewList(theTorus, GL_COMPILE);
 torus(8, 25);
 glEndList();

 glShadeModel(GL_FLAT);
 glClearColor(0.0, 0.0, 0.0, 0.0);
}

void display(void)
{
 glClear(GL_COLOR_BUFFER_BIT);
 glColor3f (1.0, 1.0, 1.0);
 glCallList(theTorus);
 glFlush();
}

void reshape(int w, int h)
{
 glViewport(0, 0, (GLsizei) w, (GLsizei) h);
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluPerspective(30, (GLfloat) w/(GLfloat) h, 1.0, 100.0);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 gluLookAt(0, 0, 10, 0, 0, 0, 0, 1, 0);
}

/* Rotate about x-axis when "x" typed; rotate about y-axis
 when "y" typed; "i" returns torus to original view */
void keyboard(unsigned char key, int x, int y)
{
 switch (key) {
 case ‘x’:
 case ‘X’:
 glRotatef(30.,1.0,0.0,0.0);
 glutPostRedisplay();
 break;
 case ‘y’:
 case ‘Y’:
 glRotatef(30.,0.0,1.0,0.0);
 glutPostRedisplay();
 break;
 case ‘i’:
 case ‘I’:
 glLoadIdentity();
 gluLookAt(0, 0, 10, 0, 0, 0, 0, 1, 0);
 glutPostRedisplay();
 break;

 case 27:
 exit(0);
 break;
 }
}

int main(int argc, char **argv)
{
 glutInitWindowSize(200, 200);
 glutInit(&argc, argv);
 glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);
 glutCreateWindow(argv[0]);
 init();
 glutReshapeFunc(reshape);
 glutKeyboardFunc(keyboard);
 glutDisplayFunc(display);
 glutMainLoop();
 return 0;
}

Let’s start by looking at init(). It creates a display list for the torus and initializes the viewing
matrices and other rendering state. Note that the routine for drawing a torus (torus()) is bracketed
by glNewList() and glEndList(), which defines a display list. The argument listName for
glNewList() is an integer index, generated by glGenLists(), that uniquely identifies this display list.

The user can rotate the torus about the x- or y-axis by pressing the ‘x’ or ‘y’ key when the window
has focus. Whenever this happens, the callback function keyboard() is called, which concatenates a
30-degree rotation matrix (about the x- or y-axis) with the current modelview matrix. Then
glutPostRedisplay() is called, which will cause glutMainLoop() to call display() and render the
torus after other events have been processed. When the ‘i’ key is pressed, keyboard() restores the
initial modelview matrix and returns the torus to its original location.

The display() function is very simple: It clears the window and then calls glCallList() to execute
the commands in the display list. If we hadn’t used display lists, display() would have to reissue the
commands to draw the torus each time it was called.

A display list contains only OpenGL commands. In Example 7-1, only the glBegin(), glVertex(),
and glEnd() calls are stored in the display list. The parameters for the calls are evaluated, and their
values are copied into the display list when it is created. All the trigonometry to create the torus is
done only once, which should increase rendering performance. However, the values in the display
list can’t be changed later. And once a command has been stored in a list it is not possible to
remove it. Neither can you add any new commands to the list after it has been defined. You can
delete the entire display list and create a new one, but you can’t edit it.

Note: Display lists also work well with GLU commands, since those operations are ultimately
broken down into low-level OpenGL commands, which can easily be stored in display lists. Use of
display lists with GLU is particularly important for optimizing performance of GLU tessellators and
NURBS.

Display-List Design Philosophy

To optimize performance, an OpenGL display list is a cache of commands rather than a dynamic
database. In other words, once a display list is created, it can’t be modified. If a display list were
modifiable, performance could be reduced by the overhead required to search through the display

list and perform memory management. As portions of a modifiable display list were changed,
memory allocation and deallocation might lead to memory fragmentation. Any modifications that
the OpenGL implementation made to the display-list commands in order to make them more
efficient to render would need to be redone. Also, the display list may be difficult to access, cached
somewhere over a network or a system bus.

The way in which the commands in a display list are optimized may vary from implementation to
implementation. For example, a command as simple as glRotate*() might show a significant
improvement if it’s in a display list, since the calculations to produce the rotation matrix aren’t
trivial (they can involve square roots and trigonometric functions). In the display list, however, only
the final rotation matrix needs to be stored, so a display-list rotation command can be executed as
fast as the hardware can execute glMultMatrix*(). A sophisticated OpenGL implementation might
even concatenate adjacent transformation commands into a single matrix multiplication.

Although you’re not guaranteed that your OpenGL implementation optimizes display lists for any
particular uses, the execution of display lists isn’t slower than executing the commands contained
within them individually. There is some overhead, however, involved in jumping to a display list. If
a particular list is small, this overhead could exceed any execution advantage. The most likely
possibilities for optimization are listed next, with references to the chapters where the topics are
discussed.

Matrix operations (Chapter 3). Most matrix operations require OpenGL to compute inverses.
Both the computed matrix and its inverse might be stored by a particular OpenGL
implementation in a display list.

Raster bitmaps and images (Chapter 8). The format in which you specify raster data isn’t
likely to be one that’s ideal for the hardware. When a display list is compiled, OpenGL might
transform the data into the representation preferred by the hardware. This can have a
significant effect on the speed of raster character drawing, since character strings usually
consist of a series of small bitmaps.

Lights, material properties, and lighting models (Chapter 5). When you draw a scene with
complex lighting conditions, you might change the materials for each item in the scene.
Setting the materials can be slow, since it might involve significant calculations. If you put
the material definitions in display lists, these calculations don’t have to be done each time you
switch materials, since only the results of the calculations need to be stored; as a result,
rendering lit scenes might be faster. (See "Encapsulating Mode Changes" for more details on
using display lists to change such values as lighting conditions.)

Textures (Chapter 9). You might be able to maximize efficiency when defining textures by
compiling them into a display list, since the display list may allow the texture image to be
cached in dedicated texture memory. Then the texture image would not have to be recopied
each time it was needed. Also, the hardware texture format might differ from the OpenGL
format, and the conversion can be done at display-list compile time rather than during display.

In OpenGL version 1.0, the display list is the primary method to manage textures. However,
if the OpenGL implementation that you are using is version 1.1 or greater, then you should
store the texture in a texture object instead. (Some version 1.0 implementations have a
vendor-specific extension to support texture objects. If your implementation supports texture
objects, you are encouraged to use them.)

Polygon stipple patterns (Chapter 2).

Some of the commands to specify the properties listed here are context-sensitive, so you need to
take this into account to ensure optimum performance. For example, when
GL_COLOR_MATERIAL is enabled, some of the material properties will track the current color.
(See Chapter 5.) Any glMaterial*() calls that set the same material properties are ignored.

It may improve performance to store state settings with geometry. For example, suppose you want
to apply a transformation to some geometric objects and then draw the result. Your code may look
like this:

glNewList(1, GL_COMPILE);
draw_some_geometric_objects();
glEndList();

glLoadMatrix(M);
glCallList(1);

However, if the geometric objects are to be transformed in the same way each time, it is better to
store the matrix in the display list. For example, if you were to write your code as follows, some
implementations may be able to improve performance by transforming the objects when they are
defined instead of each time they are drawn:

glNewList(1, GL_COMPILE);
glLoadMatrix(M);
draw_some_geometric_objects();
glEndList();

glCallList(1);

A more likely situation occurs when rendering images. As you will see in Chapter 8, you can
modify pixel transfer state variables and control the way images and bitmaps are rasterized. If the
commands that set these state variables precede the definition of the image or bitmap in the display
list, the implementation may be able to perform some of the operations ahead of time and cache the
result.

Remember that display lists have some disadvantages. Very small lists may not perform well since
there is some overhead when executing a list. Another disadvantage is the immutability of the
contents of a display list. To optimize performance, an OpenGL display list can’t be changed and
its contents can’t be read. If the application needs to maintain data separately from the display list
(for example, for continued data processing), then a lot of additional memory may be required.

Creating and Executing a Display List

As you’ve already seen, glNewList() and glEndList() are used to begin and end the definition of a
display list, which is then invoked by supplying its identifying index with glCallList(). In Example
7-2, a display list is created in the init() routine. This display list contains OpenGL commands to
draw a red triangle. Then in the display() routine, the display list is executed ten times. In addition,
a line is drawn in immediate mode. Note that the display list allocates memory to store the
commands and the values of any necessary variables.

Example 7-2 : Using a Display List: list.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>
#include <stdlib.h>

GLuint listName;

static void init (void)
{
 listName = glGenLists (1);
 glNewList (listName, GL_COMPILE);
 glColor3f (1.0, 0.0, 0.0); /* current color red */
 glBegin (GL_TRIANGLES);
 glVertex2f (0.0, 0.0);
 glVertex2f (1.0, 0.0);
 glVertex2f (0.0, 1.0);
 glEnd ();
 glTranslatef (1.5, 0.0, 0.0); /* move position */
 glEndList ();
 glShadeModel (GL_FLAT);
}

static void drawLine (void)
{
 glBegin (GL_LINES);
 glVertex2f (0.0, 0.5);
 glVertex2f (15.0, 0.5);
 glEnd ();
}

void display(void)
{
 GLuint i;

 glClear (GL_COLOR_BUFFER_BIT);
 glColor3f (0.0, 1.0, 0.0); /* current color green */
 for (i = 0; i < 10; i++) /* draw 10 triangles */
 glCallList (listName);
 drawLine (); /* is this line green? NO! */
 /* where is the line drawn? */
 glFlush ();
}

void reshape(int w, int h)
{
 glViewport(0, 0, w, h);
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 if (w <= h)
 gluOrtho2D (0.0, 2.0, -0.5 * (GLfloat) h/(GLfloat) w,
 1.5 * (GLfloat) h/(GLfloat) w);
 else
 gluOrtho2D (0.0, 2.0*(GLfloat) w/(GLfloat) h, -0.5, 1.5);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
}

void keyboard(unsigned char key, int x, int y)
{
 switch (key) {
 case 27:
 exit(0);
 }
}

int main(int argc, char** argv)
{
 glutInit(&argc, argv);
 glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);
 glutInitWindowSize(650, 50);
 glutCreateWindow(argv[0]);
 init ();
 glutReshapeFunc (reshape);
 glutKeyboardFunc (keyboard);
 glutDisplayFunc (display);
 glutMainLoop();
 return 0;
}

The glTranslatef() routine in the display list alters the position of the next object to be drawn.
Without it, calling the display list twice would just draw the triangle on top of itself. The
drawLine() routine, which is called in immediate mode, is also affected by the ten glTranslatef()
calls that precede it. So if you call transformation commands within a display list, don’t forget to
take into account the effect those commands will have later in your program.

Only one display list can be created at a time. In other words, you must eventually follow
glNewList() with glEndList() to end the creation of a display list before starting another one. As
you might expect, calling glEndList() without having started a display list generates the error
GL_INVALID_OPERATION. (See "Error Handling" in Chapter 14 for more information about
processing errors.)

Naming and Creating a Display List

Each display list is identified by an integer index. When creating a display list, you want to be
careful that you don’t accidentally choose an index that’s already in use, thereby overwriting an
existing display list. To avoid accidental deletions, use glGenLists() to generate one or more
unused indices.

GLuint glGenLists(GLsizei range);
Allocates range number of contiguous, previously unallocated display-list indices. The
integer returned is the index that marks the beginning of a contiguous block of empty
display-list indices. The returned indices are all marked as empty and used, so subsequent
calls to glGenLists() don’t return these indices until they’re deleted. Zero is returned if the
requested number of indices isn’t available, or if range is zero.

In the following example, a single index is requested, and if it proves to be available, it’s used to
create a new display list:

listIndex = glGenLists(1);
if (listIndex != 0) {
 glNewList(listIndex,GL_COMPILE);
 ...
 glEndList();
}

Note: Zero is not a valid display-list index.

void glNewList (GLuint list, GLenum mode);
Specifies the start of a display list. OpenGL routines that are called subsequently (until
glEndList() is called to end the display list) are stored in a display list, except for a few

restricted OpenGL routines that can’t be stored. (Those restricted routines are executed
immediately, during the creation of the display list.) list is a nonzero positive integer that
uniquely identifies the display list. The possible values for mode are GL_COMPILE and
GL_COMPILE_AND_EXECUTE. Use GL_COMPILE if you don’t want the OpenGL
commands executed as they’re placed in the display list; to cause the commands to be
executed immediately as well as placed in the display list for later use, specify
GL_COMPILE_AND_EXECUTE.

void glEndList (void);
Marks the end of a display list.

When a display list is created it is stored with the current OpenGL context. Thus, when the context
is destroyed, the display list is also destroyed. Some windowing systems allow multiple contexts to
share display lists. In this case, the display list is destroyed when the last context in the share group
is destroyed.

What’s Stored in a Display List

When you’re building a display list, only the values for expressions are stored in the list. If values
in an array are subsequently changed, the display-list values don’t change. In the following code
fragment, the display list contains a command to set the current RGBA color to black (0.0, 0.0, 0.0).
The subsequent change of the value of the color_vector array to red (1.0, 0.0, 0.0) has no effect on
the display list because the display list contains the values that were in effect when it was created.

GLfloat color_vector[3] = {0.0, 0.0, 0.0};
glNewList(1, GL_COMPILE);
 glColor3fv(color_vector);
glEndList();
color_vector[0] = 1.0;

Not all OpenGL commands can be stored and executed from within a display list. For example,
commands that set client state and commands that retrieve state values aren’t stored in a display list.
(Many of these commands are easily identifiable because they return values in parameters passed
by reference or return a value directly.) If these commands are called when making a display list,
they’re executed immediately.

Here are the OpenGL commands that aren’t stored in a display list (also, note that glNewList()
generates an error if it’s called while you’re creating a display list). Some of these commands
haven’t been described yet; you can look in the index to see where they’re discussed.

glColorPointer() glFlush() glNormalPointer()

glDeleteLists() glGenLists() glPixelStore()

glDisableClientState() glGet*() glReadPixels()

glEdgeFlagPointer() glIndexPointer() glRenderMode()

glEnableClientState() glInterleavedArrays() glSelectBuffer()

glFeedbackBuffer() glIsEnabled() glTexCoordPointer()

glFinish() glIsList() glVertexPointer()

To understand more clearly why these commands can’t be stored in a display list, remember that
when you’re using OpenGL across a network, the client may be on one machine and the server on
another. After a display list is created, it resides with the server, so the server can’t rely on the client
for any information related to the display list. If querying commands, such as glGet*() or glIs*(),
were allowed in a display list, the calling program would be surprised at random times by data
returned over the network. Without parsing the display list as it was sent, the calling program
wouldn’t know where to put the data. Thus, any command that returns a value can’t be stored in a
display list. In addition, commands that change client state, such as glPixelStore(),
glSelectBuffer(), and the commands to define vertex arrays, can’t be stored in a display list.

The operation of some OpenGL commands depends upon client state. For example, the vertex array
specification routines (such as glVertexPointer()glColorPointer(), and glInterleavedArrays()) set
client state pointers and cannot be stored in a display list. glArrayElement(), glDrawArrays(), and
glDrawElements() send data to the server state to construct primitives from elements in the
enabled arrays, so these operations can be stored in a display list. (See "Vertex Arrays" in Chapter
2.) The vertex array data stored in this display list is obtained by dereferencing data from the
pointers, not by storing the pointers themselves. Therefore, subsequent changes to the data in the
vertex arrays will not affect the definition of the primitive in the display list.

In addition, any commands that use the pixel storage modes use the modes that are in effect when
they are placed in the display list. (See "Controlling Pixel-Storage Modes" in Chapter 8.) Other
routines that rely upon client state - such as glFlush() and glFinish() - can’t be stored in a display
list because they depend upon the client state that is in effect when they are executed.

Executing a Display List

After you’ve created a display list, you can execute it by calling glCallList(). Naturally, you can
execute the same display list many times, and you can mix calls to execute display lists with calls to
perform immediate-mode graphics, as you’ve already seen.

void glCallList (GLuint list);
This routine executes the display list specified by list. The commands in the display list are
executed in the order they were saved, just as if they were issued without using a display list.
If list hasn’t been defined, nothing happens.

You can call glCallList() from anywhere within a program, as long as an OpenGL context that can
access the display list is active (that is, the context that was active when the display list was created
or a context in the same share group). A display list can be created in one routine and executed in a
different one, since its index uniquely identifies it. Also, there is no facility to save the contents of a
display list into a data file, nor a facility to create a display list from a file. In this sense, a display
list is designed for temporary use.

Hierarchical Display Lists

You can create a hierarchical display list, which is a display list that executes another display list
by calling glCallList() between a glNewList() and glEndList() pair. A hierarchical display list is
useful for an object made of components, especially if some of those components are used more
than once. For example, this is a display list that renders a bicycle by calling other display lists to

render parts of the bicycle:

glNewList(listIndex,GL_COMPILE);
 glCallList(handlebars);
 glCallList(frame);
 glTranslatef(1.0,0.0,0.0);
 glCallList(wheel);
 glTranslatef(3.0,0.0,0.0);
 glCallList(wheel);
glEndList();

To avoid infinite recursion, there’s a limit on the nesting level of display lists; the limit is at least
64, but it might be higher, depending on the implementation. To determine the nesting limit for
your implementation of OpenGL, call

glGetIntegerv(GL_MAX_LIST_NESTING, GLint *data);

OpenGL allows you to create a display list that calls another list that hasn’t been created yet.
Nothing happens when the first list calls the second, undefined one.

You can use a hierarchical display list to approximate an editable display list by wrapping a list
around several lower-level lists. For example, to put a polygon in a display list while allowing
yourself to be able to easily edit its vertices, you could use the code in Example 7-3.

Example 7-3 : Hierarchical Display List

glNewList(1,GL_COMPILE);
 glVertex3f(v1);
glEndList();
glNewList(2,GL_COMPILE);
 glVertex3f(v2);
glEndList();
glNewList(3,GL_COMPILE);
 glVertex3f(v3);
glEndList();

glNewList(4,GL_COMPILE);
 glBegin(GL_POLYGON);
 glCallList(1);
 glCallList(2);
 glCallList(3);
 glEnd();
glEndList();

To render the polygon, call display list number 4. To edit a vertex, you need only recreate the single
display list corresponding to that vertex. Since an index number uniquely identifies a display list,
creating one with the same index as an existing one automatically deletes the old one. Keep in mind
that this technique doesn’t necessarily provide optimal memory usage or peak performance, but it’s
acceptable and useful in some cases.

Managing Display List Indices

So far, we’ve recommended the use of glGenLists() to obtain unused display-list indices. If you
insist upon avoiding glGenLists(), then be sure to use glIsList() to determine whether a specific
index is in use.

GLboolean glIsList(GLuint list);

Returns GL_TRUE if list is already used for a display list and GL_FALSE otherwise.

You can explicitly delete a specific display list or a contiguous range of lists with glDeleteLists().
Using glDeleteLists() makes those indices available again.

void glDeleteLists(GLuint list, GLsizei range);
Deletes range display lists, starting at the index specified by list. An attempt to delete a list
that has never been created is ignored.

Executing Multiple Display Lists

OpenGL provides an efficient mechanism to execute several display lists in succession. This
mechanism requires that you put the display-list indices in an array and call glCallLists(). An
obvious use for such a mechanism occurs when display-list indices correspond to meaningful
values. For example, if you’re creating a font, each display-list index might correspond to the
ASCII value of a character in that font. To have several such fonts, you would need to establish a
different initial display-list index for each font. You can specify this initial index by using
glListBase() before calling glCallLists().

void glListBase(GLuint base);
Specifies the offset that’s added to the display-list indices in glCallLists() to obtain the final
display-list indices. The default display-list base is 0. The list base has no effect on
glCallList(), which executes only one display list or on glNewList().

void glCallLists(GLsizei n, GLenum type, const GLvoid *lists);
Executes n display lists. The indices of the lists to be executed are computed by adding the
offset indicated by the current display-list base (specified with glListBase()) to the signed
integer values in the array pointed to by lists.
The type parameter indicates the data type of the values in lists. It can be set to GL_BYTE,
GL_UNSIGNED_BYTE, GL_SHORT, GL_UNSIGNED_SHORT, GL_INT,
GL_UNSIGNED_INT, or GL_FLOAT, indicating that lists should be treated as an array of
bytes, unsigned bytes, shorts, unsigned shorts, integers, unsigned integers, or floats,
respectively. Type can also be GL_2_BYTES, GL_3_BYTES, or GL_4_BYTES, in which case
sequences of 2, 3, or 4 bytes are read from lists and then shifted and added together, byte by
byte, to calculate the display-list offset. The following algorithm is used (where byte[0] is the
start of a byte sequence).

 /* b = 2, 3, or 4; bytes are numbered 0, 1, 2, 3 in array */
 offset = 0;
 for (i = 0; i < b; i++) {
 offset = offset << 8;
 offset += byte[i];
 }
 index = offset + listbase;

For multiple-byte data, the highest-order data comes first as bytes are taken from the array in
order.

As an example of the use of multiple display lists, look at the program fragments in Example 7-4
taken from the full program in Example 7-5. This program draws characters with a stroked font (a
set of letters made from line segments). The routine initStrokedFont() sets up the display-list

indices for each letter so that they correspond with their ASCII values.

Example 7-4 : Defining Multiple Display Lists

void initStrokedFont(void)
{
 GLuint base;

 base = glGenLists(128);
 glListBase(base);
 glNewList(base+’A’, GL_COMPILE);
 drawLetter(Adata); glEndList();
 glNewList(base+’E’, GL_COMPILE);
 drawLetter(Edata); glEndList();
 glNewList(base+’P’, GL_COMPILE);
 drawLetter(Pdata); glEndList();
 glNewList(base+’R’, GL_COMPILE);
 drawLetter(Rdata); glEndList();
 glNewList(base+’S’, GL_COMPILE);
 drawLetter(Sdata); glEndList();
 glNewList(base+’ ’, GL_COMPILE); /* space character */
 glTranslatef(8.0, 0.0, 0.0);
 glEndList();
}

The glGenLists() command allocates 128 contiguous display-list indices. The first of the
contiguous indices becomes the display-list base. A display list is made for each letter; each
display-list index is the sum of the base and the ASCII value of that letter. In this example, only a
few letters and the space character are created.

After the display lists have been created, glCallLists() can be called to execute the display lists. For
example, you can pass a character string to the subroutine printStrokedString():

void printStrokedString(GLbyte *s)
{
 GLint len = strlen(s);
 glCallLists(len, GL_BYTE, s);
}

The ASCII value for each letter in the string is used as the offset into the display-list indices. The
current list base is added to the ASCII value of each letter to determine the final display-list index
to be executed. The output produced by Example 7-5 is shown in Figure 7-1.

Figure 7-1 : Stroked Font That Defines the Characters A, E, P, R, S

Example 7-5 : Multiple Display Lists to Define a Stroked Font: stroke.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>
#include <stdlib.h>
#include <string.h>

#define PT 1
#define STROKE 2
#define END 3

typedef struct charpoint {
 GLfloat x, y;
 int type;
} CP;

CP Adata[] = {
 { 0, 0, PT}, {0, 9, PT}, {1, 10, PT}, {4, 10, PT},
 {5, 9, PT}, {5, 0, STROKE}, {0, 5, PT}, {5, 5, END}
};

CP Edata[] = {
 {5, 0, PT}, {0, 0, PT}, {0, 10, PT}, {5, 10, STROKE},
 {0, 5, PT}, {4, 5, END}
};

CP Pdata[] = {
 {0, 0, PT}, {0, 10, PT}, {4, 10, PT}, {5, 9, PT}, {5, 6, PT},
 {4, 5, PT}, {0, 5, END}
};

CP Rdata[] = {
 {0, 0, PT}, {0, 10, PT}, {4, 10, PT}, {5, 9, PT}, {5, 6, PT},
 {4, 5, PT}, {0, 5, STROKE}, {3, 5, PT}, {5, 0, END}
};

CP Sdata[] = {
 {0, 1, PT}, {1, 0, PT}, {4, 0, PT}, {5, 1, PT}, {5, 4, PT},
 {4, 5, PT}, {1, 5, PT}, {0, 6, PT}, {0, 9, PT}, {1, 10, PT},
 {4, 10, PT}, {5, 9, END}
};

/* drawLetter() interprets the instructions from the array
 * for that letter and renders the letter with line segments.
 */
static void drawLetter(CP *l)
{
 glBegin(GL_LINE_STRIP);
 while (1) {
 switch (l->type) {
 case PT:
 glVertex2fv(&l->x);
 break;
 case STROKE:
 glVertex2fv(&l->x);
 glEnd();
 glBegin(GL_LINE_STRIP);
 break;
 case END:
 glVertex2fv(&l->x);
 glEnd();
 glTranslatef(8.0, 0.0, 0.0);
 return;
 }
 l++;
 }
}

/* Create a display list for each of 6 characters */
static void init (void)
{

 GLuint base;

 glShadeModel (GL_FLAT);

 base = glGenLists (128);
 glListBase(base);
 glNewList(base+’A’, GL_COMPILE); drawLetter(Adata);
 glEndList();
 glNewList(base+’E’, GL_COMPILE); drawLetter(Edata);
 glEndList();
 glNewList(base+’P’, GL_COMPILE); drawLetter(Pdata);
 glEndList();
 glNewList(base+’R’, GL_COMPILE); drawLetter(Rdata);
 glEndList();
 glNewList(base+’S’, GL_COMPILE); drawLetter(Sdata);
 glEndList();
 glNewList(base+’ ‘, GL_COMPILE);
 glTranslatef(8.0, 0.0, 0.0); glEndList();
}

char *test1 = "A SPARE SERAPE APPEARS AS";
char *test2 = "APES PREPARE RARE PEPPERS";

static void printStrokedString(char *s)
{
 GLsizei len = strlen(s);
 glCallLists(len, GL_BYTE, (GLbyte *)s);
}

void display(void)
{
 glClear(GL_COLOR_BUFFER_BIT);
 glColor3f(1.0, 1.0, 1.0);
 glPushMatrix();
 glScalef(2.0, 2.0, 2.0);
 glTranslatef(10.0, 30.0, 0.0);
 printStrokedString(test1);
 glPopMatrix();
 glPushMatrix();
 glScalef(2.0, 2.0, 2.0);
 glTranslatef(10.0, 13.0, 0.0);
 printStrokedString(test2);
 glPopMatrix();
 glFlush();
}

void reshape(int w, int h)
{
 glViewport(0, 0, (GLsizei) w, (GLsizei) h);
 glMatrixMode (GL_PROJECTION);
 glLoadIdentity ();
 gluOrtho2D (0.0, (GLdouble) w, 0.0, (GLdouble) h);
}

void keyboard(unsigned char key, int x, int y)
{
 switch (key) {
 case ‘ ‘:
 glutPostRedisplay();
 break;
 case 27:
 exit(0);
 }
}

int main(int argc, char** argv)
{
 glutInit(&argc, argv);
 glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);
 glutInitWindowSize (440, 120);
 glutCreateWindow (argv[0]);
 init ();
 glutReshapeFunc(reshape);
 glutKeyboardFunc(keyboard);
 glutDisplayFunc(display);
 glutMainLoop();
 return 0;
}

Managing State Variables with Display Lists

A display list can contain calls that change the value of OpenGL state variables. These values
change as the display list is executed, just as if the commands were called in immediate mode and
the changes persist after execution of the display list is completed. As previously seen in Example
7-2 and in Example 7-6, which follows, the changes to the current color and current matrix made
during the execution of the display list remain in effect after it has been called.

Example 7-6 : Persistence of State Changes after Execution of a Display List

glNewList(listIndex,GL_COMPILE);
 glColor3f(1.0, 0.0, 0.0);
 glBegin(GL_POLYGON);
 glVertex2f(0.0,0.0);
 glVertex2f(1.0,0.0);
 glVertex2f(0.0,1.0);
 glEnd();
 glTranslatef(1.5,0.0,0.0);
glEndList();

So if you now call the following sequence, the line drawn after the display list is drawn with red as
the current color and translated by an additional (1.5, 0.0, 0.0):

glCallList(listIndex);
glBegin(GL_LINES);
 glVertex2f(2.0,-1.0);
 glVertex2f(1.0,0.0);
glEnd();

Sometimes you want state changes to persist, but other times you want to save the values of state
variables before executing a display list and then restore these values after the list has executed.
Remember that you cannot use glGet*() in a display list, so you must use another way to query and
store the values of state variables.

You can use glPushAttrib() to save a group of state variables and glPopAttrib() to restore the
values when you’re ready for them. To save and restore the current matrix, use glPushMatrix() and
glPopMatrix() as described in "Manipulating the Matrix Stacks" in Chapter 3. These push and pop
routines can be legally cached in a display list. To restore the state variables in Example 7-6, you
might use the code shown in Example 7-7.

Example 7-7 : Restoring State Variables within a Display List

glNewList(listIndex,GL_COMPILE);
 glPushMatrix();
 glPushAttrib(GL_CURRENT_BIT);
 glColor3f(1.0, 0.0, 0.0);
 glBegin(GL_POLYGON);
 glVertex2f(0.0,0.0);
 glVertex2f(1.0,0.0);
 glVertex2f(0.0,1.0);
 glEnd();
 glTranslatef(1.5,0.0,0.0);
 glPopAttrib();
 glPopMatrix();
glEndList();

If you use the display list from Example 7-7, which restores values, the code in Example 7-8 draws
a green, untranslated line. With the display list in Example 7-6, which doesn’t save and restore
values, the line is drawn red, and its position is translated ten times (1.5, 0.0, 0.0).

Example 7-8 : The Display List May or May Not Affect drawLine()

void display(void)
{
 GLint i;

 glClear(GL_COLOR_BUFFER_BIT);
 glColor3f(0.0, 1.0, 0.0); /* set current color to green */
 for (i = 0; i < 10; i++)
 glCallList(listIndex); /* display list called 10 times */
 drawLine(); /* how and where does this line appear? */
 glFlush();
}

Encapsulating Mode Changes

You can use display lists to organize and store groups of commands to change various modes or set
various parameters. When you want to switch from one group of settings to another, using display
lists might be more efficient than making the calls directly, since the settings might be cached in a
format that matches the requirements of your graphics system.

Display lists may be more efficient than immediate mode for switching among various lighting,
lighting-model, and material-parameter settings. You might also use display lists for stipple
patterns, fog parameters, and clipping-plane equations. In general, you’ll find that executing display
lists is at least as fast as making the relevant calls directly, but remember that some overhead is
involved in jumping to a display list.

Example 7-9 shows how to use display lists to switch among three different line stipples. First, you
call glGenLists() to allocate a display list for each stipple pattern and create a display list for each
pattern. Then, you use glCallList() to switch from one stipple pattern to another.

Example 7-9 : Display Lists for Mode Changes

GLuint offset;
offset = glGenLists(3);

glNewList (offset, GL_COMPILE);
 glDisable (GL_LINE_STIPPLE);
glEndList ();

glNewList (offset+1, GL_COMPILE);
 glEnable (GL_LINE_STIPPLE);
 glLineStipple (1, 0x0F0F);
glEndList ();

glNewList (offset+2, GL_COMPILE);
 glEnable (GL_LINE_STIPPLE);
 glLineStipple (1, 0x1111);
glEndList ();

#define drawOneLine(x1,y1,x2,y2) glBegin(GL_LINES); \
 glVertex2f ((x1),(y1)); glVertex2f ((x2),(y2)); glEnd();

glCallList (offset);
drawOneLine (50.0, 125.0, 350.0, 125.0);

glCallList (offset+1);
drawOneLine (50.0, 100.0, 350.0, 100.0);

glCallList (offset+2);
drawOneLine (50.0, 75.0, 350.0, 75.0);

 OpenGL Programming Guide
(Addison-Wesley Publishing Company)

 OpenGL Programming Guide
(Addison-Wesley Publishing Company)

Chapter 8
Drawing Pixels, Bitmaps, Fonts, and Images
Chapter Objectives

After reading this chapter, you’ll be able to do the following:

Position and draw bitmapped data

Read pixel data (bitmaps and images) from the framebuffer into processor memory and from
memory into the framebuffer

Copy pixel data from one color buffer to another, or to another location in the same buffer

Magnify or reduce an image as it’s written to the framebuffer

Control pixel-data formatting and perform other transformations as the data is moved to and
from the framebuffer

So far, most of the discussion in this guide has concerned the rendering of geometric data - points,
lines, and polygons. Two other important classes of data that can be rendered by OpenGL are

Bitmaps, typically used for characters in fonts

Image data, which might have been scanned in or calculated

Both bitmaps and image data take the form of rectangular arrays of pixels. One difference between
them is that a bitmap consists of a single bit of information about each pixel, and image data
typically includes several pieces of data per pixel (the complete red, green, blue, and alpha color
components, for example). Also, bitmaps are like masks in that they’re used to overlay another
image, but image data simply overwrites or is blended with whatever data is in the framebuffer.

This chapter describes how to draw pixel data (bitmaps and images) from processor memory to the
framebuffer and how to read pixel data from the framebuffer into processor memory. It also
describes how to copy pixel data from one position to another, either from one buffer to another or
within a single buffer. This chapter contains the following major sections:

"Bitmaps and Fonts" describes the commands for positioning and drawing bitmapped data.
Such data may describe a font.

"Images" presents the basic information about drawing, reading and copying pixel data.

"Imaging Pipeline" describes the operations that are performed on images and bitmaps when
they are read from the framebuffer and when they are written to the framebuffer.

"Reading and Drawing Pixel Rectangles" covers all the details of how pixel data is stored in
memory and how to transform it as it’s moved into or out of memory.

"Tips for Improving Pixel Drawing Rates" lists tips for getting better performance when
drawing pixel rectangles.

In most cases, the necessary pixel operations are simple, so the first three sections might be all you
need to read for your application. However, pixel manipulation can be complex - there are many
ways to store pixel data in memory, and you can apply any of several transformations to pixels as
they’re moved to and from the framebuffer. These details are the subject of the fourth section of
this chapter. Most likely, you’ll want to read this section only when you actually need to make use
of the information. The last section provides useful tips to get the best performance when rendering
bitmaps and images.

Bitmaps and Fonts

A bitmap is a rectangular array of 0s and 1s that serves as a drawing mask for a corresponding
rectangular portion of the window. Suppose you’re drawing a bitmap and that the current raster
color is red. Wherever there’s a 1 in the bitmap, the corresponding pixel is replaced by a red pixel
(or combined with a red pixel, depending on which per-fragment operations are in effect. (See
"Testing and Operating on Fragments" in Chapter 10.) If there’s a 0 in the bitmap, the contents of
the pixel are unaffected. The most common use of bitmaps is for drawing characters on the screen.

OpenGL provides only the lowest level of support for drawing strings of characters and
manipulating fonts. The commands glRasterPos*() and glBitmap() position and draw a single
bitmap on the screen. In addition, through the display-list mechanism, you can use a sequence of
character codes to index into a corresponding series of bitmaps representing those characters. (See
Chapter 7 for more information about display lists.) You’ll have to write your own routines to
provide any other support you need for manipulating bitmaps, fonts, and strings of characters.

Consider Example 8-1, which draws the character F three times on the screen. Figure 8-1 shows the
F as a bitmap and its corresponding bitmap data.

Figure 8-1 : Bitmapped F and Its Data

Example 8-1 : Drawing a Bitmapped Character: drawf.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>
#include <stdlib.h>

GLubyte rasters[24] = {
 0xc0, 0x00, 0xc0, 0x00, 0xc0, 0x00, 0xc0, 0x00, 0xc0, 0x00,
 0xff, 0x00, 0xff, 0x00, 0xc0, 0x00, 0xc0, 0x00, 0xc0, 0x00,
 0xff, 0xc0, 0xff, 0xc0};

void init(void)
{
 glPixelStorei (GL_UNPACK_ALIGNMENT, 1);
 glClearColor (0.0, 0.0, 0.0, 0.0);
}

void display(void)
{
 glClear(GL_COLOR_BUFFER_BIT);
 glColor3f (1.0, 1.0, 1.0);
 glRasterPos2i (20, 20);
 glBitmap (10, 12, 0.0, 0.0, 11.0, 0.0, rasters);
 glBitmap (10, 12, 0.0, 0.0, 11.0, 0.0, rasters);
 glBitmap (10, 12, 0.0, 0.0, 11.0, 0.0, rasters);
 glFlush();
}

void reshape(int w, int h)
{
 glViewport(0, 0, (GLsizei) w, (GLsizei) h);
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 glOrtho (0, w, 0, h, -1.0, 1.0);
 glMatrixMode(GL_MODELVIEW);
}

void keyboard(unsigned char key, int x, int y)
{
 switch (key) {
 case 27:
 exit(0);
 }
}

int main(int argc, char** argv)
{
 glutInit(&argc, argv);
 glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);
 glutInitWindowSize(100, 100);
 glutInitWindowPosition(100, 100);
 glutCreateWindow(argv[0]);
 init();
 glutReshapeFunc(reshape);
 glutKeyboardFunc(keyboard);
 glutDisplayFunc(display);
 glutMainLoop();
 return 0;
}

In Figure 8-1, note that the visible part of the F character is at most 10 bits wide. Bitmap data is
always stored in chunks that are multiples of 8 bits, but the width of the actual bitmap doesn’t have
to be a multiple of 8. The bits making up a bitmap are drawn starting from the lower-left corner:
First, the bottom row is drawn, then the next row above it, and so on. As you can tell from the code,

the bitmap is stored in memory in this order - the array of rasters begins with 0xc0, 0x00, 0xc0,
0x00 for the bottom two rows of the F and continues to 0xff, 0xc0, 0xff, 0xc0 for the top two rows.

The commands of interest in this example are glRasterPos2i() and glBitmap(); they’re discussed in
detail in the next section. For now, ignore the call to glPixelStorei(); it describes how the bitmap
data is stored in computer memory. (See "Controlling Pixel-Storage Modes" for more information.)

The Current Raster Position

The current raster position is the origin where the next bitmap (or image) is to be drawn. In the F
example, the raster position was set by calling glRasterPos*() with coordinates (20, 20), which is
where the lower-left corner of the F was drawn:

glRasterPos2i(20, 20);

void glRasterPos{234}{sifd}(TYPE x, TYPE y, TYPE z, TYPE w);
void glRasterPos{234}{sifd}v(TYPE *coords);

Sets the current raster position. The x, y, z, and w arguments specify the coordinates of the
raster position. If the vector form of the function is used, the coords array contains the
coordinates of the raster position. If glRasterPos2*() is used, z is implicitly set to zero and w
is implicitly set to one; similarly, with glRasterPos3*(), w is set to one.

The coordinates of the raster position are transformed to screen coordinates in exactly the same way
as coordinates supplied with a glVertex*() command (that is, with the modelview and perspective
matrices). After transformation, they either define a valid spot in the viewport, or they’re clipped
out because the coordinates were outside the viewing volume. If the transformed point is clipped
out, the current raster position is invalid.

Note: If you want to specify the raster position in screen coordinates, you’ll want to make sure
you’ve specified the modelview and projection matrices for simple 2D rendering, with something
like this sequence of commands, where width and height are also the size (in pixels) of the
viewport:

glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluOrtho2D(0.0, (GLfloat) width, 0.0, (GLfloat) height);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();

To obtain the current raster position, you can use the query command glGetFloatv() with
GL_CURRENT_RASTER_POSITION as the first argument. The second argument should be a
pointer to an array that can hold the (x, y, z, w) values as floating-point numbers. Call
glGetBooleanv() with GL_CURRENT_RASTER_POSITION_VALID as the first argument to
determine whether the current raster position is valid.

Drawing the Bitmap

Once you’ve set the desired raster position, you can use the glBitmap() command to draw the data.

void glBitmap(GLsizei width, GLsizei height, GLfloat xbo,
GLfloat ybo, GLfloat xbi,
GLfloat ybi, const GLubyte *bitmap);

Draws the bitmap specified by bitmap, which is a pointer to the bitmap image. The origin of
the bitmap is placed at the current raster position. If the current raster position is invalid,
nothing is drawn, and the raster position remains invalid. The width and height arguments
indicate the width and height, in pixels, of the bitmap. The width need not be a multiple of 8,
although the data is stored in unsigned characters of 8 bits each. (In the F example, it
wouldn’t matter if there were garbage bits in the data beyond the tenth bit; since glBitmap()
was called with a width of 10, only 10 bits of the row are rendered.) Use xbo and ybo to
define the origin of the bitmap (positive values move the origin up and to the right of the
raster position; negative values move it down and to the left); xbi and ybi indicate the x and y
increments that are added to the raster position after the bitmap is rasterized (see Figure
8-2).

Figure 8-2 : Bitmap and Its Associated Parameters

Allowing the origin of the bitmap to be placed arbitrarily makes it easy for characters to extend
below the origin (typically used for characters with descenders, such as g, j, and y), or to extend
beyond the left of the origin (used for various swash characters, which have extended flourishes, or
for characters in fonts that lean to the left).

After the bitmap is drawn, the current raster position is advanced by xbi and ybi in the x- and
y-directions, respectively. (If you just want to advance the current raster position without drawing
anything, call glBitmap() with the bitmap parameter set to NULL and with the width and height set
to zero.) For standard Latin fonts, ybi is typically 0.0 and xbi is positive (since successive characters
are drawn from left to right). For Hebrew, where characters go from right to left, the xbi values
would typically be negative. Fonts that draw successive characters vertically in columns would use
zero for xbi and nonzero values for ybi. In Figure 8-2, each time the F is drawn, the current raster
position advances by 11 pixels, allowing a 1-pixel space between successive characters.

Since xbo, ybo, xbi, and ybi are floating-point values, characters need not be an integral number of
pixels apart. Actual characters are drawn on exact pixel boundaries, but the current raster position is
kept in floating point so that each character is drawn as close as possible to where it belongs. For
example, if the code in the F example was modified so that xbi is 11.5 instead of 12, and if more
characters were drawn, the space between letters would alternate between 1 and 2 pixels, giving the
best approximation to the requested 1.5-pixel space.

Note: You can’t rotate bitmap fonts because the bitmap is always drawn aligned to the x and y
framebuffer axes.

Choosing a Color for the Bitmap

You are familiar with using glColor*() and glIndex*() to set the current color or index to draw
geometric primitives. The same commands are used to set different state variables,
GL_CURRENT_RASTER_COLOR and GL_CURRENT_RASTER_INDEX, for rendering
bitmaps. The raster color state variables are set when glRasterPos*() is called, which can lead to a
trap. In the following sequence of code, what is the color of the bitmap?

glColor3f(1.0, 1.0, 1.0); /* white */
glRasterPos3fv(position);
glColor3f(1.0, 0.0, 0.0); /* red */
glBitmap(....);

The bitmap is white! The GL_CURRENT_RASTER_COLOR is set to white when
glRasterPos3fv() is called. The second call to glColor3f() changes the value of
GL_CURRENT_COLOR for future geometric rendering, but the color used to render the bitmap is
unchanged.

To obtain the current raster color or index, you can use the query commands glGetFloatv() or
glGetIntegerv() with GL_CURRENT_RASTER_COLOR or GL_CURRENT_RASTER_INDEX
as the first argument.

Fonts and Display Lists

Display lists are discussed in general terms in Chapter 7. However, a few of the display-list
management commands have special relevance for drawing strings of characters. As you read this
section, keep in mind that the ideas presented here apply equally well to characters that are drawn
using bitmap data and those drawn using geometric primitives (points, lines, and polygons). (See
"Executing Multiple Display Lists" in Chapter 7 for an example of a geometric font.)

A font typically consists of a set of characters, where each character has an identifying number
(usually the ASCII code) and a drawing method. For a standard ASCII character set, the capital
letter A is number 65, B is 66, and so on. The string "DAB" would be represented by the three
indices 68, 65, 66. In the simplest approach, display-list number 65 draws an A, number 66 draws a
B, and so on. Then to draw the string 68, 65, 66, just execute the corresponding display lists.

You can use the command glCallLists() in just this way:

void glCallLists(GLsizei n, GLenum type, const GLvoid *lists);

The first argument, n, indicates the number of characters to be drawn, type is usually GL_BYTE,
and lists is an array of character codes.

Since many applications need to draw character strings in multiple fonts and sizes, this simplest
approach isn’t convenient. Instead, you’d like to use 65 as A no matter what font is currently active.
You could force font 1 to encode A, B, and C as 1065, 1066, 1067, and font 2 as 2065, 2066, 2067,
but then any numbers larger than 256 would no longer fit in an 8-bit byte. A better solution is to add
an offset to every entry in the string and to choose the display list. In this case, font 1 has A, B, and
C represented by 1065, 1066, and 1067, and in font 2, they might be 2065, 2066, and 2067. Then to
draw characters in font 1, set the offset to 1000 and draw display lists 65, 66, and 67. To draw that
same string in font 2, set the offset to 2000 and draw the same lists.

To set the offset, use the command glListBase(). For the preceding examples, it should be called
with 1000 or 2000 as the (only) argument. Now what you need is a contiguous list of unused

display-list numbers, which you can obtain from glGenLists():

GLuint glGenLists(GLsizei range);

This function returns a block of range display-list identifiers. The returned lists are all marked as
"used" even though they’re empty, so that subsequent calls to glGenLists() never return the same
lists (unless you’ve explicitly deleted them previously). Therefore, if you use 4 as the argument and
if glGenLists() returns 81, you can use display-list identifiers 81, 82, 83, and 84 for your
characters. If glGenLists() can’t find a block of unused identifiers of the requested length, it returns
0. (Note that the command glDeleteLists() makes it easy to delete all the lists associated with a font
in a single operation.)

Most American and European fonts have a small number of characters (fewer than 256), so it’s easy
to represent each character with a different code that can be stored in a single byte. Asian fonts,
among others, may require much larger character sets, so a byte-per-character encoding is
impossible. OpenGL allows strings to be composed of 1-, 2-, 3-, or 4-byte characters through the
type parameter in glCallLists(). This parameter can have any of the following values:

GL_BYTE GL_UNSIGNED_BYTE

GL_SHORT GL_UNSIGNED_SHORT

GL_INT GL_UNSIGNED_INT

GL_FLOAT GL_2_BYTES

GL_3_BYTES GL_4_BYTES

(See "Executing Multiple Display Lists" in Chapter 7 for more information about these values.)

Defining and Using a Complete Font

The glBitmap() command and the display-list mechanism described in the previous section make it
easy to define a raster font. In Example 8-2, the upper-case characters of an ASCII font are defined.
In this example, each character has the same width, but this is not always the case. Once the
characters are defined, the program prints the message "THE QUICK BROWN FOX JUMPS
OVER A LAZY DOG".

The code in Example 8-2 is similar to the F example, except that each character’s bitmap is stored
in its own display list. The display list identifier, when combined with the offset returned by
glGenLists(), is equal to the ASCII code for the character.

Example 8-2 : Drawing a Complete Font: font.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>
#include <stdlib.h>
#include <string.h>

GLubyte space[] =
 {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
GLubyte letters[][13] = {

 {0x00, 0x00, 0xc3, 0xc3, 0xc3, 0xc3, 0xff, 0xc3, 0xc3, 0xc3, 0x66, 0x3c, 0x18},
 {0x00, 0x00, 0xfe, 0xc7, 0xc3, 0xc3, 0xc7, 0xfe, 0xc7, 0xc3, 0xc3, 0xc7, 0xfe},
 {0x00, 0x00, 0x7e, 0xe7, 0xc0, 0xc0, 0xc0, 0xc0, 0xc0, 0xc0, 0xc0, 0xe7, 0x7e},
 {0x00, 0x00, 0xfc, 0xce, 0xc7, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3, 0xc7, 0xce, 0xfc},
 {0x00, 0x00, 0xff, 0xc0, 0xc0, 0xc0, 0xc0, 0xfc, 0xc0, 0xc0, 0xc0, 0xc0, 0xff},
 {0x00, 0x00, 0xc0, 0xc0, 0xc0, 0xc0, 0xc0, 0xc0, 0xfc, 0xc0, 0xc0, 0xc0, 0xff},
 {0x00, 0x00, 0x7e, 0xe7, 0xc3, 0xc3, 0xcf, 0xc0, 0xc0, 0xc0, 0xc0, 0xe7, 0x7e},
 {0x00, 0x00, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3, 0xff, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3},
 {0x00, 0x00, 0x7e, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x7e},
 {0x00, 0x00, 0x7c, 0xee, 0xc6, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06},
 {0x00, 0x00, 0xc3, 0xc6, 0xcc, 0xd8, 0xf0, 0xe0, 0xf0, 0xd8, 0xcc, 0xc6, 0xc3},
 {0x00, 0x00, 0xff, 0xc0, 0xc0, 0xc0, 0xc0, 0xc0, 0xc0, 0xc0, 0xc0, 0xc0, 0xc0},
 {0x00, 0x00, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3, 0xdb, 0xff, 0xff, 0xe7, 0xc3},
 {0x00, 0x00, 0xc7, 0xc7, 0xcf, 0xcf, 0xdf, 0xdb, 0xfb, 0xf3, 0xf3, 0xe3, 0xe3},
 {0x00, 0x00, 0x7e, 0xe7, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3, 0xe7, 0x7e},
 {0x00, 0x00, 0xc0, 0xc0, 0xc0, 0xc0, 0xc0, 0xfe, 0xc7, 0xc3, 0xc3, 0xc7, 0xfe},
 {0x00, 0x00, 0x3f, 0x6e, 0xdf, 0xdb, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3, 0x66, 0x3c},
 {0x00, 0x00, 0xc3, 0xc6, 0xcc, 0xd8, 0xf0, 0xfe, 0xc7, 0xc3, 0xc3, 0xc7, 0xfe},
 {0x00, 0x00, 0x7e, 0xe7, 0x03, 0x03, 0x07, 0x7e, 0xe0, 0xc0, 0xc0, 0xe7, 0x7e},
 {0x00, 0x00, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0xff},
 {0x00, 0x00, 0x7e, 0xe7, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3},
 {0x00, 0x00, 0x18, 0x3c, 0x3c, 0x66, 0x66, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3},
 {0x00, 0x00, 0xc3, 0xe7, 0xff, 0xff, 0xdb, 0xdb, 0xc3, 0xc3, 0xc3, 0xc3, 0xc3},
 {0x00, 0x00, 0xc3, 0x66, 0x66, 0x3c, 0x3c, 0x18, 0x3c, 0x3c, 0x66, 0x66, 0xc3},
 {0x00, 0x00, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x3c, 0x3c, 0x66, 0x66, 0xc3},
 {0x00, 0x00, 0xff, 0xc0, 0xc0, 0x60, 0x30, 0x7e, 0x0c, 0x06, 0x03, 0x03, 0xff}
};

GLuint fontOffset;

void makeRasterFont(void)
{
 GLuint i, j;
 glPixelStorei(GL_UNPACK_ALIGNMENT, 1);

 fontOffset = glGenLists (128);
 for (i = 0,j = ‘A’; i < 26; i++,j++) {
 glNewList(fontOffset + j, GL_COMPILE);
 glBitmap(8, 13, 0.0, 2.0, 10.0, 0.0, letters[i]);
 glEndList();
 }
 glNewList(fontOffset + ‘ ‘, GL_COMPILE);
 glBitmap(8, 13, 0.0, 2.0, 10.0, 0.0, space);
 glEndList();
}

void init(void)
{
 glShadeModel (GL_FLAT);
 makeRasterFont();
}

void printString(char *s)
{
 glPushAttrib (GL_LIST_BIT);
 glListBase(fontOffset);
 glCallLists(strlen(s), GL_UNSIGNED_BYTE, (GLubyte *) s);
 glPopAttrib ();
}

/* Everything above this line could be in a library
 * that defines a font. To make it work, you’ve got
 * to call makeRasterFont() before you start making
 * calls to printString().
 */

void display(void)
{
 GLfloat white[3] = { 1.0, 1.0, 1.0 };

 glClear(GL_COLOR_BUFFER_BIT);
 glColor3fv(white);

 glRasterPos2i(20, 60);
 printString("THE QUICK BROWN FOX JUMPS");
 glRasterPos2i(20, 40);
 printString("OVER A LAZY DOG");
 glFlush ();
}

void reshape(int w, int h)
{
 glViewport(0, 0, (GLsizei) w, (GLsizei) h);
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 glOrtho (0.0, w, 0.0, h, -1.0, 1.0);
 glMatrixMode(GL_MODELVIEW);
}

void keyboard(unsigned char key, int x, int y)
{
 switch (key) {
 case 27:
 exit(0);
 }
}

int main(int argc, char** argv)
{
 glutInit(&argc, argv);
 glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);
 glutInitWindowSize(300, 100);
 glutInitWindowPosition (100, 100);
 glutCreateWindow(argv[0]);
 init();
 glutReshapeFunc(reshape);
 glutKeyboardFunc(keyboard);
 glutDisplayFunc(display);
 glutMainLoop();
 return 0;
}

Images

An image is similar to a bitmap, but instead of containing only a single bit for each pixel in a
rectangular region of the screen, an image can contain much more information. For example, an
image can contain a complete (R, G, B, A) color stored at each pixel. Images can come from
several sources, such as

A photograph that’s digitized with a scanner

An image that was first generated on the screen by a graphics program using the graphics
hardware and then read back, pixel by pixel

A software program that generated the image in memory pixel by pixel

The images you normally think of as pictures come from the color buffers. However, you can read
or write rectangular regions of pixel data from or to the depth buffer or the stencil buffer. (See
Chapter 10 for an explanation of these other buffers.)

In addition to simply being displayed on the screen, images can be used for texture maps, in which
case they’re essentially pasted onto polygons that are rendered on the screen in the normal way.
(See Chapter 9 for more information about this technique.)

Reading, Writing, and Copying Pixel Data

OpenGL provides three basic commands that manipulate image data:

glReadPixels() - Reads a rectangular array of pixels from the framebuffer and stores the data
in processor memory.

glDrawPixels() - Writes a rectangular array of pixels from data kept in processor memory
into the framebuffer at the current raster position specified by glRasterPos*().

glCopyPixels() - Copies a rectangular array of pixels from one part of the framebuffer to
another. This command behaves similarly to a call to glReadPixels() followed by a call to
glDrawPixels(), but the data is never written into processor memory.

For the aforementioned commands, the order of pixel data processing operations is shown in Figure
8-3:

Figure 8-3 : Simplistic Diagram of Pixel Data Flow

The basic ideas in Figure 8-3 are correct. The coordinates of glRasterPos*(), which specify the
current raster position used by glDrawPixels() and glCopyPixels(), are transformed by the
geometric processing pipeline. Both glDrawPixels() and glCopyPixels() are affected by
rasterization and per-fragment operations. (But when drawing or copying a pixel rectangle, there’s
almost never a reason to have fog or texture enabled.)

However, additional steps arise because there are many kinds of framebuffer data, many ways to
store pixel information in computer memory, and various data conversions that can be performed
during the reading, writing, and copying operations. These possibilities translate to many different
modes of operation. If all your program does is copy images on the screen or read them into
memory temporarily so that they can be copied out later, you can ignore most of these modes.
However, if you want your program to modify the data while it’s in memory - for example, if you
have an image stored in one format but the window requires a different format - or if you want to

save image data to a file for future restoration in another session or on another kind of machine with
significantly different graphical capabilities, you have to understand the various modes.

The rest of this section describes the basic commands in detail. The following sections discuss the
details of the series of imaging operations that comprise the Imaging Pipeline: pixel-storage modes,
pixel-transfer operations, and pixel-mapping operations.

Reading Pixel Data from Frame Buffer to Processor Memory

void glReadPixels(GLint x, GLint y, GLsizei width, GLsizei height,
GLenum format, GLenum type, GLvoid *pixels);

Reads pixel data from the framebuffer rectangle whose lower-left corner is at (x, y) and
whose dimensions are width and height and stores it in the array pointed to by pixels. format
indicates the kind of pixel data elements that are read (an index value or an R, G, B, or A
component value, as listed in Table 8-1), and type indicates the data type of each element (see
Table 8-2).

If you are using glReadPixels() to obtain RGBA or color-index information, you may need to
clarify which buffer you are trying to access. For example, if you have a double-buffered window,
you need to specify whether you are reading data from the front buffer or back buffer. To control
the current read source buffer, call glReadBuffer(). (See "Selecting Color Buffers for Writing and
Reading" in Chapter 10.)

Table 8-1 : Pixel Formats for glReadPixels() or glDrawPixels()

format Constant Pixel Format

GL_COLOR_INDEX A single color index

GL_RGB A red color component, followed by a green color component,
followed by a blue color component

GL_RGBA A red color component, followed by a green color component,
followed by a blue color component, followed by an alpha
color component

GL_RED A single red color component

GL_GREEN A single green color component

GL_BLUE A single blue color component

GL_ALPHA A single alpha color component

GL_LUMINANCE A single luminance component

GL_LUMINANCE_ALPHA A luminance component followed by an alpha color
component

GL_STENCIL_INDEX A single stencil index

GL_DEPTH_COMPONENT A single depth component

Table 8-2 : Data Types for glReadPixels() or glDrawPixels()

type Constant Data Type

GL_UNSIGNED_BYTE unsigned 8-bit integer

GL_BYTE signed 8-bit integer

GL_BITMAP single bits in unsigned 8-bit integers using the same format as
glBitmap()

GL_UNSIGNED_SHORT unsigned 16-bit integer

GL_SHORT signed 16-bit integer

GL_UNSIGNED_INT unsigned 32-bit integer

GL_INT signed 32-bit integer

GL_FLOAT single-precision floating point

Remember that, depending on the format, anywhere from one to four elements are read (or written).
For example, if the format is GL_RGBA and you’re reading into 32-bit integers (that is, if type is
equal to GL_UNSIGNED_INT or GL_INT), then every pixel read requires 16 bytes of storage
(four components × four bytes/component).

Each element of the image is stored in memory as indicated by Table 8-2. If the element represents
a continuous value, such as a red, green, blue, or luminance component, each value is scaled to fit
into the available number of bits. For example, assume the red component is initially specified as a
floating-point value between 0.0 and 1.0. If it needs to be packed into an unsigned byte, only 8 bits
of precision are kept, even if more bits are allocated to the red component in the framebuffer.
GL_UNSIGNED_SHORT and GL_UNSIGNED_INT give 16 and 32 bits of precision,
respectively. The normal (signed) versions of GL_BYTE, GL_SHORT, and GL_INT have 7, 15,
and 31 bits of precision, since the negative values are typically not used.

If the element is an index (a color index or a stencil index, for example), and the type is not
GL_FLOAT, the value is simply masked against the available bits in the type. The signed versions -
GL_BYTE, GL_SHORT, and GL_INT - have masks with one fewer bit. For example, if a color
index is to be stored in a signed 8-bit integer, it’s first masked against 0x7f. If the type is
GL_FLOAT, the index is simply converted into a single-precision floating-point number (for
example, the index 17 is converted to the float 17.0).

Writing Pixel Data from Processor Memory to Frame Buffer

void glDrawPixels(GLsizei width, GLsizei height, GLenum format,
GLenum type, const GLvoid *pixels);

Draws a rectangle of pixel data with dimensions width and height. The pixel rectangle is
drawn with its lower-left corner at the current raster position. format and type have the same
meaning as with glReadPixels(). (For legal values for format and type, see Table 8-1 and

Table 8-2.) The array pointed to by pixels contains the pixel data to be drawn. If the current
raster position is invalid, nothing is drawn, and the raster position remains invalid.

Example 8-3 is a portion of a program, which uses glDrawPixels() to draw an pixel rectangle in the
lower-left corner of a window. makeCheckImage() creates a 64-by-64 RGB array of a
black-and-white checkerboard image. glRasterPos2i(0,0) positions the lower-left corner of the
image. For now, ignore glPixelStorei().

Example 8-3 : Use of glDrawPixels(): image.c

#define checkImageWidth 64
#define checkImageHeight 64
GLubyte checkImage[checkImageHeight][checkImageWidth][3];

void makeCheckImage(void)
{
 int i, j, c;

 for (i = 0; i < checkImageHeight; i++) {
 for (j = 0; j < checkImageWidth; j++) {
 c = ((((i&0x8)==0)^((j&0x8))==0))*255;
 checkImage[i][j][0] = (GLubyte) c;
 checkImage[i][j][1] = (GLubyte) c;
 checkImage[i][j][2] = (GLubyte) c;
 }
 }
}

void init(void)
{
 glClearColor (0.0, 0.0, 0.0, 0.0);
 glShadeModel(GL_FLAT);
 makeCheckImage();
 glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
}
void display(void)
{
 glClear(GL_COLOR_BUFFER_BIT);
 glRasterPos2i(0, 0);
 glDrawPixels(checkImageWidth, checkImageHeight, GL_RGB,
 GL_UNSIGNED_BYTE, checkImage);
 glFlush();
}

When using glDrawPixels() to write RGBA or color-index information, you may need to control
the current drawing buffers with glDrawBuffer(), which, along with glReadBuffer(), is also
described in "Selecting Color Buffers for Writing and Reading" in Chapter 10.

Copying Pixel Data within the Frame Buffer

void glCopyPixels(GLint x, GLint y, GLsizei width, GLsizei height,
GLenum buffer);

Copies pixel data from the framebuffer rectangle whose lower-left corner is at (x, y) and
whose dimensions are width and height. The data is copied to a new position whose lower-left
corner is given by the current raster position. buffer is either GL_COLOR, GL_STENCIL, or
GL_DEPTH, specifying the framebuffer that is used. glCopyPixels() behaves similarly to a
glReadPixels() followed by a glDrawPixels(), with the following translation for the buffer to
format parameter:

If buffer is GL_DEPTH or GL_STENCIL, then GL_DEPTH_COMPONENT or
GL_STENCIL_INDEX is used, respectively.

If GL_COLOR is specified, GL_RGBA or GL_COLOR_INDEX is used, depending on
whether the system is in RGBA or color-index mode.

Note that there’s no need for a format or data parameter for glCopyPixels(), since the data is never
copied into processor memory. The read source buffer and the destination buffer of glCopyPixels()
are specified by glReadBuffer() and glDrawBuffer() respectively. Both glDrawPixels() and
glCopyPixels() are used in Example 8-4.

For all three functions, the exact conversions of the data going to or from the framebuffer depend
on the modes in effect at the time. See the next section for details.

Imaging Pipeline

This section discusses the complete Imaging Pipeline: the pixel-storage modes and pixel-transfer
operations, which include how to set up an arbitrary mapping to convert pixel data. You can also
magnify or reduce a pixel rectangle before it’s drawn by calling glPixelZoom(). The order of these
operations is shown in Figure 8-4.

Figure 8-4 : Imaging Pipeline

When glDrawPixels() is called, the data is first unpacked from processor memory according to the
pixel-storage modes that are in effect and then the pixel-transfer operations are applied. The
resulting pixels are then rasterized. During rasterization, the pixel rectangle may be zoomed up or
down, depending on the current state. Finally, the fragment operations are applied and the pixels are
written into the framebuffer. (See "Testing and Operating on Fragments" in Chapter 10 for a
discussion of the fragment operations.)

When glReadPixels() is called, data is read from the framebuffer, the pixel-transfer operations are
performed, and then the resulting data is packed into processor memory.

glCopyPixels() applies all the pixel-transfer operations during what would be the glReadPixels()
activity. The resulting data is written as it would be by glDrawPixels(), but the transformations
aren’t applied a second time. Figure 8-5 shows how glCopyPixels() moves pixel data, starting from
the frame buffer.

Figure 8-5 : glCopyPixels() Pixel Path

From "Drawing the Bitmap" and Figure 8-6, you see that rendering bitmaps is simpler than
rendering images. Neither the pixel-transfer operations nor the pixel-zoom operation are applied.

Figure 8-6 : glBitmap() Pixel Path

Note that the pixel-storage modes and pixel-transfer operations are applied to textures as they are
read from or written to texture memory. Figure 8-7 shows the effect on glTexImage*(),
glTexSubImage*(), and glGetTexImage().

Figure 8-7 : glTexImage*(), glTexSubImage*(), and glGetTexImage() Pixel Paths

As seen in Figure 8-8, when pixel data is copied from the framebuffer into texture memory
(glCopyTexImage*() or glCopyTexSubImage*()), only pixel-transfer operations are applied. (See
Chapter 9 for more information on textures.)

Figure 8-8 : glCopyTexImage*() and glCopyTexSubImage*() Pixel Paths

Pixel Packing and Unpacking

Packing and unpacking refer to the way that pixel data is written to and read from processor
memory.

An image stored in memory has between one and four chunks of data, called elements. The data
might consist of just the color index or the luminance (luminance is the weighted sum of the red,
green, and blue values), or it might consist of the red, green, blue, and alpha components for each
pixel. The possible arrangements of pixel data, or formats, determine the number of elements
stored for each pixel and their order.

Some elements (such as a color index or a stencil index) are integers, and others (such as the red,
green, blue, and alpha components, or the depth component) are floating-point values, typically
ranging between 0.0 and 1.0. Floating-point components are usually stored in the framebuffer with
lower resolution than a full floating-point number would require (for example, color components
may be stored in 8 bits). The exact number of bits used to represent the components depends on the
particular hardware being used. Thus, it’s often wasteful to store each component as a full 32-bit
floating-point number, especially since images can easily contain a million pixels.

Elements can be stored in memory as various data types, ranging from 8-bit bytes to 32-bit integers
or floating-point numbers. OpenGL explicitly defines the conversion of each component in each
format to each of the possible data types. Keep in mind that you may lose data if you try to store a
high-resolution component in a type represented by a small number of bits.

Controlling Pixel-Storage Modes

Image data is typically stored in processor memory in rectangular two- or three-dimensional arrays.
Often, you want to display or store a subimage that corresponds to a subrectangle of the array. In
addition, you might need to take into account that different machines have different byte-ordering
conventions. Finally, some machines have hardware that is far more efficient at moving data to and
from the framebuffer if the data is aligned on 2-byte, 4-byte, or 8-byte boundaries in processor
memory. For such machines, you probably want to control the byte alignment. All the issues raised
in this paragraph are controlled as pixel-storage modes, which are discussed in the next subsection.
You specify these modes by using glPixelStore*(), which you’ve already seen used in a couple of
example programs.

All the possible pixel-storage modes are controlled with the glPixelStore*() command. Typically,
several successive calls are made with this command to set several parameter values.

void glPixelStore{if}(GLenum pname, TYPEparam);
Sets the pixel-storage modes, which affect the operation of glDrawPixels(), glReadPixels(),
glBitmap(), glPolygonStipple(), glTexImage1D(), glTexImage2D(), glTexSubImage1D(),
glTexSubImage2D(), and glGetTexImage(). The possible parameter names for pname are
shown in Table 8-3, along with their data type, initial value, and valid range of values. The
GL_UNPACK* parameters control how data is unpacked from memory by glDrawPixels(),
glBitmap(), glPolygonStipple(), glTexImage1D(), glTexImage2D(), glTexSubImage1D(),
and glTexSubImage2D(). The GL_PACK* parameters control how data is packed into
memory by glReadPixels() and glGetTexImage().

Table 8-3 : glPixelStore() Parameters

Parameter Name Type Initial
Value

Valid Range

GL_UNPACK_SWAP_BYTES,
GL_PACK_SWAP_BYTES

GLboolean FALSE TRUE/FALSE

GL_UNPACK_LSB_FIRST,
GL_PACK_LSB_FIRST

GLboolean FALSE TRUE/FALSE

GL_UNPACK_ROW_LENGTH,
GL_PACK_ROW_LENGTH

GLint 0 any nonnegative
integer

GL_UNPACK_SKIP_ROWS,
GL_PACK_SKIP_ROWS

GLint 0 any nonnegative
integer

GL_UNPACK_SKIP_PIXELS,
GL_PACK_SKIP_PIXELS

GLint 0 any nonnegative
integer

GL_UNPACK_ALIGNMENT,
GL_PACK_ALIGNMENT

GLint 4 1, 2, 4, 8

Since the corresponding parameters for packing and unpacking have the same meanings, they’re
discussed together in the rest of this section and referred to without the GL_PACK or
GL_UNPACK prefix. For example, *SWAP_BYTES refers to GL_PACK_SWAP_BYTES and
GL_UNPACK_SWAP_BYTES.

If the *SWAP_BYTES parameter is FALSE (the default), the ordering of the bytes in memory is
whatever is native for the OpenGL client; otherwise, the bytes are reversed. The byte reversal
applies to any size element, but really only has a meaningful effect for multibyte elements.

Note: As long as your OpenGL application doesn’t share images with other machines, you can
ignore the issue of byte ordering. If your application must render an OpenGL image that was
created on a different machine and the "endianness" of the two machines differs, byte ordering can
be swapped using *SWAP_BYTES. However, *SWAP_BYTES does not allow you to reorder
elements (for example, to swap red and green).

The *LSB_FIRST parameter applies when drawing or reading 1-bit images or bitmaps, for which a
single bit of data is saved or restored for each pixel. If *LSB_FIRST is FALSE (the default), the
bits are taken from the bytes starting with the most significant bit; otherwise, they’re taken in the
opposite order. For example, if *LSB_FIRST is FALSE, and the byte in question is 0x31, the bits,
in order, are {0, 0, 1, 1, 0, 0, 0, 1}. If *LSB_FIRST is TRUE, the order is {1, 0, 0, 0, 1, 1, 0, 0}.

Sometimes you want to draw or read only a subrectangle of the entire rectangle of image data
stored in memory. If the rectangle in memory is larger than the subrectangle that’s being drawn or
read, you need to specify the actual length (measured in pixels) of the larger rectangle with
*ROW_LENGTH. If *ROW_LENGTH is zero (which it is by default), the row length is
understood to be the same as the width that’s specified with glReadPixels(), glDrawPixels(), or

glCopyPixels(). You also need to specify the number of rows and pixels to skip before starting to
copy the data for the subrectangle. These numbers are set using the parameters *SKIP_ROWS and
*SKIP_PIXELS, as shown in Figure 8-9. By default, both parameters are 0, so you start at the
lower-left corner.

Figure 8-9 : *SKIP_ROWS, *SKIP_PIXELS, and *ROW_LENGTH Parameters

Often a particular machine’s hardware is optimized for moving pixel data to and from memory, if
the data is saved in memory with a particular byte alignment. For example, in a machine with 32-bit
words, hardware can often retrieve data much faster if it’s initially aligned on a 32-bit boundary,
which typically has an address that is a multiple of 4. Likewise, 64-bit architectures might work
better when the data is aligned to 8-byte boundaries. On some machines, however, byte alignment
makes no difference.

As an example, suppose your machine works better with pixel data aligned to a 4-byte boundary.
Images are most efficiently saved by forcing the data for each row of the image to begin on a 4-byte
boundary. If the image is 5 pixels wide and each pixel consists of 1 byte each of red, green, and
blue information, a row requires 5 × 3 = 15 bytes of data. Maximum display efficiency can be
achieved if the first row, and each successive row, begins on a 4-byte boundary, so there is 1 byte
of waste in the memory storage for each row. If your data is stored like this, set the *ALIGNMENT
parameter appropriately (to 4, in this case).

If *ALIGNMENT is set to 1, the next available byte is used. If it’s 2, a byte is skipped if necessary
at the end of each row so that the first byte of the next row has an address that’s a multiple of 2. In
the case of bitmaps (or 1-bit images) where a single bit is saved for each pixel, the same byte
alignment works, although you have to count individual bits. For example, if you’re saving a single
bit per pixel, the row length is 75, and the alignment is 4, then each row requires 75/8, or 9 3/8
bytes. Since 12 is the smallest multiple of 4 that is bigger than 9 3/8, 12 bytes of memory are used
for each row. If the alignment is 1, then 10 bytes are used for each row, as 9 3/8 is rounded up to
the next byte. (There is a simple use of glPixelStorei() in Example 8-4.)

Pixel-Transfer Operations

As image data is transferred from memory into the framebuffer, or from the framebuffer into
memory, OpenGL can perform several operations on it. For example, the ranges of components can
be altered - normally, the red component is between 0.0 and 1.0, but you might prefer to keep it in
some other range; or perhaps the data you’re using from a different graphics system stores the red

component in a different range. You can even create maps to perform arbitrary conversion of color
indices or color components during pixel transfer. Conversions such as these performed during the
transfer of pixels to and from the framebuffer are called pixel-transfer operations. They’re
controlled with the glPixelTransfer*() and glPixelMap*() commands.

Be aware that although the color, depth, and stencil buffers have many similarities, they don’t
behave identically, and a few of the modes have special cases for special buffers. All the mode
details are covered in this section and the sections that follow, including all the special cases.

Some of the pixel-transfer function characteristics are set with glPixelTransfer*(). The other
characteristics are specified with glPixelMap*(), which is described in the next section.

void glPixelTransfer{if}(GLenum pname, TYPEparam);
Sets pixel-transfer modes that affect the operation of glDrawPixels(), glReadPixels(),
glCopyPixels(), glTexImage1D(), glTexImage2D(), glCopyTexImage1D(),
glCopyTexImage2D(), glTexSubImage1D(), glTexSubImage2D(),
glCopyTexSubImage1D(), glCopyTexSubImage2D(), and glGetTexImage(). The parameter
pname must be one of those listed in the first column of Table 8-4, and its value, param, must
be in the valid range shown.

Table 8-4 : glPixelTransfer*() Parameters (continued)

Parameter Name Type Initial Value Valid Range

GL_MAP_COLOR GLboolean FALSE TRUE/FALSE

GL_MAP_STENCIL GLboolean FALSE TRUE/FALSE

GL_INDEX_SHIFT GLint 0 (- ∞ , ∞)

GL_INDEX_OFFSET GLint 0 (- ∞ , ∞)

GL_RED_SCALE GLfloat 1.0 (- ∞ , ∞)

GL_GREEN_SCALE GLfloat 1.0 (- ∞ , ∞)

GL_BLUE_SCALE GLfloat 1.0 (- ∞ , ∞)

GL_ALPHA_SCALE GLfloat 1.0 (- ∞ , ∞)

GL_DEPTH_SCALE GLfloat 1.0 (- ∞ , ∞)

GL_RED_BIAS GLfloat 0 (- ∞ , ∞)

GL_GREEN_BIAS GLfloat 0 (- ∞ , ∞)

GL_BLUE_BIAS GLfloat 0 (- ∞ , ∞)

GL_ALPHA_BIAS GLfloat 0 (- ∞ , ∞)

GL_DEPTH_BIAS GLfloat 0 (- ∞ , ∞)

If the GL_MAP_COLOR or GL_MAP_STENCIL parameter is TRUE, then mapping is enabled.
See the next subsection to learn how the mapping is done and how to change the contents of the
maps. All the other parameters directly affect the pixel component values.

A scale and bias can be applied to the red, green, blue, alpha, and depth components. For example,
you may wish to scale red, green, and blue components that were read from the framebuffer before
converting them to a luminance format in processor memory. Luminance is computed as the sum of
the red, green, and blue components, so if you use the default value for GL_RED_SCALE,
GL_GREEN_SCALE and GL_BLUE_SCALE, the components all contribute equally to the final
intensity or luminance value. If you want to convert RGB to luminance, according to the NTSC
standard, you set GL_RED_SCALE to .30, GL_GREEN_SCALE to .59, and GL_BLUE_SCALE
to .11.

Indices (color and stencil) can also be transformed. In the case of indices a shift and offset are
applied. This is useful if you need to control which portion of the color table is used during

rendering.

Pixel Mapping

All the color components, color indices, and stencil indices can be modified by means of a table
lookup before they are placed in screen memory. The command for controlling this mapping is
glPixelMap*().

void glPixelMap{ui us f}v(GLenum map, GLint mapsize,
const TYPE *values);

Loads the pixel map indicated by map with mapsize entries, whose values are pointed to by
values. Table 8-5 lists the map names and values; the default sizes are all 1 and the default
values are all 0. Each map’s size must be a power of 2.

Table 8-5 : glPixelMap*() Parameter Names and Values

Map Name Address Value

GL_PIXEL_MAP_I_TO_I color index color index

GL_PIXEL_MAP_S_TO_S stencil index stencil index

GL_PIXEL_MAP_I_TO_R color index R

GL_PIXEL_MAP_I_TO_G color index G

GL_PIXEL_MAP_I_TO_B color index B

GL_PIXEL_MAP_I_TO_A color index A

GL_PIXEL_MAP_R_TO_R R R

GL_PIXEL_MAP_G_TO_G G G

GL_PIXEL_MAP_B_TO_B B B

GL_PIXEL_MAP_A_TO_A A A

The maximum size of the maps is machine-dependent. You can find the sizes of the pixel maps
supported on your machine with glGetIntegerv(). Use the query argument
GL_MAX_PIXEL_MAP_TABLE to obtain the maximum size for all the pixel map tables, and use
GL_PIXEL_MAP_*_TO_*_SIZE to obtain the current size of the specified map. The six maps
whose address is a color index or stencil index must always be sized to an integral power of 2. The
four RGBA maps can be any size from 1 through GL_MAX_PIXEL_MAP_TABLE.

To understand how a table works, consider a simple example. Suppose that you want to create a

256-entry table that maps color indices to color indices using GL_PIXEL_MAP_I_TO_I. You
create a table with an entry for each of the values between 0 and 255 and initialize the table with
glPixelMap*(). Assume you’re using the table for thresholding and want to map indices below 101
(indices 0 to 100) to 0, and all indices 101 and above to 255. In this case, your table consists of 101
0s and 155 255s. The pixel map is enabled using the routine glPixelTransfer*() to set the
parameter GL_MAP_COLOR to TRUE. Once the pixel map is loaded and enabled, incoming color
indices below 101 come out as 0, and incoming pixels between 101 and 255 are mapped to 255. If
the incoming pixel is larger than 255, it’s first masked by 255, throwing out all the bits above the
eighth, and the resulting masked value is looked up in the table. If the incoming index is a
floating-point value (say 88.14585), it’s rounded to the nearest integer value (giving 88), and that
number is looked up in the table (giving 0).

Using pixel maps, you can also map stencil indices or convert color indices to RGB. (See "Reading
and Drawing Pixel Rectangles" for information about the conversion of indices.)

Magnifying, Reducing, or Flipping an Image

After the pixel-storage modes and pixel-transfer operations are applied, images and bitmaps are
rasterized. Normally, each pixel in an image is written to a single pixel on the screen. However, you
can arbitrarily magnify, reduce, or even flip (reflect) an image by using glPixelZoom().

void glPixelZoom(GLfloat zoomx, GLfloat zoomy);
Sets the magnification or reduction factors for pixel-write operations (glDrawPixels() or
glCopyPixels()), in the x- and y-dimensions. By default, zoomx and zoomy are 1.0. If they’re
both 2.0, each image pixel is drawn to 4 screen pixels. Note that fractional magnification or
reduction factors are allowed, as are negative factors. Negative zoom factors reflect the
resulting image about the current raster position.

During rasterization, each image pixel is treated as a zoomx × zoomy rectangle, and fragments are
generated for all the pixels whose centers lie within the rectangle. More specifically, let (xrp, yrp)
be the current raster position. If a particular group of elements (index or components) is the nth in a
row and belongs to the mth column, consider the region in window coordinates bounded by the
rectangle with corners at

(xrp + zoomx * n, yrp + zoomy * m) and (xrp + zoomx(n+1), yrp + zoomy(m+1))

Any fragments whose centers lie inside this rectangle (or on its bottom or left boundaries) are
produced in correspondence with this particular group of elements.

A negative zoom can be useful for flipping an image. OpenGL describes images from the bottom
row of pixels to the top (and from left to right). If you have a "top to bottom" image, such as a
frame of video, you may want to use glPixelZoom(1.0, -1.0) to make the image right side up for
OpenGL. Be sure that you reposition the current raster position appropriately, if needed.

Example 8-4 shows the use of glPixelZoom(). A checkerboard image is initially drawn in the
lower-left corner of the window. Pressing a mouse button and moving the mouse uses
glCopyPixels() to copy the lower-left corner of the window to the current cursor location. (If you
copy the image onto itself, it looks wacky!) The copied image is zoomed, but initially it is zoomed
by the default value of 1.0, so you won’t notice. The ‘z’ and ‘Z’ keys increase and decrease the
zoom factors by 0.5. Any window damage causes the contents of the window to be redrawn.
Pressing the ‘r’ key resets the image and the zoom factors.

Example 8-4 : Drawing, Copying, and Zooming Pixel Data: image.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>
#include <stdlib.h>
#include <stdio.h>

#define checkImageWidth 64
#define checkImageHeight 64
GLubyte checkImage[checkImageHeight][checkImageWidth][3];

static GLdouble zoomFactor = 1.0;
static GLint height;

void makeCheckImage(void)
{
 int i, j, c;

 for (i = 0; i < checkImageHeight; i++) {
 for (j = 0; j < checkImageWidth; j++) {
 c = ((((i&0x8)==0)^((j&0x8))==0))*255;
 checkImage[i][j][0] = (GLubyte) c;
 checkImage[i][j][1] = (GLubyte) c;
 checkImage[i][j][2] = (GLubyte) c;
 }
 }
}

void init(void)
{
 glClearColor (0.0, 0.0, 0.0, 0.0);
 glShadeModel(GL_FLAT);
 makeCheckImage();
 glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
}

void display(void)
{
 glClear(GL_COLOR_BUFFER_BIT);
 glRasterPos2i(0, 0);
 glDrawPixels(checkImageWidth, checkImageHeight, GL_RGB,
 GL_UNSIGNED_BYTE, checkImage);
 glFlush();
}

void reshape(int w, int h)
{
 glViewport(0, 0, (GLsizei) w, (GLsizei) h);
 height = (GLint) h;
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluOrtho2D(0.0, (GLdouble) w, 0.0, (GLdouble) h);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
}

void motion(int x, int y)
{
 static GLint screeny;

 screeny = height - (GLint) y;
 glRasterPos2i (x, screeny);
 glPixelZoom (zoomFactor, zoomFactor);

 glCopyPixels (0, 0, checkImageWidth, checkImageHeight,
 GL_COLOR);
 glPixelZoom (1.0, 1.0);
 glFlush ();
}

void keyboard(unsigned char key, int x, int y)
{
 switch (key) {
 case ‘r’:
 case ‘R’:
 zoomFactor = 1.0;
 glutPostRedisplay();
 printf ("zoomFactor reset to 1.0\n");
 break;
 case ‘z’:
 zoomFactor += 0.5;
 if (zoomFactor >= 3.0)
 zoomFactor = 3.0;
 printf ("zoomFactor is now %4.1f\n", zoomFactor);
 break;
 case ‘Z’:
 zoomFactor -= 0.5;
 if (zoomFactor <= 0.5)
 zoomFactor = 0.5;
 printf ("zoomFactor is now %4.1f\n", zoomFactor);
 break;
 case 27:
 exit(0);
 break;
 default:
 break;
 }
}

int main(int argc, char** argv)
{
 glutInit(&argc, argv);
 glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);
 glutInitWindowSize(250, 250);
 glutInitWindowPosition(100, 100);
 glutCreateWindow(argv[0]);
 init();
 glutDisplayFunc(display);
 glutReshapeFunc(reshape);
 glutKeyboardFunc(keyboard);
 glutMotionFunc(motion);
 glutMainLoop();
 return 0;
}

Reading and Drawing Pixel Rectangles

This section describes the reading and drawing processes in detail. The pixel conversions
performed when going from framebuffer to memory (reading) are similar but not identical to the
conversions performed when going in the opposite direction (drawing), as explained in the
following sections. You may wish to skip this section the first time through, especially if you do not
plan to use the pixel-transfer operations right away.

The Pixel Rectangle Drawing Process

Figure 8-10 and the following list describe the operation of drawing pixels into the framebuffer.

Figure 8-10 : Drawing Pixels with glDrawPixels()

1. If the pixels aren’t indices (that is, the format isn’t GL_COLOR_INDEX or
GL_STENCIL_INDEX), the first step is to convert the components to floating-point format if
necessary. (See Table 4-1 for the details of the conversion.)

2. If the format is GL_LUMINANCE or GL_LUMINANCE_ALPHA, the luminance element is
converted into R, G, and B, by using the luminance value for each of the R, G, and B
components. In GL_LUMINANCE_ALPHA format, the alpha value becomes the A value. If
GL_LUMINANCE is specified, the A value is set to 1.0.

3. Each component (R, G, B, A, or depth) is multiplied by the appropriate scale, and the
appropriate bias is added. For example, the R component is multiplied by the value

corresponding to GL_RED_SCALE and added to the value corresponding to
GL_RED_BIAS.

4. If GL_MAP_COLOR is true, each of the R, G, B, and A components is clamped to the range
[0.0,1.0], multiplied by an integer one less than the table size, truncated, and looked up in the
table. (See "Tips for Improving Pixel Drawing Rates" for more details.)

5. Next, the R, G, B, and A components are clamped to [0.0,1.0], if they weren’t already, and
converted to fixed-point with as many bits to the left of the binary point as there are in the
corresponding framebuffer component.

6. If you’re working with index values (stencil or color indices), then the values are first
converted to fixed-point (if they were initially floating-point numbers) with some unspecified
bits to the right of the binary point. Indices that were initially fixed-point remain so, and any
bits to the right of the binary point are set to zero.

The resulting index value is then shifted right or left by the absolute value of
GL_INDEX_SHIFT bits; the value is shifted left if GL_INDEX_SHIFT > 0 and right
otherwise. Finally, GL_INDEX_OFFSET is added to the index.

7. The next step with indices depends on whether you’re using RGBA mode or color-index
mode. In RGBA mode, a color index is converted to RGBA using the color components
specified by GL_PIXEL_MAP_I_TO_R, GL_PIXEL_MAP_I_TO_G,
GL_PIXEL_MAP_I_TO_B, and GL_PIXEL_MAP_I_TO_A. (See "Pixel Mapping" for
details.) Otherwise, if GL_MAP_COLOR is GL_TRUE, a color index is looked up through
the table GL_PIXEL_MAP_I_TO_I. (If GL_MAP_COLOR is GL_FALSE, the index is
unchanged.) If the image is made up of stencil indices rather than color indices, and if
GL_MAP_STENCIL is GL_TRUE, the index is looked up in the table corresponding to
GL_PIXEL_MAP_S_TO_S. If GL_MAP_STENCIL is FALSE, the stencil index is
unchanged.

8. Finally, if the indices haven’t been converted to RGBA, the indices are then masked to the
number of bits of either the color-index or stencil buffer, whichever is appropriate.

The Pixel Rectangle Reading Process

Many of the conversions done during the pixel rectangle drawing process are also done during the
pixel rectangle reading process. The pixel reading process is shown in Figure 8-11 and described in
the following list.

Figure 8-11 : Reading Pixels with glReadPixels()

1. If the pixels to be read aren’t indices (that is, the format isn’t GL_COLOR_INDEX or
GL_STENCIL_INDEX), the components are mapped to [0.0,1.0] - that is, in exactly the
opposite way that they are when written.

2. Next, the scales and biases are applied to each component. If GL_MAP_COLOR is
GL_TRUE, they’re mapped and again clamped to [0.0,1.0]. If luminance is desired instead of
RGB, the R, G, and B components are added (L = R + G + B).

3. If the pixels are indices (color or stencil), they’re shifted, offset, and, if GL_MAP_COLOR is
GL_TRUE, also mapped.

4. If the storage format is either GL_COLOR_INDEX or GL_STENCIL_INDEX, the pixel
indices are masked to the number of bits of the storage type (1, 8, 16, or 32) and packed into
memory as previously described.

5. If the storage format is one of the component kind (such as luminance or RGB), the pixels are
always mapped by the index-to-RGBA maps. Then, they’re treated as though they had been
RGBA pixels in the first place (including potential conversion to luminance).

6. Finally, for both index and component data, the results are packed into memory according to
the GL_PACK* modes set with glPixelStore*().

The scaling, bias, shift, and offset values are the same as those used when drawing pixels, so if
you’re both reading and drawing pixels, be sure to reset these components to the appropriate values
before doing a read or a draw. Similarly, the various maps must be properly reset if you intend to
use maps for both reading and drawing.

Note: It might seem that luminance is handled incorrectly in both the reading and drawing
operations. For example, luminance is not usually equally dependent on the R, G, and B
components as it may be assumed from both Figure 8-10 and Figure 8-11. If you wanted your
luminance to be calculated such that the R component contributed 30 percent, the G 59 percent, and
the B 11 percent, you can set GL_RED_SCALE to .30, GL_RED_BIAS to 0.0, and so on. The
computed L is then .30R + .59G + .11B.

Tips for Improving Pixel Drawing Rates

As you can see, OpenGL has a rich set of features for reading, drawing and manipulating pixel data.
Although these features are often very useful, they can also decrease performance. Here are some
tips for improving pixel draw rates.

For best performance, set all pixel-transfer parameters to their default values, and set pixel
zoom to (1.0,1.0).

A series of fragment operations is applied to pixels as they are drawn into the framebuffer.
(See "Testing and Operating on Fragments" in Chapter 10.) For optimum performance disable
all fragment operations.

While performing pixel operations, disable other costly states, such as texturing and lighting.

If you use an image format and type that matches the framebuffer, you can reduce the amount
of work that the OpenGL implementation has to do. For example, if you are writing images to
an RGB framebuffer with 8 bits per component, call glDrawPixels() with format set to RGB
and type set to UNSIGNED_BYTE.

For some implementations, unsigned image formats are faster to use than signed image
formats.

It is usually faster to draw a large pixel rectangle than to draw several small ones, since the
cost of transferring the pixel data can be amortized over many pixels.

If possible, reduce the amount of data that needs to be copied by using small data types (for
example, use GL_UNSIGNED_BYTE) and fewer components (for example, use format
GL_LUMINANCE_ALPHA).

Pixel-transfer operations, including pixel mapping and values for scale, bias, offset, and shift
other than the defaults, may decrease performance.

 OpenGL Programming Guide
(Addison-Wesley Publishing Company)

 OpenGL Programming Guide
(Addison-Wesley Publishing Company)

Chapter 9
Texture Mapping
Chapter Objectives

After reading this chapter, you’ll be able to do the following:

Understand what texture mapping can add to your scene

Specify a texture image

Control how a texture image is filtered as it’s applied to a fragment

Create and manage texture images in texture objects and, if available, control a
high-performance working set of those texture objects

Specify how the color values in the image combine with those of the fragment to which it’s
being applied

Supply texture coordinates to indicate how the texture image should be aligned to the objects
in your scene

Use automatic texture coordinate generation to produce effects like contour maps and
environment maps

So far, every geometric primitive has been drawn as either a solid color or smoothly shaded
between the colors at its vertices - that is, they’ve been drawn without texture mapping. If you want
to draw a large brick wall without texture mapping, for example, each brick must be drawn as a
separate polygon. Without texturing, a large flat wall - which is really a single rectangle - might
require thousands of individual bricks, and even then the bricks may appear too smooth and regular
to be realistic.

Texture mapping allows you to glue an image of a brick wall (obtained, perhaps, by scanning in a
photograph of a real wall) to a polygon and to draw the entire wall as a single polygon. Texture
mapping ensures that all the right things happen as the polygon is transformed and rendered. For
example, when the wall is viewed in perspective, the bricks may appear smaller as the wall gets
farther from the viewpoint. Other uses for texture mapping include depicting vegetation on large
polygons representing the ground in flight simulation; wallpaper patterns; and textures that make
polygons look like natural substances such as marble, wood, or cloth. The possibilities are endless.
Although it’s most natural to think of applying textures to polygons, textures can be applied to all
primitives - points, lines, polygons, bitmaps, and images. Plates 6, 8, 18-21, 24-27, and 29-31 all
demonstrate the use of textures.

Because there are so many possibilities, texture mapping is a fairly large, complex subject, and you

must make several programming choices when using it. For instance, you can map textures to
surfaces made of a set of polygons or to curved surfaces, and you can repeat a texture in one or both
directions to cover the surface. A texture can even be one-dimensional. In addition, you can
automatically map a texture onto an object in such a way that the texture indicates contours or other
properties of the item being viewed. Shiny objects can be textured so that they appear to be in the
center of a room or other environment, reflecting the surroundings off their surfaces. Finally, a
texture can be applied to a surface in different ways. It can be painted on directly (like a decal
placed on a surface), used to modulate the color the surface would have been painted otherwise, or
used to blend a texture color with the surface color. If this is your first exposure to texture mapping,
you might find that the discussion in this chapter moves fairly quickly. As an additional reference,
you might look at the chapter on texture mapping in Fundamentals of Three-Dimensional
Computer Graphics by Alan Watt (Reading, MA: Addison-Wesley Publishing Company, 1990).

Textures are simply rectangular arrays of data - for example, color data, luminance data, or color
and alpha data. The individual values in a texture array are often called texels. What makes texture
mapping tricky is that a rectangular texture can be mapped to nonrectangular regions, and this must
be done in a reasonable way.

Figure 9-1 illustrates the texture-mapping process. The left side of the figure represents the entire
texture, and the black outline represents a quadrilateral shape whose corners are mapped to those
spots on the texture. When the quadrilateral is displayed on the screen, it might be distorted by
applying various transformations - rotations, translations, scaling, and projections. The right side of
the figure shows how the texture-mapped quadrilateral might appear on your screen after these
transformations. (Note that this quadrilateral is concave and might not be rendered correctly by
OpenGL without prior tessellation. See Chapter 11 for more information about tessellating
polygons.)

Figure 9-1 : Texture-Mapping Process

Notice how the texture is distorted to match the distortion of the quadrilateral. In this case, it’s
stretched in the x direction and compressed in the y direction; there’s a bit of rotation and shearing
going on as well. Depending on the texture size, the quadrilateral’s distortion, and the size of the
screen image, some of the texels might be mapped to more than one fragment, and some fragments

might be covered by multiple texels. Since the texture is made up of discrete texels (in this case,
256 × 256 of them), filtering operations must be performed to map texels to fragments. For
example, if many texels correspond to a fragment, they’re averaged down to fit; if texel boundaries
fall across fragment boundaries, a weighted average of the applicable texels is performed. Because
of these calculations, texturing is computationally expensive, which is why many specialized
graphics systems include hardware support for texture mapping.

An application may establish texture objects, with each texture object representing a single texture
(and possible associated mipmaps). Some implementations of OpenGL can support a special
working set of texture objects that have better performance than texture objects outside the working
set. These high-performance texture objects are said to be resident and may have special hardware
and/or software acceleration available. You may use OpenGL to create and delete texture objects
and to determine which textures constitute your working set.

This chapter covers the OpenGL’s texture-mapping facility in the following major sections.

"An Overview and an Example" gives a brief, broad look at the steps required to perform
texture mapping. It also presents a relatively simple example of texture mapping.

"Specifying the Texture" explains how to specify one- or two-dimensional textures. It also
discusses how to use a texture’s borders, how to supply a series of related textures of different
sizes, and how to control the filtering methods used to determine how an applied texture is
mapped to screen coordinates.

"Filtering" details how textures are either magnified or minified as they are applied to the
pixels of polygons. Minification using special mipmap textures is also explained.

"Texture Objects" describes how to put texture images into objects so that you can control
several textures at one time. With texture objects, you may be able to create a working set of
high-performance textures, which are said to be resident. You may also prioritize texture
objects to increase or decrease the likelihood that a texture object is resident.

"Texture Functions" discusses the methods used for painting a texture onto a surface. You can
choose to have the texture color values replace those that would be used if texturing wasn’t in
effect, or you can have the final color be a combination of the two.

"Assigning Texture Coordinates" describes how to compute and assign appropriate texture
coordinates to the vertices of an object. It also explains how to control the behavior of
coordinates that lie outside the default range - that is, how to repeat or clamp textures across a
surface.

"Automatic Texture-Coordinate Generation" shows how to have OpenGL automatically
generate texture coordinates so that you can achieve such effects as contour and environment
maps.

"Advanced Features" explains how to manipulate the texture matrix stack and how to use the
q texture coordinate.

Version 1.1 of OpenGL introduces several new texture-mapping operations:

Thirty-eight additional internal texture image formats

Texture proxy, to query whether there are enough resources to accommodate a given
texture image

Texture subimage, to replace all or part of an existing texture image rather than
completely deleting and creating a texture to achieve the same effect

Specifying texture data from framebuffer memory (as well as from processor memory)

Texture objects, including resident textures and prioritizing

If you try to use one of these texture-mapping operations and can’t find it, check the version
number of your implementation of OpenGL to see if it actually supports it. (See "Which Version
Am I Using?" in Chapter 14.)

An Overview and an Example

This section gives an overview of the steps necessary to perform texture mapping. It also presents a
relatively simple texture-mapping program. Of course, you know that texture mapping can be a
very involved process.

Steps in Texture Mapping

To use texture mapping, you perform these steps.

1. Create a texture object and specify a texture for that object.

2. Indicate how the texture is to be applied to each pixel.

3. Enable texture mapping.

4. Draw the scene, supplying both texture and geometric coordinates.

Keep in mind that texture mapping works only in RGBA mode. Texture mapping results in
color-index mode are undefined.

Create a Texture Object and Specify a Texture for That Object

A texture is usually thought of as being two-dimensional, like most images, but it can also be
one-dimensional. The data describing a texture may consist of one, two, three, or four elements per
texel, representing anything from a modulation constant to an (R, G, B, A) quadruple.

In Example 9-1, which is very simple, a single texture object is created to maintain a single
two-dimensional texture. This example does not find out how much memory is available. Since
only one texture is created, there is no attempt to prioritize or otherwise manage a working set of
texture objects. Other advanced techniques, such as texture borders or mipmaps, are not used in this
simple example.

Indicate How the Texture Is to Be Applied to Each Pixel

You can choose any of four possible functions for computing the final RGBA value from the
fragment color and the texture-image data. One possibility is simply to use the texture color as the
final color; this is the decal mode, in which the texture is painted on top of the fragment, just as a
decal would be applied. (Example 9-1 uses decal mode.) The replace mode, a variant of the decal
mode, is a second method. Another method is to use the texture to modulate, or scale, the
fragment’s color; this technique is useful for combining the effects of lighting with texturing.
Finally, a constant color can be blended with that of the fragment, based on the texture value.

Enable Texture Mapping

You need to enable texturing before drawing your scene. Texturing is enabled or disabled using
glEnable() or glDisable() with the symbolic constant GL_TEXTURE_1D or GL_TEXTURE_2D
for one- or two-dimensional texturing, respectively. (If both are enabled, GL_TEXTURE_2D is the
one that is used.)

Draw the Scene, Supplying Both Texture and Geometric Coordinates

You need to indicate how the texture should be aligned relative to the fragments to which it’s to be
applied before it’s "glued on." That is, you need to specify both texture coordinates and geometric
coordinates as you specify the objects in your scene. For a two-dimensional texture map, for
example, the texture coordinates range from 0.0 to 1.0 in both directions, but the coordinates of the
items being textured can be anything. For the brick-wall example, if the wall is square and meant to
represent one copy of the texture, the code would probably assign texture coordinates (0, 0), (1, 0),
(1, 1), and (0, 1) to the four corners of the wall. If the wall is large, you might want to paint several
copies of the texture map on it. If you do so, the texture map must be designed so that the bricks on
the left edge match up nicely with the bricks on the right edge, and similarly for the bricks on the
top and those on the bottom.

You must also indicate how texture coordinates outside the range [0.0,1.0] should be treated. Do the
textures repeat to cover the object, or are they clamped to a boundary value?

A Sample Program

One of the problems with showing sample programs to illustrate texture mapping is that interesting
textures are large. Typically, textures are read from an image file, since specifying a texture
programmatically could take hundreds of lines of code. In Example 9-1, the texture - which consists
of alternating white and black squares, like a checkerboard - is generated by the program. The
program applies this texture to two squares, which are then rendered in perspective, one of them
facing the viewer squarely and the other tilting back at 45 degrees, as shown in Figure 9-2. In object
coordinates, both squares are the same size.

Figure 9-2 : Texture-Mapped Squares

Example 9-1 : Texture-Mapped Checkerboard: checker.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>
#include <stdlib.h>
#include <stdio.h>

/* Create checkerboard texture */
#define checkImageWidth 64
#define checkImageHeight 64
static GLubyte checkImage[checkImageHeight][checkImageWidth][4];

static GLuint texName;

void makeCheckImage(void)
{
 int i, j, c;

 for (i = 0; i < checkImageHeight; i++) {
 for (j = 0; j < checkImageWidth; j++) {
 c = ((((i&0x8)==0)^((j&0x8))==0))*255;
 checkImage[i][j][0] = (GLubyte) c;
 checkImage[i][j][1] = (GLubyte) c;
 checkImage[i][j][2] = (GLubyte) c;
 checkImage[i][j][3] = (GLubyte) 255;
 }
 }
}

void init(void)
{
 glClearColor (0.0, 0.0, 0.0, 0.0);
 glShadeModel(GL_FLAT);
 glEnable(GL_DEPTH_TEST);

 makeCheckImage();
 glPixelStorei(GL_UNPACK_ALIGNMENT, 1);

 glGenTextures(1, &texName);
 glBindTexture(GL_TEXTURE_2D, texName);

 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,
 GL_NEAREST);

 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
 GL_NEAREST);
 glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, checkImageWidth,
 checkImageHeight, 0, GL_RGBA, GL_UNSIGNED_BYTE,
 checkImage);
}

void display(void)
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 glEnable(GL_TEXTURE_2D);
 glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_DECAL);
 glBindTexture(GL_TEXTURE_2D, texName);
 glBegin(GL_QUADS);
 glTexCoord2f(0.0, 0.0); glVertex3f(-2.0, -1.0, 0.0);
 glTexCoord2f(0.0, 1.0); glVertex3f(-2.0, 1.0, 0.0);
 glTexCoord2f(1.0, 1.0); glVertex3f(0.0, 1.0, 0.0);
 glTexCoord2f(1.0, 0.0); glVertex3f(0.0, -1.0, 0.0);

 glTexCoord2f(0.0, 0.0); glVertex3f(1.0, -1.0, 0.0);
 glTexCoord2f(0.0, 1.0); glVertex3f(1.0, 1.0, 0.0);
 glTexCoord2f(1.0, 1.0); glVertex3f(2.41421, 1.0, -1.41421);
 glTexCoord2f(1.0, 0.0); glVertex3f(2.41421, -1.0, -1.41421);
 glEnd();
 glFlush();
 glDisable(GL_TEXTURE_2D);
}

void reshape(int w, int h)
{
 glViewport(0, 0, (GLsizei) w, (GLsizei) h);
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluPerspective(60.0, (GLfloat) w/(GLfloat) h, 1.0, 30.0);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 glTranslatef(0.0, 0.0, -3.6);
}

void keyboard (unsigned char key, int x, int y)
{
 switch (key) {
 case 27:
 exit(0);
 break;
 default:
 break;
 }
}

int main(int argc, char** argv)
{
 glutInit(&argc, argv);
 glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);
 glutInitWindowSize(250, 250);
 glutInitWindowPosition(100, 100);
 glutCreateWindow(argv[0]);
 init();
 glutDisplayFunc(display);
 glutReshapeFunc(reshape);
 glutKeyboardFunc(keyboard);
 glutMainLoop();
 return 0;
}

The checkerboard texture is generated in the routine makeCheckImage(), and all the
texture-mapping initialization occurs in the routine init(). glGenTextures() and glBindTexture()
name and create a texture object for a texture image. (See "Texture Objects.") The single,
full-resolution texture map is specified by glTexImage2D(), whose parameters indicate the size of
the image, type of the image, location of the image, and other properties of it. (See "Specifying the
Texture" for more information about glTexImage2D().)

The four calls to glTexParameter*() specify how the texture is to be wrapped and how the colors
are to be filtered if there isn’t an exact match between pixels in the texture and pixels on the screen.
(See "Repeating and Clamping Textures" and "Filtering.")

In display(), glEnable() turns on texturing. glTexEnv*() sets the drawing mode to GL_DECAL so
that the textured polygons are drawn using the colors from the texture map (rather than taking into
account what color the polygons would have been drawn without the texture).

Then, two polygons are drawn. Note that texture coordinates are specified along with vertex
coordinates. The glTexCoord*() command behaves similarly to the glNormal() command.
glTexCoord*() sets the current texture coordinates; any subsequent vertex command has those
texture coordinates associated with it until glTexCoord*() is called again.

Note: The checkerboard image on the tilted polygon might look wrong when you compile and run
it on your machine - for example, it might look like two triangles with different projections of the
checkerboard image on them. If so, try setting the parameter
GL_PERSPECTIVE_CORRECTION_HINT to GL_NICEST and running the example again. To
do this, use glHint().

Specifying the Texture

The command glTexImage2D() defines a two-dimensional texture. It takes several arguments,
which are described briefly here and in more detail in the subsections that follow. The related
command for one-dimensional textures, glTexImage1D(), is described in "One-Dimensional
Textures."

void glTexImage2D(GLenum target, GLint level, GLint internalFormat,
GLsizei width, GLsizei height, GLint border,
GLenum format, GLenum type,
const GLvoid *pixels);

Defines a two-dimensional texture. The target parameter is set to either the constant
GL_TEXTURE_2D or GL_PROXY_TEXTURE_2D. You use the level parameter if you’re
supplying multiple resolutions of the texture map; with only one resolution, level should be 0.
(See "Multiple Levels of Detail" for more information about using multiple resolutions.)
The next parameter, internalFormat, indicates which of the R, G, B, and A components or
luminance or intensity values are selected for use in describing the texels of an image. The
value of internalFormat is an integer from 1 to 4, or one of thirty-eight symbolic constants.
The thirty-eight symbolic constants that are also legal values for internalFormat are
GL_ALPHA, GL_ALPHA4, GL_ALPHA8, GL_ALPHA12, GL_ALPHA16, GL_LUMINANCE,
GL_LUMINANCE4, GL_LUMINANCE8, GL_LUMINANCE12, GL_LUMINANCE16,
GL_LUMINANCE_ALPHA, GL_LUMINANCE4_ALPHA4, GL_LUMINANCE6_ALPHA2,
GL_LUMINANCE8_ALPHA8, GL_LUMINANCE12_ALPHA4,

GL_LUMINANCE12_ALPHA12, GL_LUMINANCE16_ALPHA16, GL_INTENSITY,
GL_INTENSITY4, GL_INTENSITY8, GL_INTENSITY12, GL_INTENSITY16, GL_RGB,
GL_R3_G3_B2, GL_RGB4, GL_RGB5, GL_RGB8, GL_RGB10, GL_RGB12, GL_RGB16,
GL_RGBA, GL_RGBA2, GL_RGBA4, GL_RGB5_A1, GL_RGBA8, GL_RGB10_A2,
GL_RGBA12, and GL_RGBA16. (See "Texture Functions" for a discussion of how these
selected components are applied.)
If internalFormat is one of the thirty-eight symbolic constants, then you are asking for
specific components and perhaps the resolution of those components. For example, if
internalFormat is GL_R3_G3_B2, you are asking that texels be 3 bits of red, 3 bits of green,
and 2 bits of blue, but OpenGL is not guaranteed to deliver this. OpenGL is only obligated to
choose an internal representation that closely approximates what is requested, but an exact
match is usually not required. By definition, GL_LUMINANCE, GL_LUMINANCE_ALPHA,
GL_RGB, and GL_RGBA are lenient, because they do not ask for a specific resolution. (For
compatibility with the OpenGL release 1.0, the numeric values 1, 2, 3, and 4, for
internalFormat, are equivalent to the symbolic constants GL_LUMINANCE,
GL_LUMINANCE_ALPHA, GL_RGB, and GL_RGBA, respectively.)
The width and height parameters give the dimensions of the texture image; border indicates
the width of the border, which is either zero (no border) or one. (See "Using a Texture’s
Borders".) Both width and height must have the form 2m+2b, where m is a nonnegative
integer (which can have a different value for width than for height) and b is the value of
border. The maximum size of a texture map depends on the implementation of OpenGL, but it
must be at least 64 × 64 (or 66 × 66 with borders).
The format and type parameters describe the format and data type of the texture image data.
They have the same meaning as they do for glDrawPixels(). (See "Imaging Pipeline" in
Chapter 8.) In fact, texture data is in the same format as the data used by glDrawPixels(), so
the settings of glPixelStore*() and glPixelTransfer*() are applied. (In Example 9-1, the call

glPixelStorei(GL_UNPACK_ALIGNMENT, 1);

is made because the data in the example isn’t padded at the end of each texel row.) The
format parameter can be GL_COLOR_INDEX, GL_RGB, GL_RGBA, GL_RED,
GL_GREEN, GL_BLUE, GL_ALPHA, GL_LUMINANCE, or GL_LUMINANCE_ALPHA -
that is, the same formats available for glDrawPixels() with the exceptions of
GL_STENCIL_INDEX and GL_DEPTH_COMPONENT.
Similarly, the type parameter can be GL_BYTE, GL_UNSIGNED_BYTE, GL_SHORT,
GL_UNSIGNED_SHORT, GL_INT, GL_UNSIGNED_INT, GL_FLOAT, or GL_BITMAP.
Finally, pixels contains the texture-image data. This data describes the texture image itself as
well as its border.

The internal format of a texture image may affect the performance of texture operations. For
example, some implementations perform texturing with GL_RGBA faster than GL_RGB, because
the color components align the processor memory better. Since this varies, you should check
specific information about your implementation of OpenGL.

The internal format of a texture image also may control how much memory a texture image
consumes. For example, a texture of internal format GL_RGBA8 uses 32 bits per texel, while a
texture of internal format GL_R3_G3_B2 only uses 8 bits per texel. Of course, there is a
corresponding trade-off between memory consumption and color resolution.

Note: Although texture-mapping results in color-index mode are undefined, you can still specify a
texture with a GL_COLOR_INDEX image. In that case, pixel-transfer operations are applied to

convert the indices to RGBA values by table lookup before they’re used to form the texture image.

The number of texels for both the width and height of a texture image, not including the optional
border, must be a power of 2. If your original image does not have dimensions that fit that
limitation, you can use the OpenGL Utility Library routine gluScaleImage() to alter the size of
your textures.

int gluScaleImage(GLenum format, GLint widthin, GLint heightin,
GLenum typein, const void *datain, GLint widthout,
GLint heightout, GLenum typeout, void *dataout);

Scales an image using the appropriate pixel-storage modes to unpack the data from datain.
The format, typein, and typeout parameters can refer to any of the formats or data types
supported by glDrawPixels(). The image is scaled using linear interpolation and box filtering
(from the size indicated by widthin and heightin to widthout and heightout), and the resulting
image is written to dataout, using the pixel GL_PACK* storage modes. The caller of
gluScaleImage() must allocate sufficient space for the output buffer. A value of 0 is returned
on success, and a GLU error code is returned on failure.

The framebuffer itself can also be used as a source for texture data. glCopyTexImage2D() reads a
rectangle of pixels from the framebuffer and uses it for a new texture.

void glCopyTexImage2D(GLenum target, GLint level,
GLint internalFormat,
GLint x, GLint y, GLsizei width, GLsizei height,
GLint border);

Creates a two-dimensional texture, using framebuffer data to define the texels. The pixels are
read from the current GL_READ_BUFFER and are processed exactly as if glCopyPixels()
had been called but stopped before final conversion. The settings of glPixelTransfer*() are
applied.
The target parameter must be set to the constant GL_TEXTURE_2D. The level,
internalFormat, and border parameters have the same effects that they have for
glTexImage2D(). The texture array is taken from a screen-aligned pixel rectangle with the
lower-left corner at coordinates specified by the (x, y) parameters. The width and height
parameters specify the size of this pixel rectangle. Both width and height must have the form
2m+2b, where m is a nonnegative integer (which can have a different value for width than for
height) and b is the value of border.

The next sections give more detail about texturing, including the use of the target, border, and level
parameters. The target parameter can be used to accurately query the size of a texture (by creating a
texture proxy with glTexImage*D()) and whether a texture possibly can be used within the texture
resources of an OpenGL implementation. Redefining a portion of a texture is described in
"Replacing All or Part of a Texture Image." One-dimensional textures are discussed in
"One-Dimensional Textures." The texture border, which has its size controlled by the border
parameter, is detailed in "Using a Texture’s Borders." The level parameter is used to specify
textures of different resolutions and is incorporated into the special technique of mipmapping,
which is explained in "Multiple Levels of Detail." Mipmapping requires understanding how to filter
textures as they’re applied; filtering is the subject of "Filtering."

Texture Proxy

To an OpenGL programmer who uses textures, size is important. Texture resources are typically

limited and vary among OpenGL implementations. There is a special texture proxy target to
evaluate whether sufficient resources are available.

glGetIntegerv(GL_MAX_TEXTURE_SIZE,...) tells you the largest dimension (width or height,
without borders) of a texture image, typically the size of the largest square texture supported.
However, GL_MAX_TEXTURE_SIZE does not consider the effect of the internal format of a
texture. A texture image that stores texels using the GL_RGBA16 internal format may be using 64
bits per texel, so its image may have to be 16 times smaller than an image with the
GL_LUMINANCE4 internal format. (Also, images requiring borders or mipmaps may further
reduce the amount of available memory.)

A special place holder, or proxy, for a texture image allows the program to query more accurately
whether OpenGL can accommodate a texture of a desired internal format. To use the proxy to query
OpenGL, call glTexImage2D() with a target parameter of GL_PROXY_TEXTURE_2D and the
given level, internalFormat, width, height, border, format, and type. (For one-dimensional textures,
use corresponding 1D routines and symbolic constants.) For a proxy, you should pass NULL as the
pointer for the pixels array.

To find out whether there are enough resources available for your texture, after the texture proxy
has been created, query the texture state variables with glGetTexLevelParameter*(). If there aren’t
enough resources to accommodate the texture proxy, the texture state variables for width, height,
border width, and component resolutions are set to 0.

void glGetTexLevelParameter{if} v(GLenum target, GLint level,
GLenum pname, TYPE * params);

Returns in params texture parameter values for a specific level of detail, specified as level.
target defines the target texture and is one of GL_TEXTURE_1D, GL_TEXTURE_2D,
GL_PROXY_TEXTURE_1D, or GL_PROXY_TEXTURE_2D. Accepted values for pname are
GL_TEXTURE_WIDTH, GL_TEXTURE_HEIGHT, GL_TEXTURE_BORDER,
GL_TEXTURE_INTERNAL_FORMAT, GL_TEXTURE_RED_SIZE,
GL_TEXTURE_GREEN_SIZE, GL_TEXTURE_BLUE_SIZE, GL_TEXTURE_ALPHA_SIZE,
GL_TEXTURE_LUMINANCE_SIZE, or GL_TEXTURE_INTENSITY_SIZE.
GL_TEXTURE_COMPONENTS is also accepted for pname, but only for backward
compatibility with OpenGL Release 1.0 - GL_TEXTURE_INTERNAL_FORMAT is the
recommended symbolic constant for Release 1.1.

Example 9-2 demonstrates how to use the texture proxy to find out if there are enough resources to
create a 64 × 64 texel texture with RGBA components with 8 bits of resolution. If this succeeds,
then glGetTexLevelParameteriv() stores the internal format (in this case, GL_RGBA8) into the
variable format.

Example 9-2 : Querying Texture Resources with a Texture Proxy

 GLint format;

 glTexImage2D(GL_PROXY_TEXTURE_2D, 0, GL_RGBA8,
 64, 64, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL);
 glGetTexLevelParameteriv(GL_PROXY_TEXTURE_2D, 0,
 GL_TEXTURE_INTERNAL_FORMAT, &format);

Note: There is one major limitation about texture proxies: The texture proxy tells you if there is
space for your texture, but only if all texture resources are available (in other words, if it’s the only
texture in town). If other textures are using resources, then the texture proxy query may respond

affirmatively, but there may not be enough space to make your texture resident (that is, part of a
possibly high-performance working set of textures). (See "Texture Objects" for more information
about managing resident textures.)

Replacing All or Part of a Texture Image

Creating a texture may be more computationally expensive than modifying an existing one. In
OpenGL Release 1.1, there are new routines to replace all or part of a texture image with new
information. This can be helpful for certain applications, such as using real-time, captured video
images as texture images. For that application, it makes sense to create a single texture and use
glTexSubImage2D() to repeatedly replace the texture data with new video images. Also, there are
no size restrictions for glTexSubImage2D() that force the height or width to be a power of two.
This is helpful for processing video images, which generally do not have sizes that are powers of
two.

void glTexSubImage2D(GLenum target, GLint level, GLint xoffset,
GLint yoffset, GLsizei width, GLsizei height,
GLenum format, GLenum type, const GLvoid *pixels);

Defines a two-dimensional texture image that replaces all or part of a contiguous subregion
(in 2D, it’s simply a rectangle) of the current, existing two-dimensional texture image. The
target parameter must be set to GL_TEXTURE_2D.
The level, format, and type parameters are similar to the ones used for glTexImage2D().
level is the mipmap level-of-detail number. It is not an error to specify a width or height of
zero, but the subimage will have no effect. format and type describe the format and data type
of the texture image data. The subimage is also affected by modes set by glPixelStore*() and
glPixelTransfer*().
pixels contains the texture data for the subimage. width and height are the dimensions of the
subregion that is replacing all or part of the current texture image. xoffset and yoffset specify
the texel offset in the x and y directions (with (0, 0) at the lower-left corner of the texture) and
specify where to put the subimage within the existing texture array. This region may not
include any texels outside the range of the originally defined texture array.

In Example 9-3, some of the code from Example 9-1 has been modified so that pressing the ‘s’ key
drops a smaller checkered subimage into the existing image. (The resulting texture is shown in
Figure 9-3.) Pressing the ‘r’ key restores the original image. Example 9-3 shows the two routines,
makeCheckImages() and keyboard(), that have been substantially changed. (See "Texture
Objects" for more information about glBindTexture().)

Figure 9-3 : Texture with Subimage Added

Example 9-3 : Replacing a Texture Subimage: texsub.c

/* Create checkerboard textures */
#define checkImageWidth 64
#define checkImageHeight 64
#define subImageWidth 16
#define subImageHeight 16
static GLubyte checkImage[checkImageHeight][checkImageWidth][4];
static GLubyte subImage[subImageHeight][subImageWidth][4];

void makeCheckImages(void)
{
 int i, j, c;

 for (i = 0; i < checkImageHeight; i++) {
 for (j = 0; j < checkImageWidth; j++) {
 c = ((((i&0x8)==0)^((j&0x8))==0))*255;
 checkImage[i][j][0] = (GLubyte) c;
 checkImage[i][j][1] = (GLubyte) c;
 checkImage[i][j][2] = (GLubyte) c;
 checkImage[i][j][3] = (GLubyte) 255;
 }
 }
 for (i = 0; i < subImageHeight; i++) {
 for (j = 0; j < subImageWidth; j++) {
 c = ((((i&0x4)==0)^((j&0x4))==0))*255;
 subImage[i][j][0] = (GLubyte) c;
 subImage[i][j][1] = (GLubyte) 0;
 subImage[i][j][2] = (GLubyte) 0;
 subImage[i][j][3] = (GLubyte) 255;
 }
 }
}

void keyboard (unsigned char key, int x, int y)
{
 switch (key) {
 case ‘s’:
 case ‘S’:
 glBindTexture(GL_TEXTURE_2D, texName);
 glTexSubImage2D(GL_TEXTURE_2D, 0, 12, 44,
 subImageWidth, subImageHeight, GL_RGBA,
 GL_UNSIGNED_BYTE, subImage);
 glutPostRedisplay();
 break;
 case ‘r’:
 case ‘R’:
 glBindTexture(GL_TEXTURE_2D, texName);
 glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA,
 checkImageWidth, checkImageHeight, 0,
 GL_RGBA, GL_UNSIGNED_BYTE, checkImage);
 glutPostRedisplay();
 break;
 case 27:
 exit(0);
 break;
 default:
 break;
 }
}

Once again, the framebuffer itself can be used as a source for texture data; this time, a texture
subimage. glCopyTexSubImage2D() reads a rectangle of pixels from the framebuffer and replaces
a portion of an existing texture array. (glCopyTexSubImage2D() is kind of a cross between
glCopyTexImage2D() and glTexSubImage2D().)

void glCopyTexSubImage2D(GLenum target, GLint level,
GLint xoffset, GLint yoffset, GLint x, GLint y,
GLsizei width, GLsizei height);

Uses image data from the framebuffer to replace all or part of a contiguous subregion of the
current, existing two-dimensional texture image. The pixels are read from the current
GL_READ_BUFFER and are processed exactly as if glCopyPixels() had been called,
stopping before final conversion. The settings of glPixelStore*() and glPixelTransfer*() are
applied.
The target parameter must be set to GL_TEXTURE_2D. level is the mipmap level-of-detail
number. xoffset and yoffset specify the texel offset in the x and y directions (with (0, 0) at the
lower-left corner of the texture) and specify where to put the subimage within the existing
texture array. The subimage texture array is taken from a screen-aligned pixel rectangle with
the lower-left corner at coordinates specified by the (x, y) parameters. The width and height
parameters specify the size of this subimage rectangle.

One-Dimensional Textures

Sometimes a one-dimensional texture is sufficient - for example, if you’re drawing textured bands
where all the variation is in one direction. A one-dimensional texture behaves like a
two-dimensional one with height = 1, and without borders along the top and bottom. All the
two-dimensional texture and subtexture definition routines have corresponding one-dimensional
routines. To create a simple one-dimensional texture, use glTexImage1D().

void glTexImage1D(GLenum target, GLint level, GLint internalFormat,
GLsizei width, GLint border, GLenum format,
GLenum type, const GLvoid *pixels);

Defines a one-dimensional texture. All the parameters have the same meanings as for
glTexImage2D(), except that the image is now a one-dimensional array of texels. As before,
the value of width is 2m (or 2m+2, if there’s a border), where m is a nonnegative integer. You
can supply mipmaps, proxies (set target to GL_PROXY_TEXTURE_1D), and the same
filtering options are available as well.

For a sample program that uses a one-dimensional texture map, see Example 9-6.

To replace all or some of the texels of a one-dimensional texture, use glTexSubImage1D().

void glTexSubImage1D(GLenum target, GLint level, GLint xoffset,
GLsizei width, GLenum format,
GLenum type, const GLvoid *pixels);

Defines a one-dimensional texture array that replaces all or part of a contiguous subregion
(in 1D, a row) of the current, existing one-dimensional texture image. The target parameter
must be set to GL_TEXTURE_1D.
The level, format, and type parameters are similar to the ones used for glTexImage1D().
level is the mipmap level-of-detail number. format and type describe the format and data type
of the texture image data. The subimage is also affected by modes set by glPixelStore*() or
glPixelTransfer*().

pixels contains the texture data for the subimage. width is the number of texels that replace part or
all of the current texture image. xoffset specifies the texel offset for where to put the subimage
within the existing texture array.

To use the framebuffer as the source of a new or replacement for an old one-dimensional texture,
use either glCopyTexImage1D() or glCopyTexSubImage1D().

void glCopyTexImage1D(GLenum target, GLint level,
GLint internalFormat, GLint x, GLint y,
GLsizei width, GLint border);

Creates a one-dimensional texture, using framebuffer data to define the texels. The pixels are
read from the current GL_READ_BUFFER and are processed exactly as if glCopyPixels()
had been called but stopped before final conversion. The settings of glPixelStore*() and
glPixelTransfer*() are applied.
The target parameter must be set to the constant GL_TEXTURE_1D. The level,
internalFormat, and border parameters have the same effects that they have for
glCopyTexImage2D(). The texture array is taken from a row of pixels with the lower-left
corner at coordinates specified by the (x, y) parameters. The width parameter specifies the
number of pixels in this row. The value of width is 2m (or 2m+2 if there’s a border), where m
is a nonnegative integer.

void glCopyTexSubImage1D(GLenum target, GLint level, GLint xoffset,
GLint x, GLint y, GLsizei width);

Uses image data from the framebuffer to replace all or part of a contiguous subregion of the
current, existing one-dimensional texture image. The pixels are read from the current
GL_READ_BUFFER and are processed exactly as if glCopyPixels() had been called but
stopped before final conversion. The settings of glPixelStore*() and glPixelTransfer*() are
applied.
The target parameter must be set to GL_TEXTURE_1D. level is the mipmap level-of-detail
number. xoffset specifies the texel offset and specifies where to put the subimage within the
existing texture array. The subimage texture array is taken from a row of pixels with the
lower-left corner at coordinates specified by the (x, y) parameters. The width parameter
specifies the number of pixels in this row.

Using a Texture’s Borders

Advanced

If you need to apply a larger texture map than your implementation of OpenGL allows, you can,
with a little care, effectively make larger textures by tiling with several different textures. For
example, if you need a texture twice as large as the maximum allowed size mapped to a square,
draw the square as four subsquares, and load a different texture before drawing each piece.

Since only a single texture map is available at one time, this approach might lead to problems at the
edges of the textures, especially if some form of linear filtering is enabled. The texture value to be
used for pixels at the edges must be averaged with something beyond the edge, which, ideally,
should come from the adjacent texture map. If you define a border for each texture whose texel
values are equal to the values of the texels on the edge of the adjacent texture map, then the correct
behavior results when linear filtering takes place.

To do this correctly, notice that each map can have eight neighbors - one adjacent to each edge, and
one touching each corner. The values of the texels in the corner of the border need to correspond
with the texels in the texture maps that touch the corners. If your texture is an edge or corner of the
whole tiling, you need to decide what values would be reasonable to put in the borders. The easiest
reasonable thing to do is to copy the value of the adjacent texel in the texture map. Remember that
the border values need to be supplied at the same time as the texture-image data, so you need to

figure this out ahead of time.

A texture’s border color is also used if the texture is applied in such a way that it only partially
covers a primitive. (See "Repeating and Clamping Textures" for more information about this
situation.)

Multiple Levels of Detail

Advanced

Textured objects can be viewed, like any other objects in a scene, at different distances from the
viewpoint. In a dynamic scene, as a textured object moves farther from the viewpoint, the texture
map must decrease in size along with the size of the projected image. To accomplish this, OpenGL
has to filter the texture map down to an appropriate size for mapping onto the object, without
introducing visually disturbing artifacts. For example, to render a brick wall, you may use a large
(say 128 × 128 texel) texture image when it is close to the viewer. But if the wall is moved farther
away from the viewer until it appears on the screen as a single pixel, then the filtered textures may
appear to change abruptly at certain transition points.

To avoid such artifacts, you can specify a series of prefiltered texture maps of decreasing
resolutions, called mipmaps, as shown in Figure 9-4. The term mipmap was coined by Lance
Williams, when he introduced the idea in his paper, "Pyramidal Parametrics" (SIGGRAPH 1983
Proceedings). Mip stands for the Latin multim im parvo, meaning "many things in a small place."
Mipmapping uses some clever methods to pack image data into memory.

Figure 9-4 : Mipmaps

When using mipmapping, OpenGL automatically determines which texture map to use based on the
size (in pixels) of the object being mapped. With this approach, the level of detail in the texture
map is appropriate for the image that’s drawn on the screen - as the image of the object gets
smaller, the size of the texture map decreases. Mipmapping requires some extra computation and
texture storage area; however, when it’s not used, textures that are mapped onto smaller objects
might shimmer and flash as the objects move.

To use mipmapping, you must provide all sizes of your texture in powers of 2 between the largest
size and a 1 × 1 map. For example, if your highest-resolution map is 64 × 16, you must also provide
maps of size 32 × 8, 16 × 4, 8 × 2, 4 × 1, 2 × 1, and 1 × 1. The smaller maps are typically filtered
and averaged-down versions of the largest map in which each texel in a smaller texture is an
average of the corresponding four texels in the larger texture. (Since OpenGL doesn’t require any
particular method for calculating the smaller maps, the differently sized textures could be totally
unrelated. In practice, unrelated textures would make the transitions between mipmaps extremely
noticeable.)

To specify these textures, call glTexImage2D() once for each resolution of the texture map, with
different values for the level, width, height, and image parameters. Starting with zero, level
identifies which texture in the series is specified; with the previous example, the largest texture of
size 64 × 16 would be declared with level = 0, the 32 × 8 texture with level = 1, and so on. In
addition, for the mipmapped textures to take effect, you need to choose one of the appropriate
filtering methods described in the next section.

Example 9-4 illustrates the use of a series of six texture maps decreasing in size from 32 × 32 to 1 ×
1. This program draws a rectangle that extends from the foreground far back in the distance,
eventually disappearing at a point, as shown in "Plate 20" in Appendix I. Note that the texture
coordinates range from 0.0 to 8.0 so 64 copies of the texture map are required to tile the rectangle,
eight in each direction. To illustrate how one texture map succeeds another, each map has a
different color.

Example 9-4 : Mipmap Textures: mipmap.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>
#include <stdlib.h>

GLubyte mipmapImage32[32][32][4];
GLubyte mipmapImage16[16][16][4];
GLubyte mipmapImage8[8][8][4];
GLubyte mipmapImage4[4][4][4];
GLubyte mipmapImage2[2][2][4];
GLubyte mipmapImage1[1][1][4];

static GLuint texName;

void makeImages(void)
{
 int i, j;

 for (i = 0; i < 32; i++) {
 for (j = 0; j < 32; j++) {
 mipmapImage32[i][j][0] = 255;
 mipmapImage32[i][j][1] = 255;
 mipmapImage32[i][j][2] = 0;
 mipmapImage32[i][j][3] = 255;
 }
 }
 for (i = 0; i < 16; i++) {
 for (j = 0; j < 16; j++) {
 mipmapImage16[i][j][0] = 255;
 mipmapImage16[i][j][1] = 0;
 mipmapImage16[i][j][2] = 255;
 mipmapImage16[i][j][3] = 255;
 }

 }
 for (i = 0; i < 8; i++) {
 for (j = 0; j < 8; j++) {
 mipmapImage8[i][j][0] = 255;
 mipmapImage8[i][j][1] = 0;
 mipmapImage8[i][j][2] = 0;
 mipmapImage8[i][j][3] = 255;
 }
 }
 for (i = 0; i < 4; i++) {
 for (j = 0; j < 4; j++) {
 mipmapImage4[i][j][0] = 0;
 mipmapImage4[i][j][1] = 255;
 mipmapImage4[i][j][2] = 0;
 mipmapImage4[i][j][3] = 255;
 }
 }
 for (i = 0; i < 2; i++) {
 for (j = 0; j < 2; j++) {
 mipmapImage2[i][j][0] = 0;
 mipmapImage2[i][j][1] = 0;
 mipmapImage2[i][j][2] = 255;
 mipmapImage2[i][j][3] = 255;
 }
 }
 mipmapImage1[0][0][0] = 255;
 mipmapImage1[0][0][1] = 255;
 mipmapImage1[0][0][2] = 255;
 mipmapImage1[0][0][3] = 255;
}

void init(void)
{
 glEnable(GL_DEPTH_TEST);
 glShadeModel(GL_FLAT);

 glTranslatef(0.0, 0.0, -3.6);
 makeImages();
 glPixelStorei(GL_UNPACK_ALIGNMENT, 1);

 glGenTextures(1, &texName);
 glBindTexture(GL_TEXTURE_2D, texName);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,
 GL_NEAREST);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
 GL_NEAREST_MIPMAP_NEAREST);
 glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, 32, 32, 0,
 GL_RGBA, GL_UNSIGNED_BYTE, mipmapImage32);
 glTexImage2D(GL_TEXTURE_2D, 1, GL_RGBA, 16, 16, 0,
 GL_RGBA, GL_UNSIGNED_BYTE, mipmapImage16);
 glTexImage2D(GL_TEXTURE_2D, 2, GL_RGBA, 8, 8, 0,
 GL_RGBA, GL_UNSIGNED_BYTE, mipmapImage8);
 glTexImage2D(GL_TEXTURE_2D, 3, GL_RGBA, 4, 4, 0,
 GL_RGBA, GL_UNSIGNED_BYTE, mipmapImage4);
 glTexImage2D(GL_TEXTURE_2D, 4, GL_RGBA, 2, 2, 0,
 GL_RGBA, GL_UNSIGNED_BYTE, mipmapImage2);
 glTexImage2D(GL_TEXTURE_2D, 5, GL_RGBA, 1, 1, 0,
 GL_RGBA, GL_UNSIGNED_BYTE, mipmapImage1);

 glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_DECAL);
 glEnable(GL_TEXTURE_2D);
}

void display(void)
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 glBindTexture(GL_TEXTURE_2D, texName);
 glBegin(GL_QUADS);
 glTexCoord2f(0.0, 0.0); glVertex3f(-2.0, -1.0, 0.0);
 glTexCoord2f(0.0, 8.0); glVertex3f(-2.0, 1.0, 0.0);
 glTexCoord2f(8.0, 8.0); glVertex3f(2000.0, 1.0, -6000.0);
 glTexCoord2f(8.0, 0.0); glVertex3f(2000.0, -1.0, -6000.0);
 glEnd();
 glFlush();
}

void reshape(int w, int h)
{
 glViewport(0, 0, (GLsizei) w, (GLsizei) h);
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluPerspective(60.0, (GLfloat)w/(GLfloat)h, 1.0, 30000.0);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
}

void keyboard (unsigned char key, int x, int y)
{
 switch (key) {
 case 27:
 exit(0);
 break;
 default:
 break;
 }
}

int main(int argc, char** argv)
{
 glutInit(&argc, argv);
 glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);
 glutInitWindowSize(500, 500);
 glutInitWindowPosition(50, 50);
 glutCreateWindow(argv[0]);
 init();
 glutDisplayFunc(display);
 glutReshapeFunc(reshape);
 glutKeyboardFunc(keyboard);
 glutMainLoop();
 return 0;
}

Example 9-4 illustrates mipmapping by making each mipmap a different color so that it’s obvious
when one map is replaced by another. In a real situation, you define mipmaps so that the transition
is as smooth as possible. Thus, the maps of lower resolution are usually filtered versions of an
original, high-resolution map. The construction of a series of such mipmaps is a software process,
and thus isn’t part of OpenGL, which is simply a rendering library. However, since mipmap
construction is such an important operation, however, the OpenGL Utility Library contains two
routines that aid in the manipulation of images to be used as mipmapped textures.

Assuming you have constructed the level 0, or highest-resolution map, the routines
gluBuild1DMipmaps() and gluBuild2DMipmaps() construct and define the pyramid of mipmaps
down to a resolution of 1 × 1 (or 1, for one-dimensional texture maps). If your original image has
dimensions that are not exact powers of 2, gluBuild*DMipmaps() helpfully scales the image to the
nearest power of 2.

int gluBuild1DMipmaps(GLenum target, GLint components, GLint width,
GLenum format, GLenum type, void *data);
int gluBuild2DMipmaps(GLenum target, GLint components, GLint width,
GLint height, GLenum format, GLenum type,
void *data);

Constructs a series of mipmaps and calls glTexImage*D() to load the images. The
parameters for target, components, width, height, format, type, and data are exactly the same
as those for glTexImage1D() and glTexImage2D(). A value of 0 is returned if all the
mipmaps are constructed successfully; otherwise, a GLU error code is returned.

Filtering

Texture maps are square or rectangular, but after being mapped to a polygon or surface and
transformed into screen coordinates, the individual texels of a texture rarely correspond to
individual pixels of the final screen image. Depending on the transformations used and the texture
mapping applied, a single pixel on the screen can correspond to anything from a tiny portion of a
texel (magnification) to a large collection of texels (minification), as shown in Figure 9-5. In either
case, it’s unclear exactly which texel values should be used and how they should be averaged or
interpolated. Consequently, OpenGL allows you to specify any of several filtering options to
determine these calculations. The options provide different trade-offs between speed and image
quality. Also, you can specify independently the filtering methods for magnification and
minification.

Figure 9-5 : Texture Magnification and Minification

In some cases, it isn’t obvious whether magnification or minification is called for. If the mipmap
needs to be stretched (or shrunk) in both the x and y directions, then magnification (or minification)
is needed. If the mipmap needs to be stretched in one direction and shrunk in the other, OpenGL
makes a choice between magnification and minification that in most cases gives the best result
possible. It’s best to try to avoid these situations by using texture coordinates that map without such
distortion. (See "Computing Appropriate Texture Coordinates.")

The following lines are examples of how to use glTexParameter*() to specify the magnification
and minification filtering methods:

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,
 GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
 GL_NEAREST);

The first argument to glTexParameter*() is either GL_TEXTURE_2D or GL_TEXTURE_1D,
depending on whether you’re working with two- or one-dimensional textures. For the purposes of
this discussion, the second argument is either GL_TEXTURE_MAG_FILTER or
GL_TEXTURE_MIN_FILTER to indicate whether you’re specifying the filtering method for
magnification or minification. The third argument specifies the filtering method; Table 9-1 lists the
possible values.

Table 9-1 : Filtering Methods for Magnification and Minification

Parameter Values

GL_TEXTURE_MAG_FILTER GL_NEAREST or GL_LINEAR

GL_TEXTURE_MIN_FILTER GL_NEAREST, GL_LINEAR,
GL_NEAREST_MIPMAP_NEAREST,
GL_NEAREST_MIPMAP_LINEAR,
GL_LINEAR_MIPMAP_NEAREST, or
GL_LINEAR_MIPMAP_LINEAR

If you choose GL_NEAREST, the texel with coordinates nearest the center of the pixel is used for
both magnification and minification. This can result in aliasing artifacts (sometimes severe). If you
choose GL_LINEAR, a weighted linear average of the 2 × 2 array of texels that lie nearest to the
center of the pixel is used, again for both magnification and minification. When the texture
coordinates are near the edge of the texture map, the nearest 2 × 2 array of texels might include
some that are outside the texture map. In these cases, the texel values used depend on whether
GL_REPEAT or GL_CLAMP is in effect and whether you’ve assigned a border for the texture.
(See "Using a Texture’s Borders.") GL_NEAREST requires less computation than GL_LINEAR
and therefore might execute more quickly, but GL_LINEAR provides smoother results.

With magnification, even if you’ve supplied mipmaps, the largest texture map (level = 0) is always
used. With minification, you can choose a filtering method that uses the most appropriate one or
two mipmaps, as described in the next paragraph. (If GL_NEAREST or GL_LINEAR is specified
with minification, the largest texture map is used.)

As shown in Table 9-1, four additional filtering choices are available when minifying with
mipmaps. Within an individual mipmap, you can choose the nearest texel value with
GL_NEAREST_MIPMAP_NEAREST, or you can interpolate linearly by specifying
GL_LINEAR_MIPMAP_NEAREST. Using the nearest texels is faster but yields less desirable
results. The particular mipmap chosen is a function of the amount of minification required, and
there’s a cutoff point from the use of one particular mipmap to the next. To avoid a sudden
transition, use GL_NEAREST_MIPMAP_LINEAR or GL_LINEAR_MIPMAP_LINEAR to
linearly interpolate texel values from the two nearest best choices of mipmaps.
GL_NEAREST_MIPMAP_LINEAR selects the nearest texel in each of the two maps and then
interpolates linearly between these two values. GL_LINEAR_MIPMAP_LINEAR uses linear
interpolation to compute the value in each of two maps and then interpolates linearly between these
two values. As you might expect, GL_LINEAR_MIPMAP_LINEAR generally produces the
smoothest results, but it requires the most computation and therefore might be the slowest.

Texture Objects

Texture objects are an important new feature in release 1.1 of OpenGL. A texture object stores
texture data and makes it readily available. You can now control many textures and go back to
textures that have been previously loaded into your texture resources. Using texture objects is
usually the fastest way to apply textures, resulting in big performance gains, because it is almost
always much faster to bind (reuse) an existing texture object than it is to reload a texture image
using glTexImage*D().

Also, some implementations support a limited working set of high-performance textures. You can
use texture objects to load your most often used textures into this limited area.

To use texture objects for your texture data, take these steps.

1. Generate texture names.

2. Initially bind (create) texture objects to texture data, including the image arrays and texture
properties.

3. If your implementation supports a working set of high-performance textures, see if you have
enough space for all your texture objects. If there isn’t enough space, you may wish to
establish priorities for each texture object so that more often used textures stay in the working
set.

4. Bind and rebind texture objects, making their data currently available for rendering textured
models.

Naming A Texture Object

Any nonzero unsigned integer may be used as a texture name. To avoid accidentally reusing names,
consistently use glGenTextures() to provide unused texture names.

void glGenTextures(GLsizei n, GLuint *textureNames);
Returns n currently unused names for texture objects in the array textureNames. The names
returned in textureNames do not have to be a contiguous set of integers.
The names in textureNames are marked as used, but they acquire texture state and
dimensionality (1D or 2D) only when they are first bound.
Zero is a reserved texture name and is never returned as a texture name by glGenTextures().

glIsTexture() determines if a texture name is actually in use. If a texture name was returned by
glGenTextures() but has not yet been bound (calling glBindTexture() with the name at least
once), then glIsTexture() returns GL_FALSE.

GLboolean glIsTexture(GLuint textureName);
Returns GL_TRUE if textureName is the name of a texture that has been bound and has not
been subsequently deleted. Returns GL_FALSE if textureName is zero or textureName is a
nonzero value that is not the name of an existing texture.

Creating and Using Texture Objects

The same routine, glBindTexture(), both creates and uses texture objects. When a texture name is
initially bound (used with glBindTexture()), a new texture object is created with default values for
the texture image and texture properties. Subsequent calls to glTexImage*(), glTexSubImage*(),
glCopyTexImage*(), glCopyTexSubImage*(), glTexParameter*(), and glPrioritizeTextures()
store data in the texture object. The texture object may contain a texture image and associated
mipmap images (if any), including associated data such as width, height, border width, internal
format, resolution of components, and texture properties. Saved texture properties include
minification and magnification filters, wrapping modes, border color, and texture priority.

When a texture object is subsequently bound once again, its data becomes the current texture state.
(The state of the previously bound texture is replaced.)

void glBindTexture(GLenum target, GLuint textureName);
glBindTexture() does three things. When using textureName of an unsigned integer other
than zero for the first time, a new texture object is created and assigned that name. When
binding to a previously created texture object, that texture object becomes active. When
binding to a textureName value of zero, OpenGL stops using texture objects and returns to
the unnamed default texture.
When a texture object is initially bound (that is, created), it assumes the dimensionality of
target, which is either GL_TEXTURE_1D or GL_TEXTURE_2D. Immediately upon its initial
binding, the state of texture object is equivalent to the state of the default GL_TEXTURE_1D
or GL_TEXTURE_2D (depending upon its dimensionality) at the initialization of OpenGL. In
this initial state, texture properties such as minification and magnification filters, wrapping
modes, border color, and texture priority are set to their default values.

In Example 9-5, two texture objects are created in init(). In display(), each texture object is used to
render a different four-sided polygon.

Example 9-5 : Binding Texture Objects: texbind.c

#define checkImageWidth 64
#define checkImageHeight 64
static GLubyte checkImage[checkImageHeight][checkImageWidth][4];
static GLubyte otherImage[checkImageHeight][checkImageWidth][4];

static GLuint texName[2];

void makeCheckImages(void)
{
 int i, j, c;

 for (i = 0; i < checkImageHeight; i++) {
 for (j = 0; j < checkImageWidth; j++) {
 c = ((((i&0x8)==0)^((j&0x8))==0))*255;
 checkImage[i][j][0] = (GLubyte) c;
 checkImage[i][j][1] = (GLubyte) c;
 checkImage[i][j][2] = (GLubyte) c;
 checkImage[i][j][3] = (GLubyte) 255;
 c = ((((i&0x10)==0)^((j&0x10))==0))*255;
 otherImage[i][j][0] = (GLubyte) c;
 otherImage[i][j][1] = (GLubyte) 0;
 otherImage[i][j][2] = (GLubyte) 0;
 otherImage[i][j][3] = (GLubyte) 255;
 }
 }
}

void init(void)
{
 glClearColor (0.0, 0.0, 0.0, 0.0);
 glShadeModel(GL_FLAT);
 glEnable(GL_DEPTH_TEST);

 makeCheckImages();
 glPixelStorei(GL_UNPACK_ALIGNMENT, 1);

 glGenTextures(2, texName);
 glBindTexture(GL_TEXTURE_2D, texName[0]);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,
 GL_NEAREST);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
 GL_NEAREST);
 glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, checkImageWidth,
 checkImageHeight, 0, GL_RGBA, GL_UNSIGNED_BYTE,
 checkImage);

 glBindTexture(GL_TEXTURE_2D, texName[1]);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,
 GL_NEAREST);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
 GL_NEAREST);
 glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_DECAL);
 glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, checkImageWidth,
 checkImageHeight, 0, GL_RGBA, GL_UNSIGNED_BYTE,
 otherImage);
 glEnable(GL_TEXTURE_2D);
}

void display(void)
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 glBindTexture(GL_TEXTURE_2D, texName[0]);
 glBegin(GL_QUADS);
 glTexCoord2f(0.0, 0.0); glVertex3f(-2.0, -1.0, 0.0);
 glTexCoord2f(0.0, 1.0); glVertex3f(-2.0, 1.0, 0.0);
 glTexCoord2f(1.0, 1.0); glVertex3f(0.0, 1.0, 0.0);
 glTexCoord2f(1.0, 0.0); glVertex3f(0.0, -1.0, 0.0);
 glEnd();
 glBindTexture(GL_TEXTURE_2D, texName[1]);
 glBegin(GL_QUADS);
 glTexCoord2f(0.0, 0.0); glVertex3f(1.0, -1.0, 0.0);
 glTexCoord2f(0.0, 1.0); glVertex3f(1.0, 1.0, 0.0);
 glTexCoord2f(1.0, 1.0); glVertex3f(2.41421, 1.0, -1.41421);
 glTexCoord2f(1.0, 0.0); glVertex3f(2.41421, -1.0, -1.41421);
 glEnd();
 glFlush();
}

Whenever a texture object is bound once again, you may edit the contents of the bound texture
object. Any commands you call that change the texture image or other properties change the
contents of the currently bound texture object as well as the current texture state.

In Example 9-5, after completion of display(), you are still bound to the texture named by the
contents of texName[1]. Be careful that you don’t call a spurious texture routine that changes the
data in that texture object.

When using mipmaps, all related mipmaps of a single texture image must be put into a single
texture object. In Example 9-4, levels 0-5 of a mipmapped texture image are put into a single
texture object named texName.

Cleaning Up Texture Objects

As you bind and unbind texture objects, their data still sits around somewhere among your texture
resources. If texture resources are limited, deleting textures may be one way to free up resources.

void glDeleteTextures(GLsizei n, const GLuint *textureNames);
Deletes n texture objects, named by elements in the array textureNames. The freed texture
names may now be reused (for example, by glGenTextures()).
If a texture that is currently bound is deleted, the binding reverts to the default texture, as if
glBindTexture() were called with zero for the value of textureName. Attempts to delete
nonexistent texture names or the texture name of zero are ignored without generating an
error.

A Working Set of Resident Textures

Some OpenGL implementations support a working set of high-performance textures, which are said
to be resident. Typically, these implementations have specialized hardware to perform texture
operations and a limited hardware cache to store texture images. In this case, using texture objects
is recommended, because you are able to load many textures into the working set and then control
them.

If all the textures required by the application exceed the size of the cache, some textures cannot be
resident. If you want to find out if a single texture is currently resident, bind its object, and then use
glGetTexParameter*v() to find out the value associated with the GL_TEXTURE_RESIDENT
state. If you want to know about the texture residence status of many textures, use
glAreTexturesResident().

GLboolean glAreTexturesResident(GLsizei n, const
GLuint*textureNames, GLboolean *residences);

Queries the texture residence status of the n texture objects, named in the array
textureNames. residences is an array in which texture residence status is returned for the
corresponding texture objects in the array textureNames. If all the named textures in
textureNames are resident, the glAreTexturesResident() function returns GL_TRUE, and the
contents of the array residences are undisturbed. If any texture in textureNames is not
resident, then glAreTexturesResident() returns GL_FALSE and the elements in residences,
which correspond to nonresident texture objects in textureNames, are also set to GL_FALSE.

Note that glAreTexturesResident() returns the current residence status. Texture resources are very
dynamic, and texture residence status may change at any time. Some implementations cache
textures when they are first used. It may be necessary to draw with the texture before checking
residency.

If your OpenGL implementation does not establish a working set of high-performance textures,
then the texture objects are always considered resident. In that case, glAreTexturesResident()
always returns GL_TRUE and basically provides no information.

Texture Residence Strategies

If you can create a working set of textures and want to get the best texture performance possible,
you really have to know the specifics of your implementation and application. For example, with a
visual simulation or video game, you have to maintain performance in all situations. In that case,
you should never access a nonresident texture. For these applications, you want to load up all your
textures upon initialization and make them all resident. If you don’t have enough texture memory
available, you may need to reduce the size, resolution, and levels of mipmaps for your texture
images, or you may use glTexSubImage*() to repeatedly reuse the same texture memory.

For applications that create textures "on the fly," nonresident textures may be unavoidable. If some
textures are used more frequently than others, you may assign a higher priority to those texture
objects to increase their likelihood of being resident. Deleting texture objects also frees up space.
Short of that, assigning a lower priority to a texture object may make it first in line for being moved
out of the working set, as resources dwindle. glPrioritizeTextures() is used to assign priorities to
texture objects.

void glPrioritizeTextures(GLsizei n, const GLuint *textureNames,
const GLclampf *priorities);

Assigns the n texture objects, named in the array textureNames, the texture residence
priorities in the corresponding elements of the array priorities. The priority values in the
array priorities are clamped to the range [0.0, 1.0] before being assigned. Zero indicates the
lowest priority; these textures are least likely to be resident. One indicates the highest
priority.
glPrioritizeTextures() does not require that any of the textures in textureNames be bound.
However, the priority might not have any effect on a texture object until it is initially bound.

glTexParameter*() also may be used to set a single texture’s priority, but only if the texture is
currently bound. In fact, use of glTexParameter*() is the only way to set the priority of a default
texture.

If texture objects have equal priority, typical implementations of OpenGL apply a least recently
used (LRU) strategy to decide which texture objects to move out of the working set. If you know
that your OpenGL implementation has this behavior, then having equal priorities for all texture
objects creates a reasonable LRU system for reallocating texture resources.

If your implementation of OpenGL doesn’t use an LRU strategy for texture objects of equal priority
(or if you don’t know how it decides), you can implement your own LRU strategy by carefully
maintaining the texture object priorities. When a texture is used (bound), you can maximize its
priority, which reflects its recent use. Then, at regular (time) intervals, you can degrade the
priorities of all texture objects.

Note: Fragmentation of texture memory can be a problem, especially if you’re deleting and creating
lots of new textures. Although it is even possible that you can load all the texture objects into a
working set by binding them in one sequence, binding them in a different sequence may leave some
textures nonresident.

Texture Functions

In all the examples so far in this chapter, the values in the texture map have been used directly as
colors to be painted on the surface being rendered. You can also use the values in the texture map to

modulate the color that the surface would be rendered without texturing, or to blend the color in the
texture map with the original color of the surface. You choose one of four texturing functions by
supplying the appropriate arguments to glTexEnv*().

void glTexEnv{if}(GLenum target, GLenum pname, TYPEparam);
void glTexEnv{if} v(GLenum target, GLenum pname, TYPE * param);

Sets the current texturing function. target must be GL_TEXTURE_ENV. If pname is
GL_TEXTURE_ENV_MODE, param can be GL_DECAL, GL_REPLACE, GL_MODULATE,
or GL_BLEND, to specify how texture values are to be combined with the color values of the
fragment being processed. If pname is GL_TEXTURE_ENV_COLOR, param is an array of
four floating-point values representing R, G, B, and A components. These values are used
only if the GL_BLEND texture function has been specified as well.

The combination of the texturing function and the base internal format determine how the textures
are applied for each component of the texture. The texturing function operates on selected
components of the texture and the color values that would be used with no texturing. (Note that the
selection is performed after the pixel-transfer function has been applied.) Recall that when you
specify your texture map with glTexImage*D(), the third argument is the internal format to be
selected for each texel.

Table 9-2 and Table 9-3 show how the texturing function and base internal format determine the
texturing application formula used for each component of the texture. There are six base internal
formats (the letters in parentheses represent their values in the tables): GL_ALPHA (A),
GL_LUMINANCE (L), GL_LUMINANCE_ALPHA (L and A), GL_INTENSITY (I), GL_RGB
(C), and GL_RGBA (C and A). Other internal formats specify desired resolutions of the texture
components and can be matched to one of these six base internal formats.

Table 9-2 : Replace and Modulate Texture Function

Base Internal Format Replace Texture Function Modulate Texture Function

GL_ALPHA C = Cf,
A = At

C = Cf,
A = AfAt

GL_LUMINANCE C = Lt,
A = Af

C = CfLt,
A = Af

GL_LUMINANCE_ALPHA C = Lt,
A = At

C = CfLt,
A = AfAt

GL_INTENSITY C = It,
A = It

C = CfIt,
A = AfIt

GL_RGB C = Ct,
A = Af

C = CfCt,
A = Af

GL_RGBA C = Ct,
A = At

C = CfCt,
A = AfAt

Table 9-3 : Decal and Blend Texture Function

Base Internal Format Decal Texture Function Blend Texture Function

GL_ALPHA undefined C = Cf,
A = AfAt

GL_LUMINANCE undefined C = Cf(1-Lt) + CcLt,
A = Af

GL_LUMINANCE_ALPHA undefined C = Cf(1-Lt) + CcLt,
A = AfAt

GL_INTENSITY undefined C = Cf(1-It) + CcIt,
A = Af(1-It) + AcIt,

GL_RGB C = Ct,
A = Af

C = Cf(1-Ct) + CcCt,
A = Af

GL_RGBA C = Cf(1-At) + CtAt,
A = Af

C = Cf(1-Ct) + CcCt,
A = AfAt

Note: In Table 9-2 and Table 9-3, a subscript of t indicates a texture value, f indicates the incoming
fragment value, c indicates the values assigned with GL_TEXTURE_ENV_COLOR, and no
subscript indicates the final, computed value. Also in the tables, multiplication of a color triple by a
scalar means multiplying each of the R, G, and B components by the scalar; multiplying (or adding)
two color triples means multiplying (or adding) each component of the second by the corresponding
component of the first.

The decal texture function makes sense only for the RGB and RGBA internal formats (remember
that texture mapping doesn’t work in color-index mode). With the RGB internal format, the color
that would have been painted in the absence of any texture mapping (the fragment’s color) is
replaced by the texture color, and its alpha is unchanged. With the RGBA internal format, the
fragment’s color is blended with the texture color in a ratio determined by the texture alpha, and the
fragment’s alpha is unchanged. You use the decal texture function in situations where you want to
apply an opaque texture to an object - if you were drawing a soup can with an opaque label, for
example. The decal texture function also can be used to apply an alpha blended texture, such as an
insignia onto an airplane wing.

The replacement texture function is similar to decal; in fact, for the RGB internal format, they are
exactly the same. With all the internal formats, the component values are either replaced or left
alone.

For modulation, the fragment’s color is modulated by the contents of the texture map. If the base
internal format is GL_LUMINANCE, GL_LUMINANCE_ALPHA, or GL_INTENSITY, the color

values are multiplied by the same value, so the texture map modulates between the fragment’s color
(if the luminance or intensity is 1) to black (if it’s 0). For the GL_RGB and GL_RGBA internal
formats, each of the incoming color components is multiplied by a corresponding (possibly
different) value in the texture. If there’s an alpha value, it’s multiplied by the fragment’s alpha.
Modulation is a good texture function for use with lighting, since the lit polygon color can be used
to attenuate the texture color. Most of the texture-mapping examples in the color plates use
modulation for this reason. White, specular polygons are often used to render lit, textured objects,
and the texture image provides the diffuse color.

The blending texture function is the only function that uses the color specified by
GL_TEXTURE_ENV_COLOR. The luminance, intensity, or color value is used somewhat like an
alpha value to blend the fragment’s color with the GL_TEXTURE_ENV_COLOR. (See "Sample
Uses of Blending" in Chapter 6 for the billboarding example, which uses a blended texture.)

Assigning Texture Coordinates

As you draw your texture-mapped scene, you must provide both object coordinates and texture
coordinates for each vertex. After transformation, the object coordinates determine where on the
screen that particular vertex is rendered. The texture coordinates determine which texel in the
texture map is assigned to that vertex. In exactly the same way that colors are interpolated between
two vertices of shaded polygons and lines, texture coordinates are also interpolated between
vertices. (Remember that textures are rectangular arrays of data.)

Texture coordinates can comprise one, two, three, or four coordinates. They’re usually referred to
as the s, t, r, and q coordinates to distinguish them from object coordinates (x, y, z, and w) and from
evaluator coordinates (u and v; see Chapter 12). For one-dimensional textures, you use the s
coordinate; for two-dimensional textures, you use s and t. In Release 1.1, the r coordinate is
ignored. (Some implementations have 3D texture mapping as an extension, and that extension uses
the r coordinate.) The q coordinate, like w, is typically given the value 1 and can be used to create
homogeneous coordinates; it’s described as an advanced feature in "The q Coordinate." The
command to specify texture coordinates, glTexCoord*(), is similar to glVertex*(), glColor*(), and
glNormal*() - it comes in similar variations and is used the same way between glBegin() and
glEnd() pairs. Usually, texture-coordinate values range from 0 to 1; values can be assigned outside
this range, however, with the results described in "Repeating and Clamping Textures."

void glTexCoord{1234}{sifd}(TYPEcoords);
void glTexCoord{1234}{sifd}v(TYPE *coords);

Sets the current texture coordinates (s, t, r, q). Subsequent calls to glVertex*() result in those
vertices being assigned the current texture coordinates. With glTexCoord1*(), the s
coordinate is set to the specified value, t and r are set to 0, and q is set to 1. Using
glTexCoord2*() allows you to specify s and t; r and q are set to 0 and 1, respectively. With
glTexCoord3*(), q is set to 1 and the other coordinates are set as specified. You can specify
all coordinates with glTexCoord4*(). Use the appropriate suffix (s, i, f, or d) and the
corresponding value for TYPE (GLshort, GLint, GLfloat, or GLdouble) to specify the
coordinates’ data type. You can supply the coordinates individually, or you can use the vector
version of the command to supply them in a single array. Texture coordinates are multiplied
by the 4 × 4 texture matrix before any texture mapping occurs. (See "The Texture Matrix
Stack.") Note that integer texture coordinates are interpreted directly rather than being
mapped to the range [-1,1] as normal coordinates are.

The next section discusses how to calculate appropriate texture coordinates. Instead of explicitly
assigning them yourself, you can choose to have texture coordinates calculated automatically by
OpenGL as a function of the vertex coordinates. (See "Automatic Texture-Coordinate Generation.")

Computing Appropriate Texture Coordinates

Two-dimensional textures are square or rectangular images that are typically mapped to the
polygons that make up a polygonal model. In the simplest case, you’re mapping a rectangular
texture onto a model that’s also rectangular - for example, your texture is a scanned image of a
brick wall, and your rectangle is to represent a brick wall of a building. Suppose the brick wall is
square and the texture is square, and you want to map the whole texture to the whole wall. The
texture coordinates of the texture square are (0, 0), (1, 0), (1, 1), and (0, 1) in counterclockwise
order. When you’re drawing the wall, just give those four coordinate sets as the texture coordinates
as you specify the wall’s vertices in counterclockwise order.

Now suppose that the wall is two-thirds as high as it is wide, and that the texture is again square. To
avoid distorting the texture, you need to map the wall to a portion of the texture map so that the
aspect ratio of the texture is preserved. Suppose that you decide to use the lower two-thirds of the
texture map to texture the wall. In this case, use texture coordinates of (0,0), (1,0), (1,2/3), and
(0,2/3) for the texture coordinates as the wall vertices are traversed in a counterclockwise order.

As a slightly more complicated example, suppose you’d like to display a tin can with a label
wrapped around it on the screen. To obtain the texture, you purchase a can, remove the label, and
scan it in. Suppose the label is 4 units tall and 12 units around, which yields an aspect ratio of 3 to
1. Since textures must have aspect ratios of 2n to 1, you can either simply not use the top third of
the texture, or you can cut and paste the texture until it has the necessary aspect ratio. Suppose you
decide not to use the top third. Now suppose the tin can is a cylinder approximated by thirty
polygons of length 4 units (the height of the can) and width 12/30 (1/30 of the circumference of the
can). You can use the following texture coordinates for each of the thirty approximating rectangles:

1: (0, 0), (1/30, 0), (1/30, 2/3), (0, 2/3)

2: (1/30, 0), (2/30, 0), (2/30, 2/3), (1/30, 2/3)

3: (2/30, 0), (3/30, 0), (3/30, 2/3), (2/30, 2/3)

. . .

30: (29/30, 0), (1, 0), (1, 2/3), (29/30, 2/3)

Only a few curved surfaces such as cones and cylinders can be mapped to a flat surface without
geodesic distortion. Any other shape requires some distortion. In general, the higher the curvature
of the surface, the more distortion of the texture is required.

If you don’t care about texture distortion, it’s often quite easy to find a reasonable mapping. For
example, consider a sphere whose surface coordinates are given by (cos &thgr; cos &phgr; , cos
&thgr; sin &phgr; , sin &thgr;), where 0 ≤ &thgr; ≤ 2 &pgr; , and 0 ≤ &phgr; ≤ &pgr; .
The &thgr; - &phgr; rectangle can be mapped directly to a rectangular texture map, but the closer
you get to the poles, the more distorted the texture is. The entire top edge of the texture map is
mapped to the north pole, and the entire bottom edge to the south pole. For other surfaces, such as
that of a torus (doughnut) with a large hole, the natural surface coordinates map to the texture

coordinates in a way that produces only a little distortion, so it might be suitable for many
applications. Figure 9-6 shows two tori, one with a small hole (and therefore a lot of distortion near
the center) and one with a large hole (and only a little distortion).

Figure 9-6 : Texture-Map Distortion

If you’re texturing spline surfaces generated with evaluators (see Chapter 12), the u and v
parameters for the surface can sometimes be used as texture coordinates. In general, however,
there’s a large artistic component to successfully mapping textures to polygonal approximations of
curved surfaces.

Repeating and Clamping Textures

You can assign texture coordinates outside the range [0,1] and have them either clamp or repeat in
the texture map. With repeating textures, if you have a large plane with texture coordinates running
from 0.0 to 10.0 in both directions, for example, you’ll get 100 copies of the texture tiled together
on the screen. During repeating, the integer part of texture coordinates is ignored, and copies of the
texture map tile the surface. For most applications where the texture is to be repeated, the texels at
the top of the texture should match those at the bottom, and similarly for the left and right edges.

The other possibility is to clamp the texture coordinates: Any values greater than 1.0 are set to 1.0,
and any values less than 0.0 are set to 0.0. Clamping is useful for applications where you want a
single copy of the texture to appear on a large surface. If the surface-texture coordinates range from
0.0 to 10.0 in both directions, one copy of the texture appears in the lower corner of the surface. If
you’ve chosen GL_LINEAR as the filtering method (see "Filtering"), an equally weighted
combination of the border color and the texture color is used, as follows.

When repeating, the 2 × 2 array wraps to the opposite edge of the texture. Thus, texels on the
right edge are averaged with those on the left, and top and bottom texels are also averaged.

If there is a border, then the texel from the border is used in the weighting. Otherwise,
GL_TEXTURE_BORDER_COLOR is used. (If you’ve chosen GL_NEAREST as the
filtering method, the border color is completely ignored.)

Note that if you are using clamping, you can avoid having the rest of the surface affected by the
texture. To do this, use alpha values of 0 for the edges (or borders, if they are specified) of the
texture. The decal texture function directly uses the texture’s alpha value in its calculations. If you
are using one of the other texture functions, you may also need to enable blending with good source
and destination factors. (See "Blending" in Chapter 6.)

To see the effects of wrapping, you must have texture coordinates that venture beyond [0.0, 1.0].
Start with Example 9-1, and modify the texture coordinates for the squares by mapping the texture
coordinates from 0.0 to 3.0 as follows:

glBegin(GL_QUADS);
 glTexCoord2f(0.0, 0.0); glVertex3f(-2.0, -1.0, 0.0);
 glTexCoord2f(0.0, 3.0); glVertex3f(-2.0, 1.0, 0.0);
 glTexCoord2f(3.0, 3.0); glVertex3f(0.0, 1.0, 0.0);
 glTexCoord2f(3.0, 0.0); glVertex3f(0.0, -1.0, 0.0);

 glTexCoord2f(0.0, 0.0); glVertex3f(1.0, -1.0, 0.0);
 glTexCoord2f(0.0, 3.0); glVertex3f(1.0, 1.0, 0.0);
 glTexCoord2f(3.0, 3.0); glVertex3f(2.41421, 1.0, -1.41421);
 glTexCoord2f(3.0, 0.0); glVertex3f(2.41421, -1.0, -1.41421); glEnd();

With GL_REPEAT wrapping, the result is as shown in Figure 9-7.

Figure 9-7 : Repeating a Texture

In this case, the texture is repeated in both the s and t directions, since the following calls are made
to glTexParameter*():

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);

If GL_CLAMP is used instead of GL_REPEAT for each direction, you see something similar to
Figure 9-8.

Figure 9-8 : Clamping a Texture

You can also clamp in one direction and repeat in the other, as shown in Figure 9-9.

Figure 9-9 : Repeating and Clamping a Texture

You’ve now seen all the possible arguments for glTexParameter*(), which is summarized here.

void glTexParameter{if}(GLenum target, GLenum pname, TYPE param);
void glTexParameter{if} v(GLenum target, GLenum pname,
TYPE *param);

Sets various parameters that control how a texture is treated as it’s applied to a fragment or
stored in a texture object. The target parameter is either GL_TEXTURE_2D or
GL_TEXTURE_1D to indicate a two- or one-dimensional texture. The possible values for
pname and param are shown in Table 9-4. You can use the vector version of the command to
supply an array of values for GL_TEXTURE_BORDER_COLOR, or you can supply
individual values for other parameters using the nonvector version. If these values are
supplied as integers, they’re converted to floating-point according to Table 4-1; they’re also
clamped to the range [0,1].

Table 9-4 : glTexParameter*() Parameters

Parameter Values

GL_TEXTURE_WRAP_S GL_CLAMP, GL_REPEAT

GL_TEXTURE_WRAP_T GL_CLAMP, GL_REPEAT

GL_TEXTURE_MAG_FILTER GL_NEAREST, GL_LINEAR

GL_TEXTURE_MIN_FILTER GL_NEAREST, GL_LINEAR,
GL_NEAREST_MIPMAP_NEAREST,
GL_NEAREST_MIPMAP_LINEAR,
GL_LINEAR_MIPMAP_NEAREST,
GL_LINEAR_MIPMAP_LINEAR

GL_TEXTURE_BORDER_COLOR any four values in [0.0, 1.0]

GL_TEXTURE_PRIORITY [0.0, 1.0] for the current texture object

Try This

Figure 9-8 and Figure 9-9 are drawn using GL_NEAREST for the minification and magnification
filter. What happens if you change the filter values to GL_LINEAR? Why?

Automatic Texture-Coordinate Generation

You can use texture mapping to make contours on your models or to simulate the reflections from
an arbitrary environment on a shiny model. To achieve these effects, let OpenGL automatically
generate the texture coordinates for you, rather than explicitly assigning them with glTexCoord*().
To generate texture coordinates automatically, use the command glTexGen().

void glTexGen{ifd}(GLenum coord, GLenum pname, TYPEparam);
void glTexGen{ifd}v(GLenum coord, GLenum pname, TYPE * param);

Specifies the functions for automatically generating texture coordinates. The first parameter,
coord, must be GL_S, GL_T, GL_R, or GL_Q to indicate whether texture coordinate s, t, r, or
q is to be generated. The pname parameter is GL_TEXTURE_GEN_MODE,
GL_OBJECT_PLANE, or GL_EYE_PLANE. If it’s GL_TEXTURE_GEN_MODE, param is
an integer (or, in the vector version of the command, points to an integer) that’s either
GL_OBJECT_LINEAR, GL_EYE_LINEAR, or GL_SPHERE_MAP. These symbolic constants
determine which function is used to generate the texture coordinate. With either of the other
possible values for pname, param is a pointer to an array of values (for the vector version)
specifying parameters for the texture-generation function.

The different methods of texture-coordinate generation have different uses. Specifying the
reference plane in object coordinates is best for when a texture image remains fixed to a moving
object. Thus, GL_OBJECT_LINEAR would be used for putting a wood grain on a table top.
Specifying the reference plane in eye coordinates (GL_EYE_LINEAR) is best for producing

dynamic contour lines on moving objects. GL_EYE_LINEAR may be used by specialists in
geosciences, who are drilling for oil or gas. As the drill goes deeper into the ground, the drill may
be rendered with different colors to represent the layers of rock at increasing depths.
GL_SPHERE_MAP is predominantly used for environment mapping. (See "Environment
Mapping.")

Creating Contours

When GL_TEXTURE_GEN_MODE and GL_OBJECT_LINEAR are specified, the generation
function is a linear combination of the object coordinates of the vertex (xo,yo,zo,wo):

generated coordinate = p1x0 + p2y0 + p3z0 + p4w0

The p1, ..., p4 values are supplied as the param argument to glTexGen*v(), with pname set to
GL_OBJECT_PLANE. With p1, ..., p4 correctly normalized, this function gives the distance from
the vertex to a plane. For example, if p2 = p3 = p4 = 0 and p1 = 1, the function gives the distance
between the vertex and the plane x = 0. The distance is positive on one side of the plane, negative
on the other, and zero if the vertex lies on the plane.

Initially in Example 9-6, equally spaced contour lines are drawn on a teapot; the lines indicate the
distance from the plane x = 0. The coefficients for the plane x = 0 are in this array:

static GLfloat xequalzero[] = {1.0, 0.0, 0.0, 0.0};

Since only one property is being shown (the distance from the plane), a one-dimensional texture
map suffices. The texture map is a constant green color, except that at equally spaced intervals it
includes a red mark. Since the teapot is sitting on the x-y plane, the contours are all perpendicular to
its base. "Plate 18" in Appendix I shows the picture drawn by the program.

In the same example, pressing the ‘s’ key changes the parameters of the reference plane to

static GLfloat slanted[] = {1.0, 1.0, 1.0, 0.0};

the contour stripes are parallel to the plane x + y + z = 0, slicing across the teapot at an angle, as
shown in "Plate 18" in Appendix I. To restore the reference plane to its initial value, x = 0, press the
‘x’ key.

Example 9-6 : Automatic Texture-Coordinate Generation: texgen.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>
#include <stdlib.h>
#include <stdio.h>

#define stripeImageWidth 32
GLubyte stripeImage[4*stripeImageWidth];

static GLuint texName;

void makeStripeImage(void)
{
 int j;

 for (j = 0; j < stripeImageWidth; j++) {

 stripeImage[4*j] = (GLubyte) ((j<=4) ? 255 : 0);
 stripeImage[4*j+1] = (GLubyte) ((j>4) ? 255 : 0);
 stripeImage[4*j+2] = (GLubyte) 0;
 stripeImage[4*j+3] = (GLubyte) 255;
 }
}

/* planes for texture coordinate generation */
static GLfloat xequalzero[] = {1.0, 0.0, 0.0, 0.0};
static GLfloat slanted[] = {1.0, 1.0, 1.0, 0.0};
static GLfloat *currentCoeff;
static GLenum currentPlane;
static GLint currentGenMode;

void init(void)
{
 glClearColor (0.0, 0.0, 0.0, 0.0);
 glEnable(GL_DEPTH_TEST);
 glShadeModel(GL_SMOOTH);

 makeStripeImage();
 glPixelStorei(GL_UNPACK_ALIGNMENT, 1);

 glGenTextures(1, &texName);
 glBindTexture(GL_TEXTURE_1D, texName);
 glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_WRAP_S, GL_REPEAT);
 glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_MAG_FILTER,
 GL_LINEAR);
 glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_MIN_FILTER,
 GL_LINEAR);
 glTexImage1D(GL_TEXTURE_1D, 0, GL_RGBA, stripeImageWidth, 0,
 GL_RGBA, GL_UNSIGNED_BYTE, stripeImage);

 glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
 currentCoeff = xequalzero;
 currentGenMode = GL_OBJECT_LINEAR;
 currentPlane = GL_OBJECT_PLANE;
 glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, currentGenMode);
 glTexGenfv(GL_S, currentPlane, currentCoeff);

 glEnable(GL_TEXTURE_GEN_S);
 glEnable(GL_TEXTURE_1D);
 glEnable(GL_CULL_FACE);
 glEnable(GL_LIGHTING);
 glEnable(GL_LIGHT0);
 glEnable(GL_AUTO_NORMAL);
 glEnable(GL_NORMALIZE);
 glFrontFace(GL_CW);
 glCullFace(GL_BACK);
 glMaterialf (GL_FRONT, GL_SHININESS, 64.0);
}

void display(void)
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 glPushMatrix ();
 glRotatef(45.0, 0.0, 0.0, 1.0);
 glBindTexture(GL_TEXTURE_1D, texName);
 glutSolidTeapot(2.0);
 glPopMatrix ();
 glFlush();
}

void reshape(int w, int h)

{
 glViewport(0, 0, (GLsizei) w, (GLsizei) h);
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 if (w <= h)
 glOrtho (-3.5, 3.5, -3.5*(GLfloat)h/(GLfloat)w,
 3.5*(GLfloat)h/(GLfloat)w, -3.5, 3.5);
 else
 glOrtho (-3.5*(GLfloat)w/(GLfloat)h,
 3.5*(GLfloat)w/(GLfloat)h, -3.5, 3.5, -3.5, 3.5);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
}

void keyboard (unsigned char key, int x, int y)
{
 switch (key) {
 case ‘e’:
 case ‘E’:
 currentGenMode = GL_EYE_LINEAR;
 currentPlane = GL_EYE_PLANE;
 glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, currentGenMode);
 glTexGenfv(GL_S, currentPlane, currentCoeff);
 glutPostRedisplay();
 break;
 case ‘o’:
 case ‘O’:
 currentGenMode = GL_OBJECT_LINEAR;
 currentPlane = GL_OBJECT_PLANE;
 glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, currentGenMode);
 glTexGenfv(GL_S, currentPlane, currentCoeff);
 glutPostRedisplay();
 break;
 case ‘s’:
 case ‘S’:
 currentCoeff = slanted;
 glTexGenfv(GL_S, currentPlane, currentCoeff);
 glutPostRedisplay();
 break;
 case ‘x’:
 case ‘X’:
 currentCoeff = xequalzero;
 glTexGenfv(GL_S, currentPlane, currentCoeff);
 glutPostRedisplay();
 break;
 case 27:
 exit(0);
 break;
 default:
 break;
 }
}

int main(int argc, char** argv)
{
 glutInit(&argc, argv);
 glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);
 glutInitWindowSize(256, 256);
 glutInitWindowPosition(100, 100);
 glutCreateWindow (argv[0]);
 init ();
 glutDisplayFunc(display);
 glutReshapeFunc(reshape);
 glutKeyboardFunc(keyboard);
 glutMainLoop();

 return 0;
}

You enable texture-coordinate generation for the s coordinate by passing GL_TEXTURE_GEN_S
to glEnable(). To generate other coordinates, enable them with GL_TEXTURE_GEN_T,
GL_TEXTURE_GEN_R, or GL_TEXTURE_GEN_Q. Use glDisable() with the appropriate
constant to disable coordinate generation. Also note the use of GL_REPEAT to cause the contour
lines to be repeated across the teapot.

The GL_OBJECT_LINEAR function calculates the texture coordinates in the model’s coordinate
system. Initially in Example 9-6, the GL_OBJECT_LINEAR function is used, so the contour lines
remain perpendicular to the base of the teapot, no matter how the teapot is rotated or viewed.
However, if you press the ‘e’ key, the texture generation mode is changed from
GL_OBJECT_LINEAR to GL_EYE_LINEAR, and the contour lines are calculated relative to the
eye coordinate system. (Pressing the ‘o’ key restores GL_OBJECT_LINEAR as the texture
generation mode.) If the reference plane is x = 0, the result is a teapot with red stripes parallel to the
y-z plane from the eye’s point of view, as shown in "Plate 18" in Appendix I. Mathematically, you
are multiplying the vector (p1p2p3p4) by the inverse of the modelview matrix to obtain the values
used to calculate the distance to the plane. The texture coordinate is generated with the following
function:

generated coordinate = p1’ xe + p2’ ye + p3’ze + p4’we

where (p1’ p2’ p3’ p4’) = (p1p2p3p4)M-1

In this case, (xe, ye, ze, we) are the eye coordinates of the vertex, and p1, ..., p4 are supplied as the
param argument to glTexGen*() with pname set to GL_EYE_PLANE. The primed values are
calculated only at the time they’re specified so this operation isn’t as computationally expensive as
it looks.

In all these examples, a single texture coordinate is used to generate contours. The s and t texture
coordinates can be generated independently, however, to indicate the distances to two different
planes. With a properly constructed two-dimensional texture map, the resulting two sets of contours
can be viewed simultaneously. For an added level of complexity, you can calculate the s coordinate
using GL_OBJECT_LINEAR and the t coordinate using GL_EYE_LINEAR.

Environment Mapping

The goal of environment mapping is to render an object as if it were perfectly reflective, so that the
colors on its surface are those reflected to the eye from its surroundings. In other words, if you look
at a perfectly polished, perfectly reflective silver object in a room, you see the walls, floor, and
other objects in the room reflected off the object. (A classic example of using environment mapping
is the evil, morphing cyborg in the film Terminator 2.) The objects whose reflections you see
depend on the position of your eye and on the position and surface angles of the silver object. To
perform environment mapping, all you have to do is create an appropriate texture map and then
have OpenGL generate the texture coordinates for you.

Environment mapping is an approximation based on the assumption that the items in the
environment are far away compared to the surfaces of the shiny object - that is, it’s a small object in
a large room. With this assumption, to find the color of a point on the surface, take the ray from the
eye to the surface, and reflect the ray off the surface. The direction of the reflected ray completely
determines the color to be painted there. Encoding a color for each direction on a flat texture map is

equivalent to putting a polished perfect sphere in the middle of the environment and taking a picture
of it with a camera that has a lens with a very long focal length placed far away. Mathematically,
the lens has an infinite focal length and the camera is infinitely far away. The encoding therefore
covers a circular region of the texture map, tangent to the top, bottom, left, and right edges of the
map. The texture values outside the circle make no difference, as they are never accessed in
environment mapping.

To make a perfectly correct environment texture map, you need to obtain a large silvered sphere,
take a photograph of it in some environment with a camera located an infinite distance away and
with a lens that has an infinite focal length, and scan in the photograph. To approximate this result,
you can use a scanned-in photograph of an environment taken with an extremely wide-angle (or
fish-eye) lens. Plate 21 shows a photograph taken with such a lens and the results when that image
is used as an environment map.

Once you’ve created a texture designed for environment mapping, you need to invoke OpenGL’s
environment-mapping algorithm. This algorithm finds the point on the surface of the sphere with
the same tangent surface as the point on the object being rendered, and it paints the object’s point
with the color visible on the sphere at the corresponding point.

To automatically generate the texture coordinates to support environment mapping, use this code in
your program:

glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, GL_SPHERE_MAP);
glTexGeni(GL_T, GL_TEXTURE_GEN_MODE, GL_SPHERE_MAP);
glEnable(GL_TEXTURE_GEN_S);
glEnable(GL_TEXTURE_GEN_T);

The GL_SPHERE_MAP constant creates the proper texture coordinates for the environment
mapping. As shown, you need to specify it for both the s and t directions. However, you don’t have
to specify any parameters for the texture-coordinate generation function.

The GL_SPHERE_MAP texture function generates texture coordinates using the following
mathematical steps.

1. u is the unit vector pointing from the origin to the vertex (in eye coordinates).

2. n’ is the current normal vector, after transformation to eye coordinates.

3. r is the reflection vector, (rxryrz)T, which is calculated by u - 2n’n’Tu.

4. Then an interim value, m, is calculated by

.

1. Finally, the s and t texture coordinates are calculated by

and

.

Advanced Features

Advanced

This section describes how to manipulate the texture matrix stack and how to use the q coordinate.
Both techniques are considered advanced, since you don’t need them for many applications of
texture mapping.

The Texture Matrix Stack

Just as your model coordinates are transformed by a matrix before being rendered, texture
coordinates are multiplied by a 4 × 4 matrix before any texture mapping occurs. By default, the
texture matrix is the identity, so the texture coordinates you explicitly assign or those that are
automatically generated remain unchanged. By modifying the texture matrix while redrawing an
object, however, you can make the texture slide over the surface, rotate around it, stretch and
shrink, or any combination of the three. In fact, since the texture matrix is a completely general 4 ×
4 matrix, effects such as perspective can be achieved.

When the four texture coordinates (s, t, r, q) are multiplied by the texture matrix, the resulting
vector (s’ t’ r’ q’) is interpreted as homogeneous texture coordinates. In other words, the texture
map is indexed by s’/q’ and t’/q’ . (Remember that r’/q’ is ignored in standard OpenGL, but may be
used by implementations that support a 3D texture extension.) The texture matrix is actually the top
matrix on a stack, which must have a stack depth of at least two matrices. All the standard
matrix-manipulation commands such as glPushMatrix(), glPopMatrix(), glMultMatrix(), and
glRotate*() can be applied to the texture matrix. To modify the current texture matrix, you need to
set the matrix mode to GL_TEXTURE, as follows:

glMatrixMode(GL_TEXTURE); /* enter texture matrix mode */
glRotated(...);
/* ... other matrix manipulations ... */
glMatrixMode(GL_MODELVIEW); /* back to modelview mode */

The q Coordinate

The mathematics of the q coordinate in a general four-dimensional texture coordinate is as
described in the previous section. You can make use of q in cases where more than one projection
or perspective transformation is needed. For example, suppose you want to model a spotlight that
has some nonuniform pattern - brighter in the center, perhaps, or noncircular, because of flaps or
lenses that modify the shape of the beam. You can emulate shining such a light on a flat surface by
making a texture map that corresponds to the shape and intensity of a light, and then projecting it on
the surface in question using projection transformations. Projecting the cone of light onto surfaces
in the scene requires a perspective transformation (q ≠ 1), since the lights might shine on
surfaces that aren’t perpendicular to them. A second perspective transformation occurs because the

viewer sees the scene from a different (but perspective) point of view. (See "Plate 27" in Appendix
I for an example, and see "Fast Shadows and Lighting Effects Using Texture Mapping" by Mark
Segal, Carl Korobkin, Rolf van Widenfelt, Jim Foran, and Paul Haeberli, SIGGRAPH 1992
Proceedings, (Computer Graphics, 26:2, July 1992, p. 249-252) for more details.)

Another example might arise if the texture map to be applied comes from a photograph that itself
was taken in perspective. As with spotlights, the final view depends on the combination of two
perspective transformations.

 OpenGL Programming Guide
(Addison-Wesley Publishing Company)

 OpenGL Programming Guide
(Addison-Wesley Publishing Company)

Chapter 10
The Framebuffer
Chapter Objectives

After reading this chapter, you’ll be able to do the following:

Understand what buffers make up the framebuffer and how they’re used

Clear selected buffers and enable them for writing

Control the parameters of the scissoring, alpha, stencil, and depth-buffer tests that are applied
to pixels

Perform dithering and logical operations

Use the accumulation buffer for such purposes as scene antialiasing

An important goal of almost every graphics program is to draw pictures on the screen. The screen is
composed of a rectangular array of pixels, each capable of displaying a tiny square of color at that
point in the image. After the rasterization stage (including texturing and fog), the data are not yet
pixels, but are fragments. Each fragment has coordinate data which corresponds to a pixel, as well
as color and depth values. Then each fragment undergoes a series of tests and operations, some of
which have been previously described (See "Blending" in Chapter 6) and others that are discussed
in this chapter.

If the tests and operations are survived, the fragment values are ready to become pixels. To draw
these pixels, you need to know what color they are, which is the information that’s stored in the
color buffer. Whenever data is stored uniformly for each pixel, such storage for all the pixels is
called a buffer. Different buffers might contain different amounts of data per pixel, but within a
given buffer, each pixel is assigned the same amount of data. A buffer that stores a single bit of
information about pixels is called a bitplane.

As shown in Figure 10-1, the lower-left pixel in an OpenGL window is pixel (0, 0), corresponding
to the window coordinates of the lower-left corner of the 1 × 1 region occupied by this pixel. In
general, pixel (x, y) fills the region bounded by x on the left, x+1 on the right, y on the bottom, and
y+1 on the top.

Figure 10-1 : Region Occupied by a Pixel

As an example of a buffer, let’s look more closely at the color buffer, which holds the color
information that’s to be displayed on the screen. Assume that the screen is 1280 pixels wide and
1024 pixels high and that it’s a full 24-bit color screen - in other words, there are 224 (or
16,777,216) different colors that can be displayed. Since 24 bits translates to 3 bytes (8 bits/byte),
the color buffer in this example has to store at least 3 bytes of data for each of the 1,310,720
(1280*1024) pixels on the screen. A particular hardware system might have more or fewer pixels
on the physical screen as well as more or less color data per pixel. Any particular color buffer,
however, has the same amount of data saved for each pixel on the screen.

The color buffer is only one of several buffers that hold information about a pixel. For example, in
"A Hidden-Surface Removal Survival Kit" in Chapter 5, you learned that the depth buffer holds
depth information for each pixel. The color buffer itself can consist of several subbuffers. The
framebuffer on a system comprises all of these buffers. With the exception of the color buffer(s),
you don’t view these other buffers directly; instead, you use them to perform such tasks as
hidden-surface elimination, antialiasing of an entire scene, stenciling, drawing smooth motion, and
other operations.

This chapter describes all the buffers that can exist in an OpenGL implementation and how they’re
used. It also discusses the series of tests and pixel operations that are performed before any data is
written to the viewable color buffer. Finally, it explains how to use the accumulation buffer, which
is used to accumulate images that are drawn into the color buffer. This chapter has the following
major sections.

"Buffers and Their Uses" describes the possible buffers, what they’re for, and how to clear
them and enable them for writing.

"Testing and Operating on Fragments" explains the scissoring, alpha, stencil, and depth-buffer
tests that occur after a pixel’s position and color have been calculated but before this
information is drawn on the screen. Several operations - blending, dithering, and logical
operations - can also be performed before a fragment updates the screen.

"The Accumulation Buffer" describes how to perform several advanced techniques using the
accumulation buffer. These techniques include antialiasing an entire scene, using motion blur,
and simulating photographic depth of field.

Buffers and Their Uses

An OpenGL system can manipulate the following buffers:

Color buffers: front-left, front-right, back-left, back-right, and any number of auxiliary color
buffers

Depth buffer

Stencil buffer

Accumulation buffer

Your particular OpenGL implementation determines which buffers are available and how many bits
per pixel each holds. Additionally, you can have multiple visuals, or window types, that have
different buffers available. Table 10-1 lists the parameters to use with glGetIntegerv() to query
your OpenGL system about per-pixel buffer storage for a particular visual.

Note: If you’re using the X Window System, you’re guaranteed, at a minimum, to have a visual
with one color buffer for use in RGBA mode with associated stencil, depth, and accumulation
buffers that have color components of nonzero size. Also, if your X Window System
implementation supports a Pseudo-Color visual, you are also guaranteed to have one OpenGL
visual that has a color buffer for use in color-index mode with associated depth and stencil buffers.
You’ll probably want to use glXGetConfig() to query your visuals; see Appendix C and the
OpenGL Reference Manual for more information about this routine.

Table 10-1 : Query Parameters for Per-Pixel Buffer Storage

Parameter Meaning

GL_RED_BITS, GL_GREEN_BITS,
GL_BLUE_BITS, GL_ALPHA_BITS

Number of bits per R, G, B, or A component in the
color buffers

GL_INDEX_BITS Number of bits per index in the color buffers

GL_DEPTH_BITS Number of bits per pixel in the depth buffer

GL_STENCIL_BITS Number of bits per pixel in the stencil buffer

GL_ACCUM_RED_BITS,
GL_ACCUM_GREEN_BITS,
GL_ACCUM_BLUE_BITS,
GL_ACCUM_ALPHA_BITS

Number of bits per R, G, B, or A component in the
accumulation buffer

Color Buffers

The color buffers are the ones to which you usually draw. They contain either color-index or RGB
color data and may also contain alpha values. An OpenGL implementation that supports
stereoscopic viewing has left and right color buffers for the left and right stereo images. If stereo
isn’t supported, only the left buffers are used. Similarly, double-buffered systems have front and
back buffers, and a single-buffered system has the front buffers only. Every OpenGL
implementation must provide a front-left color buffer.

Optional, nondisplayable auxiliary color buffers may also be supported. OpenGL doesn’t specify
any particular uses for these buffers, so you can define and use them however you please. For
example, you might use them for saving an image that you use repeatedly. Then rather than
redrawing the image, you can just copy it from an auxiliary buffer into the usual color buffers. (See
the description of glCopyPixels() in "Reading, Writing, and Copying Pixel Data" in Chapter 8 for
more information about how to do this.)

You can use GL_STEREO or GL_DOUBLEBUFFER with glGetBooleanv() to find out if your
system supports stereo (that is, has left and right buffers) or double-buffering (has front and back
buffers). To find out how many, if any, auxiliary buffers are present, use glGetIntegerv() with
GL_AUX_BUFFERS.

Depth Buffer

The depth buffer stores a depth value for each pixel. As described in "A Hidden-Surface Removal
Survival Kit" in Chapter 5, depth is usually measured in terms of distance to the eye, so pixels with
larger depth-buffer values are overwritten by pixels with smaller values. This is just a useful
convention, however, and the depth buffer’s behavior can be modified as described in "Depth Test."
The depth buffer is sometimes called the z buffer (the z comes from the fact that x and y values
measure horizontal and vertical displacement on the screen, and the z value measures distance
perpendicular to the screen).

Stencil Buffer

One use for the stencil buffer is to restrict drawing to certain portions of the screen, just as a
cardboard stencil can be used with a can of spray paint to make fairly precise painted images. For
example, if you want to draw an image as it would appear through an odd-shaped windshield, you
can store an image of the windshield’s shape in the stencil buffer, and then draw the entire scene.
The stencil buffer prevents anything that wouldn’t be visible through the windshield from being
drawn. Thus, if your application is a driving simulation, you can draw all the instruments and other
items inside the automobile once, and as the car moves, only the outside scene need be updated.

Accumulation Buffer

The accumulation buffer holds RGBA color data just like the color buffers do in RGBA mode. (The
results of using the accumulation buffer in color-index mode are undefined.) It’s typically used for
accumulating a series of images into a final, composite image. With this method, you can perform
operations like scene antialiasing by supersampling an image and then averaging the samples to
produce the values that are finally painted into the pixels of the color buffers. You don’t draw
directly into the accumulation buffer; accumulation operations are always performed in rectangular
blocks, which are usually transfers of data to or from a color buffer.

Clearing Buffers

In graphics programs, clearing the screen (or any of the buffers) is typically one of the most
expensive operations you can perform - on a 1280 × 1024 monitor, it requires touching well over a
million pixels. For simple graphics applications, the clear operation can take more time than the rest
of the drawing. If you need to clear not only the color buffer but also the depth and stencil buffers,
the clear operation can be three times as expensive.

To address this problem, some machines have hardware that can clear more than one buffer at once.
The OpenGL clearing commands are structured to take advantage of architectures like this. First,
you specify the values to be written into each buffer to be cleared. Then you issue a single
command to perform the clear operation, passing in a list of all the buffers to be cleared. If the
hardware is capable of simultaneous clears, they all occur at once; otherwise, each buffer is cleared
sequentially.

The following commands set the clearing values for each buffer.

void glClearColor(GLclampf red, GLclampf green, GLclampf blue,
GLclampf alpha);
void glClearIndex(GLfloat index);
void glClearDepth(GLclampd depth);
void glClearStencil(GLint s);
void glClearAccum(GLfloat red, GLfloat green, GLfloat blue,
GLfloat alpha);

Specifies the current clearing values for the color buffer (in RGBA mode), the color buffer (in
color-index mode), the depth buffer, the stencil buffer, and the accumulation buffer. The
GLclampf and GLclampd types (clamped GLfloat and clamped GLdouble) are clamped to be
between 0.0 and 1.0. The default depth-clearing value is 1.0; all the other default clearing
values are 0. The values set with the clear commands remain in effect until they’re changed
by another call to the same command.

After you’ve selected your clearing values and you’re ready to clear the buffers, use glClear().

void glClear(GLbitfield mask);
Clears the specified buffers. The value of mask is the bitwise logical OR of some combination
of GL_COLOR_BUFFER_BIT, GL_DEPTH_BUFFER_BIT, GL_STENCIL_BUFFER_BIT,
and GL_ACCUM_BUFFER_BIT to identify which buffers are to be cleared.
GL_COLOR_BUFFER_BIT clears either the RGBA color or the color-index buffer,
depending on the mode of the system at the time. When you clear the color or color-index
buffer, all the color buffers that are enabled for writing (see the next section) are cleared. The
pixel ownership test, scissor test, and dithering, if enabled, are applied to the clearing
operation. Masking operations, such as glColorMask() and glIndexMask(), are also
effective. The alpha test, stencil test, and depth test do not affect the operation of glClear().

Selecting Color Buffers for Writing and Reading

The results of a drawing or reading operation can go into or come from any of the color buffers:
front, back, front-left, back-left, front-right, back-right, or any of the auxiliary buffers. You can
choose an individual buffer to be the drawing or reading target. For drawing, you can also set the
target to draw into more than one buffer at the same time. You use glDrawBuffer() to select the
buffers to be written and glReadBuffer() to select the buffer as the source for glReadPixels(),

glCopyPixels(), glCopyTexImage*(), and glCopyTexSubImage*().

If you are using double-buffering, you usually want to draw only in the back buffer (and swap the
buffers when you’re finished drawing). In some situations, you might want to treat a
double-buffered window as though it were single-buffered by calling glDrawBuffer() to enable
you to draw to both front and back buffers at the same time.

glDrawBuffer() is also used to select buffers to render stereo images (GL*LEFT and GL*RIGHT)
and to render into auxiliary buffers (GL_AUXi).

void glDrawBuffer(GLenum mode);
Selects the color buffers enabled for writing or clearing. Disables buffers enabled by previous
calls to glDrawBuffer(). More than one buffer may be enabled at one time. The value of mode
can be one of the following:

GL_FRONT GL_FRONT_LEFT GL_AUXi

GL_BACK GL_FRONT_RIGHT GL_FRONT_AND_BACK

GL_LEFT GL_BACK_LEFT GL_NONE

GL_RIGHT GL_BACK_RIGHT

Arguments that omit LEFT or RIGHT refer to both the left and right buffers; similarly,
arguments that omit FRONT or BACK refer to both. The i in GL_AUXi is a digit identifying a
particular auxiliary buffer.
By default, mode is GL_FRONT for single-buffered contexts and GL_BACK for
double-buffered contexts.

Note: You can enable drawing to nonexistent buffers as long as you enable drawing to at least one
buffer that does exist. If none of the specified buffers exist, an error results.

void glReadBuffer(GLenum mode);
Selects the color buffer enabled as the source for reading pixels for subsequent calls to
glReadPixels(), glCopyPixels(), glCopyTexImage*(), and glCopyTexSubImage*(). Disables
buffers enabled by previous calls to glReadBuffer(). The value of mode can be one of the
following:

GL_FRONT GL_FRONT_LEFT GL_AUXi

GL_BACK GL_FRONT_RIGHT

GL_LEFT GL_BACK_LEFT

GL_RIGHT GL_BACK_RIGHT

By default, mode is GL_FRONT for single-buffered contexts and GL_BACK for
double-buffered contexts.

Note: You must enable reading from a buffer that does exist or an error results.

Masking Buffers

Before OpenGL writes data into the enabled color, depth, or stencil buffers, a masking operation is
applied to the data, as specified with one of the following commands. A bitwise logical AND is
performed with each mask and the corresponding data to be written.

void glIndexMask(GLuint mask);
void glColorMask(GLboolean red, GLboolean green, GLboolean blue,
GLboolean alpha);
void glDepthMask(GLboolean flag);
void glStencilMask(GLuint mask);

Sets the masks used to control writing into the indicated buffers. The mask set by
glIndexMask() applies only in color-index mode. If a 1 appears in mask, the corresponding
bit in the color-index buffer is written; where a 0 appears, the bit isn’t written. Similarly,
glColorMask() affects drawing in RGBA mode only. The red, green, blue, and alpha values
control whether the corresponding component is written. (GL_TRUE means it is written.) If
flag is GL_TRUE for glDepthMask(), the depth buffer is enabled for writing; otherwise, it’s
disabled. The mask for glStencilMask() is used for stencil data in the same way as the mask
is used for color-index data in glIndexMask(). The default values of all the GLboolean masks
are GL_TRUE, and the default values for the two GLuint masks are all 1’s.

You can do plenty of tricks with color masking in color-index mode. For example, you can use each
bit in the index as a different layer and set up interactions between arbitrary layers with appropriate
settings of the color map. You can create overlays and underlays, and do so-called color-map
animations. (See Chapter 14 for examples of using color masking.) Masking in RGBA mode is
useful less often, but you can use it for loading separate image files into the red, green, and blue
bitplanes, for example.

You’ve seen one use for disabling the depth buffer in "Three-Dimensional Blending with the Depth
Buffer" in Chapter 6. Disabling the depth buffer for writing can also be useful if a common
background is desired for a series of frames, and you want to add some features that may be
obscured by parts of the background. For example, suppose your background is a forest, and you
would like to draw repeated frames with the same trees, but with objects moving among them.
After the trees are drawn with their depths recorded in the depth buffer, then the image of the trees
is saved, and the new items are drawn with the depth buffer disabled for writing. As long as the new
items don’t overlap each other, the picture is correct. To draw the next frame, restore the image of
the trees and continue. You don’t need to restore the values in the depth buffer. This trick is most
useful if the background is extremely complex - so complex that it’s much faster just to recopy the
image into the color buffer than to recompute it from the geometry.

Masking the stencil buffer can allow you to use a multiple-bit stencil buffer to hold multiple
stencils (one per bit). You might use this technique to perform capping as explained in "Stencil

Test" or to implement the Game of Life as described in "Life in the Stencil Buffer" in Chapter 14.

Note: The mask specified by glStencilMask() controls which stencil bitplanes are written. This
mask isn’t related to the mask that’s specified as the third parameter of glStencilFunc(), which
specifies which bitplanes are considered by the stencil function.

Testing and Operating on Fragments

When you draw geometry, text, or images on the screen, OpenGL performs several calculations to
rotate, translate, scale, determine the lighting, project the object(s) into perspective, figure out
which pixels in the window are affected, and determine what colors those pixels should be drawn.
Many of the earlier chapters in this book give some information about how to control these
operations. After OpenGL determines that an individual fragment should be generated and what its
color should be, several processing stages remain that control how and whether the fragment is
drawn as a pixel into the framebuffer. For example, if it’s outside a rectangular region or if it’s
farther from the viewpoint than the pixel that’s already in the framebuffer, it isn’t drawn. In another
stage, the fragment’s color is blended with the color of the pixel already in the framebuffer.

This section describes both the complete set of tests that a fragment must pass before it goes into
the framebuffer and the possible final operations that can be performed on the fragment as it’s
written. The tests and operations occur in the following order; if a fragment is eliminated in an early
test, none of the later tests or operations take place.

1. Scissor test

2. Alpha test

3. Stencil test

4. Depth test

5. Blending

6. Dithering

7. Logical operation

Each of these tests and operations is described in detail in the following sections.

Scissor Test

You can define a rectangular portion of your window and restrict drawing to take place within it by
using the glScissor() command. If a fragment lies inside the rectangle, it passes the scissor test.

void glScissor(GLint x, GLint y, GLsizei width, GLsizei height);
Sets the location and size of the scissor rectangle (also known as the scissor box). The
parameters define the lower-left corner (x, y), and the width and height of the rectangle.
Pixels that lie inside the rectangle pass the scissor test. Scissoring is enabled and disabled by
passing GL_SCISSOR_TEST to glEnable() and glDisable(). By default, the rectangle

matches the size of the window and scissoring is disabled.

The scissor test is just a version of a stencil test using a rectangular region of the screen. It’s fairly
easy to create a blindingly fast hardware implementation of scissoring, while a given system might
be much slower at stenciling - perhaps because the stenciling is performed in software.

Advanced

An advanced use of scissoring is performing nonlinear projection. First divide the window into a
regular grid of subregions, specifying viewport and scissor parameters that limit rendering to one
region at a time. Then project the entire scene to each region using a different projection matrix.

To determine whether scissoring is enabled and to obtain the values that define the scissor
rectangle, you can use GL_SCISSOR_TEST with glIsEnabled() and GL_SCISSOR_BOX with
glGetIntegerv().

Alpha Test

In RGBA mode, the alpha test allows you to accept or reject a fragment based on its alpha value.
The alpha test is enabled and disabled by passing GL_ALPHA_TEST to glEnable() and
glDisable(). To determine whether the alpha test is enabled, use GL_ALPHA_TEST with
glIsEnabled().

If enabled, the test compares the incoming alpha value with a reference value. The fragment is
accepted or rejected depending on the result of the comparison. Both the reference value and the
comparison function are set with glAlphaFunc(). By default, the reference value is zero, the
comparison function is GL_ALWAYS, and the alpha test is disabled. To obtain the alpha
comparison function or reference value, use GL_ALPHA_TEST_FUNC or
GL_ALPHA_TEST_REF with glGetIntegerv().

void glAlphaFunc(GLenum func, GLclampf ref);
Sets the reference value and comparison function for the alpha test. The reference value ref is
clamped to be between zero and one. The possible values for func and their meaning are
listed in Table 10-2.

Table 10-2 : glAlphaFunc() Parameter Values (continued)

Parameter Meaning

GL_NEVER Never accept the fragment

GL_ALWAYS Always accept the fragment

GL_LESS Accept fragment if fragment alpha < reference alpha

GL_LEQUAL Accept fragment if fragment alpha ≤ reference alpha

GL_EQUAL Accept fragment if fragment alpha = reference alpha

GL_GEQUAL Accept fragment if fragment alpha ≥ reference alpha

GL_GREATER Accept fragment if fragment alpha > reference alpha

GL_NOTEQUAL Accept fragment if fragment alpha ≠ reference alpha

One application for the alpha test is to implement a transparency algorithm. Render your entire
scene twice, the first time accepting only fragments with alpha values of one, and the second time
accepting fragments with alpha values that aren’t equal to one. Turn the depth buffer on during both
passes, but disable depth buffer writing during the second pass.

Another use might be to make decals with texture maps where you can see through certain parts of
the decals. Set the alphas in the decals to 0.0 where you want to see through, set them to 1.0
otherwise, set the reference value to 0.5 (or anything between 0.0 and 1.0), and set the comparison
function to GL_GREATER. The decal has see-through parts, and the values in the depth buffer
aren’t affected. This technique, called billboarding, is described in "Sample Uses of Blending" in
Chapter 6.

Stencil Test

The stencil test takes place only if there is a stencil buffer. (If there is no stencil buffer, the stencil
test always passes.) Stenciling applies a test that compares a reference value with the value stored at
a pixel in the stencil buffer. Depending on the result of the test, the value in the stencil buffer is
modified. You can choose the particular comparison function used, the reference value, and the
modification performed with the glStencilFunc() and glStencilOp() commands.

void glStencilFunc(GLenum func, GLint ref, GLuint mask);
Sets the comparison function (func), reference value (ref), and a mask (mask) for use with the
stencil test. The reference value is compared to the value in the stencil buffer using the
comparison function, but the comparison applies only to those bits where the corresponding
bits of the mask are 1. The function can be GL_NEVER, GL_ALWAYS, GL_LESS,
GL_LEQUAL, GL_EQUAL, GL_GEQUAL, GL_GREATER, or GL_NOTEQUAL. If it’s
GL_LESS, for example, then the fragment passes if ref is less than the value in the stencil
buffer. If the stencil buffer contains s bitplanes, the low-order s bits of mask are bitwise
ANDed with the value in the stencil buffer and with the reference value before the comparison

is performed. The masked values are all interpreted as nonnegative values. The stencil test is
enabled and disabled by passing GL_STENCIL_TEST to glEnable() and glDisable(). By
default, func is GL_ALWAYS, ref is 0, mask is all 1’s, and stenciling is disabled.

void glStencilOp(GLenum fail, GLenum zfail, GLenum zpass);
Specifies how the data in the stencil buffer is modified when a fragment passes or fails the
stencil test. The three functions fail, zfail, and zpass can be GL_KEEP, GL_ZERO,
GL_REPLACE, GL_INCR, GL_DECR, or GL_INVERT. They correspond to keeping the
current value, replacing it with zero, replacing it with the reference value, incrementing it,
decrementing it, and bitwise-inverting it. The result of the increment and decrement functions
is clamped to lie between zero and the maximum unsigned integer value (2s-1 if the stencil
buffer holds s bits). The fail function is applied if the fragment fails the stencil test; if it
passes, then zfail is applied if the depth test fails and zpass if the depth test passes, or if no
depth test is performed. (See "Depth Test.") By default, all three stencil operations are
GL_KEEP.

Stencil Queries

You can obtain the values for all six stencil-related parameters by using the query function
glGetIntegerv() and one of the values shown in Table 10-3. You can also determine whether the
stencil test is enabled by passing GL_STENCIL_TEST to glIsEnabled().

Table 10-3 : Query Values for the Stencil Test (continued)

Query Value Meaning

GL_STENCIL_FUNC Stencil function

GL_STENCIL_REF Stencil reference value

GL_STENCIL_VALUE_MASK Stencil mask

GL_STENCIL_FAIL Stencil fail action

GL_STENCIL_PASS_DEPTH_FAIL Stencil pass and depth buffer fail action

GL_STENCIL_PASS_DEPTH_PASS Stencil pass and depth buffer pass action

Stencil Examples

Probably the most typical use of the stencil test is to mask out an irregularly shaped region of the
screen to prevent drawing from occurring within it (as in the windshield example in "Buffers and
Their Uses"). To do this, fill the stencil mask with zeros, and then draw the desired shape in the
stencil buffer with 1’s. You can’t draw geometry directly into the stencil buffer, but you can
achieve the same result by drawing into the color buffer and choosing a suitable value for the zpass
function (such as GL_REPLACE). (You can use glDrawPixels() to draw pixel data directly into the
stencil buffer.) Whenever drawing occurs, a value is also written into the stencil buffer (in this case,
the reference value). To prevent the stencil-buffer drawing from affecting the contents of the color

buffer, set the color mask to zero (or GL_FALSE). You might also want to disable writing into the
depth buffer.

After you’ve defined the stencil area, set the reference value to one, and the comparison function
such that the fragment passes if the reference value is equal to the stencil-plane value. During
drawing, don’t modify the contents of the stencil planes.

Example 10-1 demonstrates how to use the stencil test in this way. Two tori are drawn, with a
diamond-shaped cutout in the center of the scene. Within the diamond-shaped stencil mask, a
sphere is drawn. In this example, drawing into the stencil buffer takes place only when the window
is redrawn, so the color buffer is cleared after the stencil mask has been created.

Example 10-1 : Using the Stencil Test: stencil.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>
#include <stdlib.h>

#define YELLOWMAT 1
#define BLUEMAT 2

void init (void)
{
 GLfloat yellow_diffuse[] = { 0.7, 0.7, 0.0, 1.0 };
 GLfloat yellow_specular[] = { 1.0, 1.0, 1.0, 1.0 };

 GLfloat blue_diffuse[] = { 0.1, 0.1, 0.7, 1.0 };
 GLfloat blue_specular[] = { 0.1, 1.0, 1.0, 1.0 };

 GLfloat position_one[] = { 1.0, 1.0, 1.0, 0.0 };

 glNewList(YELLOWMAT, GL_COMPILE);
 glMaterialfv(GL_FRONT, GL_DIFFUSE, yellow_diffuse);
 glMaterialfv(GL_FRONT, GL_SPECULAR, yellow_specular);
 glMaterialf(GL_FRONT, GL_SHININESS, 64.0);
 glEndList();

 glNewList(BLUEMAT, GL_COMPILE);
 glMaterialfv(GL_FRONT, GL_DIFFUSE, blue_diffuse);
 glMaterialfv(GL_FRONT, GL_SPECULAR, blue_specular);
 glMaterialf(GL_FRONT, GL_SHININESS, 45.0);
 glEndList();

 glLightfv(GL_LIGHT0, GL_POSITION, position_one);

 glEnable(GL_LIGHT0);
 glEnable(GL_LIGHTING);
 glEnable(GL_DEPTH_TEST);

 glClearStencil(0x0);
 glEnable(GL_STENCIL_TEST);
}

/* Draw a sphere in a diamond-shaped section in the
 * middle of a window with 2 tori.
 */
void display(void)
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

/* draw blue sphere where the stencil is 1 */
 glStencilFunc (GL_EQUAL, 0x1, 0x1);
 glStencilOp (GL_KEEP, GL_KEEP, GL_KEEP);
 glCallList (BLUEMAT);
 glutSolidSphere (0.5, 15, 15);

/* draw the tori where the stencil is not 1 */
 glStencilFunc (GL_NOTEQUAL, 0x1, 0x1);
 glPushMatrix();
 glRotatef (45.0, 0.0, 0.0, 1.0);
 glRotatef (45.0, 0.0, 1.0, 0.0);
 glCallList (YELLOWMAT);
 glutSolidTorus (0.275, 0.85, 15, 15);
 glPushMatrix();
 glRotatef (90.0, 1.0, 0.0, 0.0);
 glutSolidTorus (0.275, 0.85, 15, 15);
 glPopMatrix();
 glPopMatrix();
}

/* Whenever the window is reshaped, redefine the
 * coordinate system and redraw the stencil area.
 */
void reshape(int w, int h)
{
 glViewport(0, 0, (GLsizei) w, (GLsizei) h);

/* create a diamond shaped stencil area */
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 if (w <= h)
 gluOrtho2D(-3.0, 3.0, -3.0*(GLfloat)h/(GLfloat)w,
 3.0*(GLfloat)h/(GLfloat)w);
 else
 gluOrtho2D(-3.0*(GLfloat)w/(GLfloat)h,
 3.0*(GLfloat)w/(GLfloat)h, -3.0, 3.0);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();

 glClear(GL_STENCIL_BUFFER_BIT);
 glStencilFunc (GL_ALWAYS, 0x1, 0x1);
 glStencilOp (GL_REPLACE, GL_REPLACE, GL_REPLACE);
 glBegin(GL_QUADS);
 glVertex2f (-1.0, 0.0);
 glVertex2f (0.0, 1.0);
 glVertex2f (1.0, 0.0);
 glVertex2f (0.0, -1.0);
 glEnd();

 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluPerspective(45.0, (GLfloat) w/(GLfloat) h, 3.0, 7.0);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 glTranslatef(0.0, 0.0, -5.0);
}

/* Main Loop
 * Be certain to request stencil bits.
 */
int main(int argc, char** argv)
{
 glutInit(&argc, argv);
 glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB
 | GLUT_DEPTH | GLUT_STENCIL);

 glutInitWindowSize (400, 400);
 glutInitWindowPosition (100, 100);
 glutCreateWindow (argv[0]);
 init ();
 glutReshapeFunc(reshape);
 glutDisplayFunc(display);
 glutMainLoop();
 return 0;
}

The following examples illustrate other uses of the stencil test. (See Chapter 14 for additional
ideas.)

Capping - Suppose you’re drawing a closed convex object (or several of them, as long as they
don’t intersect or enclose each other) made up of several polygons, and you have a clipping
plane that may or may not slice off a piece of it. Suppose that if the plane does intersect the
object, you want to cap the object with some constant-colored surface, rather than seeing the
inside of it. To do this, clear the stencil buffer to zeros, and begin drawing with stenciling
enabled and the stencil comparison function set to always accept fragments. Invert the value
in the stencil planes each time a fragment is accepted. After all the objects are drawn, regions
of the screen where no capping is required have zeros in the stencil planes, and regions
requiring capping are nonzero. Reset the stencil function so that it draws only where the
stencil value is nonzero, and draw a large polygon of the capping color across the entire
screen.

Overlapping translucent polygons - Suppose you have a translucent surface that’s made up of
polygons that overlap slightly. If you simply use alpha blending, portions of the underlying
objects are covered by more than one transparent surface, which doesn’t look right. Use the
stencil planes to make sure that each fragment is covered by at most one portion of the
transparent surface. Do this by clearing the stencil planes to zeros, drawing only when the
stencil plane is zero, and incrementing the value in the stencil plane when you draw.

Stippling - Suppose you want to draw an image with a stipple pattern. (See "Displaying
Points, Lines, and Polygons" in Chapter 2 for more information about stippling.) You can do
this by writing the stipple pattern into the stencil buffer, and then drawing conditionally on
the contents of the stencil buffer. After the original stipple pattern is drawn, the stencil buffer
isn’t altered while drawing the image, so the object gets stippled by the pattern in the stencil
planes.

Depth Test

For each pixel on the screen, the depth buffer keeps track of the distance between the viewpoint and
the object occupying that pixel. Then if the specified depth test passes, the incoming depth value
replaces the one already in the depth buffer.

The depth buffer is generally used for hidden-surface elimination. If a new candidate color for that
pixel appears, it’s drawn only if the corresponding object is closer than the previous object. In this
way, after the entire scene has been rendered, only objects that aren’t obscured by other items
remain. Initially, the clearing value for the depth buffer is a value that’s as far from the viewpoint as
possible, so the depth of any object is nearer than that value. If this is how you want to use the
depth buffer, you simply have to enable it by passing GL_DEPTH_TEST to glEnable() and
remember to clear the depth buffer before you redraw each frame. (See "Clearing Buffers.") You
can also choose a different comparison function for the depth test with glDepthFunc().

void glDepthFunc(GLenum func);
Sets the comparison function for the depth test. The value for func must be GL_NEVER,
GL_ALWAYS, GL_LESS, GL_LEQUAL, GL_EQUAL, GL_GEQUAL, GL_GREATER, or
GL_NOTEQUAL. An incoming fragment passes the depth test if its z value has the specified
relation to the value already stored in the depth buffer. The default is GL_LESS, which means
that an incoming fragment passes the test if its z value is less than that already stored in the
depth buffer. In this case, the z value represents the distance from the object to the viewpoint,
and smaller values mean the corresponding objects are closer to the viewpoint.

Blending, Dithering, and Logical Operations

Once an incoming fragment has passed all the tests described in the previous section, it can be
combined with the current contents of the color buffer in one of several ways. The simplest way,
which is also the default, is to overwrite the existing values. Alternatively, if you’re using RGBA
mode and you want the fragment to be translucent or antialiased, you might average its value with
the value already in the buffer (blending). On systems with a small number of available colors, you
might want to dither color values to increase the number of colors available at the cost of a loss in
resolution. In the final stage, you can use arbitrary bitwise logical operations to combine the
incoming fragment and the pixel that’s already written.

Blending

Blending combines the incoming fragment’s R, G, B, and alpha values with those of the pixel
already stored at the location. Different blending operations can be applied, and the blending that
occurs depends on the values of the incoming alpha value and the alpha value (if any) stored at the
pixel. (See "Blending" in Chapter 6 for an extensive discussion of this topic.)

Dithering

On systems with a small number of color bitplanes, you can improve the color resolution at the
expense of spatial resolution by dithering the color in the image. Dithering is like halftoning in
newspapers. Although The New York Times has only two colors - black and white - it can show
photographs by representing the shades of gray with combinations of black and white dots.
Comparing a newspaper image of a photo (having no shades of gray) with the original photo (with
grayscale) makes the loss of spatial resolution obvious. Similarly, systems with a small number of
color bitplanes may dither values of red, green, and blue on neighboring pixels for the perception of
a wider range of colors.

The dithering operation that takes place is hardware-dependent; all OpenGL allows you to do is to
turn it on and off. In fact, on some machines, enabling dithering might do nothing at all, which
makes sense if the machine already has high color resolution. To enable and disable dithering, pass
GL_DITHER to glEnable() and glDisable(). Dithering is enabled by default.

Dithering applies in both RGBA and color-index mode. The colors or color indices alternate in
some hardware-dependent way between the two nearest possibilities. For example, in color-index
mode, if dithering is enabled and the color index to be painted is 4.4, then 60% of the pixels may be
painted with index 4 and 40% of the pixels with index 5. (Many dithering algorithms are possible,
but a dithered value produced by any algorithm must depend upon only the incoming value and the
fragment’s x and y coordinates.) In RGBA mode, dithering is performed separately for each
component (including alpha). To use dithering in color-index mode, you generally need to arrange
the colors in the color map appropriately in ramps, otherwise, bizarre images might result.

Logical Operations

The final operation on a fragment is the logical operation, such as an OR, XOR, or INVERT, which
is applied to the incoming fragment values (source) and/or those currently in the color buffer
(destination). Such fragment operations are especially useful on bit-blt-type machines, on which the
primary graphics operation is copying a rectangle of data from one place in the window to another,
from the window to processor memory, or from memory to the window. Typically, the copy
doesn’t write the data directly into memory but instead allows you to perform an arbitrary logical
operation on the incoming data and the data already present; then it replaces the existing data with
the results of the operation.

Since this process can be implemented fairly cheaply in hardware, many such machines are
available. As an example of using a logical operation, XOR can be used to draw on an image in an
undoable way; simply XOR the same drawing again, and the original image is restored. As another
example, when using color-index mode, the color indices can be interpreted as bit patterns. Then
you can compose an image as combinations of drawings on different layers, use writemasks to limit
drawing to different sets of bitplanes, and perform logical operations to modify different layers.

You enable and disable logical operations by passing GL_INDEX_LOGIC_OP or
GL_COLOR_LOGIC_OP to glEnable() and glDisable() for color-index mode or RGBA mode,
respectively. You also must choose among the sixteen logical operations with glLogicOp(), or
you’ll just get the effect of the default value, GL_COPY. (For backward compatibility with
OpenGL Version 1.0, glEnable(GL_LOGIC_OP) also enables logical operation in color-index
mode.)

void glLogicOp(GLenum opcode);
Selects the logical operation to be performed, given an incoming (source) fragment and the
pixel currently stored in the color buffer (destination). Table 10-4 shows the possible values
for opcode and their meaning (s represents source and d destination). The default value is
GL_COPY.

Table 10-4 : Sixteen Logical Operations

Parameter Operation Parameter Operation

GL_CLEAR 0 GL_AND s ∧ d

GL_COPY s GL_OR s ∨ d

GL_NOOP d GL_NAND ¬(s ∧ d)

GL_SET 1 GL_NOR ¬(s ∨ d)

GL_COPY_INVERTED ¬s GL_XOR s XOR d

GL_INVERT ¬d GL_EQUIV ¬(s XOR d)

GL_AND_REVERSE s ∧ ¬d GL_AND_INVERTED ¬s ∧ d

GL_OR_REVERSE s ∨ ¬d GL_OR_INVERTED ¬s ∨ d

The Accumulation Buffer

Advanced

The accumulation buffer can be used for such things as scene antialiasing, motion blur, simulating
photographic depth of field, and calculating the soft shadows that result from multiple light sources.
Other techniques are possible, especially in combination with some of the other buffers. (See The
Accumulation Buffer: Hardware Support for High-Quality Rendering by Paul Haeberli and Kurt
Akeley (SIGGRAPH 1990 Proceedings, p. 309-318) for more information on the uses for the
accumulation buffer.)

OpenGL graphics operations don’t write directly into the accumulation buffer. Typically, a series of
images is generated in one of the standard color buffers, and these are accumulated, one at a time,
into the accumulation buffer. When the accumulation is finished, the result is copied back into a
color buffer for viewing. To reduce rounding errors, the accumulation buffer may have higher
precision (more bits per color) than the standard color buffers. Rendering a scene several times
obviously takes longer than rendering it once, but the result is higher quality. You can decide what
trade-off between quality and rendering time is appropriate for your application.

You can use the accumulation buffer the same way a photographer can use film for multiple
exposures. A photographer typically creates a multiple exposure by taking several pictures of the
same scene without advancing the film. If anything in the scene moves, that object appears blurred.
Not surprisingly, a computer can do more with an image than a photographer can do with a camera.
For example, a computer has exquisite control over the viewpoint, but a photographer can’t shake a
camera a predictable and controlled amount. (See "Clearing Buffers" for information about how to
clear the accumulation buffer; use glAccum() to control it.)

void glAccum(GLenum op, GLfloat value);
Controls the accumulation buffer. The op parameter selects the operation, and value is a
number to be used in that operation. The possible operations are GL_ACCUM, GL_LOAD,
GL_RETURN, GL_ADD, and GL_MULT.

GL_ACCUM reads each pixel from the buffer currently selected for reading with
glReadBuffer(), multiplies the R, G, B, and alpha values by value, and adds the result to the
accumulation buffer.

GL_LOAD does the same thing, except that the values replace those in the accumulation
buffer rather than being added to them.

GL_RETURN takes values from the accumulation buffer, multiplies them by value, and
places the result in the color buffer(s) enabled for writing.

GL_ADD and GL_MULT simply add or multiply the value of each pixel in the accumulation
buffer by value and then return it to the accumulation buffer. For GL_MULT, value is
clamped to be in the range [-1.0,1.0]. For GL_ADD, no clamping occurs.

Scene Antialiasing

To perform scene antialiasing, first clear the accumulation buffer and enable the front buffer for
reading and writing. Then loop several times (say, n) through code that jitters and draws the image
(jittering is moving the image to a slightly different position), accumulating the data with

glAccum(GL_ACCUM, 1.0/n);

and finally calling

glAccum(GL_RETURN, 1.0);

Note that this method is a bit faster if, on the first pass through the loop, GL_LOAD is used and
clearing the accumulation buffer is omitted. See Table 10-5 for possible jittering values. With this
code, the image is drawn n times before the final image is drawn. If you want to avoid showing the
user the intermediate images, draw into a color buffer that’s not displayed, accumulate from that,
and use the GL_RETURN call to draw into a displayed buffer (or into a back buffer that you
subsequently swap to the front).

You could instead present a user interface that shows the viewed image improving as each
additional piece is accumulated and that allows the user to halt the process when the image is good
enough. To accomplish this, in the loop that draws successive images, call glAccum() with
GL_RETURN after each accumulation, using 16.0/1.0, 16.0/2.0, 16.0/3.0, ... as the second
argument. With this technique, after one pass, 1/16 of the final image is shown, after two passes,
2/16 is shown, and so on. After the GL_RETURN, the code should check to see if the user wants to
interrupt the process. This interface is slightly slower, since the resultant image must be copied in
after each pass.

To decide what n should be, you need to trade off speed (the more times you draw the scene, the
longer it takes to obtain the final image) and quality (the more times you draw the scene, the
smoother it gets, until you make maximum use of the accumulation buffer’s resolution). "Plate 22"
and "Plate 23" show improvements made using scene antialiasing.

Example 10-2 defines two routines for jittering that you might find useful: accPerspective() and
accFrustum(). The routine accPerspective() is used in place of gluPerspective(), and the first four
parameters of both routines are the same. To jitter the viewing frustum for scene antialiasing, pass
the x and y jitter values (of less than one pixel) to the fifth and sixth parameters of
accPerspective(). Also pass 0.0 for the seventh and eighth parameters to accPerspective() and a
nonzero value for the ninth parameter (to prevent division by zero inside accPerspective()). These
last three parameters are used for depth-of-field effects, which are described later in this chapter.

Example 10-2 : Routines for Jittering the Viewing Volume: accpersp.c

#define PI_ 3.14159265358979323846

void accFrustum(GLdouble left, GLdouble right, GLdouble bottom,
 GLdouble top, GLdouble near, GLdouble far, GLdouble pixdx,
 GLdouble pixdy, GLdouble eyedx, GLdouble eyedy,
 GLdouble focus)
{
 GLdouble xwsize, ywsize;
 GLdouble dx, dy;
 GLint viewport[4];

 glGetIntegerv (GL_VIEWPORT, viewport);

 xwsize = right - left;
 ywsize = top - bottom;
 dx = -(pixdx*xwsize/(GLdouble) viewport[2] +
 eyedx*near/focus);
 dy = -(pixdy*ywsize/(GLdouble) viewport[3] +
 eyedy*near/focus);

 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 glFrustum (left + dx, right + dx, bottom + dy, top + dy,
 near, far);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 glTranslatef (-eyedx, -eyedy, 0.0);
}

void accPerspective(GLdouble fovy, GLdouble aspect,
 GLdouble near, GLdouble far, GLdouble pixdx, GLdouble pixdy,
 GLdouble eyedx, GLdouble eyedy, GLdouble focus)
{
 GLdouble fov2,left,right,bottom,top;
 fov2 = ((fovy*PI_) / 180.0) / 2.0;

 top = near / (fcos(fov2) / fsin(fov2));
 bottom = -top;
 right = top * aspect;
 left = -right;

 accFrustum (left, right, bottom, top, near, far,
 pixdx, pixdy, eyedx, eyedy, focus);
}

Example 10-3 uses these two routines to perform scene antialiasing.

Example 10-3 : Scene Antialiasing: accpersp.c

#include <GL/gl.h>
#include <GL/glu.h>

#include <stdlib.h>
#include <math.h>
#include <GL/glut.h>
#include "jitter.h"

void init(void)
{
 GLfloat mat_ambient[] = { 1.0, 1.0, 1.0, 1.0 };
 GLfloat mat_specular[] = { 1.0, 1.0, 1.0, 1.0 };
 GLfloat light_position[] = { 0.0, 0.0, 10.0, 1.0 };
 GLfloat lm_ambient[] = { 0.2, 0.2, 0.2, 1.0 };

 glMaterialfv(GL_FRONT, GL_AMBIENT, mat_ambient);
 glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);
 glMaterialf(GL_FRONT, GL_SHININESS, 50.0);
 glLightfv(GL_LIGHT0, GL_POSITION, light_position);
 glLightModelfv(GL_LIGHT_MODEL_AMBIENT, lm_ambient);

 glEnable(GL_LIGHTING);
 glEnable(GL_LIGHT0);
 glEnable(GL_DEPTH_TEST);
 glShadeModel (GL_FLAT);

 glClearColor(0.0, 0.0, 0.0, 0.0);
 glClearAccum(0.0, 0.0, 0.0, 0.0);
}

void displayObjects(void)
{
 GLfloat torus_diffuse[] = { 0.7, 0.7, 0.0, 1.0 };
 GLfloat cube_diffuse[] = { 0.0, 0.7, 0.7, 1.0 };
 GLfloat sphere_diffuse[] = { 0.7, 0.0, 0.7, 1.0 };
 GLfloat octa_diffuse[] = { 0.7, 0.4, 0.4, 1.0 };

 glPushMatrix ();
 glTranslatef (0.0, 0.0, -5.0);
 glRotatef (30.0, 1.0, 0.0, 0.0);

 glPushMatrix ();
 glTranslatef (-0.80, 0.35, 0.0);
 glRotatef (100.0, 1.0, 0.0, 0.0);
 glMaterialfv(GL_FRONT, GL_DIFFUSE, torus_diffuse);
 glutSolidTorus (0.275, 0.85, 16, 16);
 glPopMatrix ();

 glPushMatrix ();
 glTranslatef (-0.75, -0.50, 0.0);
 glRotatef (45.0, 0.0, 0.0, 1.0);
 glRotatef (45.0, 1.0, 0.0, 0.0);
 glMaterialfv(GL_FRONT, GL_DIFFUSE, cube_diffuse);
 glutSolidCube (1.5);
 glPopMatrix ();

 glPushMatrix ();
 glTranslatef (0.75, 0.60, 0.0);
 glRotatef (30.0, 1.0, 0.0, 0.0);
 glMaterialfv(GL_FRONT, GL_DIFFUSE, sphere_diffuse);
 glutSolidSphere (1.0, 16, 16);
 glPopMatrix ();

 glPushMatrix ();
 glTranslatef (0.70, -0.90, 0.25);
 glMaterialfv(GL_FRONT, GL_DIFFUSE, octa_diffuse);
 glutSolidOctahedron ();
 glPopMatrix ();

 glPopMatrix ();
}

#define ACSIZE 8

void display(void)
{
 GLint viewport[4];
 int jitter;

 glGetIntegerv (GL_VIEWPORT, viewport);

 glClear(GL_ACCUM_BUFFER_BIT);
 for (jitter = 0; jitter < ACSIZE; jitter++) {
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 accPerspective (50.0,
 (GLdouble) viewport[2]/(GLdouble) viewport[3],
 1.0, 15.0, j8[jitter].x, j8[jitter].y, 0.0, 0.0, 1.0);
 displayObjects ();
 glAccum(GL_ACCUM, 1.0/ACSIZE);
 }
 glAccum (GL_RETURN, 1.0);
 glFlush();
}

void reshape(int w, int h)
{
 glViewport(0, 0, (GLsizei) w, (GLsizei) h);
}

/* Main Loop
 * Be certain you request an accumulation buffer.
 */
int main(int argc, char** argv)
{
 glutInit(&argc, argv);
 glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB
 | GLUT_ACCUM | GLUT_DEPTH);
 glutInitWindowSize (250, 250);
 glutInitWindowPosition (100, 100);
 glutCreateWindow (argv[0]);
 init();
 glutReshapeFunc(reshape);
 glutDisplayFunc(display);
 glutMainLoop();
 return 0;
}

You don’t have to use a perspective projection to perform scene antialiasing. You can antialias a
scene with orthographic projection simply by using glTranslate*() to jitter the scene. Keep in mind
that glTranslate*() operates in world coordinates, but you want the apparent motion of the scene to
be less than one pixel, measured in screen coordinates. Thus, you must reverse the world-coordinate
mapping by calculating the jittering translation values, using its width or height in world
coordinates divided by its viewport size. Then multiply that world-coordinate value by the amount
of jitter to determine how much the scene should be moved in world coordinates to get a predictable
jitter of less than one pixel. Example 10-4 shows how the display() and reshape() routines might
look with a world-coordinate width and height of 4.5.

Example 10-4 : Jittering with an Orthographic Projection: accanti.c

#define ACSIZE 8

void display(void)
{
 GLint viewport[4];
 int jitter;

 glGetIntegerv (GL_VIEWPORT, viewport);

 glClear(GL_ACCUM_BUFFER_BIT);
 for (jitter = 0; jitter < ACSIZE; jitter++) {
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 glPushMatrix ();
/* Note that 4.5 is the distance in world space between
 * left and right and bottom and top.
 * This formula converts fractional pixel movement to
 * world coordinates.
 */
 glTranslatef (j8[jitter].x*4.5/viewport[2],
 j8[jitter].y*4.5/viewport[3], 0.0);
 displayObjects ();
 glPopMatrix ();
 glAccum(GL_ACCUM, 1.0/ACSIZE);
 }
 glAccum (GL_RETURN, 1.0);
 glFlush();
}

void reshape(int w, int h)
{
 glViewport(0, 0, (GLsizei) w, (GLsizei) h);
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 if (w <= h)
 glOrtho (-2.25, 2.25, -2.25*h/w, 2.25*h/w, -10.0, 10.0);
 else
 glOrtho (-2.25*w/h, 2.25*w/h, -2.25, 2.25, -10.0, 10.0);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
}

Motion Blur

Similar methods can be used to simulate motion blur, as shown in "Plate 7" in Appendix I and
Figure 10-2. Suppose your scene has some stationary and some moving objects in it, and you want
to make a motion-blurred image extending over a small interval of time. Set up the accumulation
buffer in the same way, but instead of spatially jittering the images, jitter them temporally. The
entire scene can be made successively dimmer by calling

glAccum (GL_MULT, decayFactor);

as the scene is drawn into the accumulation buffer, where decayFactor is a number from 0.0 to 1.0.
Smaller numbers for decayFactor cause the object to appear to be moving faster. You can transfer
the completed scene with the object’s current position and "vapor trail" of previous positions from
the accumulation buffer to the standard color buffer with

glAccum (GL_RETURN, 1.0);

The image looks correct even if the items move at different speeds, or if some of them are
accelerated. As before, the more jitter points (temporal, in this case) you use, the better the final
image, at least up to the point where you begin to lose resolution due to finite precision in the
accumulation buffer. You can combine motion blur with antialiasing by jittering in both the spatial

and temporal domains, but you pay for higher quality with longer rendering times.

Figure 10-2 : Motion-Blurred Object

Depth of Field

A photograph made with a camera is in perfect focus only for items lying on a single plane a certain
distance from the film. The farther an item is from this plane, the more out of focus it is. The depth
of field for a camera is a region about the plane of perfect focus where items are out of focus by a
small enough amount.

Under normal conditions, everything you draw with OpenGL is in focus (unless your monitor’s
bad, in which case everything is out of focus). The accumulation buffer can be used to approximate
what you would see in a photograph where items are more and more blurred as their distance from
a plane of perfect focus increases. It isn’t an exact simulation of the effects produced in a camera,
but the result looks similar to what a camera would produce.

To achieve this result, draw the scene repeatedly using calls with different argument values to
glFrustum(). Choose the arguments so that the position of the viewpoint varies slightly around its
true position and so that each frustum shares a common rectangle that lies in the plane of perfect
focus, as shown in Figure 10-3. The results of all the renderings should be averaged in the usual
way using the accumulation buffer.

Figure 10-3 : Jittered Viewing Volume for Depth-of-Field Effects

"Plate 10" in Appendix I shows an image of five teapots drawn using the depth-of-field effect. The
gold teapot (second from the left) is in focus, and the other teapots get progressively blurrier,
depending upon their distance from the focal plane (gold teapot). The code to draw this image is
shown in Example 10-5 (which assumes accPerspective() and accFrustum() are defined as

described in Example 10-2). The scene is drawn eight times, each with a slightly jittered viewing
volume, by calling accPerspective(). As you recall, with scene antialiasing, the fifth and sixth
parameters jitter the viewing volumes in the x and y directions. For the depth-of-field effect,
however, you want to jitter the volume while holding it stationary at the focal plane. The focal
plane is the depth value defined by the ninth (last) parameter to accPerspective(), which is z = 5.0
in this example. The amount of blur is determined by multiplying the x and y jitter values (seventh
and eighth parameters of accPerspective()) by a constant. Determining the constant is not a
science; experiment with values until the depth of field is as pronounced as you want. (Note that in
Example 10-5, the fifth and sixth parameters to accPerspective() are set to 0.0, so scene
antialiasing is turned off.)

Example 10-5 : Depth-of-Field Effect: dof.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>
#include <stdlib.h>
#include <math.h>
#include "jitter.h"

void init(void)
{
 GLfloat ambient[] = { 0.0, 0.0, 0.0, 1.0 };
 GLfloat diffuse[] = { 1.0, 1.0, 1.0, 1.0 };
 GLfloat specular[] = { 1.0, 1.0, 1.0, 1.0 };
 GLfloat position[] = { 0.0, 3.0, 3.0, 0.0 };

 GLfloat lmodel_ambient[] = { 0.2, 0.2, 0.2, 1.0 };
 GLfloat local_view[] = { 0.0 };

 glLightfv(GL_LIGHT0, GL_AMBIENT, ambient);
 glLightfv(GL_LIGHT0, GL_DIFFUSE, diffuse);
 glLightfv(GL_LIGHT0, GL_POSITION, position);

 glLightModelfv(GL_LIGHT_MODEL_AMBIENT, lmodel_ambient);
 glLightModelfv(GL_LIGHT_MODEL_LOCAL_VIEWER, local_view);

 glFrontFace (GL_CW);
 glEnable(GL_LIGHTING);
 glEnable(GL_LIGHT0);
 glEnable(GL_AUTO_NORMAL);
 glEnable(GL_NORMALIZE);
 glEnable(GL_DEPTH_TEST);

 glClearColor(0.0, 0.0, 0.0, 0.0);
 glClearAccum(0.0, 0.0, 0.0, 0.0);
/* make teapot display list */
 teapotList = glGenLists(1);
 glNewList (teapotList, GL_COMPILE);
 glutSolidTeapot (0.5);
 glEndList ();
}

void renderTeapot (GLfloat x, GLfloat y, GLfloat z,
 GLfloat ambr, GLfloat ambg, GLfloat ambb,
 GLfloat difr, GLfloat difg, GLfloat difb,
 GLfloat specr, GLfloat specg, GLfloat specb, GLfloat shine)
{
 GLfloat mat[4];

 glPushMatrix();

 glTranslatef (x, y, z);
 mat[0] = ambr; mat[1] = ambg; mat[2] = ambb; mat[3] = 1.0;
 glMaterialfv (GL_FRONT, GL_AMBIENT, mat);
 mat[0] = difr; mat[1] = difg; mat[2] = difb;
 glMaterialfv (GL_FRONT, GL_DIFFUSE, mat);
 mat[0] = specr; mat[1] = specg; mat[2] = specb;
 glMaterialfv (GL_FRONT, GL_SPECULAR, mat);
 glMaterialf (GL_FRONT, GL_SHININESS, shine*128.0);
 glCallList(teapotList);
 glPopMatrix();
}

void display(void)
{
 int jitter;
 GLint viewport[4];

 glGetIntegerv (GL_VIEWPORT, viewport);
 glClear(GL_ACCUM_BUFFER_BIT);

 for (jitter = 0; jitter < 8; jitter++) {
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 accPerspective (45.0,
 (GLdouble) viewport[2]/(GLdouble) viewport[3],
 1.0, 15.0, 0.0, 0.0,
 0.33*j8[jitter].x, 0.33*j8[jitter].y, 5.0);

/* ruby, gold, silver, emerald, and cyan teapots */
 renderTeapot (-1.1, -0.5, -4.5, 0.1745, 0.01175,
 0.01175, 0.61424, 0.04136, 0.04136,
 0.727811, 0.626959, 0.626959, 0.6);
 renderTeapot (-0.5, -0.5, -5.0, 0.24725, 0.1995,
 0.0745, 0.75164, 0.60648, 0.22648,
 0.628281, 0.555802, 0.366065, 0.4);
 renderTeapot (0.2, -0.5, -5.5, 0.19225, 0.19225,
 0.19225, 0.50754, 0.50754, 0.50754,
 0.508273, 0.508273, 0.508273, 0.4);
 renderTeapot (1.0, -0.5, -6.0, 0.0215, 0.1745, 0.0215,
 0.07568, 0.61424, 0.07568, 0.633,
 0.727811, 0.633, 0.6);
 renderTeapot (1.8, -0.5, -6.5, 0.0, 0.1, 0.06, 0.0,
 0.50980392, 0.50980392, 0.50196078,
 0.50196078, 0.50196078, .25);
 glAccum (GL_ACCUM, 0.125);
 }
 glAccum (GL_RETURN, 1.0);
 glFlush();
}

void reshape(int w, int h)
{
 glViewport(0, 0, (GLsizei) w, (GLsizei) h);
}

/* Main Loop
 * Be certain you request an accumulation buffer.
 */
int main(int argc, char** argv)
{
 glutInit(&argc, argv);
 glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB
 | GLUT_ACCUM | GLUT_DEPTH);
 glutInitWindowSize (400, 400);
 glutInitWindowPosition (100, 100);
 glutCreateWindow (argv[0]);

 init();
 glutReshapeFunc(reshape);
 glutDisplayFunc(display);
 glutMainLoop();
 return 0;
}

Soft Shadows

To accumulate soft shadows due to multiple light sources, render the shadows with one light turned
on at a time, and accumulate them together. This can be combined with spatial jittering to antialias
the scene at the same time. (See "Shadows" in Chapter 14 for more information about drawing
shadows.)

Jittering

If you need to take nine or sixteen samples to antialias an image, you might think that the best
choice of points is an equally spaced grid across the pixel. Surprisingly, this is not necessarily true.
In fact, sometimes it’s a good idea to take points that lie in adjacent pixels. You might want a
uniform distribution or a normalized distribution, clustering toward the center of the pixel. (The
aforementioned SIGGRAPH paper discusses these issues.) In addition, Table 10-5 shows a few sets
of reasonable jittering values to be used for some selected sample counts. Most of the examples in
the table are uniformly distributed in the pixel, and all lie within the pixel.

Table 10-5 : (continued) Sample Jittering Values

Count Values

2 {0.25, 0.75}, {0.75, 0.25}

3 {0.5033922635, 0.8317967229}, {0.7806016275, 0.2504380877},

{0.2261828938, 0.4131553612}

4 {0.375, 0.25}, {0.125, 0.75}, {0.875, 0.25}, {0.625, 0.75}

5 {0.5, 0.5}, {0.3, 0.1}, {0.7, 0.9}, {0.9, 0.3}, {0.1, 0.7}

6 {0.4646464646, 0.4646464646}, {0.1313131313, 0.7979797979},

{0.5353535353, 0.8686868686}, {0.8686868686, 0.5353535353},

{0.7979797979, 0.1313131313}, {0.2020202020, 0.2020202020}

8 {0.5625, 0.4375}, {0.0625, 0.9375}, {0.3125, 0.6875}, {0.6875, 0.8125}, {0.8125,
0.1875}, {0.9375, 0.5625}, {0.4375, 0.0625}, {0.1875, 0.3125}

9 {0.5, 0.5}, {0.1666666666, 0.9444444444}, {0.5, 0.1666666666},

{0.5, 0.8333333333}, {0.1666666666, 0.2777777777},

{0.8333333333, 0.3888888888}, {0.1666666666, 0.6111111111},

{0.8333333333, 0.7222222222}, {0.8333333333, 0.0555555555}

12 {0.4166666666, 0.625}, {0.9166666666, 0.875}, {0.25, 0.375},

{0.4166666666, 0.125}, {0.75, 0.125}, {0.0833333333, 0.125}, {0.75, 0.625},

{0.25, 0.875}, {0.5833333333, 0.375}, {0.9166666666, 0.375},

{0.0833333333, 0.625}, {0.583333333, 0.875}

16 {0.375, 0.4375}, {0.625, 0.0625}, {0.875, 0.1875}, {0.125, 0.0625},

{0.375, 0.6875}, {0.875, 0.4375}, {0.625, 0.5625}, {0.375, 0.9375},

{0.625, 0.3125}, {0.125, 0.5625}, {0.125, 0.8125}, {0.375, 0.1875},

{0.875, 0.9375}, {0.875, 0.6875}, {0.125, 0.3125}, {0.625, 0.8125}

 OpenGL Programming Guide
(Addison-Wesley Publishing Company)

 OpenGL Programming Guide
(Addison-Wesley Publishing Company)

Chapter 11
Tessellators and Quadrics
Chapter Objectives

After reading this chapter, you’ll be able to do the following:

Render concave filled polygons by first tessellating them into convex polygons, which can be
rendered using standard OpenGL routines.

Use the GLU library to create quadrics objects to render and model the surfaces of spheres
and cylinders and to tessellate disks (circles) and partial disks (arcs).

The OpenGL library (GL) is designed for low-level operations, both streamlined and accessible to
hardware acceleration. The OpenGL Utility Library (GLU) complements the OpenGL library,
supporting higher-level operations. Some of the GLU operations are covered in other chapters.
Mipmapping (gluBuild*DMipmaps()) and image scaling (gluScaleImage()) are discussed along
with other facets of texture mapping in Chapter 9. Several matrix transformation GLU routines
(gluOrtho2D(), gluPerspective(), gluLookAt(), gluProject(), and gluUnProject()) are described
in Chapter 3. The use of gluPickMatrix() is explained in Chapter 13. The GLU NURBS facilities,
which are built atop OpenGL evaluators, are covered in Chapter 12. Only two GLU topics remain:
polygon tessellators and quadric surfaces, and those topics are discussed in this chapter.

To optimize performance, the basic OpenGL only renders convex polygons, but the GLU contains
routines to tessellate concave polygons into convex ones, which the basic OpenGL can handle.
Where the basic OpenGL operates upon simple primitives, such as points, lines, and filled
polygons, the GLU can create higher-level objects, such as the surfaces of spheres, cylinders, and
cones.

This chapter has the following major sections.

"Polygon Tessellation" explains how to tessellate convex polygons into easier-to-render
convex polygons.

"Quadrics: Rendering Spheres, Cylinders, and Disks" describes how to generate spheres,
cylinders, circles and arcs, including data such as surface normals and texture coordinates.

Polygon Tessellation

As discussed in "Describing Points, Lines, and Polygons" in Chapter 2, OpenGL can directly
display only simple convex polygons. A polygon is simple if the edges intersect only at vertices,

there are no duplicate vertices, and exactly two edges meet at any vertex. If your application
requires the display of concave polygons, polygons containing holes, or polygons with intersecting
edges, those polygons must first be subdivided into simple convex polygons before they can be
displayed. Such subdivision is called tessellation, and the GLU provides a collection of routines
that perform tessellation. These routines take as input arbitrary contours, which describe
hard-to-render polygons, and they return some combination of triangles, triangle meshes, triangle
fans, or lines.

Figure 11-1 shows some contours of polygons that require tessellation: from left to right, a concave
polygon, a polygon with a hole, and a self-intersecting polygon.

Figure 11-1 : Contours That Require Tessellation

If you think a polygon may need tessellation, follow these typical steps.

1. Create a new tessellation object with gluNewTess().

2. Use gluTessCallback() several times to register callback functions to perform operations
during the tessellation. The trickiest case for a callback function is when the tessellation
algorithm detects an intersection and must call the function registered for the
GLU_TESS_COMBINE callback.

3. Specify tessellation properties by calling gluTessProperty(). The most important property is
the winding rule, which determines the regions that should be filled and those that should
remain unshaded.

4. Create and render tessellated polygons by specifying the contours of one or more closed
polygons. If the data for the object is static, encapsulate the tessellated polygons in a display
list. (If you don’t have to recalculate the tessellation over and over again, using display lists is
more efficient.)

5. If you need to tessellate something else, you may reuse your tessellation object. If you are
forever finished with your tessellation object, you may delete it with gluDeleteTess().

Note: The tessellator described here was introduced in version 1.2 of the GLU. If you are using an
older version of the GLU, you must use routines described in "Describing GLU Errors". To query
which version of GLU you have, use gluGetString(GLU_VERSION), which returns a string with
your GLU version number. If you don’t seem to have gluGetString() in your GLU, then you have
GLU 1.0, which did not yet have the gluGetString() routine.

Create a Tessellation Object

As a complex polygon is being described and tessellated, it has associated data, such as the vertices,
edges, and callback functions. All this data is tied to a single tessellation object. To perform
tessellation, your program first has to create a tessellation object using the routine gluNewTess().

GLUtesselator* gluNewTess(void);
Creates a new tessellation object and returns a pointer to it. A null pointer is returned if the
creation fails.

A single tessellation object can be reused for all your tessellations. This object is required only
because library routines might need to do their own tessellations, and they should be able to do so
without interfering with any tessellation that your program is doing. It might also be useful to have
multiple tessellation objects if you want to use different sets of callbacks for different tessellations.
A typical program, however, allocates a single tessellation object and uses it for all its tessellations.
There’s no real need to free it because it uses a small amount of memory. On the other hand, it
never hurts to be tidy.

Tessellation Callback Routines

After you create a tessellation object, you must provide a series of callback routines to be called at
appropriate times during the tessellation. After specifying the callbacks, you describe the contours
of one or more polygons using GLU routines. When the description of the contours is complete, the
tessellation facility invokes your callback routines as necessary.

Any functions that are omitted are simply not called during the tessellation, and any information
they might have returned to your program is lost. All are specified by the single routine
gluTessCallback().

void gluTessCallback(GLUtesselator *tessobj, GLenum type, void (* fn)());
Associates the callback function fn with the tessellation object tessobj. The type of the
callback is determined by the parameter type, which can be GLU_TESS_BEGIN,
GLU_TESS_BEGIN_DATA, GLU_TESS_EDGE_FLAG, GLU_TESS_EDGE_FLAG_DATA,
GLU_TESS_VERTEX, GLU_TESS_VERTEX_DATA, GLU_TESS_END,
GLU_TESS_END_DATA, GLU_TESS_COMBINE, GLU_TESS_COMBINE_DATA,
GLU_TESS_ERROR, and GLU_TESS_ERROR_DATA. The twelve possible callback
functions have the following prototypes:
GLU_TESS_BEGIN void begin(GLenum type);
GLU_TESS_BEGIN_DATA void begin(GLenum type,
void *user_data);
GLU_TESS_EDGE_FLAG void edgeFlag(GLboolean flag);
GLU_TESS_EDGE_FLAG_DATA void edgeFlag(GLboolean flag,
void *user_data);
GLU_TESS_VERTEX void vertex(void *vertex_data);
GLU_TESS_VERTEX_DATA void vertex(void *vertex_data,
void *user_data);
GLU_TESS_END void end(void);
GLU_TESS_END_DATA void end(void *user_data);
GLU_TESS_ERROR void error(GLenum errno);
GLU_TESS_ERROR_DATA void error(GLenum errno, void *user_data);
GLU_TESS_COMBINE void combine(GLdouble coords[3],
void *vertex_data[4],
GLfloat weight[4],

void **outData);
GLU_TESS_COMBINE_DATA void combine(GLdouble coords[3],
void *vertex_data[4],
GLfloat weight[4],
void **outData,
void *user_data);

To change a callback routine, simply call gluTessCallback() with the new routine. To eliminate a
callback routine without replacing it with a new one, pass gluTessCallback() a null pointer for the
appropriate function.

As tessellation proceeds, the callback routines are called in a manner
similar to how you use the OpenGL commands glBegin(), glEdgeFlag*(), glVertex*(), and
glEnd(). (See "Marking Polygon Boundary Edges" in Chapter 2 for more information about
glEdgeFlag*().) The combine callback is used to create new vertices where edges intersect. The
error callback is invoked during the tessellation only if something goes wrong.

For every tessellator object created, a GLU_TESS_BEGIN callback is invoked with one of four
possible parameters: GL_TRIANGLE_FAN, GL_TRIANGLE_STRIP, GL_TRIANGLES, and
GL_LINE_LOOP. When the tessellator decomposes the polygons, the tessellation algorithm will
decide which type of triangle primitive is most efficient to use. (If the
GLU_TESS_BOUNDARY_ONLY property is enabled, then GL_LINE_LOOP is used for
rendering.)

Since edge flags make no sense in a triangle fan or triangle strip, if there is a callback associated
with GLU_TESS_EDGE_FLAG that enables edge flags, the GLU_TESS_BEGIN callback is called
only with GL_TRIANGLES. The GLU_TESS_EDGE_FLAG callback works exactly analogously
to the OpenGL glEdgeFlag*() call.

After the GLU_TESS_BEGIN callback routine is called and before the callback associated with
GLU_TESS_END is called, some combination of the GLU_TESS_EDGE_FLAG and
GLU_TESS_VERTEX callbacks is invoked (usually by calls to gluTessVertex(), which is
described on page 425). The associated edge flags and vertices are interpreted exactly as they are in
OpenGL between glBegin() and the matching glEnd().

If something goes wrong, the error callback is passed a GLU error number. A character string
describing the error is obtained using the routine gluErrorString(). (See "Describing GLU Errors"
for more information about this routine.)

Example 11-1 shows a portion of tess.c, where a tessellation object is created and several callbacks
are registered.

Example 11-1 : Registering Tessellation Callbacks: tess.c

/* a portion of init() */
tobj = gluNewTess();
gluTessCallback(tobj, GLU_TESS_VERTEX,
 (GLvoid (*) ()) &glVertex3dv);
gluTessCallback(tobj, GLU_TESS_BEGIN,
 (GLvoid (*) ()) &beginCallback);
gluTessCallback(tobj, GLU_TESS_END,
 (GLvoid (*) ()) &endCallback);
gluTessCallback(tobj, GLU_TESS_ERROR,

 (GLvoid (*) ()) &errorCallback);

/* the callback routines registered by gluTessCallback() */

void beginCallback(GLenum which)
{
 glBegin(which);
}

void endCallback(void)
{
 glEnd();
}

void errorCallback(GLenum errorCode)
{
 const GLubyte *estring;

 estring = gluErrorString(errorCode);
 fprintf (stderr, "Tessellation Error: %s\n", estring);
 exit (0);
}

In Example 11-1, the registered GLU_TESS_VERTEX callback is simply glVertex3dv(), and only
the coordinates at each vertex are passed along. However, if you want to specify more information
at every vertex, such as a color value, a surface normal vector, or texture coordinate, you’ll have to
make a more complex callback routine. Example 11-2 shows the start of another tessellated object,
further along in program tess.c. The registered function vertexCallback() expects to receive a
parameter that is a pointer to six double-length floating point values: the x, y, and z coordinates and
the red, green, and blue color values, respectively, for that vertex.

Example 11-2 : Vertex and Combine Callbacks: tess.c

/* a different portion of init() */
 gluTessCallback(tobj, GLU_TESS_VERTEX,
 (GLvoid (*) ()) &vertexCallback);
 gluTessCallback(tobj, GLU_TESS_BEGIN,
 (GLvoid (*) ()) &beginCallback);
 gluTessCallback(tobj, GLU_TESS_END,
 (GLvoid (*) ()) &endCallback);
 gluTessCallback(tobj, GLU_TESS_ERROR,
 (GLvoid (*) ()) &errorCallback);
 gluTessCallback(tobj, GLU_TESS_COMBINE,
 (GLvoid (*) ()) &combineCallback);

/* new callback routines registered by these calls */
void vertexCallback(GLvoid *vertex)
{
 const GLdouble *pointer;

 pointer = (GLdouble *) vertex;
 glColor3dv(pointer+3);
 glVertex3dv(vertex);
}

void combineCallback(GLdouble coords[3],
 GLdouble *vertex_data[4],
 GLfloat weight[4], GLdouble **dataOut)
{
 GLdouble *vertex;
 int i;

 vertex = (GLdouble *) malloc(6 * sizeof(GLdouble));
 vertex[0] = coords[0];
 vertex[1] = coords[1];
 vertex[2] = coords[2];
 for (i = 3; i < 7; i++)
 vertex[i] = weight[0] * vertex_data[0][i]
 + weight[1] * vertex_data[1][i]
 + weight[2] * vertex_data[2][i]
 + weight[3] * vertex_data[3][i];
 *dataOut = vertex;
}

Example 11-2 also shows the use of the GLU_TESS_COMBINE callback. Whenever the
tessellation algorithm examines the input contours, detects an intersection, and decides it must
create a new vertex, the GLU_TESS_COMBINE callback is invoked. The callback is also called
when the tessellator decides to merge features of two vertices that are very close to one another.
The newly created vertex is a linear combination of up to four existing vertices, referenced by
vertex_data[0..3] in Example 11-2. The coefficients of the linear combination are given by
weight[0..3]; these weights sum to 1.0. coords gives the location of the new vertex.

The registered callback routine must allocate memory for another vertex, perform a weighted
interpolation of data using vertex_data and weight, and return the new vertex pointer as dataOut.
combineCallback() in Example 11-2 interpolates the RGB color value. The function allocates a
six-element array, puts the x, y, and z coordinates in the first three elements, and then puts the
weighted average of the RGB color values in the last three elements.

User-Specified Data

Six kinds of callbacks can be registered. Since there are two versions of each kind of callback, there
are twelve callbacks in all. For each kind of callback, there is one with user-specified data and one
without. The user-specified data is given by the application to gluTessBeginPolygon() and is then
passed, unaltered, to each *DATA callback routine. With GLU_TESS_BEGIN_DATA, the
user-specified data may be used for "per-polygon" data. If you specify both versions of a particular
callback, the callback with user_data is used, and the other is ignored. So, although there are twelve
callbacks, you can have a maximum of six callback functions active at any time.

For instance, Example 11-2 uses smooth shading, so vertexCallback() specifies an RGB color for
every vertex. If you want to do lighting and smooth shading, the callback would specify a surface
normal for every vertex. However, if you want lighting and flat shading, you might specify only
one surface normal for every polygon, not for every vertex. In that case, you might choose to use
the GLU_TESS_BEGIN_DATA callback and pass the vertex coordinates and surface normal in the
user_data pointer.

Tessellation Properties

Prior to tessellation and rendering, you may use gluTessProperty() to set several properties to
affect the tessellation algorithm. The most important and complicated of these properties is the
winding rule, which determines what is considered "interior" and "exterior."

void gluTessProperty(GLUtesselator *tessobj, GLenum property,
GLdouble value);

For the tessellation object tessobj, the current value of property is set to value. property is
one of GLU_TESS_BOUNDARY_ONLY, GLU_TESS_TOLERANCE, or

GLU_TESS_WINDING_RULE.
If property is GLU_TESS_BOUNDARY_ONLY, value is either GL_TRUE or GL_FALSE.
When set to GL_TRUE, polygons are no longer tessellated into filled polygons; line loops are
drawn to outline the contours that separate the polygon interior and exterior. The default
value is GL_FALSE. (See gluTessNormal() to see how to control the winding direction of the
contours.)
If property is GLU_TESS_TOLERANCE, value is a distance used to calculate whether two
vertices are close together enough to be merged by the GLU_TESS_COMBINE callback. The
tolerance value is multiplied by the largest coordinate magnitude of an input vertex to
determine the maximum distance any feature can move as a result of a single merge
operation. Feature merging may not be supported by your implementation, and the tolerance
value is only a hint. The default tolerance value is zero.
The GLU_TESS_WINDING_RULE property determines which parts of the polygon are on
the interior and which are the exterior and should not be filled. value can be one of
GLU_TESS_WINDING_ODD (the default), GLU_TESS_WINDING_NONZERO,
GLU_TESS_WINDING_POSITIVE, GLU_TESS_WINDING_NEGATIVE, or
GLU_TESS_WINDING_ABS_GEQ_TWO.

Winding Numbers and Winding Rules

For a single contour, the winding number of a point is the signed number of revolutions we make
around that point while traveling once around the contour (where a counterclockwise revolution is
positive and a clockwise revolution is negative). When there are several contours, the individual
winding numbers are summed. This procedure associates a signed integer value with each point in
the plane. Note that the winding number is the same for all points in a single region.

Figure 11-2 shows three sets of contours and winding numbers for points inside those contours. In
the left set, all three contours are counterclockwise, so each nested interior region adds one to the
winding number. For the middle set, the two interior contours are drawn clockwise, so the winding
number decreases and actually becomes negative.

Figure 11-2 : Winding Numbers for Sample Contours

The winding rule classifies a region as inside if its winding number belongs to the chosen category
(odd, nonzero, positive, negative, or "absolute value of greater than or equal to two"). The odd and
nonzero rules are common ways to define the interior. The positive, negative, and "absolute
value>=2" winding rules have some limited use for polygon CSG (computational solid geometry)
operations.

The program tesswind.c demonstrates the effects of winding rules. The four sets of contours shown
in Figure 11-3 are rendered. The user can then cycle through the different winding rule properties to
see their effects. For each winding rule, the dark areas represent interiors. Note the effect of
clockwise and counterclockwise winding.

Figure 11-3 : How Winding Rules Define Interiors

CSG Uses for Winding Rules

GLU_TESS_WINDING_ODD and GLU_TESS_WINDING_NONZERO are the most commonly
used winding rules. They work for the most typical cases of shading.

The winding rules are also designed for computational solid geometry (CSG) operations. Thy make
it easy to find the union, difference, or intersection (Boolean operations) of several contours.

First, assume that each contour is defined so that the winding number is zero for each exterior

region and one for each interior region. (Each contour must not intersect itself.) Under this model,
counterclockwise contours define the outer boundary of the polygon, and clockwise contours define
holes. Contours may be nested, but a nested contour must be oriented oppositely from the contour
that contains it.

If the original polygons do not satisfy this description, they can be converted to this form by first
running the tessellator with the GLU_TESS_BOUNDARY_ONLY property turned on. This returns
a list of contours satisfying the restriction just described. By creating two tessellator objects, the
callbacks from one tessellator can be fed directly as input to the other.

Given two or more polygons of the preceding form, CSG operations can be implemented as
follows.

UNION - To calculate the union of several contours, draw all input contours as a single
polygon. The winding number of each resulting region is the number of original polygons that
cover it. The union can be extracted by using the GLU_TESS_WINDING_NONZERO or
GLU_TESS_WINDING_POSITIVE winding rules. Note that with the nonzero winding rule,
we would get the same result if all contour orientations were reversed.

INTERSECTION - This only works for two contours at a time. Draw a single polygon using
two contours. Extract the result using GLU_TESS_WINDING_ABS_GEQ_TWO.

DIFFERENCE - Suppose you want to compute A diff (B union C union D). Draw a single
polygon consisting of the unmodified contours from A, followed by the contours of B, C, and
D, with their vertex order reversed. To extract the result, use the
GLU_TESS_WINDING_POSITIVE winding rule. (If B, C, and D are the result of a
GLU_TESS_BOUNDARY_ONLY operation, an alternative to reversing the vertex order is
to use gluTessNormal() to reverse the sign of the supplied normal.

Other Tessellation Property Routines

There are complementary routines, which work alongside gluTessProperty().
gluGetTessProperty() retrieves the current values of tessellator properties. If the tessellator is
being used to generate wire frame outlines instead of filled polygons, gluTessNormal() can be used
to determine the winding direction of the tessellated polygons.

void gluGetTessProperty(GLUtesselator *tessobj, GLenum property,
GLdouble *value);

For the tessellation object tessobj, the current value of property is returned to value. Values
for property and value are the same as for gluTessProperty().

void gluTessNormal(GLUtesselator *tessobj, GLdouble x, GLdouble y,
GLdouble z);

For the tessellation object tessobj, gluTessNormal() defines a normal vector, which controls
the winding direction of generated polygons. Before tessellation, all input data is projected
into a plane perpendicular to the normal. Then, all output triangles are oriented
counterclockwise, with respect to the normal. (Clockwise orientation can be obtained by
reversing the sign of the supplied normal.) The default normal is (0, 0, 0).

If you have some knowledge about the location and orientation of the input data, then using
gluTessNormal() can increase the speed of the tessellation. For example, if you know that all
polygons lie on the x-y plane, call gluTessNormal(tessobj, 0, 0, 1).

The default normal is (0, 0, 0), and its effect is not immediately obvious. In this case, it is expected
that the input data lies approximately in a plane, and a plane is fitted to the vertices, no matter how
they are truly connected. The sign of the normal is chosen so that the sum of the signed areas of all
input contours is nonnegative (where a counterclockwise contour has a positive area). Note that if
the input data does not lie approximately in a plane, then projection perpendicular to the computed
normal may substantially change the geometry.

Polygon Definition

After all the tessellation properties have been set and the callback actions have been registered, it is
finally time to describe the vertices that compromise input contours and tessellate the polygons.

void gluTessBeginPolygon (GLUtesselator *tessobj, void *user_data);
void gluTessEndPolygon (GLUtesselator *tessobj);

Begins and ends the specification of a polygon to be tessellated and associates a tessellation
object, tessobj, with it. user_data points to a user-defined data structure, which is passed
along all the GLU_TESS_*_DATA callback functions that have been bound.

Calls to gluTessBeginPolygon() and gluTessEndPolygon() surround the definition of one or more
contours. When gluTessEndPolygon() is called, the tessellation algorithm is implemented, and the
tessellated polygons are generated and rendered. The callback functions and tessellation properties
that were bound and set to the tessellation object using gluTessCallback() and gluTessProperty()
are used.

void gluTessBeginContour (GLUtesselator *tessobj);
void gluTessEndContour (GLUtesselator *tessobj);

Begins and ends the specification of a closed contour, which is a portion of a polygon. A
closed contour consists of zero or more calls to gluTessVertex(), which defines the vertices.
The last vertex of each contour is automatically linked to the first.

In practice, a minimum of three vertices is needed for a meaningful contour.

void gluTessVertex (GLUtesselator *tessobj, GLdouble coords[3],
void *vertex_data);

Specifies a vertex in the current contour for the tessellation object. coords contains the
three-dimensional vertex coordinates, and vertex_data is a pointer that’s sent to the callback
associated with GLU_TESS_VERTEX or GLU_TESS_VERTEX_DATA. Typically,
vertex_data contains vertex coordinates, surface normals, texture coordinates, color
information, or whatever else the application may find useful.

In the program tess.c, a portion of which is shown in Example 11-3, two polygons are defined. One
polygon is a rectangular contour with a triangular hole inside, and the other is a smooth-shaded,
self-intersecting, five-pointed star. For efficiency, both polygons are stored in display lists. The first
polygon consists of two contours; the outer one is wound counterclockwise, and the "hole" is
wound clockwise. For the second polygon, the star array contains both the coordinate and color
data, and its tessellation callback, vertexCallback(), uses both.

It is important that each vertex is in a different memory location because the vertex data is not
copied by gluTessVertex(); only the pointer (vertex_data) is saved. A program that reuses the same
memory for several vertices may not get the desired result.

Note: In gluTessVertex(), it may seem redundant to specify the vertex coordinate data twice, for
both the coords and vertex_data parameters; however, both are necessary. coords refers only to the
vertex coordinates. vertex_data uses the coordinate data, but may also use other information for
each vertex.

Example 11-3 : Polygon Definition: tess.c

 GLdouble rect[4][3] = {50.0, 50.0, 0.0,
 200.0, 50.0, 0.0,
 200.0, 200.0, 0.0,
 50.0, 200.0, 0.0};
 GLdouble tri[3][3] = {75.0, 75.0, 0.0,
 125.0, 175.0, 0.0,
 175.0, 75.0, 0.0};
 GLdouble star[5][6] = {250.0, 50.0, 0.0, 1.0, 0.0, 1.0,
 325.0, 200.0, 0.0, 1.0, 1.0, 0.0,
 400.0, 50.0, 0.0, 0.0, 1.0, 1.0,
 250.0, 150.0, 0.0, 1.0, 0.0, 0.0,
 400.0, 150.0, 0.0, 0.0, 1.0, 0.0};

 startList = glGenLists(2);
 tobj = gluNewTess();
 gluTessCallback(tobj, GLU_TESS_VERTEX,
 (GLvoid (*) ()) &glVertex3dv);
 gluTessCallback(tobj, GLU_TESS_BEGIN,
 (GLvoid (*) ()) &beginCallback);
 gluTessCallback(tobj, GLU_TESS_END,
 (GLvoid (*) ()) &endCallback);
 gluTessCallback(tobj, GLU_TESS_ERROR,
 (GLvoid (*) ()) &errorCallback);

 glNewList(startList, GL_COMPILE);
 glShadeModel(GL_FLAT);
 gluTessBeginPolygon(tobj, NULL);
 gluTessBeginContour(tobj);
 gluTessVertex(tobj, rect[0], rect[0]);
 gluTessVertex(tobj, rect[1], rect[1]);
 gluTessVertex(tobj, rect[2], rect[2]);
 gluTessVertex(tobj, rect[3], rect[3]);
 gluTessEndContour(tobj);
 gluTessBeginContour(tobj);
 gluTessVertex(tobj, tri[0], tri[0]);
 gluTessVertex(tobj, tri[1], tri[1]);
 gluTessVertex(tobj, tri[2], tri[2]);
 gluTessEndContour(tobj);
 gluTessEndPolygon(tobj);
 glEndList();

 gluTessCallback(tobj, GLU_TESS_VERTEX,
 (GLvoid (*) ()) &vertexCallback);
 gluTessCallback(tobj, GLU_TESS_BEGIN,
 (GLvoid (*) ()) &beginCallback);
 gluTessCallback(tobj, GLU_TESS_END,
 (GLvoid (*) ()) &endCallback);
 gluTessCallback(tobj, GLU_TESS_ERROR,
 (GLvoid (*) ()) &errorCallback);
 gluTessCallback(tobj, GLU_TESS_COMBINE,
 (GLvoid (*) ()) &combineCallback);

 glNewList(startList + 1, GL_COMPILE);
 glShadeModel(GL_SMOOTH);
 gluTessProperty(tobj, GLU_TESS_WINDING_RULE,
 GLU_TESS_WINDING_POSITIVE);

 gluTessBeginPolygon(tobj, NULL);
 gluTessBeginContour(tobj);
 gluTessVertex(tobj, star[0], star[0]);
 gluTessVertex(tobj, star[1], star[1]);
 gluTessVertex(tobj, star[2], star[2]);
 gluTessVertex(tobj, star[3], star[3]);
 gluTessVertex(tobj, star[4], star[4]);
 gluTessEndContour(tobj);
 gluTessEndPolygon(tobj);
 glEndList();

Deleting a Tessellator Object

If you no longer need a tessellation object, you can delete it and free all associated memory with
gluDeleteTess().

void gluDeleteTess(GLUtesselator *tessobj);
Deletes the specified tessellation object, tessobj, and frees all associated memory.

Tessellator Performance Tips

For best performance, remember these rules.

1. Cache the output of the tessellator in a display list or other user structure. To obtain the
post-tessellation vertex coordinates, tessellate the polygons while in feedback mode. (See
"Feedback" in Chapter 13.)

2. Use gluTessNormal() to supply the polygon normal.

3. Use the same tessellator object to render many polygons rather than allocate a new tessellator
for each one. (In a multithreaded, multiprocessor environment, you may get better
performance using several tessellators.)

Describing GLU Errors

The GLU provides a routine for obtaining a descriptive string for an error code. This routine is not
limited to tessellation but is also used for NURBS and quadrics errors, as well as errors in the base
GL. (See "Error Handling" in Chapter 14 for information about OpenGL’s error handling facility.)

Backward Compatibility

If you are using the 1.0 or 1.1 version of GLU, you have a much less powerful tessellator available.
The 1.0/1.1 tessellator handles only simple nonconvex polygons or simple polygons containing
holes. It does not properly tessellate intersecting contours (no COMBINE callback), nor process
per-polygon data.

The 1.0/1.1 tessellator has some similarities to the current tessellator. gluNewTess() and
gluDeleteTess() are used for both tessellators. The main vertex specification routine remains
gluTessVertex(). The callback mechanism is controlled by gluTessCallback(), although there are
only five callback functions that can be registered, a subset of the current twelve.

Here are the prototypes for the 1.0/1.1 tessellator. The 1.0/1.1 tessellator still works in GLU 1.2, but
its use is no longer recommended.

void gluBeginPolygon(GLUtriangulatorObj *tessobj);
void gluNextContour(GLUtriangulatorObj *tessobj, GLenum type);
void gluEndPolygon(GLUtriangulatorObj *tessobj);

The outermost contour must be specified first, and it does not require an initial call to
gluNextContour(). For polygons without holes, only one contour is defined, and
gluNextContour() is not used. If a polygon has multiple contours (that is, holes or holes
within holes), the contours are specified one after the other, each preceded by
gluNextContour(). gluTessVertex() is called for each vertex of a contour.
For gluNextContour(), type can be GLU_EXTERIOR, GLU_INTERIOR, GLU_CCW,
GLU_CW, or GLU_UNKNOWN. These serve only as hints to the tessellation. If you get them
right, the tessellation might go faster. If you get them wrong, they’re ignored, and the
tessellation still works. For polygons with holes, one contour is the exterior contour and the
other’s interior. The first contour is assumed to be of type GLU_EXTERIOR. Choosing
clockwise and counterclockwise orientation is arbitrary in three dimensions; however, there
are two different orientations in any plane, and the GLU_CCW and GLU_CW types should be
used consistently. Use GLU_UNKNOWN if you don’t have a clue.

It is highly recommended that you convert GLU 1.0/1.1 code to the new tessellation interface for
GLU 1.2 by following these steps.

1. Change references to the major data structure type from GLUtriangulatorObj to
GLUtesselator. In GLU 1.2, GLUtriangulatorObj and GLUtesselator are defined to be the
same type.

2. Convert gluBeginPolygon() to two commands: gluTessBeginPolygon() and
gluTessBeginContour(). All contours must be explicitly started, including the first one.

3. Convert gluNextContour() to both gluTessEndContour() and gluTessBeginContour(). You
have to end the previous contour before starting the next one.

4. Convert gluEndPolygon() to both gluTessEndContour() and gluTessEndPolygon(). The
final contour must be closed.

5. Change references to constants to gluTessCallback(). In GLU 1.2, GLU_BEGIN,
GLU_VERTEX, GLU_END, GLU_ERROR, and GLU_EDGE_FLAG are defined as
synonyms for GLU_TESS_BEGIN, GLU_TESS_VERTEX, GLU_TESS_END,
GLU_TESS_ERROR, and GLU_TESS_EDGE_FLAG.

Quadrics: Rendering Spheres, Cylinders, and Disks

The base OpenGL library only provides support for modeling and rendering simple points, lines,
and convex filled polygons. Neither 3D objects, nor commonly used 2D objects such as circles, are
directly available.

Throughout this book, you’ve been using GLUT to create some 3D objects. The GLU also provides
routines to model and render tessellated, polygonal approximations for a variety of 2D and 3D
shapes (spheres, cylinders, disks, and parts of disks), which can be calculated with quadric
equations. This includes routines to draw the quadric surfaces in a variety of styles and orientations.

Quadric surfaces are defined by the following general quadratic equation:

a1x2 + a2y2 + a3z2 + a4xy + a5yx + a6xz + a7x + a8y + a9z + a10 = 0

(See David Rogers’ Procedural Elements for Computer Graphics. New York, NY: McGraw-Hill
Book Company, 1985.) Creating and rendering a quadric surface is similar to using the tessellator.
To use a quadrics object, follow these steps.

1. To create a quadrics object, use gluNewQuadric().

2. Specify the rendering attributes for the quadrics object (unless you’re satisfied with the
default values).

1. Use gluQuadricOrientation() to control the winding direction and differentiate the
interior from the exterior.

2. Use gluQuadricDrawStyle() to choose between rendering the object as points, lines, or
filled polygons.

3. For lit quadrics objects, use gluQuadricNormals() to specify one normal per vertex or
one normal per face. The default is that no normals are generated at all.

4. For textured quadrics objects, use gluQuadricTexture() if you want to generate texture
coordinates.

3. Prepare for problems by registering an error-handling routine with gluQuadricCallback().
Then, if an error occurs during rendering, the routine you’ve specified is invoked.

4. Now invoke the rendering routine for the desired type of quadrics object: gluSphere(),
gluCylinder(), gluDisk(), or gluPartialDisk(). For best performance for static data,
encapsulate the quadrics object in a display list.

5. When you’re completely finished with it, destroy this object with gluDeleteQuadric(). If you
need to create another quadric, it’s best to reuse your quadrics object.

Manage Quadrics Objects

A quadrics object consists of parameters, attributes, and callbacks that are stored in a data structure
of type GLUquadricObj. A quadrics object may generate vertices, normals, texture coordinates, and
other data, all of which may be used immediately or stored in a display list for later use. The
following routines create, destroy, and report upon errors of a quadrics object.

GLUquadricObj* gluNewQuadric (void);
Creates a new quadrics object and returns a pointer to it. A null pointer is returned if the
routine fails.

void gluDeleteQuadric (GLUquadricObj *qobj);
Destroys the quadrics object qobj and frees up any memory used by it.

void gluQuadricCallback (GLUquadricObj *qobj, GLenum which, void (* fn)());
Defines a function fn to be called in special circumstances. GLU_ERROR is the only legal
value for which, so fn is called when an error occurs. If fn is NULL, any existing callback is
erased.

For GLU_ERROR, fn is called with one parameter, which is the error code. gluErrorString() can
be used to convert the error code into an ASCII string.

Control Quadrics Attributes

The following routines affect the kinds of data generated by the quadrics routines. Use these
routines before you actually specify the primitives.

Example 11-4, quadric.c, on page 435, demonstrates changing the drawing style and the kind of
normals generated as well as creating quadrics objects, error handling, and drawing the primitives.

void gluQuadricDrawStyle (GLUquadricObj *qobj, GLenum drawStyle);
For the quadrics object qobj, drawStyle controls the rendering style. Legal values for
drawStyle are GLU_POINT, GLU_LINE, GLU_SILHOUETTE, and GLU_FILL.

GLU_POINT and GLU_LINE specify that primitives should be rendered as a point at every vertex
or a line between each pair of connected vertices.

GLU_SILHOUETTE specifies that primitives are rendered as lines, except that edges separating
coplanar faces are not drawn. This is most often used for gluDisk() and gluPartialDisk().

GLU_FILL specifies rendering by filled polygons, where the polygons are drawn in a
counterclockwise fashion with respect to their normals. This may be affected by
gluQuadricOrientation().

void gluQuadricOrientation (GLUquadricObj *qobj, GLenum orientation);
For the quadrics object qobj, orientation is either GLU_OUTSIDE (the default) or
GLU_INSIDE, which controls the direction in which normals are pointing.

For gluSphere() and gluCylinder(), the definitions of outside and inside are obvious. For
gluDisk() and gluPartialDisk(), the positive z side of the disk is considered to be outside.

void gluQuadricNormals (GLUquadricObj *qobj, GLenum normals);
For the quadrics object qobj, normals is one of GLU_NONE (the default), GLU_FLAT, or
GLU_SMOOTH.

gluQuadricNormals() is used to specify when to generate normal vectors. GLU_NONE means that
no normals are generated and is intended for use without lighting. GLU_FLAT generates one
normal for each facet, which is often best for lighting with flat shading. GLU_SMOOTH generates
one normal for every vertex of the quadric, which is usually best for lighting with smooth shading.

void gluQuadricTexture (GLUquadricObj *qobj,
GLboolean textureCoords);

For the quadrics object qobj, textureCoords is either GL_FALSE (the default) or GL_TRUE.
If the value of textureCoords is GL_TRUE, then texture coordinates are generated for the
quadrics object. The manner in which the texture coordinates are generated varies,
depending upon the type of quadrics object rendered.

Quadrics Primitives

The following routines actually generate the vertices and other data that constitute a quadrics
object. In each case, qobj refers to a quadrics object created by gluNewQuadric().

void gluSphere (GLUquadricObj *qobj, GLdouble radius,
GLint slices, GLint stacks);

Draws a sphere of the given radius, centered around the origin, (0, 0, 0). The sphere is
subdivided around the z axis into a number of slices (similar to longitude) and along the z
axis into a number of stacks (latitude).
If texture coordinates are also generated by the quadrics facility, the t coordinate ranges from
0.0 at z = -radius to 1.0 at z = radius, with t increasing linearly along longitudinal lines.
Meanwhile, s ranges from 0.0 at the +y axis, to 0.25 at the +x axis, to 0.5 at the -y axis, to
0.75 at the -x axis, and back to 1.0 at the +y axis.

void gluCylinder (GLUquadricObj *qobj, GLdouble baseRadius,
GLdouble topRadius, GLdouble height,
GLint slices, GLint stacks);

Draws a cylinder oriented along the z axis, with the base of the cylinder at z = 0 and the top
at z = height. Like a sphere, the cylinder is subdivided around the z axis into a number of
slices and along the z axis into a number of stacks. baseRadius is the radius of the cylinder at
z = 0. topRadius is the radius of the cylinder at z = height. If topRadius is set to zero, then a
cone is generated.
If texture coordinates are generated by the quadrics facility, then the t coordinate ranges
linearly from 0.0 at z = 0 to 1.0 at z = height. The s texture coordinates are generated the
same way as they are for a sphere.

Note: The cylinder is not closed at the top or bottom. The disks at the base and at the top are not
drawn.

void gluDisk (GLUquadricObj *qobj, GLdouble innerRadius,
GLdouble outerRadius, GLint slices, GLint rings);

Draws a disk on the z = 0 plane, with a radius of outerRadius and a concentric circular hole
with a radius of innerRadius. If innerRadius is 0, then no hole is created. The disk is
subdivided around the z axis into a number of slices (like slices of pizza) and also about the z
axis into a number of concentric rings.
With respect to orientation, the +z side of the disk is considered to be "outside"; that is, any
normals generated point along the +z axis. Otherwise, the normals point along the -z axis.
If texture coordinates are generated by the quadrics facility, then the texture coordinates are
generated linearly such that where R=outerRadius, the values for s and t at (R, 0, 0) is (1,
0.5), at (0, R, 0) they are (0.5, 1), at (-R, 0, 0) they are (0, 0.5), and at (0, -R, 0) they are (0.5,
0).

void gluPartialDisk (GLUquadricObj *qobj, GLdouble innerRadius,
GLdouble outerRadius, GLint slices, GLint rings,
GLdouble startAngle, GLdouble sweepAngle);

Draws a partial disk on the z = 0 plane. A partial disk is similar to a complete disk, in terms
of outerRadius, innerRadius, slices, and rings. The difference is that only a portion of a
partial disk is drawn, starting from startAngle through startAngle+sweepAngle (where
startAngle and sweepAngle are measured in degrees, where 0 degrees is along the +y axis, 90
degrees along the +x axis, 180 along the -y axis, and 270 along the -x axis).
A partial disk handles orientation and texture coordinates in the same way as a complete
disk.

Note: For all quadrics objects, it’s better to use the *Radius, height, and similar arguments to scale
them rather than the glScale*() command so that the unit-length normals that are generated don’t

have to be renormalized. Set the rings and stacks arguments to values other than one to force
lighting calculations at a finer granularity, especially if the material specularity is high.

Example 11-4 shows each of the quadrics primitives being drawn, as well as the effects of different
drawing styles.

Example 11-4 : Quadrics Objects: quadric.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>
#include <stdio.h>
#include <stdlib.h>

GLuint startList;

void errorCallback(GLenum errorCode)
{
 const GLubyte *estring;

 estring = gluErrorString(errorCode);
 fprintf(stderr, "Quadric Error: %s\n", estring);
 exit(0);
}

void init(void)
{
 GLUquadricObj *qobj;
 GLfloat mat_ambient[] = { 0.5, 0.5, 0.5, 1.0 };
 GLfloat mat_specular[] = { 1.0, 1.0, 1.0, 1.0 };
 GLfloat mat_shininess[] = { 50.0 };
 GLfloat light_position[] = { 1.0, 1.0, 1.0, 0.0 };
 GLfloat model_ambient[] = { 0.5, 0.5, 0.5, 1.0 };

 glClearColor(0.0, 0.0, 0.0, 0.0);

 glMaterialfv(GL_FRONT, GL_AMBIENT, mat_ambient);
 glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);
 glMaterialfv(GL_FRONT, GL_SHININESS, mat_shininess);
 glLightfv(GL_LIGHT0, GL_POSITION, light_position);
 glLightModelfv(GL_LIGHT_MODEL_AMBIENT, model_ambient);

 glEnable(GL_LIGHTING);
 glEnable(GL_LIGHT0);
 glEnable(GL_DEPTH_TEST);

/* Create 4 display lists, each with a different quadric object.
 * Different drawing styles and surface normal specifications
 * are demonstrated.
 */
 startList = glGenLists(4);
 qobj = gluNewQuadric();
 gluQuadricCallback(qobj, GLU_ERROR, errorCallback);

 gluQuadricDrawStyle(qobj, GLU_FILL); /* smooth shaded */
 gluQuadricNormals(qobj, GLU_SMOOTH);
 glNewList(startList, GL_COMPILE);
 gluSphere(qobj, 0.75, 15, 10);
 glEndList();

 gluQuadricDrawStyle(qobj, GLU_FILL); /* flat shaded */
 gluQuadricNormals(qobj, GLU_FLAT);
 glNewList(startList+1, GL_COMPILE);

 gluCylinder(qobj, 0.5, 0.3, 1.0, 15, 5);
 glEndList();

 gluQuadricDrawStyle(qobj, GLU_LINE); /* wireframe */
 gluQuadricNormals(qobj, GLU_NONE);
 glNewList(startList+2, GL_COMPILE);
 gluDisk(qobj, 0.25, 1.0, 20, 4);
 glEndList();

 gluQuadricDrawStyle(qobj, GLU_SILHOUETTE);
 gluQuadricNormals(qobj, GLU_NONE);
 glNewList(startList+3, GL_COMPILE);
 gluPartialDisk(qobj, 0.0, 1.0, 20, 4, 0.0, 225.0);
 glEndList();
}

void display(void)
{
 glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 glPushMatrix();

 glEnable(GL_LIGHTING);
 glShadeModel (GL_SMOOTH);
 glTranslatef(-1.0, -1.0, 0.0);
 glCallList(startList);

 glShadeModel (GL_FLAT);
 glTranslatef(0.0, 2.0, 0.0);
 glPushMatrix();
 glRotatef(300.0, 1.0, 0.0, 0.0);
 glCallList(startList+1);
 glPopMatrix();

 glDisable(GL_LIGHTING);
 glColor3f(0.0, 1.0, 1.0);
 glTranslatef(2.0, -2.0, 0.0);
 glCallList(startList+2);

 glColor3f(1.0, 1.0, 0.0);
 glTranslatef(0.0, 2.0, 0.0);
 glCallList(startList+3);

 glPopMatrix();
 glFlush();
}

void reshape (int w, int h)
{
 glViewport(0, 0, (GLsizei) w, (GLsizei) h);
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 if (w <= h)
 glOrtho(-2.5, 2.5, -2.5*(GLfloat)h/(GLfloat)w,
 2.5*(GLfloat)h/(GLfloat)w, -10.0, 10.0);
 else
 glOrtho(-2.5*(GLfloat)w/(GLfloat)h,
 2.5*(GLfloat)w/(GLfloat)h, -2.5, 2.5, -10.0, 10.0);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
}

void keyboard(unsigned char key, int x, int y)
{
 switch (key) {
 case 27:

 exit(0);
 break;
 }
}

int main(int argc, char** argv)
{
 glutInit(&argc, argv);
 glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);
 glutInitWindowSize(500, 500);
 glutInitWindowPosition(100, 100);
 glutCreateWindow(argv[0]);
 init();
 glutDisplayFunc(display);
 glutReshapeFunc(reshape);
 glutKeyboardFunc(keyboard);
 glutMainLoop();
 return 0;
}

 OpenGL Programming Guide
(Addison-Wesley Publishing Company)

 OpenGL Programming Guide
(Addison-Wesley Publishing Company)

Chapter 12
Evaluators and NURBS
Chapter Objectives

Advanced

After reading this chapter, you’ll be able to do the following:

Use OpenGL evaluator commands to draw basic curves and surfaces

Use the GLU’s higher-level NURBS facility to draw more complex curves and surfaces

Note that this chapter presumes a number of prerequisites; they’re listed in "Prerequisites."

At the lowest level, graphics hardware draws points, line segments, and polygons, which are
usually triangles and quadrilaterals. Smooth curves and surfaces are drawn by approximating them
with large numbers of small line segments or polygons. However, many useful curves and surfaces
can be described mathematically by a small number of parameters such as a few control points.
Saving the 16 control points for a surface requires much less storage than saving 1000 triangles
together with the normal vector information at each vertex. In addition, the 1000 triangles only
approximate the true surface, but the control points accurately describe the real surface.

Evaluators provide a way to specify points on a curve or surface (or part of one) using only the
control points. The curve or surface can then be rendered at any precision. In addition, normal
vectors can be calculated for surfaces automatically. You can use the points generated by an
evaluator in many ways - to draw dots where the surface would be, to draw a wireframe version of
the surface, or to draw a fully lighted, shaded, and even textured version.

You can use evaluators to describe any polynomial or rational polynomial splines or surfaces of any
degree. These include almost all splines and spline surfaces in use today, including B-splines,
NURBS (Non-Uniform Rational B-Spline) surfaces, Bézier curves and surfaces, and Hermite
splines. Since evaluators provide only a low-level description of the points on a curve or surface,
they’re typically used underneath utility libraries that provide a higher-level interface to the
programmer. The GLU’s NURBS facility is such a higher-level interface - the NURBS routines
encapsulate lots of complicated code. Much of the final rendering is done with evaluators, but for
some conditions (trimming curves, for example) the NURBS routines use planar polygons for
rendering.

This chapter contains the following major sections.

"Prerequisites" discusses what knowledge is assumed for this chapter. It also gives several
references where you can obtain this information.

"Evaluators" explains how evaluators work and how to control them using the appropriate
OpenGL commands.

"The GLU NURBS Interface" describes the GLU routines for creating NURBS surfaces.

Prerequisites

Evaluators make splines and surfaces that are based on a Bézier (or Bernstein) basis. The defining
formulas for the functions in this basis are given in this chapter, but the discussion doesn’t include
derivations or even lists of all their interesting mathematical properties. If you want to use
evaluators to draw curves and surfaces using other bases, you must know how to convert your basis
to a Bézier basis. In addition, when you render a Bézier surface or part of it using evaluators, you
need to determine the granularity of your subdivision. Your decision needs to take into account the
trade-off between high-quality (highly subdivided) images and high speed. Determining an
appropriate subdivision strategy can be quite complicated - too complicated to be discussed here.

Similarly, a complete discussion of NURBS is beyond the scope of this book. The GLU NURBS
interface is documented here, and programming examples are provided for readers who already
understand the subject. In what follows, you already should know about NURBS control points,
knot sequences, and trimming curves.

If you lack some of these prerequisites, the following references will help.

Farin, Gerald E., Curves and Surfaces for Computer-Aided Geometric Design, Fourth
Edition. San Diego, CA: Academic Press, 1996.

Farin, Gerald E., NURB Curves and Surfaces: from Projective Geometry to Practical Use.
Wellesley, MA: A. K. Peters Ltd., 1995.

Farin, Gerald E., editor, NURBS for Curve and Surface Design, Society for Industrial and
Applied Mathematics, Philadelphia, PA, 1991.

Hoschek, Josef and Dieter Lasser, Fundamentals of Computer Aided Geometric Design.
Wellesley, MA: A. K. Peters Ltd., 1993.

Piegl, Les and Wayne Tiller, The NURBS Book. New York, NY: Springer-Verlag, 1995.

Note: Some terms used in this chapter might have slightly different meanings in other books on
spline curves and surfaces, since there isn’t total agreement among the practitioners of this art.
Generally, the OpenGL meanings are a bit more restrictive. For example, OpenGL evaluators
always use Bézier bases; in other contexts, evaluators might refer to the same concept, but with an
arbitrary basis.

Evaluators

A Bézier curve is a vector-valued function of one variable

C(u) = [X(u) Y(u) Z(u)]

where u varies in some domain (say [0,1]). A Bézier surface patch is a vector-valued function of
two variables

S(u,v) = [X(u,v) Y(u,v) Z(u,v)]

where u and v can both vary in some domain. The range isn’t necessarily three-dimensional as
shown here. You might want two-dimensional output for curves on a plane or texture coordinates,
or you might want four-dimensional output to specify RGBA information. Even one-dimensional
output may make sense for gray levels.

For each u (or u and v, in the case of a surface), the formula for C() (or S()) calculates a point on the
curve (or surface). To use an evaluator, first define the function C() or S(), enable it, and then use
the glEvalCoord1() or glEvalCoord2() command instead of glVertex*() . This way, the curve or
surface vertices can be used like any other vertices - to form points or lines, for example. In
addition, other commands automatically generate series of vertices that produce a regular mesh
uniformly spaced in u (or in u and v). One- and two-dimensional evaluators are similar, but the
description is somewhat simpler in one dimension, so that case is discussed first.

One-Dimensional Evaluators

This section presents an example of using one-dimensional evaluators to draw a curve. It then
describes the commands and equations that control evaluators.

One-Dimensional Example: A Simple Bézier Curve

The program shown in Example 12-1 draws a cubic Bézier curve using four control points, as
shown in Figure 12-1.

Figure 12-1 : Bézier Curve

Example 12-1 : Bézier Curve with Four Control Points: bezcurve.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <stdlib.h>
#include <GL/glut.h>

GLfloat ctrlpoints[4][3] = {

 { -4.0, -4.0, 0.0}, { -2.0, 4.0, 0.0},
 {2.0, -4.0, 0.0}, {4.0, 4.0, 0.0}};

void init(void)
{
 glClearColor(0.0, 0.0, 0.0, 0.0);
 glShadeModel(GL_FLAT);
 glMap1f(GL_MAP1_VERTEX_3, 0.0, 1.0, 3, 4, &ctrlpoints[0][0]);
 glEnable(GL_MAP1_VERTEX_3);
}

void display(void)
{
 int i;

 glClear(GL_COLOR_BUFFER_BIT);
 glColor3f(1.0, 1.0, 1.0);
 glBegin(GL_LINE_STRIP);
 for (i = 0; i <= 30; i++)
 glEvalCoord1f((GLfloat) i/30.0);
 glEnd();
 /* The following code displays the control points as dots. */
 glPointSize(5.0);
 glColor3f(1.0, 1.0, 0.0);
 glBegin(GL_POINTS);
 for (i = 0; i < 4; i++)
 glVertex3fv(&ctrlpoints[i][0]);
 glEnd();
 glFlush();
}

void reshape(int w, int h)
{
 glViewport(0, 0, (GLsizei) w, (GLsizei) h);
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 if (w <= h)
 glOrtho(-5.0, 5.0, -5.0*(GLfloat)h/(GLfloat)w,
 5.0*(GLfloat)h/(GLfloat)w, -5.0, 5.0);
 else
 glOrtho(-5.0*(GLfloat)w/(GLfloat)h,
 5.0*(GLfloat)w/(GLfloat)h, -5.0, 5.0, -5.0, 5.0);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
}

int main(int argc, char** argv)
{
 glutInit(&argc, argv);
 glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);
 glutInitWindowSize (500, 500);
 glutInitWindowPosition (100, 100);
 glutCreateWindow (argv[0]);
 init ();
 glutDisplayFunc(display);
 glutReshapeFunc(reshape);
 glutMainLoop();
 return 0;
}

A cubic Bézier curve is described by four control points, which appear in this example in the
ctrlpoints[][] array. This array is one of the arguments to glMap1f(). All the arguments for this
command are as follows:

GL_MAP1_VERTEX_3

Three-dimensional control points are provided and three-dimensional vertices are produced

0.0

Low value of parameter u

1.0

High value of parameter u

3

The number of floating-point values to advance in the data between one control point and the
next

4

The order of the spline, which is the degree+1: in this case, the degree is 3 (since this is a
cubic curve)

&ctrlpoints[0][0]

Pointer to the first control point’s data

Note that the second and third arguments control the parameterization of the curve - as the variable
u ranges from 0.0 to 1.0, the curve goes from one end to the other. The call to glEnable() enables
the one-dimensional evaluator for three-dimensional vertices.

The curve is drawn in the routine display() between the glBegin() and glEnd() calls. Since the
evaluator is enabled, the command glEvalCoord1f() is just like issuing a glVertex() command with
the coordinates of a vertex on the curve corresponding to the input parameter u.

Defining and Evaluating a One-Dimensional Evaluator

The Bernstein polynomial of degree n (or order n+1) is given by

If Pi represents a set of control points (one-, two-, three-, or even four- dimensional), then the
equation

represents a Bézier curve as u varies from 0.0 to 1.0. To represent the same curve but allowing u to
vary between u1 and u2 instead of 0.0 and 1.0, evaluate

The command glMap1() defines a one-dimensional evaluator that uses these equations.

void glMap1{fd}(GLenum target, TYPEu1, TYPEu2, GLint stride,
GLint order, const TYPE*points);

Defines a one-dimensional evaluator. The target parameter specifies what the control points
represent, as shown in Table 12-1, and therefore how many values need to be supplied in
points. The points can represent vertices, RGBA color data, normal vectors, or texture
coordinates. For
example, with GL_MAP1_COLOR_4, the evaluator generates color data along a curve in
four-dimensional (RGBA) color space. You also use the parameter values listed in Table 12-1
to enable each defined evaluator before you invoke it. Pass the appropriate value to
glEnable() or glDisable() to enable or disable the evaluator.
The second two parameters for glMap1*(), u1 and u2, indicate the range for the variable u.
The variable stride is the number of single- or double-precision values (as appropriate) in
each block of storage. Thus, it’s an offset value between the beginning of one control point
and the beginning of the next.
The order is the degree plus one, and it should agree with the number of control points. The
points parameter points to the first coordinate of the first control point. Using the example
data structure for glMap1*(), use the following for points:

(GLfloat *)(&ctlpoints[0].x)

Table 12-1 : Types of Control Points for glMap1*()

Parameter Meaning

GL_MAP1_VERTEX_3 x, y, z vertex coordinates

GL_MAP1_VERTEX_4 x, y, z, w vertex coordinates

GL_MAP1_INDEX color index

GL_MAP1_COLOR_4 R, G, B, A

GL_MAP1_NORMAL normal coordinates

GL_MAP1_TEXTURE_COORD_1 s texture coordinates

GL_MAP1_TEXTURE_COORD_2 s, t texture coordinates

GL_MAP1_TEXTURE_COORD_3 s, t, r texture coordinates

GL_MAP1_TEXTURE_COORD_4 s, t, r, q texture coordinates

More than one evaluator can be evaluated at a time. If you have both a GL_MAP1_VERTEX_3 and
a GL_MAP1_COLOR_4 evaluator defined and enabled, for example, then calls to glEvalCoord1()
generate both a position and a color. Only one of the vertex evaluators can be enabled at a time,
although you might have defined both of them. Similarly, only one of the texture evaluators can be
active. Other than that, however, evaluators can be used to generate any combination of vertex,
normal, color, and texture-coordinate data. If more than one evaluator of the same type is defined
and enabled, the one of highest dimension is used.

Use glEvalCoord1*() to evaluate a defined and enabled one-dimensional map.

void glEvalCoord1{fd}(TYPE u);
void glEvalCoord1{fd}v(TYPE *u);

Causes evaluation of the enabled one-dimensional maps. The argument u is the value (or a
pointer to the value, in the vector version of the command) of the domain coordinate.

For evaluated vertices, values for color, color index, normal vectors, and texture coordinates are
generated by evaluation. Calls to glEvalCoord*() do not use the current values for color, color
index, normal vectors, and texture coordinates. glEvalCoord*() also leaves those values
unchanged.

Defining Evenly Spaced Coordinate Values in One Dimension

You can use glEvalCoord1() with any values for u, but by far the most common use is with evenly
spaced values, as shown previously in Example 12-1. To obtain evenly spaced values, define a
one-dimensional grid using glMapGrid1*() and then apply it using glEvalMesh1().

void glMapGrid1{fd}(GLint n, TYPEu1, TYPEu2);
Defines a grid that goes from u1 to u2 in n steps, which are evenly spaced.

void glEvalMesh1(GLenum mode, GLint p1, GLint p2);
Applies the currently defined map grid to all enabled evaluators. The mode can be either
GL_POINT or GL_LINE, depending on whether you want to draw points or a connected line
along the curve. The call has exactly the same effect as issuing a glEvalCoord1() for each of
the steps between and including p1 and p2, where 0 <= p1, p2 <= n. Programmatically, it’s
equivalent to the following:

glBegin(GL_POINTS); /* OR glBegin(GL_LINE_STRIP); */
 for (i = p1; i <= p2; i++)
 glEvalCoord1(u1 + i*(u2-u1)/n);
glEnd();

except that if i = 0 or i = n, then glEvalCoord1() is called with exactly u1 or u2 as its
parameter.

Two-Dimensional Evaluators

In two dimensions, everything is similar to the one-dimensional case, except that all the commands
must take two parameters, u and v, into account. Points, colors, normals, or texture coordinates
must be supplied over a surface instead of a curve. Mathematically, the definition of a Bézier
surface patch is given by

where Pij are a set of m*n control points, and the Bi are the same Bernstein polynomials for one
dimension. As before, the Pij can represent vertices, normals, colors, or texture coordinates.

The procedure to use two-dimensional evaluators is similar to the procedure for one dimension.

1. Define the evaluator(s) with glMap2*() .

2. Enable them by passing the appropriate value to glEnable().

3. Invoke them either by calling glEvalCoord2() between a glBegin() and glEnd() pair or by
specifying and then applying a mesh with glMapGrid2() and glEvalMesh2().

Defining and Evaluating a Two-Dimensional Evaluator

Use glMap2*() and glEvalCoord2*() to define and then invoke a two-dimensional evaluator.

void glMap2{fd}(GLenum target, TYPEu1, TYPEu2, GLint ustride,
GLint uorder, TYPEv1, TYPEv2, GLint vstride,
GLint vorder, TYPE points);

The target parameter can have any of the values in Table 12-1, except that the string MAP1 is
replaced with MAP2. As before, these values are also used with glEnable() to enable the
corresponding evaluator. Minimum and maximum values for both u and v are provided as u1,
u2, v1, and v2. The parameters ustride and vstride indicate the number of single- or
double-precision values (as appropriate) between independent settings for these values,
allowing users to select a subrectangle of control points out of a much larger array. For
example, if the data appears in the form

GLfloat ctlpoints[100][100][3];

and you want to use the 4x4 subset beginning at ctlpoints[20][30], choose ustride to be 100*3
and vstride to be 3. The starting point, points, should be set to &ctlpoints[20][30][0].
Finally, the order parameters, uorder and vorder, can be different, allowing patches that are
cubic in one direction and quadratic in the other, for example.

void glEvalCoord2{fd}(TYPE u, TYPE v);
void glEvalCoord2{fd}v(TYPE *values);

Causes evaluation of the enabled two-dimensional maps. The arguments u and v are the
values (or a pointer to the values u and v, in the vector version of the command) for the
domain coordinates. If either of the vertex evaluators is enabled (GL_MAP2_VERTEX_3 or
GL_MAP2_VERTEX_4), then the normal to the surface is computed analytically. This normal
is associated with the generated vertex if automatic normal generation has been enabled by
passing GL_AUTO_NORMAL to glEnable(). If it’s disabled, the corresponding enabled
normal map is used to produce a normal. If no such map exists, the current normal is used.

Two-Dimensional Example: A Bézier Surface

Example 12-2 draws a wireframe Bézier surface using evaluators, as shown in Figure 12-2. In this
example, the surface is drawn with nine curved lines in each direction. Each curve is drawn as 30
segments. To get the whole program, add the reshape() and main() routines from Example 12-1.

Figure 12-2 : Bézier Surface

Example 12-2 : Bézier Surface: bezsurf.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <stdlib.h>
#include <GL/glut.h>

GLfloat ctrlpoints[4][4][3] = {
 {{-1.5, -1.5, 4.0}, {-0.5, -1.5, 2.0},
 {0.5, -1.5, -1.0}, {1.5, -1.5, 2.0}},
 {{-1.5, -0.5, 1.0}, {-0.5, -0.5, 3.0},
 {0.5, -0.5, 0.0}, {1.5, -0.5, -1.0}},
 {{-1.5, 0.5, 4.0}, {-0.5, 0.5, 0.0},
 {0.5, 0.5, 3.0}, {1.5, 0.5, 4.0}},
 {{-1.5, 1.5, -2.0}, {-0.5, 1.5, -2.0},
 {0.5, 1.5, 0.0}, {1.5, 1.5, -1.0}}
};

void display(void)
{
 int i, j;

 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 glColor3f(1.0, 1.0, 1.0);
 glPushMatrix ();
 glRotatef(85.0, 1.0, 1.0, 1.0);
 for (j = 0; j <= 8; j++) {
 glBegin(GL_LINE_STRIP);
 for (i = 0; i <= 30; i++)
 glEvalCoord2f((GLfloat)i/30.0, (GLfloat)j/8.0);
 glEnd();
 glBegin(GL_LINE_STRIP);
 for (i = 0; i <= 30; i++)
 glEvalCoord2f((GLfloat)j/8.0, (GLfloat)i/30.0);
 glEnd();
 }
 glPopMatrix ();
 glFlush();
}

void init(void)
{
 glClearColor (0.0, 0.0, 0.0, 0.0);

 glMap2f(GL_MAP2_VERTEX_3, 0, 1, 3, 4,
 0, 1, 12, 4, &ctrlpoints[0][0][0]);
 glEnable(GL_MAP2_VERTEX_3);
 glMapGrid2f(20, 0.0, 1.0, 20, 0.0, 1.0);
 glEnable(GL_DEPTH_TEST);
 glShadeModel(GL_FLAT);
}

Defining Evenly Spaced Coordinate Values in Two Dimensions

In two dimensions, the glMapGrid2*() and glEvalMesh2() commands are similar to the
one-dimensional versions, except that both u and v information must be included.

void glMapGrid2{fd}(GLint nu, TYPEu1, TYPEu2,
GLint nv, TYPEv1, TYPEv2);
void glEvalMesh2(GLenum mode, GLint i1, GLint i2, GLint j1, GLint j2);

Defines a two-dimensional map grid that goes from u1 to u2 in nu evenly spaced steps, from
v1 to v2 in nv steps (glMapGrid2*()), and then applies this grid to all enabled evaluators
(glEvalMesh2()). The only significant difference from the one-dimensional versions of these
two commands is that in glEvalMesh2() the mode parameter can be GL_FILL as well as
GL_POINT or GL_LINE. GL_FILL generates filled polygons using the quad-mesh primitive.
Stated precisely, glEvalMesh2() is nearly equivalent to one of the following three code
fragments. (It’s nearly equivalent because when i is equal to nu or j to nv, the parameter is
exactly equal to u2 or v2, not to u1+nu*(u2-u1)/nu, which might be slightly different due to
round-off error.)

glBegin(GL_POINTS); /* mode == GL_POINT */
for (i = nu1; i <= nu2; i++)
 for (j = nv1; j <= nv2; j++)
 glEvalCoord2(u1 + i*(u2-u1)/nu, v1+j*(v2-v1)/nv);
glEnd();

or

for (i = nu1; i <= nu2; i++) { /* mode == GL_LINE */
 glBegin(GL_LINES);
 for (j = nv1; j <= nv2; j++)
 glEvalCoord2(u1 + i*(u2-u1)/nu, v1+j*(v2-v1)/nv);
 glEnd();
}
for (j = nv1; j <= nv2; j++) {
 glBegin(GL_LINES);
 for (i = nu1; i <= nu2; i++)
 glEvalCoord2(u1 + i*(u2-u1)/nu, v1+j*(v2-v1)/nv);
 glEnd();
}

or

for (i = nu1; i < nu2; i++) { /* mode == GL_FILL */
 glBegin(GL_QUAD_STRIP);
 for (j = nv1; j <= nv2; j++) {
 glEvalCoord2(u1 + i*(u2-u1)/nu, v1+j*(v2-v1)/nv);
 glEvalCoord2(u1 + (i+1)*(u2-u1)/nu, v1+j*(v2-v1)/nv);
 glEnd();
}

Example 12-3 shows the differences necessary to draw the same Bézier surface as Example 12-2,
but using glMapGrid2() and glEvalMesh2() to subdivide the square domain into a uniform 8x8

grid. This program also adds lighting and shading, as shown in Figure 12-3.

Figure 12-3 : Lit, Shaded Bézier Surface Drawn with a Mesh

Example 12-3 : Lit, Shaded Bézier Surface Using a Mesh: bezmesh.c

void initlights(void)
{
 GLfloat ambient[] = {0.2, 0.2, 0.2, 1.0};
 GLfloat position[] = {0.0, 0.0, 2.0, 1.0};
 GLfloat mat_diffuse[] = {0.6, 0.6, 0.6, 1.0};
 GLfloat mat_specular[] = {1.0, 1.0, 1.0, 1.0};
 GLfloat mat_shininess[] = {50.0};

 glEnable(GL_LIGHTING);
 glEnable(GL_LIGHT0);

 glLightfv(GL_LIGHT0, GL_AMBIENT, ambient);
 glLightfv(GL_LIGHT0, GL_POSITION, position);

 glMaterialfv(GL_FRONT, GL_DIFFUSE, mat_diffuse);
 glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);
 glMaterialfv(GL_FRONT, GL_SHININESS, mat_shininess);
}

void display(void)
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 glPushMatrix();
 glRotatef(85.0, 1.0, 1.0, 1.0);
 glEvalMesh2(GL_FILL, 0, 20, 0, 20);
 glPopMatrix();
 glFlush();
}

void init(void)
{
 glClearColor(0.0, 0.0, 0.0, 0.0);
 glEnable(GL_DEPTH_TEST);
 glMap2f(GL_MAP2_VERTEX_3, 0, 1, 3, 4,
 0, 1, 12, 4, &ctrlpoints[0][0][0]);
 glEnable(GL_MAP2_VERTEX_3);
 glEnable(GL_AUTO_NORMAL);
 glMapGrid2f(20, 0.0, 1.0, 20, 0.0, 1.0);
 initlights();
}

Using Evaluators for Textures

Example 12-4 enables two evaluators at the same time: The first generates three-dimensional points
on the same Bézier surface as Example 12-3, and the second generates texture coordinates. In this
case, the texture coordinates are the same as the u and v coordinates of the surface, but a special flat
Bézier patch must be created to do this.

The flat patch is defined over a square with corners at (0, 0), (0, 1), (1, 0), and (1, 1); it generates (0,
0) at corner (0, 0), (0, 1) at corner (0, 1), and so on. Since it’s of order two (linear degree plus one),
evaluating this texture at the point (u, v) generates texture coordinates (s, t). It’s enabled at the same
time as the vertex evaluator, so both take effect when the surface is drawn. (See "Plate 19" in
Appendix I.) If you want the texture to repeat three times in each direction, change every 1.0 in the
array texpts[][][] to 3.0. Since the texture wraps in this example, the surface is rendered with nine
copies of the texture map.

Example 12-4 : Using Evaluators for Textures: texturesurf.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <stdlib.h>
#include <GL/glut.h>
#include <math.h>

GLfloat ctrlpoints[4][4][3] = {
 {{ -1.5, -1.5, 4.0}, { -0.5, -1.5, 2.0},
 {0.5, -1.5, -1.0}, {1.5, -1.5, 2.0}},
 {{ -1.5, -0.5, 1.0}, { -0.5, -0.5, 3.0},
 {0.5, -0.5, 0.0}, {1.5, -0.5, -1.0}},
 {{ -1.5, 0.5, 4.0}, { -0.5, 0.5, 0.0},
 {0.5, 0.5, 3.0}, {1.5, 0.5, 4.0}},
 {{ -1.5, 1.5, -2.0}, { -0.5, 1.5, -2.0},
 {0.5, 1.5, 0.0}, {1.5, 1.5, -1.0}}
};
GLfloat texpts[2][2][2] = {{{0.0, 0.0}, {0.0, 1.0}},
 {{1.0, 0.0}, {1.0, 1.0}}};

void display(void)
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 glColor3f(1.0, 1.0, 1.0);
 glEvalMesh2(GL_FILL, 0, 20, 0, 20);
 glFlush();
}
#define imageWidth 64
#define imageHeight 64
GLubyte image[3*imageWidth*imageHeight];

void makeImage(void)
{
 int i, j;
 float ti, tj;

 for (i = 0; i < imageWidth; i++) {
 ti = 2.0*3.14159265*i/imageWidth;
 for (j = 0; j < imageHeight; j++) {
 tj = 2.0*3.14159265*j/imageHeight;
 image[3*(imageHeight*i+j)] =
 (GLubyte) 127*(1.0+sin(ti));
 image[3*(imageHeight*i+j)+1] =
 (GLubyte) 127*(1.0+cos(2*tj));
 image[3*(imageHeight*i+j)+2] =
 (GLubyte) 127*(1.0+cos(ti+tj));
 }

 }
}

void init(void)
{
 glMap2f(GL_MAP2_VERTEX_3, 0, 1, 3, 4,
 0, 1, 12, 4, &ctrlpoints[0][0][0]);
 glMap2f(GL_MAP2_TEXTURE_COORD_2, 0, 1, 2, 2,
 0, 1, 4, 2, &texpts[0][0][0]);
 glEnable(GL_MAP2_TEXTURE_COORD_2);
 glEnable(GL_MAP2_VERTEX_3);
 glMapGrid2f(20, 0.0, 1.0, 20, 0.0, 1.0);
 makeImage();
 glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_DECAL);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,
 GL_NEAREST);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
 GL_NEAREST);
 glTexImage2D(GL_TEXTURE_2D, 0, 3, imageWidth, imageHeight, 0,
 GL_RGB, GL_UNSIGNED_BYTE, image);
 glEnable(GL_TEXTURE_2D);
 glEnable(GL_DEPTH_TEST);
 glShadeModel (GL_FLAT);
}

void reshape(int w, int h)
{
 glViewport(0, 0, (GLsizei) w, (GLsizei) h);
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 if (w <= h)
 glOrtho(-4.0, 4.0, -4.0*(GLfloat)h/(GLfloat)w,
 4.0*(GLfloat)h/(GLfloat)w, -4.0, 4.0);
 else
 glOrtho(-4.0*(GLfloat)w/(GLfloat)h,
 4.0*(GLfloat)w/(GLfloat)h, -4.0, 4.0, -4.0, 4.0);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 glRotatef(85.0, 1.0, 1.0, 1.0);
}

int main(int argc, char** argv)
{
 glutInit(&argc, argv);
 glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);
 glutInitWindowSize (500, 500);
 glutInitWindowPosition (100, 100);
 glutCreateWindow (argv[0]);
 init ();
 glutDisplayFunc(display);
 glutReshapeFunc(reshape);
 glutMainLoop();
 return 0;
}

The GLU NURBS Interface

Although evaluators are the only OpenGL primitive available to draw curves and surfaces directly,
and even though they can be implemented very efficiently in hardware, they’re often accessed by

applications through higher-level libraries. The GLU provides a NURBS (Non-Uniform Rational
B-Spline) interface built on top of the OpenGL evaluator commands.

A Simple NURBS Example

If you understand NURBS, writing OpenGL code to manipulate NURBS curves and surfaces is
relatively easy, even with lighting and texture mapping. Follow these steps to draw NURBS curves
or untrimmed NURBS surfaces. (See "Trim a NURBS Surface" for information about trimmed
surfaces.)

1. If you intend to use lighting with a NURBS surface, call glEnable() with
GL_AUTO_NORMAL to automatically generate surface normals. (Or you can calculate your
own.)

2. Use gluNewNurbsRenderer() to create a pointer to a NURBS object, which is referred to
when creating your NURBS curve or surface.

3. If desired, call gluNurbsProperty() to choose rendering values, such as the maximum size of
lines or polygons that are used to render your NURBS object.

4. Call gluNurbsCallback() if you want to be notified when an error is encountered. (Error
checking may slightly degrade performance but is still highly recommended.)

5. Start your curve or surface by calling gluBeginCurve() or gluBeginSurface().

6. Generate and render your curve or surface. Call gluNurbsCurve() or gluNurbsSurface() at
least once with the control points (rational or nonrational), knot sequence, and order of the
polynomial basis function for your NURBS object. You might call these functions additional
times to specify surface normals and/or texture coordinates.

7. Call gluEndCurve() or gluEndSurface() to complete the curve or surface.

Example 12-5 renders a NURBS surface in the shape of a symmetrical hill with control points
ranging from -3.0 to 3.0. The basis function is a cubic B-spline, but the knot sequence is
nonuniform, with a multiplicity of 4 at each endpoint, causing the basis function to behave like a
Bézier curve in each direction. The surface is lighted, with a dark gray diffuse reflection and white
specular highlights. Figure 12-4 shows the surface as a lit wireframe.

Figure 12-4 : NURBS Surface

Example 12-5 : NURBS Surface: surface.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>
#include <stdlib.h>
#include <stdio.h>

GLfloat ctlpoints[4][4][3];
int showPoints = 0;

GLUnurbsObj *theNurb;

void init_surface(void)
{
 int u, v;
 for (u = 0; u < 4; u++) {
 for (v = 0; v < 4; v++) {
 ctlpoints[u][v][0] = 2.0*((GLfloat)u - 1.5);
 ctlpoints[u][v][1] = 2.0*((GLfloat)v - 1.5);

 if ((u == 1 || u == 2) && (v == 1 || v == 2))
 ctlpoints[u][v][2] = 3.0;
 else
 ctlpoints[u][v][2] = -3.0;
 }
 }
}

void nurbsError(GLenum errorCode)
{
 const GLubyte *estring;

 estring = gluErrorString(errorCode);
 fprintf (stderr, "Nurbs Error: %s\n", estring);
 exit (0);
}

void init(void)
{
 GLfloat mat_diffuse[] = { 0.7, 0.7, 0.7, 1.0 };
 GLfloat mat_specular[] = { 1.0, 1.0, 1.0, 1.0 };
 GLfloat mat_shininess[] = { 100.0 };

 glClearColor (0.0, 0.0, 0.0, 0.0);
 glMaterialfv(GL_FRONT, GL_DIFFUSE, mat_diffuse);
 glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);
 glMaterialfv(GL_FRONT, GL_SHININESS, mat_shininess);

 glEnable(GL_LIGHTING);
 glEnable(GL_LIGHT0);
 glEnable(GL_DEPTH_TEST);
 glEnable(GL_AUTO_NORMAL);
 glEnable(GL_NORMALIZE);

 init_surface();

 theNurb = gluNewNurbsRenderer();
 gluNurbsProperty(theNurb, GLU_SAMPLING_TOLERANCE, 25.0);
 gluNurbsProperty(theNurb, GLU_DISPLAY_MODE, GLU_FILL);
 gluNurbsCallback(theNurb, GLU_ERROR,
 (GLvoid (*)()) nurbsError);
}

void display(void)
{
 GLfloat knots[8] = {0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0};

 int i, j;

 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 glPushMatrix();
 glRotatef(330.0, 1.,0.,0.);
 glScalef (0.5, 0.5, 0.5);

 gluBeginSurface(theNurb);
 gluNurbsSurface(theNurb,
 8, knots, 8, knots,
 4 * 3, 3, &ctlpoints[0][0][0],
 4, 4, GL_MAP2_VERTEX_3);
 gluEndSurface(theNurb);

 if (showPoints) {
 glPointSize(5.0);
 glDisable(GL_LIGHTING);
 glColor3f(1.0, 1.0, 0.0);
 glBegin(GL_POINTS);
 for (i = 0; i < 4; i++) {
 for (j = 0; j < 4; j++) {
 glVertex3f(ctlpoints[i][j][0],
 ctlpoints[i][j][1], ctlpoints[i][j][2]);
 }
 }
 glEnd();
 glEnable(GL_LIGHTING);
 }
 glPopMatrix();
 glFlush();
}

void reshape(int w, int h)
{
 glViewport(0, 0, (GLsizei) w, (GLsizei) h);
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluPerspective (45.0, (GLdouble)w/(GLdouble)h, 3.0, 8.0);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 glTranslatef (0.0, 0.0, -5.0);
}
void keyboard(unsigned char key, int x, int y)
{
 switch (key) {
 case ‘c’:
 case ‘C’:
 showPoints = !showPoints;
 glutPostRedisplay();
 break;
 case 27:
 exit(0);
 break;
 default:
 break;
 }
}

int main(int argc, char** argv)
{
 glutInit(&argc, argv);
 glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);
 glutInitWindowSize (500, 500);
 glutInitWindowPosition (100, 100);

 glutCreateWindow(argv[0]);
 init();
 glutReshapeFunc(reshape);
 glutDisplayFunc(display);
 glutKeyboardFunc (keyboard);
 glutMainLoop();
 return 0;
}

Manage a NURBS Object

As shown in Example 12-5, gluNewNurbsRenderer() returns a new NURBS object, whose type is
a pointer to a GLUnurbsObj structure. You must make this object before using any other NURBS
routine. When you’re done with a NURBS object, you may use gluDeleteNurbsRenderer() to free
up the memory that was used.

GLUnurbsObj* gluNewNurbsRenderer (void);
Creates a new NURBS object, nobj. Returns a pointer to the new object, or zero, if OpenGL
cannot allocate memory for a new NURBS object.

void gluDeleteNurbsRenderer (GLUnurbsObj *nobj);
Destroys the NURBS object nobj.

Control NURBS Rendering Properties

A set of properties associated with a NURBS object affects the way the object is rendered. These
properties include how the surface is rasterized (for example, filled or wireframe) and the precision
of tessellation.

void gluNurbsProperty(GLUnurbsObj *nobj, GLenum property,
GLfloat value);

Controls attributes of a NURBS object, nobj. The property argument specifies the property
and can be GLU_DISPLAY_MODE, GLU_CULLING, GLU_SAMPLING_METHOD,
GLU_SAMPLING_TOLERANCE, GLU_PARAMETRIC_TOLERANCE, GLU_U_STEP,
GLU_V_STEP, or GLU_AUTO_LOAD_MATRIX. The value argument indicates what the
property should be.
The default value for GLU_DISPLAY_MODE is GLU_FILL, which causes the surface to be
rendered as polygons. If GLU_OUTLINE_POLYGON is used for the display-mode property,
only the outlines of polygons created by tessellation are rendered. GLU_OUTLINE_PATCH
renders the outlines of patches and trimming curves. (See "Create a NURBS Curve or
Surface".)
GLU_CULLING can speed up performance by not performing tessellation if the NURBS
object falls completely outside the viewing volume; set this property to GL_TRUE to enable
culling (the default is GL_FALSE).
Since a NURBS object is rendered as primitives, it’s sampled at different values of its
parameter(s) (u and v) and broken down into small line segments or polygons for rendering.
If property is GLU_SAMPLING_METHOD, then value is set to one of
GLU_PATH_LENGTH (which is the default), GLU_PARAMETRIC_ERROR, or
GLU_DOMAIN_DISTANCE, which specifies how a NURBS curve or surface should be
tessellated. When value is set to GLU_PATH_LENGTH, the surface is rendered so that the
maximum length, in pixels, of the edges of tessellated polygons is no greater than what is
specified by GLU_SAMPLING_TOLERANCE. When set to GLU_PARAMETRIC_ERROR,
then the value specified by GLU_PARAMETRIC_TOLERANCE is the maximum distance, in
pixels, between tessellated polygons and the surfaces they approximate. When set to

GLU_DOMAIN_DISTANCE, the application specifies, in parametric coordinates, how many
sample points per unit length are taken in the u and v dimensions, using the values for
GLU_U_STEP and GLU_V_STEP.
If property is GLU_SAMPLING_TOLERANCE and the sampling method is
GLU_PATH_LENGTH, value controls the maximum length, in pixels, to use for tessellated
polygons. The default value of 50.0 makes the largest sampled line segment or polygon edge
50.0 pixels long. If property is GLU_PARAMETRIC_TOLERANCE and the sampling method
is GLU_PARAMETRIC_ERROR, value controls the maximum distance, in pixels, between the
tessellated polygons and the surfaces they approximate. The default value for
GLU_PARAMETRIC_TOLERANCE is 0.5, which makes the tessellated polygons within
one-half pixel of the approximated surface. If the sampling method is
GLU_DOMAIN_DISTANCE and property is either GLU_U_STEP or GLU_V_STEP, then
value is the number of sample points per unit length taken along the u or v dimension,
respectively, in parametric coordinates. The default for both GLU_U_STEP and
GLU_V_STEP is 100.
The GLU_AUTO_LOAD_MATRIX property determines whether the projection matrix,
modelview matrix, and viewport are downloaded from the OpenGL server (GL_TRUE, the
default), or whether the application must supply these matrices with
gluLoadSamplingMatrices() (GL_FALSE).

void gluLoadSamplingMatrices (GLUnurbsObj *nobj, const GLfloat modelMatrix[16], const
GLfloat projMatrix[16], const GLint viewport[4]);

If the GLU_AUTO_LOAD_MATRIX is turned off, the modelview and projection matrices and
the viewport specified in gluLoadSamplingMatrices() are used to compute sampling and
culling matrices for each NURBS curve or surface.

If you need to query the current value for a NURBS property, you may use
gluGetNurbsProperty().

void gluGetNurbsProperty (GLUnurbsObj *nobj, GLenum property,
GLfloat *value);

Given the property to be queried for the NURBS object nobj, return its current value.

Handle NURBS Errors

Since there are 37 different errors specific to NURBS functions, it’s a good idea to register an error
callback to let you know if you’ve stumbled into one of them. In Example 12-5, the callback
function was registered with

gluNurbsCallback(theNurb, GLU_ERROR, (GLvoid (*)()) nurbsError);

void gluNurbsCallback (GLUnurbsObj *nobj, GLenum which,
void (* fn)(GLenum errorCode));

which is the type of callback; it must be GLU_ERROR. When a NURBS function detects an
error condition, fn is invoked with the error code as its only argument. errorCode is one of
37 error conditions, named GLU_NURBS_ERROR1 through GLU_NURBS_ERROR37. Use
gluErrorString() to describe the meaning of those error codes.

In Example 12-5, the nurbsError() routine was registered as the error callback function:

void nurbsError(GLenum errorCode)
{
 const GLubyte *estring;

 estring = gluErrorString(errorCode);
 fprintf (stderr, "Nurbs Error: %s\n", estring);
 exit (0);
}

Create a NURBS Curve or Surface

To render a NURBS surface, gluNurbsSurface() is bracketed by gluBeginSurface() and
gluEndSurface(). The bracketing routines save and restore the evaluator state.

void gluBeginSurface (GLUnurbsObj *nobj);
void gluEndSurface (GLUnurbsObj *nobj);

After gluBeginSurface(), one or more calls to gluNurbsSurface() defines the attributes of
the surface. Exactly one of these calls must have a surface type of GL_MAP2_VERTEX_3 or
GL_MAP2_VERTEX_4 to generate vertices. Use gluEndSurface() to end the definition of a
surface. Trimming of NURBS surfaces is also supported between gluBeginSurface() and
gluEndSurface(). (See "Trim a NURBS Surface".)

void gluNurbsSurface (GLUnurbsObj *nobj, GLint uknot_count,
GLfloat *uknot, GLint vknot_count, GLfloat *vknot,
GLint u_stride, GLint v_stride, GLfloat *ctlarray,
GLint uorder, GLint vorder, GLenum type);

Describes the vertices (or surface normals or texture coordinates) of a NURBS surface, nobj.
Several of the values must be specified for both u and v parametric directions, such as the
knot sequences (uknot and vknot), knot counts (uknot_count and vknot_count), and order of
the polynomial (uorder and vorder) for the NURBS surface. Note that the number of control
points isn’t specified. Instead, it’s derived by determining the number of control points along
each parameter as the number of knots minus the order. Then, the number of control points
for the surface is equal to the number of control points in each parametric direction,
multiplied by one another. The ctlarray argument points to an array of control points.
The last parameter, type, is one of the two-dimensional evaluator types. Commonly, you might
use GL_MAP2_VERTEX_3 for nonrational or GL_MAP2_VERTEX_4 for rational control
points, respectively. You might also use other types, such as
GL_MAP2_TEXTURE_COORD_* or GL_MAP2_NORMAL to calculate and assign texture
coordinates or surface normals. For example, to create a lighted (with surface normals) and
textured NURBS surface, you may need to call this sequence:

gluBeginSurface(nobj);
 gluNurbsSurface(nobj, ..., GL_MAP2_TEXTURE_COORD_2);
 gluNurbsSurface(nobj, ..., GL_MAP2_NORMAL);
 gluNurbsSurface(nobj, ..., GL_MAP2_VERTEX_3);
gluEndSurface(nobj);

The u_stride and v_stride arguments represent the number of floating-point values between
control points in each parametric direction. The evaluator type, as well as its order, affects
the u_stride and v_stride values. In Example 12-5, u_stride is 12 (4 * 3) because there are
three coordinates for each vertex (set by GL_MAP2_VERTEX_3) and four control points in
the parametric v direction; v_stride is 3 because each vertex had three coordinates, and v
control points are adjacent to one another.

Drawing a NURBS curve is similar to drawing a surface, except that all calculations are done with
one parameter, u, rather than two. Also, for curves, gluBeginCurve() and gluEndCurve() are the
bracketing routines.

void gluBeginCurve (GLUnurbsObj *nobj);

void gluEndCurve (GLUnurbsObj *nobj);
After gluBeginCurve(), one or more calls to gluNurbsCurve() define the attributes of the
surface. Exactly one of these calls must have a surface type of GL_MAP1_VERTEX_3 or
GL_MAP1_VERTEX_4 to generate vertices. Use gluEndCurve() to end the definition of a
surface.

void gluNurbsCurve (GLUnurbsObj *nobj, GLint uknot_count,
GLfloat *uknot, GLint u_stride, GLfloat *ctlarray,
GLint uorder, GLenum type);

Defines a NURBS curve for the object nobj. The arguments have the same meaning as those
for gluNurbsSurface(). Note that this routine requires only one knot sequence and one
declaration of the order of the NURBS object. If this curve is defined within a
gluBeginCurve()/gluEndCurve() pair, then the type can be any of the valid one-dimensional
evaluator types (such as GL_MAP1_VERTEX_3 or GL_MAP1_VERTEX_4).

Trim a NURBS Surface

To create a trimmed NURBS surface with OpenGL, start as if you were creating an untrimmed
surface. After calling gluBeginSurface() and gluNurbsSurface() but before calling
gluEndSurface(), start a trim by calling gluBeginTrim() .

void gluBeginTrim (GLUnurbsObj *nobj);
void gluEndTrim (GLUnurbsObj *nobj);

Marks the beginning and end of the definition of a trimming loop. A trimming loop is a set of
oriented, trimming curve segments (forming a closed curve) that defines the boundaries of a
NURBS surface.

You can create two kinds of trimming curves, a piecewise linear curve with gluPwlCurve() or a
NURBS curve with gluNurbsCurve(). A piecewise linear curve doesn’t look like what’s
conventionally called a curve, because it’s a series of straight lines. A NURBS curve for trimming
must lie within the unit square of parametric (u, v) space. The type for a NURBS trimming curve is
usually GLU_MAP1_TRIM2. Less often, the type is GLU_MAP1_TRIM3, where the curve is
described in a two-dimensional homogeneous space (u’, v’, w’) by (u, v) = (u’/w’, v’/w’).

void gluPwlCurve (GLUnurbsObj *nobj, GLint count, GLfloat *array,
GLint stride, GLenum type);

Describes a piecewise linear trimming curve for the NURBS object nobj. There are count
points on the curve, and they’re given by array. The type can be either GLU_MAP1_TRIM_2
(the most common) or GLU_MAP1_TRIM_3 ((u, v, w) homogeneous parameter space). The
type affects whether stride, the number of floating-point values to the next vertex, is 2 or 3.

You need to consider the orientation of trimming curves - that is, whether they’re counterclockwise
or clockwise - to make sure you include the desired part of the surface. If you imagine walking
along a curve, everything to the left is included and everything to the right is trimmed away. For
example, if your trim consists of a single counterclockwise loop, everything inside the loop is
included. If the trim consists of two nonintersecting counterclockwise loops with nonintersecting
interiors, everything inside either of them is included. If it consists of a counterclockwise loop with
two clockwise loops inside it, the trimming region has two holes in it. The outermost trimming
curve must be counterclockwise. Often, you run a trimming curve around the entire unit square to
include everything within it, which is what you get by default by not specifying any trimming
curves.

Trimming curves must be closed and nonintersecting. You can combine trimming curves, so long
as the endpoints of the trimming curves meet to form a closed curve. You can nest curves, creating
islands that float in space. Be sure to get the curve orientations right. For example, an error results
if you specify a trimming region with two counterclockwise curves, one enclosed within another:
The region between the curves is to the left of one and to the right of the other, so it must be both
included and excluded, which is impossible. Figure 12-5 illustrates a few valid possibilities.

Figure 12-5 : Parametric Trimming Curves

Figure 12-6 shows the same small hill as in Figure 12-4, this time with a trimming curve that’s a
combination of a piecewise linear curve and a NURBS curve. The program that creates this figure
is similar to that shown in Example 12-5; the differences are in the routines shown in Example
12-6.

Figure 12-6 : Trimmed NURBS Surface

Example 12-6 : Trimming a NURBS Surface: trim.c

void display(void)
{
 GLfloat knots[8] = {0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0};
 GLfloat edgePt[5][2] = /* counter clockwise */
 {{0.0, 0.0}, {1.0, 0.0}, {1.0, 1.0}, {0.0, 1.0},
 {0.0, 0.0}};
 GLfloat curvePt[4][2] = /* clockwise */
 {{0.25, 0.5}, {0.25, 0.75}, {0.75, 0.75}, {0.75, 0.5}};

 GLfloat curveKnots[8] =
 {0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0};
 GLfloat pwlPt[4][2] = /* clockwise */
 {{0.75, 0.5}, {0.5, 0.25}, {0.25, 0.5}};

 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 glPushMatrix();
 glRotatef(330.0, 1.,0.,0.);
 glScalef (0.5, 0.5, 0.5);

 gluBeginSurface(theNurb);
 gluNurbsSurface(theNurb, 8, knots, 8, knots,
 4 * 3, 3, &ctlpoints[0][0][0],
 4, 4, GL_MAP2_VERTEX_3);
 gluBeginTrim (theNurb);
 gluPwlCurve (theNurb, 5, &edgePt[0][0], 2,
 GLU_MAP1_TRIM_2);
 gluEndTrim (theNurb);
 gluBeginTrim (theNurb);
 gluNurbsCurve (theNurb, 8, curveKnots, 2,
 &curvePt[0][0], 4, GLU_MAP1_TRIM_2);
 gluPwlCurve (theNurb, 3, &pwlPt[0][0], 2,
 GLU_MAP1_TRIM_2);
 gluEndTrim (theNurb);
 gluEndSurface(theNurb);

 glPopMatrix();
 glFlush();
}

In Example 12-6, gluBeginTrim() and gluEndTrim() bracket each trimming curve. The first trim,
with vertices defined by the array edgePt[][], goes counterclockwise around the entire unit square
of parametric space. This ensures that everything is drawn, provided it isn’t removed by a
clockwise trimming curve inside of it. The second trim is a combination of a NURBS trimming
curve and a piecewise linear trimming curve. The NURBS curve ends at the points (0.9, 0.5) and
(0.1, 0.5), where it is met by the piecewise linear curve, forming a closed clockwise curve.

 OpenGL Programming Guide
(Addison-Wesley Publishing Company)

 OpenGL Programming Guide
(Addison-Wesley Publishing Company)

Chapter 13
Selection and Feedback
Chapter Objectives

After reading this chapter, you’ll be able to do the following:

Create applications that allow the user to select a region of the screen or pick an object drawn
on the screen

Use the OpenGL feedback mode to obtain the results of rendering calculations

Some graphics applications simply draw static images of two- and three-dimensional objects. Other
applications allow the user to identify objects on the screen and then to move, modify, delete, or
otherwise manipulate those objects. OpenGL is designed to support exactly such interactive
applications. Since objects drawn on the screen typically undergo multiple rotations, translations,
and perspective transformations, it can be difficult for you to determine which object a user is
selecting in a three-dimensional scene. To help you, OpenGL provides a selection mechanism that
automatically tells you which objects are drawn inside a specified region of the window. You can
use this mechanism together with a special utility routine to determine which object within the
region the user is specifying, or picking, with the cursor.

Selection is actually a mode of operation for OpenGL; feedback is another such mode. In feedback
mode, you use your graphics hardware and OpenGL to perform the usual rendering calculations.
Instead of using the calculated results to draw an image on the screen, however, OpenGL returns
(or feeds back) the drawing information to you. For example, if you want to draw three-dimensional
objects on a plotter rather than the screen, you would draw the items in feedback mode, collect the
drawing instructions, and then convert them to commands the plotter can understand.

In both selection and feedback modes, drawing information is returned to the application rather than
being sent to the framebuffer, as it is in rendering mode. Thus, the screen remains frozen - no
drawing occurs - while OpenGL is in selection or feedback mode. In these modes, the contents of
the color, depth, stencil, and accumulation buffers are not affected. This chapter explains each of
these modes in its own section:

"Selection" discusses how to use selection mode and related routines to allow a user of your
application to pick an object drawn on the screen.

"Feedback" describes how to obtain information about what would be drawn on the screen
and how that information is formatted.

Selection

Typically, when you’re planning to use OpenGL’s selection mechanism, you first draw your scene
into the framebuffer, and then you enter selection mode and redraw the scene. However, once
you’re in selection mode, the contents of the framebuffer don’t change until you exit selection
mode. When you exit selection mode, OpenGL returns a list of the primitives that intersect the
viewing volume (remember that the viewing volume is defined by the current modelview and
projection matrices and any additional clipping planes, as explained in Chapter 3.) Each primitive
that intersects the viewing volume causes a selection hit. The list of primitives is actually returned
as an array of integer-valued names and related data - the hit records - that correspond to the current
contents of the name stack. You construct the name stack by loading names onto it as you issue
primitive drawing commands while in selection mode. Thus, when the list of names is returned, you
can use it to determine which primitives might have been selected on the screen by the user.

In addition to this selection mechanism, OpenGL provides a utility routine designed to simplify
selection in some cases by restricting drawing to a small region of the viewport. Typically, you use
this routine to determine which objects are drawn near the cursor, so that you can identify which
object the user is picking. (You can also delimit a selection region by specifying additional clipping
planes. Remember that these planes act in world space, not in screen space.) Since picking is a
special case of selection, selection is described first in this chapter, and then picking.

The Basic Steps

To use the selection mechanism, you need to perform the following steps.

1. Specify the array to be used for the returned hit records with glSelectBuffer().

2. Enter selection mode by specifying GL_SELECT with glRenderMode().

3. Initialize the name stack using glInitNames() and glPushName().

4. Define the viewing volume you want to use for selection. Usually this is different from the
viewing volume you originally used to draw the scene, so you probably want to save and then
restore the current transformation state with glPushMatrix() and glPopMatrix().

5. Alternately issue primitive drawing commands and commands to manipulate the name stack
so that each primitive of interest has an appropriate name assigned.

6. Exit selection mode and process the returned selection data (the hit records).

The following paragraphs describe glSelectBuffer() and glRenderMode(). In the next section, the
commands to manipulate the name stack are described.

void glSelectBuffer(GLsizei size, GLuint *buffer);
Specifies the array to be used for the returned selection data. The buffer argument is a
pointer to an array of unsigned integers into which the data is put, and size indicates the
maximum number of values that can be stored in the array. You need to call glSelectBuffer()
before entering selection mode.

GLint glRenderMode(GLenum mode);
Controls whether the application is in rendering, selection, or feedback mode. The mode

argument can be one of GL_RENDER (the default), GL_SELECT, or GL_FEEDBACK. The
application remains in a given mode until glRenderMode() is called again with a different
argument. Before entering selection mode, glSelectBuffer() must be called to specify the
selection array. Similarly, before entering feedback mode, glFeedbackBuffer() must be
called to specify the feedback array. The return value for glRenderMode() has meaning if the
current render mode (that is, not the mode parameter) is either GL_SELECT or
GL_FEEDBACK. The return value is the number of selection hits or the number of values
placed in the feedback array when either mode is exited; a negative value means that the
selection or feedback array has overflowed. You can use GL_RENDER_MODE with
glGetIntegerv() to obtain the current mode.

Creating the Name Stack

As mentioned in the previous section, the name stack forms the basis for the selection information
that’s returned to you. To create the name stack, first initialize it with glInitNames(), which simply
clears the stack, and then add integer names to it while issuing corresponding drawing commands.
As you might expect, the commands to manipulate the stack allow you to push a name onto it
(glPushName()), pop a name off of it (glPopName()), and replace the name on the top of the stack
with a different one (glLoadName()). Example 13-1 shows what your name-stack manipulation
code might look like with these commands.

Example 13-1 : Creating a Name Stack

glInitNames();
glPushName(0);

glPushMatrix(); /* save the current transformation state */

 /* create your desired viewing volume here */

 glLoadName(1);
 drawSomeObject();
 glLoadName(2);
 drawAnotherObject();
 glLoadName(3);
 drawYetAnotherObject();
 drawJustOneMoreObject();

glPopMatrix (); /* restore the previous transformation state*/

In this example, the first two objects to be drawn have their own names, and the third and fourth
objects share a single name. With this setup, if either or both of the third and fourth objects causes a
selection hit, only one hit record is returned to you. You can have multiple objects share the same
name if you don’t need to differentiate between them when processing the hit records.

void glInitNames(void);
Clears the name stack so that it’s empty.

void glPushName(GLuint name);
Pushes name onto the name stack. Pushing a name beyond the capacity of the stack generates
the error GL_STACK_OVERFLOW. The name stack’s depth can vary among different
OpenGL implementations, but it must be able to contain at least sixty-four names. You can
use the parameter GL_NAME_STACK_DEPTH with glGetIntegerv() to obtain the depth of
the name stack.

void glPopName(void);
Pops one name off the top of the name stack. Popping an empty stack generates the error

GL_STACK_UNDERFLOW.
void glLoadName(GLuint name);

Replaces the value on the top of the name stack with name. If the stack is empty, which it is
right after glInitNames() is called, glLoadName() generates the error
GL_INVALID_OPERATION. To avoid this, if the stack is initially empty, call glPushName()
at least once to put something on the name stack before calling glLoadName().

Calls to glPushName(), glPopName(), and glLoadName() are ignored if you’re not in selection
mode. You might find that it simplifies your code to use these calls throughout your drawing code,
and then use the same drawing code for both selection and normal rendering modes.

The Hit Record

In selection mode, a primitive that intersects the viewing volume causes a selection hit. Whenever a
name-stack manipulation command is executed or glRenderMode() is called, OpenGL writes a hit
record into the selection array if there’s been a hit since the last time the stack was manipulated or
glRenderMode() was called. With this process, objects that share the same name - for example, an
object that’s composed of more than one primitive - don’t generate multiple hit records. Also, hit
records aren’t guaranteed to be written into the array until glRenderMode() is called.

Note: In addition to primitives, valid coordinates produced by glRasterPos() can cause a selection
hit. Also, in the case of polygons, no hit occurs if the polygon would have been culled.

Each hit record consists of four items, in order.

The number of names on the name stack when the hit occurred.

Both the minimum and maximum window-coordinate z values of all vertices of the primitives
that intersected the viewing volume since the last recorded hit. These two values, which lie in
the range [0,1], are each multiplied by 232-1 and rounded to the nearest unsigned integer.

The contents of the name stack at the time of the hit, with the bottommost element first.

When you enter selection mode, OpenGL initializes a pointer to the beginning of the selection
array. Each time a hit record is written into the array, the pointer is updated accordingly. If writing a
hit record would cause the number of values in the array to exceed the size argument specified with
glSelectBuffer(), OpenGL writes as much of the record as fits in the array and sets an overflow
flag. When you exit selection mode with glRenderMode(), this command returns the number of hit
records that were written (including a partial record if there was one), clears the name stack, resets
the overflow flag, and resets the stack pointer. If the overflow flag had been set, the return value is
-1.

A Selection Example

In Example 13-2, four triangles (green, red, and two yellow triangles, created by calling
drawTriangle()) and a wireframe box representing the viewing volume (drawViewVolume()) are
drawn to the screen. Then the triangles are rendered again (selectObjects()), but this time in
selection mode. The corresponding hit records are processed in processHits(), and the selection
array is printed out. The first triangle generates a hit, the second one doesn’t, and the third and
fourth ones together generate a single hit.

Example 13-2 : Selection Example: select.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>
#include <stdlib.h>
#include <stdio.h>

void drawTriangle (GLfloat x1, GLfloat y1, GLfloat x2,
 GLfloat y2, GLfloat x3, GLfloat y3, GLfloat z)
{
 glBegin (GL_TRIANGLES);
 glVertex3f (x1, y1, z);
 glVertex3f (x2, y2, z);
 glVertex3f (x3, y3, z);
 glEnd ();
}

void drawViewVolume (GLfloat x1, GLfloat x2, GLfloat y1,
 GLfloat y2, GLfloat z1, GLfloat z2)
{
 glColor3f (1.0, 1.0, 1.0);
 glBegin (GL_LINE_LOOP);
 glVertex3f (x1, y1, -z1);
 glVertex3f (x2, y1, -z1);
 glVertex3f (x2, y2, -z1);
 glVertex3f (x1, y2, -z1);
 glEnd ();

 glBegin (GL_LINE_LOOP);
 glVertex3f (x1, y1, -z2);
 glVertex3f (x2, y1, -z2);
 glVertex3f (x2, y2, -z2);
 glVertex3f (x1, y2, -z2);
 glEnd ();

 glBegin (GL_LINES); /* 4 lines */
 glVertex3f (x1, y1, -z1);
 glVertex3f (x1, y1, -z2);
 glVertex3f (x1, y2, -z1);
 glVertex3f (x1, y2, -z2);
 glVertex3f (x2, y1, -z1);
 glVertex3f (x2, y1, -z2);
 glVertex3f (x2, y2, -z1);
 glVertex3f (x2, y2, -z2);
 glEnd ();
}

void drawScene (void)
{
 glMatrixMode (GL_PROJECTION);
 glLoadIdentity ();
 gluPerspective (40.0, 4.0/3.0, 1.0, 100.0);

 glMatrixMode (GL_MODELVIEW);
 glLoadIdentity ();
 gluLookAt (7.5, 7.5, 12.5, 2.5, 2.5, -5.0, 0.0, 1.0, 0.0);
 glColor3f (0.0, 1.0, 0.0); /* green triangle */
 drawTriangle (2.0, 2.0, 3.0, 2.0, 2.5, 3.0, -5.0);
 glColor3f (1.0, 0.0, 0.0); /* red triangle */
 drawTriangle (2.0, 7.0, 3.0, 7.0, 2.5, 8.0, -5.0);
 glColor3f (1.0, 1.0, 0.0); /* yellow triangles */
 drawTriangle (2.0, 2.0, 3.0, 2.0, 2.5, 3.0, 0.0);
 drawTriangle (2.0, 2.0, 3.0, 2.0, 2.5, 3.0, -10.0);
 drawViewVolume (0.0, 5.0, 0.0, 5.0, 0.0, 10.0);

}

void processHits (GLint hits, GLuint buffer[])
{
 unsigned int i, j;
 GLuint names, *ptr;

 printf ("hits = %d\n", hits);
 ptr = (GLuint *) buffer;
 for (i = 0; i < hits; i++) { /* for each hit */
 names = *ptr;
 printf (" number of names for hit = %d\n", names); ptr++;
 printf(" z1 is %g;", (float) *ptr/0x7fffffff); ptr++;
 printf(" z2 is %g\n", (float) *ptr/0x7fffffff); ptr++;
 printf (" the name is ");
 for (j = 0; j < names; j++) { /* for each name */
 printf ("%d ", *ptr); ptr++;
 }
 printf ("\n");
 }
}

#define BUFSIZE 512

void selectObjects(void)
{
 GLuint selectBuf[BUFSIZE];
 GLint hits;

 glSelectBuffer (BUFSIZE, selectBuf);
 (void) glRenderMode (GL_SELECT);

 glInitNames();
 glPushName(0);

 glPushMatrix ();
 glMatrixMode (GL_PROJECTION);
 glLoadIdentity ();
 glOrtho (0.0, 5.0, 0.0, 5.0, 0.0, 10.0);
 glMatrixMode (GL_MODELVIEW);
 glLoadIdentity ();
 glLoadName(1);
 drawTriangle (2.0, 2.0, 3.0, 2.0, 2.5, 3.0, -5.0);
 glLoadName(2);
 drawTriangle (2.0, 7.0, 3.0, 7.0, 2.5, 8.0, -5.0);
 glLoadName(3);
 drawTriangle (2.0, 2.0, 3.0, 2.0, 2.5, 3.0, 0.0);
 drawTriangle (2.0, 2.0, 3.0, 2.0, 2.5, 3.0, -10.0);
 glPopMatrix ();
 glFlush ();

 hits = glRenderMode (GL_RENDER);
 processHits (hits, selectBuf);
}

void init (void)
{
 glEnable(GL_DEPTH_TEST);
 glShadeModel(GL_FLAT);
}

void display(void)
{
 glClearColor (0.0, 0.0, 0.0, 0.0);
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 drawScene ();
 selectObjects ();
 glFlush();
}

int main(int argc, char** argv)
{
 glutInit(&argc, argv);
 glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);
 glutInitWindowSize (200, 200);
 glutInitWindowPosition (100, 100);
 glutCreateWindow (argv[0]);
 init();
 glutDisplayFunc(display);
 glutMainLoop();
 return 0;
}

Picking

As an extension of the process described in the previous section, you can use selection mode to
determine if objects are picked. To do this, you use a special picking matrix in conjunction with the
projection matrix to restrict drawing to a small region of the viewport, typically near the cursor.
Then you allow some form of input, such as clicking a mouse button, to initiate selection mode.
With selection mode established and with the special picking matrix used, objects that are drawn
near the cursor cause selection hits. Thus, during picking you’re typically determining which
objects are drawn near the cursor.

Picking is set up almost exactly like regular selection mode is, with the following major differences.

Picking is usually triggered by an input device. In the following code examples, pressing the
left mouse button invokes a function that performs picking.

You use the utility routine gluPickMatrix() to multiply a special picking matrix onto the
current projection matrix. This routine should be called prior to multiplying a standard
projection matrix (such as gluPerspective() or glOrtho()). You’ll probably want to save the
contents of the projection matrix first, so the sequence of operations may look like this:

glMatrixMode (GL_PROJECTION);
glPushMatrix ();
glLoadIdentity ();
gluPickMatrix (...);
gluPerspective, glOrtho, gluOrtho2D, or glFrustum
 /* ... draw scene for picking ; perform picking ... */
glPopMatrix();

Another completely different way to perform picking is described in "Object Selection Using the
Back Buffer" in Chapter 14. This technique uses color values to identify different components of an
object.

void gluPickMatrix(GLdouble x, GLdouble y, GLdouble width,
GLdouble height, GLint viewport[4]);

Creates a projection matrix that restricts drawing to a small region of the viewport and
multiplies that matrix onto the current matrix stack. The center of the picking region is (x, y)
in window coordinates, typically the cursor location. width and height define the size of the
picking region in screen coordinates. (You can think of the width and height as the sensitivity
of the picking device.) viewport[] indicates the current viewport boundaries, which can be

obtained by calling

glGetIntegerv(GL_VIEWPORT, GLint *viewport);

Advanced

The net result of the matrix created by gluPickMatrix() is to transform
the clipping region into the unit cube -1 ≤ (x, y, z) ≤ 1 (or -w ≤ (wx, wy, wz) ≤ w). The
picking matrix effectively performs an orthogonal transformation that maps a subregion of this unit
cube to the unit cube. Since the transformation is arbitrary, you can make picking work for different
sorts
of regions - for example, for rotated rectangular portions of the window. In certain situations, you
might find it easier to specify additional clipping planes to define the picking region.

Example 13-3 illustrates simple picking. It also demonstrates how to use multiple names to identify
different components of a primitive, in this case the row and column of a selected object. A 3 × 3
grid of squares is drawn, with each square a different color. The board[3][3] array maintains the
current amount of blue for each square. When the left mouse button is pressed, the pickSquares()
routine is called to identify which squares were picked by the mouse. Two names identify each
square in the grid - one identifies the row, and the other the column. Also, when the left mouse
button is pressed, the color of all squares under the cursor position changes.

Example 13-3 : Picking Example: picksquare.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <stdlib.h>
#include <stdio.h>
#include <GL/glut.h>

int board[3][3]; /* amount of color for each square */

/* Clear color value for every square on the board */
void init(void)
{
 int i, j;
 for (i = 0; i < 3; i++)
 for (j = 0; j < 3; j ++)
 board[i][j] = 0;
 glClearColor (0.0, 0.0, 0.0, 0.0);
}

void drawSquares(GLenum mode)
{
 GLuint i, j;
 for (i = 0; i < 3; i++) {
 if (mode == GL_SELECT)
 glLoadName (i);
 for (j = 0; j < 3; j ++) {
 if (mode == GL_SELECT)
 glPushName (j);
 glColor3f ((GLfloat) i/3.0, (GLfloat) j/3.0,
 (GLfloat) board[i][j]/3.0);
 glRecti (i, j, i+1, j+1);
 if (mode == GL_SELECT)
 glPopName ();
 }
 }
}

/* processHits prints out the contents of the
 * selection array.
 */
void processHits (GLint hits, GLuint buffer[])
{
 unsigned int i, j;
 GLuint ii, jj, names, *ptr;

 printf ("hits = %d\n", hits);
 ptr = (GLuint *) buffer;
 for (i = 0; i < hits; i++) { /* for each hit */
 names = *ptr;
 printf (" number of names for this hit = %d\n", names);
 ptr++;
 printf(" z1 is %g;", (float) *ptr/0x7fffffff); ptr++;
 printf(" z2 is %g\n", (float) *ptr/0x7fffffff); ptr++;
 printf (" names are ");
 for (j = 0; j < names; j++) { /* for each name */
 printf ("%d ", *ptr);
 if (j == 0) /* set row and column */
 ii = *ptr;
 else if (j == 1)
 jj = *ptr;
 ptr++;
 }
 printf ("\n");
 board[ii][jj] = (board[ii][jj] + 1) % 3;
 }
}

#define BUFSIZE 512

void pickSquares(int button, int state, int x, int y)
{
 GLuint selectBuf[BUFSIZE];
 GLint hits;
 GLint viewport[4];

 if (button != GLUT_LEFT_BUTTON || state != GLUT_DOWN)
 return;

 glGetIntegerv (GL_VIEWPORT, viewport);

 glSelectBuffer (BUFSIZE, selectBuf);
 (void) glRenderMode (GL_SELECT);

 glInitNames();
 glPushName(0);

 glMatrixMode (GL_PROJECTION);
 glPushMatrix ();
 glLoadIdentity ();
/* create 5x5 pixel picking region near cursor location */
 gluPickMatrix ((GLdouble) x, (GLdouble) (viewport[3] - y),
 5.0, 5.0, viewport);
 gluOrtho2D (0.0, 3.0, 0.0, 3.0);
 drawSquares (GL_SELECT);

 glMatrixMode (GL_PROJECTION);
 glPopMatrix ();
 glFlush ();

 hits = glRenderMode (GL_RENDER);
 processHits (hits, selectBuf);
 glutPostRedisplay();

}

void display(void)
{
 glClear(GL_COLOR_BUFFER_BIT);
 drawSquares (GL_RENDER);
 glFlush();
}

void reshape(int w, int h)
{
 glViewport(0, 0, w, h);
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluOrtho2D (0.0, 3.0, 0.0, 3.0);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
}

int main(int argc, char** argv)
{
 glutInit(&argc, argv);
 glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);
 glutInitWindowSize (100, 100);
 glutInitWindowPosition (100, 100);
 glutCreateWindow (argv[0]);
 init ();
 glutMouseFunc (pickSquares);
 glutReshapeFunc (reshape);
 glutDisplayFunc(display);
 glutMainLoop();
 return 0;
}

Picking with Multiple Names and a Hierarchical Model

Multiple names can also be used to choose parts of a hierarchical object in a scene. For example, if
you were rendering an assembly line of automobiles, you might want the user to move the mouse to
pick the third bolt on the left front tire of the third car in line. A different name can be used to
identify each level of hierarchy: which car, which tire, and finally which bolt. As another example,
one name can be used to describe a single molecule among other molecules, and additional names
can differentiate individual atoms within that molecule.

Example 13-4 is a modification of Example 3-4, which draws an automobile with four identical
wheels, each of which has five identical bolts. Code has been added to manipulate the name stack
with the object hierarchy.

Example 13-4 : Creating Multiple Names

draw_wheel_and_bolts()
{
 long i;

 draw_wheel_body();
 for (i = 0; i < 5; i++) {
 glPushMatrix();
 glRotate(72.0*i, 0.0, 0.0, 1.0);
 glTranslatef(3.0, 0.0, 0.0);
 glPushName(i);
 draw_bolt_body();
 glPopName();

 glPopMatrix();
 }
 }

draw_body_and_wheel_and_bolts()
{
 draw_car_body();
 glPushMatrix();
 glTranslate(40, 0, 20); /* first wheel position*/
 glPushName(1); /* name of wheel number 1 */
 draw_wheel_and_bolts();
 glPopName();
 glPopMatrix();
 glPushMatrix();
 glTranslate(40, 0, -20); /* second wheel position */
 glPushName(2); /* name of wheel number 2 */
 draw_wheel_and_bolts();
 glPopName();
 glPopMatrix();

 /* draw last two wheels similarly */
 }

Example 13-5 uses the routines in Example 13-4 to draw three different cars, numbered 1, 2, and 3.

Example 13-5 : Using Multiple Names

draw_three_cars()
{
 glInitNames();
 glPushMatrix();
 translate_to_first_car_position();
 glPushName(1);
 draw_body_and_wheel_and_bolts();
 glPopName();
 glPopMatrix();

 glPushMatrix();
 translate_to_second_car_position();
 glPushName(2);
 draw_body_and_wheel_and_bolts();
 glPopName();
 glPopMatrix();

 glPushMatrix();
 translate_to_third_car_position();
 glPushName(3);
 draw_body_and_wheel_and_bolts();
 glPopName();
 glPopMatrix();
}

Assuming that picking is performed, the following are some possible name-stack return values and
their interpretations. In these examples, at most one hit record is returned; also, d1 and d2 are depth
values.

2 d1d2 2 1 Car 2, wheel 1

1 d1d2 3 Car 3 body

3 d1d2 1 1 0 Bolt 0 on wheel 1 on car 1

empty The pick was outside all cars

The last interpretation assumes that the bolt and wheel don’t occupy the same picking region. A
user might well pick both the wheel and the bolt, yielding two hits. If you receive multiple hits, you
have to decide which hit to process, perhaps by using the depth values to determine which picked
object is closest to the viewpoint. The use of depth values is explored further in the next section.

Picking and Depth Values

Example 13-6 demonstrates how to use depth values when picking to determine which object is
picked. This program draws three overlapping rectangles in normal rendering mode. When the left
mouse button is pressed, the pickRects() routine is called. This routine returns the cursor position,
enters selection mode, initializes the name stack, and multiplies the picking matrix onto the stack
before the orthographic projection matrix. A selection hit occurs for each rectangle the cursor is
over when the left mouse button is clicked. Finally, the contents of the selection buffer are
examined to identify which named objects were within the picking region near the cursor.

The rectangles in this program are drawn at different depth, or z, values. Since only one name is
used to identify all three rectangles, only one hit can be recorded. However, if more than one
rectangle is picked, that single hit has different minimum and maximum z values.

Example 13-6 : Picking with Depth Values: pickdepth.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>
#include <stdlib.h>
#include <stdio.h>

void init(void)
{
 glClearColor(0.0, 0.0, 0.0, 0.0);
 glEnable(GL_DEPTH_TEST);
 glShadeModel(GL_FLAT);
 glDepthRange(0.0, 1.0); /* The default z mapping */
}

void drawRects(GLenum mode)
{
 if (mode == GL_SELECT)
 glLoadName(1);
 glBegin(GL_QUADS);
 glColor3f(1.0, 1.0, 0.0);
 glVertex3i(2, 0, 0);
 glVertex3i(2, 6, 0);
 glVertex3i(6, 6, 0);
 glVertex3i(6, 0, 0);
 glEnd();
 if (mode == GL_SELECT)
 glLoadName(2);
 glBegin(GL_QUADS);
 glColor3f(0.0, 1.0, 1.0);
 glVertex3i(3, 2, -1);
 glVertex3i(3, 8, -1);
 glVertex3i(8, 8, -1);
 glVertex3i(8, 2, -1);
 glEnd();
 if (mode == GL_SELECT)
 glLoadName(3);

 glBegin(GL_QUADS);
 glColor3f(1.0, 0.0, 1.0);
 glVertex3i(0, 2, -2);
 glVertex3i(0, 7, -2);
 glVertex3i(5, 7, -2);
 glVertex3i(5, 2, -2);
 glEnd();
}

void processHits(GLint hits, GLuint buffer[])
{
 unsigned int i, j;
 GLuint names, *ptr;

 printf("hits = %d\n", hits);
 ptr = (GLuint *) buffer;
 for (i = 0; i < hits; i++) { /* for each hit */
 names = *ptr;
 printf(" number of names for hit = %d\n", names); ptr++;
 printf(" z1 is %g;", (float) *ptr/0x7fffffff); ptr++;
 printf(" z2 is %g\n", (float) *ptr/0x7fffffff); ptr++;
 printf(" the name is ");
 for (j = 0; j < names; j++) { /* for each name */
 printf("%d ", *ptr); ptr++;
 }
 printf("\n");
 }
}

#define BUFSIZE 512

void pickRects(int button, int state, int x, int y)
{
 GLuint selectBuf[BUFSIZE];
 GLint hits;
 GLint viewport[4];

 if (button != GLUT_LEFT_BUTTON || state != GLUT_DOWN)
 return;
 glGetIntegerv(GL_VIEWPORT, viewport);

 glSelectBuffer(BUFSIZE, selectBuf);
 (void) glRenderMode(GL_SELECT);

 glInitNames();
 glPushName(0);

 glMatrixMode(GL_PROJECTION);
 glPushMatrix();
 glLoadIdentity();
/* create 5x5 pixel picking region near cursor location */
 gluPickMatrix((GLdouble) x, (GLdouble) (viewport[3] - y),
 5.0, 5.0, viewport);
 glOrtho(0.0, 8.0, 0.0, 8.0, -0.5, 2.5);
 drawRects(GL_SELECT);
 glPopMatrix();
 glFlush();

 hits = glRenderMode(GL_RENDER);
 processHits(hits, selectBuf);
}

void display(void)
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 drawRects(GL_RENDER);
 glFlush();
}

void reshape(int w, int h)
{
 glViewport(0, 0, (GLsizei) w, (GLsizei) h);
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 glOrtho(0.0, 8.0, 0.0, 8.0, -0.5, 2.5);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
}

int main(int argc, char **argv)
{
 glutInit(&argc, argv);
 glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);
 glutInitWindowSize (200, 200);
 glutInitWindowPosition (100, 100);
 glutCreateWindow(argv[0]);
 init();
 glutMouseFunc(pickRects);
 glutReshapeFunc(reshape);
 glutDisplayFunc(display);
 glutMainLoop();
 return 0;
}

Try This

Modify Example 13-6 to add additional calls to glPushName() so that multiple names are on
the stack when the selection hit occurs. What will the contents of the selection buffer be?

By default, glDepthRange() sets the mapping of the z values to [0.0,1.0]. Try modifying the
glDepthRange() values and see how it affects the z values that are returned in the selection
array.

Hints for Writing a Program That Uses Selection

Most programs that allow a user to interactively edit some geometry provide a mechanism for the
user to pick items or groups of items for editing. For two-dimensional drawing programs (for
example, text editors, page-layout programs, and circuit-design programs), it might be easier to do
your own picking calculations instead of using the OpenGL picking mechanism. Often, it’s easy to
find bounding boxes for two-dimensional objects and to organize them in some hierarchical data
structure to speed up searches. For example, picking that uses the OpenGL style in a VLSI layout
program containing millions of rectangles can be relatively slow. However, using simple
bounding-box information when rectangles are typically aligned with the screen could make
picking in such a program extremely fast. The code is probably simpler to write, too.

As another example, since only geometric objects cause hits, you might want to create your own
method for picking text. Setting the current raster position is a geometric operation, but it
effectively creates only a single pickable point at the current raster position, which is typically at
the lower-left corner of the text. If your editor needs to manipulate individual characters within a
text string, some other picking mechanism must be used. You could draw little rectangles around
each character during picking mode, but it’s almost certainly easier to handle text as a special case.

If you decide to use OpenGL picking, organize your program and its data structures so that it’s easy
to draw appropriate lists of objects in either selection or normal drawing mode. This way, when the
user picks something, you can use the same data structures for the pick operation that you use to
display the items on the screen. Also, consider whether you want to allow the user to select multiple
objects. One way to do this is to store a bit for each item indicating whether it’s selected (however,
this method requires traversing your entire list of items to find the selected items). You might find it
useful to maintain a list of pointers to selected items to speed up this search. It’s probably a good
idea to keep the selection bit for each item as well, since when you’re drawing the entire picture,
you might want to draw selected items differently (for example, in a different color or with a
selection box around them). Finally, consider the selection user interface. You might want to allow
the user to do the following:

Select an item

Sweep-select a group of items (see the next paragraphs for a description of this behavior)

Add an item to the selection

Add a sweep selection to the current selections

Delete an item from a selection

Choose a single item from a group of overlapping items

A typical solution for a two-dimensional drawing program might work as follows.

1. All selection is done by pointing with the mouse cursor and using the left mouse button. In
what follows, cursor means the cursor tied to the mouse, and button means the left mouse
button.

2. Clicking on an item selects it and deselects all other currently selected items. If the cursor is
on top of multiple items, the smallest is selected. (In three dimensions, many other strategies
work to disambiguate a selection.)

3. Clicking down where there is no item, holding the button down while dragging the cursor,
and then releasing the button selects all the items in a screen-aligned rectangle whose corners
are determined by the cursor positions when the button went down and where it came up. This
is called a sweep selection. All items not in the swept-out region are deselected. (You must
decide whether an item is selected only if it’s completely within the sweep region, or if any
part of it falls within the region. The completely within strategy usually works best.)

4. If the Shift key is held down and the user clicks on an item that isn’t currently selected, that
item is added to the selected list. If the clicked-upon item is selected, it’s deleted from the
selection list.

5. If a sweep selection is performed with the Shift key pressed, the items swept out are added to
the current selection.

6. In an extremely cluttered region, it’s often hard to do a sweep selection. When the button goes
down, the cursor might lie on top of some item, and normally that item would be selected.
You can make any operation a sweep selection, but a typical user interface interprets a

button-down on an item plus a mouse motion as a select-plus-drag operation. To solve this
problem, you can have an enforced sweep selection by holding down, say, the Alt key. With
this, the following set of operations constitutes a sweep selection: Alt-button down, sweep,
button up. Items under the cursor when the button goes down are ignored.

7. If the Shift key is held during this sweep selection, the items enclosed in the sweep region are
added to the current selection.

8. Finally, if the user clicks on multiple items, select just one of them. If the cursor isn’t moved
(or maybe not moved more than a pixel), and the user clicks again in the same place, deselect
the item originally selected, and select a different item under the cursor. Use repeated clicks at
the same point to cycle through all the possibilities.

Different rules can apply in particular situations. In a text editor, you probably don’t have to worry
about characters on top of each other, and selections of multiple characters are always contiguous
characters in the document. Thus, you need to mark only the first and last selected characters to
identify the complete selection. With text, often the best way to handle selection is to identify the
positions between characters rather than the characters themselves. This allows you to have an
empty selection when the beginning and end of the selection are between the same pair of
characters; it also allows you to put the cursor before the first character in the document or after the
final one with no special-case code.

In three-dimensional editors, you might provide ways to rotate and zoom between selections, so
sophisticated schemes for cycling through the possible selections might be unnecessary. On the
other hand, selection in three dimensions is difficult because the cursor’s position on the screen
usually gives no indication of its depth.

Feedback

Feedback is similar to selection in that once you’re in either mode, no pixels are produced and the
screen is frozen. Drawing does not occur; instead, information about primitives that would have
been rendered is sent back to the application. The key difference between selection and feedback
modes is what information is sent back. In selection mode, assigned names are returned to an array
of integer values. In feedback mode, information about transformed primitives is sent back to an
array of floating-point values. The values sent back to the feedback array consist of tokens that
specify what type of primitive (point, line, polygon, image, or bitmap) has been processed and
transformed, followed by vertex, color, or other data for that primitive. The values returned are
fully transformed by lighting and viewing operations. Feedback mode is initiated by calling
glRenderMode() with GL_FEEDBACK as the argument.

Here’s how you enter and exit feedback mode.

1. Call glFeedbackBuffer() to specify the array to hold the feedback information. The
arguments to this command describe what type of data and how much of it gets written into
the array.

2. Call glRenderMode() with GL_FEEDBACK as the argument to enter feedback mode. (For
this step, you can ignore the value returned by glRenderMode().) After this point, primitives
aren’t rasterized to produce pixels until you exit feedback mode, and the contents of the
framebuffer don’t change.

3. Draw your primitives. While issuing drawing commands, you can make several calls to
glPassThrough() to insert markers into the returned feedback data and thus facilitate parsing.

4. Exit feedback mode by calling glRenderMode() with GL_RENDER as the argument if you
want to return to normal drawing mode. The integer value returned by glRenderMode() is the
number of values stored in the feedback array.

5. Parse the data in the feedback array.

void glFeedbackBuffer(GLsizei size, GLenum type, GLfloat *buffer);
Establishes a buffer for the feedback data: buffer is a pointer to an array where the data is
stored. The size argument indicates the maximum number of values that can be stored in the
array. The type argument describes the information fed back for each vertex in the feedback
array; its possible values and their meaning are shown in Table 13-1. glFeedbackBuffer()
must be called before feedback mode is entered. In the table, k is 1 in color-index mode and 4
in RGBA mode.

Table 13-1 : glFeedbackBuffer() type Values

type Argument Coordinates Color Texture Total Values

GL_2D x, y - - 2

GL_3D x, y, z - - 3

GL_3D_COLOR x, y, z k - 3 + k

GL_3D_COLOR_TEXTURE x, y, z k 4 7 + k

GL_4D_COLOR_TEXTURE x, y, z, w k 4 8 + k

The Feedback Array

In feedback mode, each primitive that would be rasterized (or each call to glBitmap(),
glDrawPixels(), or glCopyPixels(), if the raster position is valid) generates a block of values that’s
copied into the feedback array. The number of values is determined by the type argument to
glFeedbackBuffer(), as listed in Table 13-1. Use the appropriate value for the type of primitives
you’re drawing: GL_2D or GL_3D for unlit two- or three-dimensional primitives, GL_3D_COLOR
for lit, three-dimensional primitives, and GL_3D_COLOR_TEXTURE or
GL_4D_COLOR_TEXTURE for lit, textured, three- or four-dimensional primitives.

Each block of feedback values begins with a code indicating the primitive type, followed by values
that describe the primitive’s vertices and associated data. Entries are also written for pixel
rectangles. In addition, pass-through markers that you’ve explicitly created can be returned in the
array; the next section explains these markers in more detail. Table 13-2 shows the syntax for the
feedback array; remember that the data associated with each returned vertex is as described in Table

13-1. Note that a polygon can have n vertices returned. Also, the x, y, z coordinates returned by
feedback are window coordinates; if w is returned, it’s in clip coordinates. For bitmaps and pixel
rectangles, the coordinates returned are those of the current raster position. In the table, note that
GL_LINE_RESET_TOKEN is returned only when the line stipple is reset for that line segment.

Table 13-2 : Feedback Array Syntax

Primitive Type Code Associated Data

Point GL_POINT_TOKEN vertex

Line GL_LINE_TOKEN or
GL_LINE_RESET_TOKEN

vertex vertex

Polygon GL_POLYGON_TOKEN n vertex vertex ...
vertex

Bitmap GL_BITMAP_TOKEN vertex

Pixel Rectangle GL_DRAW_PIXEL_TOKEN or
GL_COPY_PIXEL_TOKEN

vertex

Pass-through GL_PASS_THROUGH_TOKEN a floating-point
number

Using Markers in Feedback Mode

Feedback occurs after transformations, lighting, polygon culling, and interpretation of polygons by
glPolygonMode(). It might also occur after polygons with more than three edges are broken up into
triangles (if your particular OpenGL implementation renders polygons by performing this
decomposition). Thus, it might be hard for you to recognize the primitives you drew in the feedback
data you receive. To help parse the feedback data, call glPassThrough() as needed in your
sequence of drawing commands to insert a marker. You might use the markers to separate the
feedback values returned from different primitives, for example. This command causes
GL_PASS_THROUGH_TOKEN to be written into the feedback array, followed by the
floating-point value you pass in as an argument.

void glPassThrough(GLfloat token);
Inserts a marker into the stream of values written into the feedback array, if called in
feedback mode. The marker consists of the code GL_PASS_THROUGH_TOKEN followed by
a single floating-point value, token. This command has no effect when called outside of
feedback mode. Calling glPassThrough() between glBegin() and glEnd() generates a
GL_INVALID_OPERATION error.

A Feedback Example

Example 13-7 demonstrates the use of feedback mode. This program draws a lit, three-dimensional
scene in normal rendering mode. Then, feedback mode is entered, and the scene is redrawn. Since
the program draws lit, untextured, three-dimensional objects, the type of feedback data is
GL_3D_COLOR. Since RGBA mode is used, each unclipped vertex generates seven values for the
feedback buffer: x, y, z, r, g, b, and a.

In feedback mode, the program draws two lines as part of a line strip and then inserts a
pass-through marker. Next, a point is drawn at (-100.0, -100.0, -100.0), which falls outside the
orthographic viewing volume and thus doesn’t put any values into the feedback array. Finally,
another pass-through marker is inserted, and another point is drawn.

Example 13-7 : Feedback Mode: feedback.c

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>
#include <stdlib.h>
#include <stdio.h>

void init(void)
{
 glEnable(GL_LIGHTING);
 glEnable(GL_LIGHT0);
}

void drawGeometry (GLenum mode)
{
 glBegin (GL_LINE_STRIP);
 glNormal3f (0.0, 0.0, 1.0);
 glVertex3f (30.0, 30.0, 0.0);
 glVertex3f (50.0, 60.0, 0.0);
 glVertex3f (70.0, 40.0, 0.0);
 glEnd ();
 if (mode == GL_FEEDBACK)
 glPassThrough (1.0);
 glBegin (GL_POINTS);
 glVertex3f (-100.0, -100.0, -100.0); /* will be clipped */
 glEnd ();
 if (mode == GL_FEEDBACK)
 glPassThrough (2.0);
 glBegin (GL_POINTS);
 glNormal3f (0.0, 0.0, 1.0);
 glVertex3f (50.0, 50.0, 0.0);
 glEnd ();
}

void print3DcolorVertex (GLint size, GLint *count,
 GLfloat *buffer)
{
 int i;

 printf (" ");
 for (i = 0; i < 7; i++) {
 printf ("%4.2f ", buffer[size-(*count)]);
 *count = *count - 1;
 }
 printf ("\n");
}

void printBuffer(GLint size, GLfloat *buffer)
{
 GLint count;

 GLfloat token;

 count = size;
 while (count) {
 token = buffer[size-count]; count--;
 if (token == GL_PASS_THROUGH_TOKEN) {
 printf ("GL_PASS_THROUGH_TOKEN\n");
 printf (" %4.2f\n", buffer[size-count]);
 count--;
 }
 else if (token == GL_POINT_TOKEN) {
 printf ("GL_POINT_TOKEN\n");
 print3DcolorVertex (size, &count, buffer);
 }
 else if (token == GL_LINE_TOKEN) {
 printf ("GL_LINE_TOKEN\n");
 print3DcolorVertex (size, &count, buffer);
 print3DcolorVertex (size, &count, buffer);
 }
 else if (token == GL_LINE_RESET_TOKEN) {
 printf ("GL_LINE_RESET_TOKEN\n");
 print3DcolorVertex (size, &count, buffer);
 print3DcolorVertex (size, &count, buffer);
 }
 }
}

void display(void)
{
 GLfloat feedBuffer[1024];
 GLint size;

 glMatrixMode (GL_PROJECTION);
 glLoadIdentity ();
 glOrtho (0.0, 100.0, 0.0, 100.0, 0.0, 1.0);

 glClearColor (0.0, 0.0, 0.0, 0.0);
 glClear(GL_COLOR_BUFFER_BIT);
 drawGeometry (GL_RENDER);

 glFeedbackBuffer (1024, GL_3D_COLOR, feedBuffer);
 (void) glRenderMode (GL_FEEDBACK);
 drawGeometry (GL_FEEDBACK);

 size = glRenderMode (GL_RENDER);
 printBuffer (size, feedBuffer);
}

int main(int argc, char** argv)
{
 glutInit(&argc, argv);
 glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);
 glutInitWindowSize (100, 100);
 glutInitWindowPosition (100, 100);
 glutCreateWindow(argv[0]);
 init();
 glutDisplayFunc(display);
 glutMainLoop();
 return 0;
}

Running this program generates the following output:

GL_LINE_RESET_TOKEN
 30.00 30.00 0.00 0.84 0.84 0.84 1.00

 50.00 60.00 0.00 0.84 0.84 0.84 1.00
GL_LINE_TOKEN
 50.00 60.00 0.00 0.84 0.84 0.84 1.00
 70.00 40.00 0.00 0.84 0.84 0.84 1.00
GL_PASS_THROUGH_TOKEN
 1.00
GL_PASS_THROUGH_TOKEN
 2.00
GL_POINT_TOKEN
 50.00 50.00 0.00 0.84 0.84 0.84 1.00

Thus, the line strip drawn with these commands results in two primitives:

glBegin(GL_LINE_STRIP);
 glNormal3f (0.0, 0.0, 1.0);
 glVertex3f (30.0, 30.0, 0.0);
 glVertex3f (50.0, 60.0, 0.0);
 glVertex3f (70.0, 40.0, 0.0);
glEnd();

The first primitive begins with GL_LINE_RESET_TOKEN, which indicates that the primitive is a
line segment and that the line stipple is reset. The second primitive begins with
GL_LINE_TOKEN, so it’s also a line segment, but the line stipple isn’t reset and hence continues
from where the previous line segment left off. Each of the two vertices for these lines generates
seven values for the feedback array. Note that the RGBA values for all four vertices in these two
lines are (0.84, 0.84, 0.84, 1.0), which is a very light gray color with the maximum alpha value.
These color values are a result of the interaction of the surface normal and lighting parameters.

Since no feedback data is generated between the first and second pass-through markers, you can
deduce that any primitives drawn between the first two calls to glPassThrough() were clipped out
of the viewing volume. Finally, the point at (50.0, 50.0, 0.0) is drawn, and its associated data is
copied into the feedback array.

Note: In both feedback and selection modes, information on objects is returned prior to any
fragment tests. Thus, objects that would not be drawn due to failure of the scissor, alpha, depth, or
stencil tests may still have their data processed and returned in both feedback and selection modes.

Try This

Make changes to Example 13-7 and see how they affect the feedback values that are returned. For
example, change the coordinate values of glOrtho(). Change the lighting variables, or eliminate
lighting altogether and change the feedback type to GL_3D. Or add more primitives to see what
other geometry (such as filled polygons) contributes to the feedback array.

 OpenGL Programming Guide
(Addison-Wesley Publishing Company)

 OpenGL Programming Guide
(Addison-Wesley Publishing Company)

Chapter 14
Now That You Know
Chapter Objectives

This chapter doesn’t have objectives in the same way that previous chapters do. It’s simply a
collection of topics that describe ideas you might find useful for your application. Some topics,
such as error handling, don’t fit into other categories, but are too short for an entire chapter.

OpenGL is kind of a bag of low-level tools; now that you know about those tools, you can use them
to implement higher-level functions. This chapter presents several examples of such higher-level
capabilities.

This chapter discusses a variety of techniques based on OpenGL commands that illustrate some of
the not-so-obvious uses to which you can put these commands. The examples are in no particular
order and aren’t related to each other. The idea is to read the section headings and skip to the
examples that you find interesting. For your convenience, the headings are listed and explained
briefly here.

Note: Most of the examples in the rest of this guide are complete and can be compiled and run as is.
In this chapter, however, there are no complete programs, and you have to do a bit of work on your
own to make them run.

"Error Handling" tells you how to check for OpenGL error conditions.

"Which Version Am I Using?" describes how to find out details about the implementation,
including the version number. This can be useful for writing applications that are backward
compatible with earlier versions of OpenGL.

"Extensions to the Standard" presents techniques to identify and use vendor-specific
extensions to the OpenGL standard.

"Cheesy Translucency" explains how to use polygon stippling to achieve translucency; this is
particularly useful when you don’t have blending hardware available.

"An Easy Fade Effect" shows how to use polygon stippling to create the effect of a fade into
the background.

"Object Selection Using the Back Buffer" describes how to use the back buffer in a
double-buffered system to handle simple object picking.

"Cheap Image Transformation" discusses how to draw a distorted version of a bitmapped
image by drawing each pixel as a quadrilateral.

"Displaying Layers" explains how to display multiple different layers of materials and
indicate where the materials overlap.

"Antialiased Characters" describes how to draw smoother fonts.

"Drawing Round Points" describes how to draw near-round points.

"Interpolating Images" shows how to smoothly blend from one image to the another.

"Making Decals" explains how to draw two images, where one is a sort of decal that should
always appear on top of the other.

"Drawing Filled, Concave Polygons Using the Stencil Buffer" tells you how to draw concave
polygons, nonsimple polygons, and polygons with holes by using the stencil buffer.

"Finding Interference Regions" describes how to determine where three-dimensional pieces
overlap.

"Shadows" describes how to draw shadows of lit objects.

"Hidden-Line Removal" discusses how to draw a wireframe object with hidden lines removed
by using the stencil buffer.

"Texture-Mapping Applications" describes several clever uses for texture mapping, such as
rotating and warping images.

"Drawing Depth-Buffered Images" tells you how to combine images in a depth-buffered
environment.

"Dirichlet Domains" explains how to find the Dirichlet domain of a set of points using the
depth buffer.

"Life in the Stencil Buffer" explains how to implement the Game of Life using the stencil
buffer.

"Alternative Uses for glDrawPixels() and glCopyPixels()" describes how to use these two
commands for such effects as fake video, airbrushing, and transposed images.

Error Handling

The truth is, your program will make mistakes. Use of error-handling routines are essential during
development and are highly recommended for commercially released applications. (Unless you can
give a 100% guarantee your program will never generate an OpenGL error condition. Get real!)
OpenGL has simple error-handling routines for the base GL and GLU libraries.

When OpenGL detects an error (in either the base GL or GLU), it records a current error code. The
command that caused the error is ignored, so it has no effect on OpenGL state or on the framebuffer
contents. (If the error recorded was GL_OUT_OF_MEMORY, however, the results of the
command are undefined.) Once recorded, the current error code isn’t cleared - that is, additional

errors aren’t recorded - until you call the query command glGetError(), which returns the current
error code. After you’ve queried and cleared the current error code, or if there’s no error to begin
with, glGetError() returns GL_NO_ERROR.

GLenum glGetError(void);
Returns the value of the error flag. When an error occurs in either the GL or GLU, the error
flag is set to the appropriate error code value. If GL_NO_ERROR is returned, there has been
no detectable error since the last call to glGetError(), or since the GL was initialized. No
other errors are recorded until glGetError() is called, the error code is returned, and the flag
is reset to GL_NO_ERROR.

It is strongly recommended that you call glGetError() at least once in each display() routine. Table
14-1 lists the basic defined OpenGL error codes.

Table 14-1 : OpenGL Error Codes

Error Code Description

GL_INVALID_ENUM GLenum argument out of range

GL_INVALID_VALUE Numeric argument out of range

GL_INVALID_OPERATION Operation illegal in current state

GL_STACK_OVERFLOW Command would cause a stack overflow

GL_STACK_UNDERFLOW Command would cause a stack underflow

GL_OUT_OF_MEMORY Not enough memory left to execute command

There are also thirty-seven GLU NURBS errors (with non-descriptive constant names,
GLU_NURBS_ERROR1, GLU_NURBS_ERROR2, and so on), fourteen tessellator errors
(GLU_TESS_MISSING_BEGIN_POLYGON, GLU_TESS_MISSING_END_POLYGON,
GLU_TESS_MISSING_BEGIN_CONTOUR, GLU_TESS_MISSING_END_CONTOUR,
GLU_TESS_COORD_TOO_LARGE, GLU_TESS_NEED_COMBINE_CALLBACK, and eight
generically named GLU_TESS_ERROR*), and GLU_INCOMPATIBLE_GL_VERSION. Also,
the GLU defines the error codes GLU_INVALID_ENUM, GLU_INVALID_VALUE, and
GLU_OUT_OF_MEMORY, which have the same meaning as the related OpenGL codes.

To obtain a printable, descriptive string corresponding to either a GL or GLU error code, use the
GLU routine gluErrorString().

const GLubyte* gluErrorString(GLenum errorCode);
Returns a pointer to a descriptive string that corresponds to the OpenGL or GLU error
number passed in errorCode.

In Example 14-1, a simple error handling routine is shown.

Example 14-1 : Querying and Printing an Error

GLenum errCode;
const GLubyte *errString;

if ((errCode = glGetError()) != GL_NO_ERROR) {
 errString = gluErrorString(errCode);
 fprintf (stderr, "OpenGL Error: %s\n", errString);
}

Note: The string returned by gluErrorString() must not be altered or freed by the application.

Which Version Am I Using?

The portability of OpenGL applications is one of OpenGL’s attractive features. However, new
versions of OpenGL introduce new features, which may introduce backward compatibility
problems. In addition, you may want your application to perform equally well on a variety of
implementations. For example, you might make texture mapping the default rendering mode on one
machine, but only have flat shading on another. You can use glGetString() to obtain release
information about your OpenGL implementation.

const GLubyte* glGetString(GLenum name);
Returns a pointer to a string that describes an aspect of the OpenGL implementation. name
can be one of the following: GL_VENDOR, GL_RENDERER, GL_VERSION, or
GL_EXTENSIONS.

GL_VENDOR returns the name of the company responsible for the OpenGL implementation.
GL_RENDERER returns an identifier of the renderer, which is usually the hardware platform. For
more about GL_EXTENSIONS, see the next section, "Extensions to the Standard."

GL_VERSION returns a string that identifies the version number of this implementation of
OpenGL. The version string is laid out as follows:

<version number><space><vendor-specific information>

The version number is either of the form

major_number.minor_number

or

major_number.minor_number.release_number

where the numbers all have one or more digits. The vendor-specific information is optional. For
example, if this OpenGL implementation is from the fictitious XYZ Corporation, the string returned
might be

1.1.4 XYZ-OS 3.2

which means that this implementation is XYZ’s fourth release of an OpenGL library that conforms
to the specification for OpenGL Version 1.1. It probably also means this is release 3.2 of XYZ’s

proprietary operating system.

Another way to query the version number for OpenGL is to look for the symbolic constant (use the
preprocessor statement #ifdef) named GL_VERSION_1_1. The absence of the constant
GL_VERSION_1_1 means that you have OpenGL Version 1.0.

Note: If running from client to server, such as when performing indirect rendering with the
OpenGL extension to the X Window System, the client and server may be different versions. If
your client version is ahead of your server, your client might request an operation that is not
supported on your server.

Utility Library Version

gluGetString() is a query function for the Utility Library (GLU) and is similar to glGetString().

const GLubyte* gluGetString(GLenum name);
Returns a pointer to a string that describes an aspect of the OpenGL implementation. name
can be one of the following: GLU_VERSION, or GLU_EXTENSIONS.

Note that gluGetString() was not available in GLU 1.0. Another way to query the version number
for GLU is to look for the symbolic constant GLU_VERSION_1_1. The absence of the constant
GLU_VERSION_1_1 means that you have GLU 1.0.

Extensions to the Standard

OpenGL has a formal written specification that describes what operations comprise the library. An
individual vendor or a group of vendors may decide to include additional functionality to their
released implementation.

New routine and symbolic constant names clearly indicate whether a feature is part of the OpenGL
standard or a vendor-specific extension. To make a vendor-specific name, the vendor appends a
company identifier (in uppercase) and, if needed, additional information, such as a machine name.
For example, if XYZ Corporation wants to add a new routine and symbolic constant, they might be
of the form glCommandXYZ() and GL_DEFINITION_XYZ. If XYZ Corporation wants to have
an extension that is available only on its FooBar graphics board, then the names might be
glCommandXYZfb() and GL_DEFINITION_XYZ_FB.

If two of more vendors agree to implement the same extension, then the procedures and constants
are suffixed with the more generic EXT (glCommandEXT() and GL_DEFINITION_EXT).

If you want to know if a particular extension is supported on your implementation, use
glGetString(GL_EXTENSIONS). This returns a list of all the extensions in the implementation,
separated by spaces. If you want to find out if a specific extension is supported, use the code in
Example 14-2 to search through the list and match the extension name. Return GL_TRUE, if it is;
GL_FALSE, if it isn’t.

Example 14-2 : Find Out If An Extension Is Supported

static GLboolean QueryExtension(char *extName)
{

 char *p = (char *) glGetString(GL_EXTENSIONS);
 char *end = p + strlen(p);
 while (p < end) {
 int n = strcspn(p, " ");
 if ((strlen(extName)==n) && (strncmp(extName,p,n)==0)) {
 return GL_TRUE;
 }
 p += (n + 1);
 }
 return GL_FALSE;
 }

Cheesy Translucency

You can use polygon stippling to simulate a translucent material. This is an especially good
solution for systems that don’t have blending hardware. Since polygon stipple patterns are 32x32
bits, or 1024 bits, you can go from opaque to transparent in 1023 steps. (In practice, that’s many
more steps than you need!) For example, if you want a surface that lets through 29 percent of the
light, simply make up a stipple pattern where 29 percent (roughly 297) of the pixels in the mask are
zero and the rest are one. Even if your surfaces have the same translucency, don’t use the same
stipple pattern for each one, as they cover exactly the same bits on the screen. Make up a different
pattern for each by randomly selecting the appropriate number of pixels to be zero. (See
"Displaying Points, Lines, and Polygons" in Chapter 2 for more information about polygon
stippling.)

If you don’t like the effect with random pixels turned on, you can use regular patterns, but they
don’t work as well when transparent surfaces are stacked. This is often not a problem because most
scenes have relatively few translucent regions that overlap. In a picture of an automobile with
translucent windows, your line of sight can go through at most two windows, and usually it’s only
one.

An Easy Fade Effect

Suppose you have an image that you want to fade gradually to some background color. Define a
series of polygon stipple patterns, each of which has more bits turned on so that they represent
denser and denser patterns. Then use these patterns repeatedly with a polygon large enough to cover
the region over which you want to fade. For example, suppose you want to fade to black in 16
steps. First define 16 different pattern arrays:

GLubyte stips[16][4*32];

Then load them in such a way that each has one-sixteenth of the pixels in a 32 × 32 stipple pattern
turned on and that the bitwise OR of all the stipple patterns is all ones. After that, the following
code does the trick:

draw_the_picture();
glColor3f(0.0, 0.0, 0.0); /* set color to black */
for (i = 0; i < 16; i++) {
 glPolygonStipple(&stips[i][0]);
 draw_a_polygon_large_enough_to_cover_the_whole_region();
}

In some OpenGL implementations, you might get better performance by first compiling the stipple
patterns into display lists. During your initialization, do something like this:

#define STIP_OFFSET 100
for (i = 0; i < 16; i++) {
 glNewList(i+STIP_OFFSET, GL_COMPILE);
 glPolygonStipple(&stips[i][0]);
 glEndList();
}

Then, replace this line in the first code fragment

glPolygonStipple(&stips[i][0]);

with

glCallList(i);

By compiling the command to set the stipple into a display list, OpenGL might be able to rearrange
the data in the stips[][] array into the hardware-specific form required for maximum
stipple-setting speed.

Another application for this technique is if you’re drawing a changing picture and want to leave
some blur behind that gradually fades out to give some indication of past motion. For example,
suppose you’re simulating a planetary system and you want to leave trails on the planets to show a
recent portion of their path. Again, assuming you want to fade in sixteen steps, set up the stipple
patterns as before (using the display-list version, say), and have the main simulation loop look
something like this:

current_stipple = 0;
while (1) { /* loop forever */
 draw_the_next_frame();
 glCallList(current_stipple++);
 if (current_stipple == 16) current_stipple = 0;
 glColor3f(0.0, 0.0, 0.0); /* set color to black */
 draw_a_polygon_large_enough_to_cover_the_whole_region();
}

Each time through the loop, you clear one-sixteenth of the pixels. Any pixel that hasn’t had a planet
on it for sixteen frames is certain to be cleared to black. Of course, if your system supports blending
in hardware, it’s easier to blend in a certain amount of background color with each frame. (See
"Displaying Points, Lines, and Polygons" in Chapter 2 for polygon stippling details, Chapter 7 for
more information about display lists, and "Blending" in Chapter 6 for information about blending.)

Object Selection Using the Back Buffer

Although the OpenGL selection mechanism (see "Selection" in Chapter 13) is powerful and
flexible, it can be cumbersome to use. Often, the situation is simple: Your application draws a scene
composed of a substantial number of objects; the user points to an object with the mouse, and the
application needs to find the item under the tip of the cursor.

One way to do this requires your application to be running in double-buffer mode. When the user
picks an object, the application redraws the entire scene in the back buffer, but instead of using the
normal colors for objects, it encodes some kind of object identifier for each object’s color. The

application then simply reads back the pixel under the cursor, and the value of that pixel encodes
the number of the picked object. If many picks are expected for a single, static picture, you can read
the entire color buffer once and look in your copy for each attempted pick, rather than read back
each pixel individually.

Note that this scheme has an advantage over standard selection in that it picks the object that’s in
front if multiple objects appear at the same pixel, one behind the other. Since the image with false
colors is drawn in the back buffer, the user never sees it; you can redraw the back buffer (or copy it
from the front buffer) before swapping the buffers. In color-index mode, the encoding is simple -
send the object identifier as the index. In RGBA mode, encode the bits of the identifier into the R,
G, and B components.

Be aware that you can run out of identifiers if there are too many objects in the scene. For example,
suppose you’re running in color-index mode on a system that has 4-bit buffers for color-index
information (16 possible different indices) in each of the color buffers, but the scene has thousands
of pickable items. To address this issue, the picking can be done in a few passes. To think about this
in concrete terms, assume there are fewer than 4096 items, so all the object identifiers can be
encoded in 12 bits. In the first pass, draw the scene using indices composed of the 4 high-order bits,
then use the second and third passes to draw the middle 4 bits and the 4 low-order bits. After each
pass, read the pixel under the cursor, extract the bits, and pack them together at the end to get the
object identifier.

With this method, the picking takes three times as long, but that’s often acceptable. Note that after
you have the high-order 4 bits, you eliminate 15/16 of all objects, so you really need to draw only
1/16 of them for the second pass. Similarly, after the second pass, 255 of the 256 possible items
have been eliminated. The first pass thus takes about as long as drawing a single frame does, but the
second and third passes can be up to 16 and 256 times as fast.

If you’re trying to write portable code that works on different systems, break up your object
identifiers into chunks that fit on the lowest common denominator of those systems. Also, keep in
mind that your system might perform automatic dithering in RGB mode. If this is the case, turn off
dithering.

Cheap Image Transformation

If you want to draw a distorted version of a bitmapped image (perhaps simply stretched or rotated,
or perhaps drastically modified by some mathematical function), there are many possibilities. You
can use the image as a texture map, which allows you to scale, rotate, or otherwise distort the
image. If you just want to scale the image, you can use glPixelZoom().

In many cases, you can achieve good results by drawing the image of each pixel as a quadrilateral.
Although this scheme doesn’t produce images that are as nice as those you would get by applying a
sophisticated filtering algorithm (and it might not be sufficient for sophisticated users), it’s a lot
quicker.

To make the problem more concrete, assume that the original image is m pixels by n pixels, with
coordinates chosen from [0, m-1] × [0, n-1]. Let the distortion functions be x(m,n) and y(m,n). For
example, if the distortion is simply a zooming by a factor of 3.2, then x(m,n) = 3.2*m and y(m,n) =
3.2*n. The following code draws the distorted image:

glShadeModel(GL_FLAT);
glScale(3.2, 3.2, 1.0);
for (j=0; j < n; j++) {
 glBegin(GL_QUAD_STRIP);
 for (i=0; i <= m; i++) {
 glVertex2i(i,j);
 glVertex2i(i, j+1);
 set_color(i,j);
 }
 glEnd();
}

This code draws each transformed pixel in a solid color equal to that pixel’s color and scales the
image size by 3.2. The routine set_color() stands for whatever the appropriate OpenGL command
is to set the color of the image pixel.

The following is a slightly more complex version that distorts the image using the functions x(i,j)
and y(i,j):

glShadeModel(GL_FLAT);
for (j=0; j < n; j++) {
 glBegin(GL_QUAD_STRIP);
 for (i=0; i <= m; i++) {
 glVertex2i(x(i,j), y(i,j));
 glVertex2i(x(i,j+1), y(i,j+1));
 set_color(i,j);
 }
 glEnd();
}

An even better distorted image can be drawn with the following code:

glShadeModel(GL_SMOOTH);
for (j=0; j < (n-1); j++) {
 glBegin(GL_QUAD_STRIP);
 for (i=0; i < m; i++) {
 set_color(i,j);
 glVertex2i(x(i,j), y(i,j));
 set_color(i,j+1);
 glVertex2i(x(i,j+1), y(i,j+1));
 }
 glEnd();
}

This code smoothly interpolates color across each quadrilateral. Note that this version produces one
fewer quadrilateral in each dimension than do the flat-shaded versions, because the color image is
being used to specify colors at the quadrilateral vertices. In addition, you can antialias the polygons
with the appropriate blending function (GL_SRC_ALPHA, GL_ONE) to get an even nicer image.

Displaying Layers

In some applications such as semiconductor layout programs, you want to display multiple different
layers of materials and indicate where the materials overlap each other.

As a simple example, suppose you have three different substances that can be layered. At any point,
eight possible combinations of layers can occur, as shown in Table 14-2.

Table 14-2 : Eight Combinations of Layers

Layer 1 Layer 2 Layer 3 Color

0 absent absent absent black

1 present absent absent red

2 absent present absent green

3 present present absent blue

4 absent absent present pink

5 present absent present yellow

6 absent present present white

7 present present present gray

You want your program to display eight different colors, depending on the layers present. One
arbitrary possibility is shown in the last column of the table. To use this method, use color-index
mode and load your color map so that entry 0 is black, entry 1 is red, entry 2 is green, and so on.
Note that if the numbers from 0 through 7 are written in binary, the 4 bit is turned on whenever
layer 3 appears, the 2 bit whenever layer 2 appears, and the 1 bit whenever layer 1 appears.

To clear the window, set the writemask to 7 (all three layers) and set the clearing color to 0. To
draw your image, set the color to 7, and then when you want to draw something in layer n, set the
writemask to n. In other types of applications, it might be necessary to selectively erase in a layer,
in which case you would use the writemasks just discussed, but set the color to 0 instead of 7. (See
"Masking Buffers" in Chapter 10 for more information about writemasks.)

Antialiased Characters

Using the standard technique for drawing characters with glBitmap(), drawing each pixel of a
character is an all-or-nothing affair - the pixel is either turned on or not. If you’re drawing black
characters on a white background, for example, the resulting pixels are either black or white, never
a shade of gray. Much smoother, higher-quality images can be achieved if intermediate colors are
used when rendering characters (grays, in this example).

Assuming that you’re drawing black characters on a white background, imagine a highly magnified
picture of the pixels on the screen, with a high-resolution character outline superimposed on it, as
shown in the left side of Figure 14-1.

Figure 14-1 : Antialiased Characters

Notice that some of the pixels are completely enclosed by the character’s outline and should be
painted black; some pixels are completely outside the outline and should be painted white; but
many pixels should ideally be painted some shade of gray, where the darkness of the gray
corresponds to the amount of black in the pixel. If this technique is used, the resulting image on the
screen looks better.

If speed and memory usage are of no concern, each character can be drawn as a small image instead
of as a bitmap. If you’re using RGBA mode, however, this method might require up to 32 bits per
pixel of the character to be stored and drawn, instead of the 1 bit per pixel in a standard character.
Alternatively, you could use one 8-bit index per pixel and convert these indices to RGBA by table
lookup during transfer. In many cases, a compromise is possible that allows you to draw the
character with a few gray levels between black and white (say, two or three), and the resulting font
description requires only 2 or 3 bits per pixel of storage.

The numbers in the right side of Figure 14-1 indicate the approximate percentage coverage of each
pixel: 0 means approximately empty, 1 means approximately one-third coverage, 2 means
two-thirds, and 3 means completely covered. If pixels labeled 0 are painted white, pixels labeled 3
are painted black, and pixels labeled 1 and 2 are painted one-third and two-thirds black,
respectively, the resulting character looks quite good. Only 2 bits are required to store the numbers
0, 1, 2, and 3, so for 2 bits per pixel, four levels of gray can be saved.

There are basically two methods to implement antialiased characters, depending on whether you’re
in RGBA or color-index mode.

In RGBA mode, define three different character bitmaps, corresponding to where 1, 2, and 3 appear
in Figure 14-1. Set the color to white, and clear for the background. Set the color to one-third gray
(RGB = (0.666, 0.666, 0.666)), and draw all the pixels with a 1 in them. Then set RGB = (0.333,
0.333, 0.333), draw with the 2 bitmap, and use RGB = (0.0, 0.0, 0.0) for the 3 bitmap. What you’re

doing is defining three different fonts and redrawing the string three times, where each pass fills in
the bits of the appropriate color densities.

In color-index mode, you can do exactly the same thing, but if you’re willing to set up the color
map correctly and use writemasks, you can get away with only two bitmaps per character and two
passes per string. In the preceding example, set up one bitmap that has a 1 wherever 1 or 3 appears
in the character. Set up a second bitmap that has a 1 wherever a 2 or a 3 appears. Load the color
map so that 0 gives white, 1 gives light gray, 2 gives dark gray, and 3 gives black. Set the color to 3
(11 in binary) and the writemask to 1, and draw the first bitmap. Then change the writemask to 2,
and draw the second. Where 0 appears in Figure 14-1, nothing is drawn in the framebuffer. Where
1, 2, and 3 appear, 1, 2, and 3 appear in the framebuffer.

For this example with only four gray levels, the savings is small - two passes instead of three. If
eight gray levels were used instead, the RGBA method would require seven passes, and the
color-map masking technique would require only three. With sixteen gray levels, the comparison is
fifteen passes to four passes. (See "Masking Buffers" in Chapter 10 for more information about
writemasks and "Bitmaps and Fonts" in Chapter 8 for more information about drawing bitmaps.)

Try This

Can you see how to do RGBA rendering using no more images than the optimized
color-index case? Hint: How are RGB fragments normally merged into the color buffer when
antialiasing is desired?

Drawing Round Points

Draw near-round, aliased points by enabling point antialiasing, turning blending off, and using an
alpha function that passes only fragments with alpha greater than 0.5. (See "Antialiasing" and
"Blending" in Chapter 6 for more information about these topics.)

Interpolating Images

Suppose you have a pair of images (where image can mean a bitmap image, or a picture generated
using geometry in the usual way), and you want to smoothly blend from one to the other. This can
be done easily using the alpha component and appropriate blending operations. Let’s say you want
to accomplish the blending in ten steps, where image A is shown in frame 0 and image B is shown
in frame 9. The obvious approach is to draw image A with alpha equal to (9- &igr;)/9 and image B
with an alpha of i/9 in frame i.

The problem with this method is that both images must be drawn in each frame. A faster approach
is to draw image A in frame 0. To get frame 1, blend in 1/9 of image B and 8/9 of what’s there. For
frame 2, blend in 1/8 of image B with 7/8 of what’s there. For frame 3, blend in 1/7 of image B with
6/7 of what’s there, and so on. For the last step, you’re just drawing 1/1 of image B blended with
0/1 of what’s left, yielding image B exactly.

To see that this works, if for frame i you have

and you blend in B/(9- &igr;) with (8- &igr;)/(9- &igr;) of what’s there, you get

(See "Blending" in Chapter 6.)

Making Decals

Suppose you’re drawing a complex three-dimensional picture using depth-buffering to eliminate the
hidden surfaces. Suppose further that one part of your picture is composed of coplanar figures A
and B, where B is a sort of decal that should always appear on top of figure A.

Your first approach might be to draw B after you’ve drawn A, setting the depth-buffering function
to replace on greater or equal. Due to the finite precision of the floating-point representations of the
vertices, however, round-off error can cause polygon B to be sometimes a bit in front and
sometimes a bit behind figure A. Here’s one solution to this problem.

1. Disable the depth buffer for writing, and render A.

2. Enable the depth buffer for writing, and render B.

3. Disable the color buffer for writing, and render A again.

4. Enable the color buffer for writing.

Note that during the entire process, the depth-buffer test is enabled. In step 1, A is rendered
wherever it should be, but none of the depth-buffer values are changed; thus, in step 2, wherever B
appears over A, B is guaranteed to be drawn. Step 3 simply makes sure that all of the depth values
under A are updated correctly, but since RGBA writes are disabled, the color pixels are unaffected.
Finally, step 4 returns the system to the default state (writing is enabled both in the depth buffer and
in the color buffer).

If a stencil buffer is available, the following simpler technique works.

1. Configure the stencil buffer to write one if the depth test passes, and zero otherwise. Render
A.

2. Configure the stencil buffer to make no stencil value change, but to render only where stencil
values are one. Disable the depth-buffer test and its update. Render B.

With this method, it’s not necessary to initialize the contents of the stencil buffer at any time,
because the stencil value of all pixels of interest (that is, those rendered by A) are set when A is
rendered. Be sure to reenable the depth test and disable the stencil test before additional polygons

are drawn. (See "Selecting Color Buffers for Writing and Reading,""Depth Test," and "Stencil Test"
in Chapter 10.)

Drawing Filled, Concave Polygons Using the Stencil Buffer

Consider the concave polygon 1234567 shown in Figure 14-2. Imagine that it’s drawn as a series of
triangles: 123, 134, 145, 156, 167, all of which are shown in the figure. The heavier line represents
the original polygon boundary. Drawing all these triangles divides the buffer into nine regions A, B,
C, ..., I, where region I is outside all the triangles.

Figure 14-2 : Concave Polygon

In the text of the figure, each of the region names is followed by a list of the triangles that cover it.
Regions A, D, and F make up the original polygon; note that these three regions are covered by an
odd number of triangles. Every other region is covered by an even number of triangles (possibly
zero). Thus, to render the inside of the concave polygon, you just need to render regions that are
enclosed by an odd number of triangles. This can be done using the stencil buffer, with a two-pass

algorithm.

First, clear the stencil buffer and disable writing into the color buffer. Next, draw each of the
triangles in turn, using the GL_INVERT function in the stencil buffer. (For best performance, use
triangle fans.) This flips the value between zero and a nonzero value every time a triangle is drawn
that covers a pixel. After all the triangles are drawn, if a pixel is covered an even number of times,
the value in the stencil buffers is zero; otherwise, it’s nonzero. Finally, draw a large polygon over
the whole region (or redraw the triangles), but allow drawing only where the stencil buffer is
nonzero.

Note: There’s a slight generalization of the preceding technique, where you don’t need to start with
a polygon vertex. In the 1234567 example, let P be any point on or off the polygon. Draw the
triangles: P12, P23, P34, P45, P56, P67, and P71. Regions covered by an odd number of triangles
are inside; other regions are outside. This is a generalization in that if P happens to be one of the
polygon’s edges, one of the triangles is empty.

This technique can be used to fill both nonsimple polygons (polygons whose edges cross each
other) and polygons with holes. The following example illustrates how to handle a complicated
polygon with two regions, one four-sided and one five-sided. Assume further that there’s a
triangular and a four-sided hole (it doesn’t matter in which regions the holes lie). Let the two
regions be abcd and efghi, and the holes jkl and mnop. Let z be any point on the plane. Draw the
following triangles:

zab zbc zcd zda zef zfg zgh zhi zie zjk zkl zlj zmn zno zop zpm

Mark regions covered by an odd number of triangles as in, and those covered by an even number as
out. (See "Stencil Test" in Chapter 10 for more information about the stencil buffer.)

Finding Interference Regions

If you’re designing a mechanical part made from smaller three-dimensional pieces, you often want
to display regions where the pieces overlap. In many cases, such regions indicate design errors
where parts of a machine interfere with each other. In the case of moving parts, it can be even more
valuable, since a search for interfering regions can be done through a complete mechanical cycle of
the design. The method for doing this is complicated, and the description here might be too brief.
Complete details can be found in the paper Interactive Inspection of Solids: Cross-sections and
Interferences, by Jarek Rossignac, Abe Megahed, and Bengt-Olaf Schneider (SIGGRAPH 1992
Proceedings).

The method is related to the capping algorithm described in "Stencil Test" in Chapter 10. The idea
is to pass an arbitrary clipping plane through the objects that you want to test for interference, and
then determine when a portion of the clipping plane is inside more than one object at a time. For a
static image, the clipping plane can be moved manually to highlight interfering regions; for a
dynamic image, it might be easier to use a grid of clipping planes to search for all possible
interferences.

Draw each of the objects you want to check and clip them against the clipping plane. Note which
pixels are inside the object at that clipping plane using an odd-even count in the stencil buffer, as
explained in the preceding section. (For properly formed objects, a point is inside the object if a ray
drawn from that point to the eye intersects an odd number of surfaces of the object.) To find

interferences, you need to find pixels in the framebuffer where the clipping plane is in the interior
of two or more regions at once; in other words, in the intersection of the interiors of any pair of
objects.

If multiple objects need to be tested for mutual intersection, store 1 bit every time some intersection
appears, and another bit wherever the clipping buffer is inside any of the objects (the union of the
objects’ interiors). For each new object, determine its interior, find the intersection of that interior
with the union of the interiors of the objects so far tested, and keep track of the intersection points.
Then add the interior points of the new object to the union of the other objects’ interiors.

You can perform the operations described in the preceding paragraph by using different bits in the
stencil buffer together with various masking operations. Three bits of stencil buffer are required per
pixel - one for the toggling to determine the interior of each object, one for the union of all interiors
discovered so far, and one for the regions where interference has occurred so far. To make this
discussion more concrete, assume the 1 bit of the stencil buffer is for toggling interior/exterior, the
2 bit is the running union, and the 4 bit is for interferences so far. For each object that you’re going
to render, clear the 1 bit (using a stencil mask of one and clearing to zero), then toggle the 1 bit by
keeping the stencil mask as one and using the GL_INVERT stencil operation.

You can find intersections and unions of the bits in the stencil buffers using the stenciling
operations. For example, to make bits in buffer 2 be the union of the bits in buffers 1 and 2, mask
the stencil to those 2 bits, and draw something over the entire object with the stencil function set to
pass if anything nonzero occurs. This happens if the bits in buffer 1, buffer 2, or both are turned on.
If the comparison succeeds, write a 1 in buffer 2. Also, make sure that drawing in the color buffer is
disabled. An intersection calculation is similar - set the function to pass only if the value in the two
buffers is equal to 3 (bits turned on in both buffers 1 and 2). Write the result into the correct buffer.
(See "Stencil Test" in Chapter 10.)

Shadows

Every possible projection of three-dimensional space to three-dimensional space can be achieved
with a suitable 4 × 4 invertible matrix and homogeneous coordinates. If the matrix isn’t invertible
but has rank 3, it projects three-dimensional space onto a two-dimensional plane. Every such
possible projection can be achieved with a suitable rank-3 4 × 4 matrix. To find the shadow of an
arbitrary object on an arbitrary plane from an arbitrary light source (possibly at infinity), you need
to find a matrix representing that projection, multiply it on the matrix stack, and draw the object in
the shadow color. Keep in mind that you need to project onto each plane that you’re calling the
"ground."

As a simple illustration, assume the light is at the origin, and the equation of the ground plane is
ax+by+c+d=0. Given a vertex S=(sx,sy,sz,1), the line from the light through S includes all points
&agr; S, where &agr; is an arbitrary real number. The point where this line intersects the plane
occurs when

&agr; (a*sz+b*sy+c*sz) + d = 0,

so

&agr; = - &dgr; /(a*sx+b*sy+c*sz).

Plugging this back into the line, we get

- &dgr; (&sgr; &xgr; , &sgr; &psgr; , &sgr; &zgr;)/(&agr; * &sgr; &xgr; + &bgr; * &sgr;
&psgr; + &khgr; * &sgr; &zgr;)

for the point of intersection.

The matrix that maps S to this point for every S is

This matrix can be used if you first translate the world so that the light is at the origin.

If the light is from an infinite source, all you have is a point S and a direction D = (dx,dy,dz). Points
along the line are given by

S + &agr; D

Proceeding as before, the intersection of this line with the plane is given by

a(sx+ &agr; dx)+b(sy+ &agr; dy)+c(sz+ &agr; dz)+d = 0

Solving for &agr; , plugging that back into the equation for a line, and then determining a
projection matrix gives

This matrix works given the plane and an arbitrary direction vector. There’s no need to translate
anything first. (See Chapter 3 and Appendix F.)

Hidden-Line Removal

If you want to draw a wireframe object with hidden lines removed, one approach is to draw the
outlines using lines and then fill the interiors of the polygons making up the surface with polygons
having the background color. With depth-buffering enabled, this interior fill covers any outlines
that would be obscured by faces closer to the eye. This method would work, except that there’s no
guarantee that the interior of the object falls entirely inside the polygon’s outline; in fact, it might
overlap it in various places.

There’s an easy, two-pass solution using either polygon offset or the stencil buffer. Polygon offset
is usually the preferred technique, since polygon offset is almost always faster than stencil buffer.
Both methods are described here, so you can see how both approaches to the problem work.

Hidden-Line Removal with Polygon Offset

To use polygon offset to accomplish hidden-line removal, the object is drawn twice. The
highlighted edges are drawn in the foreground color, using filled polygons but with the polygon
mode GL_LINE to rasterize it as a wireframe. Then the filled polygons are drawn with the default
polygon mode, which fills the interior of the wireframe, and with enough polygon offset to nudge
the filled polygons a little farther from the eye. With the polygon offset, the interior recedes just
enough that the highlighted edges are drawn without unpleasant visual artifacts.

glEnable(GL_DEPTH_TEST);
glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
set_color(foreground);
draw_object_with_filled_polygons();

glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
glEnable(GL_POLYGON_OFFSET_FILL);
glPolygonOffset(1.0, 1.0);
set_color(background);
draw_object_with_filled_polygons();
glDisable(GL_POLYGON_OFFSET_FILL);

You may need to adjust the amount of offset needed (for wider lines, for example). (See "Polygon
Offset" in Chapter 6 for more information.)

Hidden-Line Removal with the Stencil Buffer

Using the stencil buffer for hidden-line removal is a more complicated procedure. For each
polygon, you’ll need to clear the stencil buffer, and then draw the outline both in the framebuffer
and in the stencil buffer. Then when you fill the interior, enable drawing only where the stencil
buffer is still clear. To avoid doing an entire stencil-buffer clear for each polygon, an easy way to
clear it is simply to draw 0’s into the buffer using the same polygon outline. In this way, you need
to clear the entire stencil buffer only once.

For example, the following code represents the inner loop you might use to perform such
hidden-line removal. Each polygon is outlined in the foreground color, filled with the background
color, and then outlined again in the foreground color. The stencil buffer is used to keep the fill
color of each polygon from overwriting its outline. To optimize performance, the stencil and color
parameters are changed only twice per loop by using the same values both times the polygon
outline is drawn.

glEnable(GL_STENCIL_TEST);
glEnable(GL_DEPTH_TEST);
glClear(GL_STENCIL_BUFFER_BIT);
glStencilFunc(GL_ALWAYS, 0, 1);
glStencilOp(GL_INVERT, GL_INVERT, GL_INVERT);
set_color(foreground);
for (i=0; i < max; i++) {
 outline_polygon(i);
 set_color(background);
 glStencilFunc(GL_EQUAL, 0, 1);
 glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);
 fill_polygon(i);

 set_color(foreground);
 glStencilFunc(GL_ALWAYS, 0, 1);
 glStencilOp(GL_INVERT, GL_INVERT, GL_INVERT);
 outline_polygon(i);
}

(See "Stencil Test" in Chapter 10.)

Texture-Mapping Applications

Texture mapping is quite powerful, and it can be used in some interesting ways. Here are a few
advanced applications of texture mapping.

Antialiased text - Define a texture map for each character at a relatively high resolution, and
then map them onto smaller areas using the filtering provided by texturing. This also makes
text appear correctly on surfaces that aren’t aligned with the screen, but are tilted and have
some perspective distortion.

Antialiased lines - These can be done like antialiased text: Make the line in the texture several
pixels wide, and use the texture filtering to antialias the lines.

Image scaling and rotation - If you put an image into a texture map and use that texture to
map onto a polygon, rotating and scaling the polygon effectively rotates and scales the image.

Image warping - As in the preceding example, store the image as a texture map, but map it to
some spline-defined surface (use evaluators). As you warp the surface, the image follows the
warping.

Projecting images - Put the image in a texture map, and project it as a spotlight, creating a
slide projector effect. (See "The q Coordinate" in Chapter 9 for more information about how
to model a spotlight using textures.)

(See Chapter 3 for information about rotating and scaling, Chapter 9 for more information about
creating textures, and Chapter 12 for details on evaluators.)

Drawing Depth-Buffered Images

For complex static backgrounds, the rendering time for the geometric description of the background
can be greater than the time it takes to draw a pixel image of the rendered background. If there’s a
fixed background and a relatively simple changing foreground, you may want to draw the
background and its associated depth-buffered version as an image rather than render it
geometrically. The foreground might also consist of items that are time-consuming to render, but
whose framebuffer images and depth buffers are available. You can render these items into a
depth-buffered environment using a two-pass algorithm.

For example, if you’re drawing a model of a molecule made of spheres, you might have an image
of a beautifully rendered sphere and its associated depth-buffer values that were calculated using
Phong shading or ray-tracing or by using some other scheme that isn’t directly available through

OpenGL. To draw a complex model, you might be required to draw hundreds of such spheres,
which should be depth-buffered together.

To add a depth-buffered image to the scene, first draw the image’s depth-buffer values into the
depth buffer using glDrawPixels(). Then enable depth-buffering, set the writemask to zero so that
no drawing occurs, and enable stenciling such that the stencil buffers get drawn whenever a write to
the depth buffer occurs.

Then draw the image into the color buffer, masked by the stencil buffer you’ve just written so that
writing occurs only when there’s a 1 in the stencil buffer. During this write, set the stenciling
function to zero out the stencil buffer so that it’s automatically cleared when it’s time to add the
next image to the scene. If the objects are to be moved nearer to or farther from the viewer, you
need to use an orthographic projection; in these cases, you use GL_DEPTH_BIAS with
glPixelTransfer*() to move the depth image. (See "Coordinate System Survival Kit" in Chapter 2,
"Depth Test" and "Stencil Test" in Chapter 10, and Chapter 8 for details on glDrawPixels() and
glPixelTransfer*().)

Dirichlet Domains

Given a set S of points on a plane, the Dirichlet domain or Voronoi polygon of one of the points is
the set of all points in the plane closer to that point than to any other point in the set S. These points
provide the solution to many problems in computational geometry. Figure 14-3 shows outlines of
the Dirichlet domains for a set of points.

Figure 14-3 : Dirichlet Domains

If you draw a depth-buffered cone with its apex at the point in a different color than each of the
points in S, the Dirichlet domain for each point is drawn in that color. The easiest way to do this is
to precompute a cone’s depth in an image and use the image as the depth-buffer values as described
in the preceding section. You don’t need an image to draw in the framebuffer as in the case of
shaded spheres, however. While you’re drawing into the depth buffer, use the stencil buffer to

record the pixels where drawing should occur by first clearing it and then writing nonzero values
wherever the depth test succeeds. To draw the Dirichlet region, draw a polygon over the entire
window, but enable drawing only where the stencil buffers are nonzero.

You can do this perhaps more easily by rendering cones of uniform color with a simple depth
buffer, but a good cone might require thousands of polygons. The technique described in this
section can render much higher-quality cones much more quickly. (See "A Hidden-Surface
Removal Survival Kit" in Chapter 5 and "Depth Test" in Chapter 10.)

Life in the Stencil Buffer

The Game of Life, invented by John Conway, is played on a rectangular grid where each grid
location is "alive" or "dead." To calculate the next generation from the current one, count the
number of live neighbors for each grid location (the eight adjacent grid locations are neighbors). A
grid location is alive in generation n+1 if it was alive in generation n and has exactly two or three
live neighbors, or if it was dead in generation n and has exactly three live neighbors. In all other
cases, it is dead in generation n+1. This game generates some incredibly interesting patterns given
different initial configurations. (See Martin Gardner, "Mathematical Games," Scientific American,
vol. 223, no. 4, October 1970, p. 120-123.) Figure 14-4 shows six generations from a game.

.

Figure 14-4 : Six Generations from the Game of Life

One way to create this game using OpenGL is to use a multipass algorithm. Keep the data in the
color buffer, one pixel for each grid point. Assume that black (all zeros) is the background color,
and the color of a live pixel is nonzero. Initialize by clearing the depth and stencil buffers to zero,
set the depth-buffer writemask to zero, and set the depth comparison function so that it passes on
not-equal. To iterate, read the image off the screen, enable drawing into the depth buffer, and set the
stencil function so that it increments whenever a depth comparison succeeds but leaves the stencil
buffer unchanged otherwise. Disable drawing into the color buffer.

Next, draw the image eight times, offset one pixel in each vertical, horizontal, and diagonal
direction. When you’re done, the stencil buffer contains a count of the number of live neighbors for

each pixel. Enable drawing to the color buffer, set the color to the color for live cells, and set the
stencil function to draw only if the value in the stencil buffer is 3 (three live neighbors). In addition,
if this drawing occurs, decrement the value in the stencil buffer. Then draw a rectangle covering the
image; this paints each cell that has exactly three live neighbors with the "alive" color.

At this point, the stencil buffers contain 0, 1, 2, 4, 5, 6, 7, 8, and the values under the 2’s are correct.
The values under 0, 1, 4, 5, 6, 7, and 8 must be cleared to the "dead" color. Set the stencil function
to draw whenever the value is not 2, and to zero the stencil values in all cases. Then draw a large
polygon of the "dead" color across the entire image. You’re done.

For a usable demonstration program, you might want to zoom the grid up to a size larger than a
single pixel; it’s hard to see detailed patterns with a single pixel per grid point. (See "Coordinate
System Survival Kit" in Chapter 2, and "Depth Test" and "Stencil Test" in Chapter 10.)

Alternative Uses for glDrawPixels() and glCopyPixels()

You might think of glDrawPixels() as a way to draw a rectangular region of pixels to the screen.
Although this is often what it’s used for, some other interesting uses are outlined here.

Video - Even if your machine doesn’t have special video hardware, you can display short
movie clips by repeatedly drawing frames with glDrawPixels() in the same region of the back
buffer and then swapping the buffers. The size of the frames you can display with reasonable
performance using this method depends on your hardware’s drawing speed, so you might be
limited to 100 × 100 pixel movies (or smaller) if you want smooth fake video.

Airbrush - In a paint program, your airbrush (or paintbrush) shape can be simulated using
alpha values. The color of the paint is represented as the color values. To paint with a circular
brush in blue, repeatedly draw a blue square with glDrawPixels() where the alpha values are
largest in the center and taper to zero at the edges of a circle centered in the square. Draw
using a blending function that uses alpha of the incoming color and (1-alpha) of the color
already at the pixel. If the alpha values in the brush are all much less than one, you have to
paint over an area repeatedly to get a solid color. If the alpha values are near one, each brush
stroke pretty much obliterates the colors underneath.

Filtered Zooms - If you zoom a pixel image by a nonintegral amount, OpenGL effectively
uses a box filter, which can lead to rather severe aliasing effects. To improve the filtering,
jitter the resulting image by amounts less than a pixel and redraw it multiple times, using
alpha blending to average the resulting pixels. The result is a filtered zoom.

Transposing Images - You can swap same-size images in place with glCopyPixels() using the
XOR operation. With this method, you can avoid having to read the images back into
processor memory. If A and B represent the two images, the operation looks like this:

1. A = A XOR B

2. B = A XOR B

3. A = A XOR B

 OpenGL Programming Guide
(Addison-Wesley Publishing Company)

 OpenGL Programming Guide
(Addison-Wesley Publishing Company)

Appendix A
Order of Operations
This book describes all the operations performed between when vertices are initially specified and
fragments are finally written into the framebuffer. The chapters of this book are arranged in an
order that facilitates learning rather than in the exact order in which these operations are actually
performed. Sometimes the exact order of operations doesn’t matter - for example, surfaces can be
converted to polygons and then transformed, or transformed first and then converted to polygons,
with identical results - and different implementations of OpenGL might do things differently.

This appendix describes a possible order; any implementation is required to give equivalent results.
If you want more details than are presented here, see the OpenGL Reference Manual.

This appendix has the following major sections:

"Overview"

"Geometric Operations"

"Pixel Operations"

"Fragment Operations"

"Odds and Ends"

Overview

This section gives an overview of the order of operations, as shown in Figure A-1. Geometric data
(vertices, lines, and polygons) follows the path through the row of boxes that include evaluators and
per-vertex operations, while pixel data (pixels, images, and bitmaps) is treated differently for part
of the process. Both types of data undergo the rasterization and per-fragment operations before the
final pixel data is written into the framebuffer.

Figure A-1 : Order of Operations

All data, whether it describes geometry or pixels, can be saved in a display list or processed
immediately. When a display list is executed, the data is sent from the display list just as if it were
sent by the application.

All geometric primitives are eventually described by vertices. If evaluators are used, that data is
converted to vertices and treated as vertices from then on. Vertex data may also be stored in and
used from specialized vertex arrays. Per-vertex calculations are performed on each vertex, followed
by rasterization to fragments. For pixel data, pixel operations are performed, and the results are
either stored in the texture memory, used for polygon stippling, or rasterized to fragments.

Finally, the fragments are subjected to a series of per-fragment operations, after which the final
pixel values are drawn into the framebuffer.

Geometric Operations

Geometric data, whether it comes from a display list, an evaluator, the vertices of a rectangle, or as
raw data, consists of a set of vertices and the type of primitive it describes (a vertex, line, or
polygon). Vertex data includes not only the (x, y, z, w) coordinates, but also a normal vector, texture
coordinates, a RGBA color, a color index, material properties, and edge-flag data. All these
elements except the vertex’s coordinates can be specified in any order, and default values exist as
well. As soon as the vertex command glVertex*() is issued, the components are padded, if
necessary, to four dimensions (using z = 0 and w = 1), and the current values of all the elements are
associated with the vertex. The complete set of vertex data is then processed. (If vertex arrays are
used, vertex data may be batch processed and processed vertices may be reused.)

Per-Vertex Operations

In the per-vertex operations stage of processing, each vertex’s spatial coordinates are transformed
by the modelview matrix, while the normal vector is transformed by that matrix’s inverse transpose
and renormalized if specified. If automatic texture generation is enabled, new texture coordinates
are generated from the transformed vertex coordinates, and they replace the vertex’s old texture
coordinates. The texture coordinates are then transformed by the current texture matrix and passed
on to the primitive assembly step.

Meanwhile, the lighting calculations, if enabled, are performed using the transformed vertex and
normal vector coordinates, and the current material, lights, and lighting model. These calculations
generate new colors or indices that are clamped or masked to the appropriate range and passed on to
the primitive assembly step.

Primitive Assembly

Primitive assembly differs, depending on whether the primitive is a point, a line, or a polygon. If
flat shading is enabled, the colors or indices of all the vertices in a line or polygon are set to the
same value. If special clipping planes are defined and enabled, they’re used to clip primitives of all
three types. (The clipping-plane equations are transformed by the inverse transpose of the
modelview matrix when they’re specified.) Point clipping simply passes or rejects vertices; line or
polygon clipping can add additional vertices depending on how the line or polygon is clipped. After
this clipping, the spatial coordinates of each vertex are transformed by the projection matrix, and
the results are clipped against the standard viewing planes x = ± &ohgr; , y = ± &ohgr; , and z = ±
&ohgr; .

If selection is enabled, any primitive not eliminated by clipping generates a selection-hit report, and
no further processing is performed. Without selection, perspective division by w occurs and the
viewport and depth-range operations are applied. Also, if the primitive is a polygon, it’s then
subjected to a culling test (if culling is enabled). A polygon might convert to vertices or lines,
depending on the polygon mode.

Finally, points, lines, and polygons are rasterized to fragments, taking into account polygon or line
stipples, line width, and point size. Rasterization involves determining which squares of an integer
grid in window coordinates are occupied by the primitive. If antialiasing is enabled, coverage (the
portion of the square that is occupied by the primitive) is also computed. Color and depth values are
also assigned to each such square. If polygon offset is enabled, depth values are slightly modified
by a calculated offset value.

Pixel Operations

Pixels from host memory are first unpacked into the proper number of components. The OpenGL
unpacking facility handles a number of different formats. Next, the data is scaled, biased, and
processed using a pixel map. The results are clamped to an appropriate range depending on the data
type and then either written in the texture memory for use in texture mapping or rasterized to
fragments.

If pixel data is read from the framebuffer, pixel-transfer operations (scale, bias, mapping, and
clamping) are performed. The results are packed into an appropriate format and then returned to
processor memory.

The pixel copy operation is similar to a combination of the unpacking and transfer operations,
except that packing and unpacking is unnecessary, and only a single pass is made through the
transfer operations before the data is written back into the framebuffer.

Texture Memory

OpenGL Version 1.1 provides additional control over texture memory. Texture image data can be

specified from framebuffer memory, as well as processor memory. All or a portion of a texture
image may be replaced. Texture data may be stored in texture objects, which can be loaded into
texture memory. If there are too many texture objects to fit into texture memory at the same time,
the textures that have the highest priorities remain in the texture memory.

Fragment Operations

If texturing is enabled, a texel is generated from texture memory for each fragment and applied to
the fragment. Then fog calculations are performed, if they’re enabled, followed by the application
of coverage (antialiasing) values, if antialiasing is enabled.

Next comes scissoring, followed by the alpha test (in RGBA mode only), the stencil test, and the
depth-buffer test. If in RGBA mode, blending is performed. Blending is followed by dithering and
logical operation. All these operations may be disabled.

The fragment is then masked by a color mask or an index mask, depending on the mode, and drawn
into the appropriate buffer. If fragments are being written into the stencil or depth buffer, masking
occurs after the stencil and depth tests, and the results are drawn into the framebuffer without
performing the blending, dithering, or logical operation.

Odds and Ends

Matrix operations deal with the current matrix stack, which can be the modelview, the projection,
or the texture matrix stack. The commands glMultMatrix*(), glLoadMatrix*(), and
glLoadIdentity() are applied to the top matrix on the stack, while glTranslate*(), glRotate*(),
glScale*(), glOrtho(), and glFrustum() are used to create a matrix that’s multiplied by the top
matrix. When the modelview matrix is modified, its inverse transpose is also generated for normal
vector transformation.

The commands that set the current raster position are treated exactly like a vertex command up until
when rasterization would occur. At this point, the value is saved and is used in the rasterization of
pixel data.

The various glClear() commands bypass all operations except scissoring, dithering, and
writemasking.

 OpenGL Programming Guide
(Addison-Wesley Publishing Company)

 OpenGL Programming Guide
(Addison-Wesley Publishing Company)

Appendix B
State Variables
This appendix lists the queryable OpenGL state variables, their default values, and the commands
for obtaining the values of these variables. The OpenGL Reference Manual contains detailed
information on all the commands and constants discussed in this appendix. This appendix has these
major sections:

"The Query Commands"

"OpenGL State Variables"

The Query Commands

In addition to the basic commands to obtain the values of simple state variables (commands such as
glGetIntegerv() and glIsEnabled(), which are described in "Basic State Management" in Chapter
2), there are other specialized commands to return more complex state variables. The prototypes for
these specialized commands are listed here. Some of these routines, such as glGetError() and
glGetString(), have been discussed in more detail elsewhere in the book.

To find out when you need to use these commands and their corresponding symbolic constants, use
the tables in the next section, "OpenGL State Variables." Also see the OpenGL Reference Manual.

void glGetClipPlane(GLenum plane, GLdouble *equation);

GLenum glGetError(void);

void glGetLight{if}v(GLenum light, GLenum pname, TYPE *params);

void glGetMap{ifd}v(GLenum target, GLenum query, TYPE *v);

void glGetMaterial{if}v(GLenum face, GLenum pname, TYPE *params);

void glGetPixelMap{f ui us}v(GLenum map, TYPE *values);

void glGetPolygonStipple(GLubyte *mask);

const GLubyte * glGetString(GLenum name);

void glGetTexEnv{if}v(GLenum target, GLenum pname, TYPE *params);

void glGetTexGen{ifd}v(GLenum coord, GLenum pname, TYPE *params);

void glGetTexImage(GLenum target, GLint level, GLenum format,
GLenum type, GLvoid *pixels);

void glGetTexLevelParameter{if}v(GLenum target, GLint level,
GLenum pname, TYPE *params);

void glGetTexParameter{if}v(GLenum target, GLenum pname,
TYPE *params);

void gluGetNurbsProperty(GLUnurbsObj *nobj, GLenum property,
GLfloat *value);

const GLubyte * gluGetString(GLenum name);

void gluGetTessProperty(GLUtesselator *tess, GLenum which,
GLdouble *data);

OpenGL State Variables

The following pages contain tables that list the names of queryable state variables. For each
variable, the tables list a description of it, its attribute group, its initial or minimum value, and the
suggested glGet*() command to use for obtaining it. State variables that can be obtained using
glGetBooleanv(), glGetIntegerv(), glGetFloatv(), or glGetDoublev() are listed with just one of
these commands - the one that’s most appropriate given the type of data to be returned. (Some
vertex array variables can be queried only with glGetPointerv().) These state variables can’t be
obtained using glIsEnabled(). However, state variables for which glIsEnabled() is listed as the
query command can also be obtained using glGetBooleanv(), glGetIntegerv(), glGetFloatv(), and
glGetDoublev(). State variables for which any other command is listed as the query command can
be obtained only by using that command.

If one or more attribute groups are listed, the state variable belongs to the listed group or groups. If
no attribute group is listed, the variable doesn’t belong to any group. glPushAttrib(),
glPushClientAttrib(), glPopAttrib(), and glPopClientAttrib() may be used to save and restore all
state values that belong to an attribute group. (See "Attribute Groups" in Chapter 2 for more
information.)

All queryable state variables, except the implementation-dependent ones, have initial values. If no
initial value is listed, you need to consult either the section where that variable is discussed or the
OpenGL Reference Manual to determine its initial value.

Current Values and Associated Data

Table B-1 : State Variables for Current Values and Associated Data

State Variable Description Attribute
Group

Initial
Value

GL_CURRENT_COLOR Current
color

current 1, 1, 1, 1

GL_CURRENT_INDEX Current
color index

current 1

GL_CURRENT_TEXTURE_COORDS Current
texture
coordinates

current 0, 0, 0, 1

GL_CURRENT_NORMAL Current
normal

current 0, 0, 1

GL_CURRENT_RASTER_POSITION Current
raster
position

current 0, 0, 0, 1

GL_CURRENT_RASTER_DISTANCE Current
raster
distance

current 0

GL_CURRENT_RASTER_COLOR Color
associated
with raster
position

current 1, 1, 1, 1

GL_CURRENT_RASTER_INDEX Color index
associated
with raster
position

current 1

GL_CURRENT_RASTER_TEXTURE_COORDS Texture
coordinates
associated
with raster
position

current 0, 0, 0, 1

GL_CURRENT_RASTER_POSITION_VALID Raster
position
valid bit

current GL_TRUE

GL_EDGE_FLAG Edge flag current GL_TRUE

Vertex Array

Table B-2 : (continued) Vertex Array State Variables

State Variable Description Attribute
Group

Initial
Value

GL_VERTEX_ARRAY Vertex array
enable

vertex-array GL_FALSE

GL_VERTEX_ARRAY_SIZE Coordinates
per vertex

vertex-array 4

GL_VERTEX_ARRAY_TYPE Type of
vertex
coordinates

vertex-array GL_FLOAT

GL_VERTEX_ARRAY_STRIDE Stride
between
vertices

vertex-array 0

GL_VERTEX_ARRAY_POINTER Pointer to
the vertex
array

vertex-array NULL

GL_NORMAL_ARRAY Normal
array enable

vertex-array GL_FALSE

GL_NORMAL_ARRAY_TYPE Type of
normal
coordinates

vertex-array GL_FLOAT

GL_NORMAL_ARRAY_STRIDE Stride
between
normals

vertex-array 0

GL_NORMAL_ARRAY_POINTER Pointer to
the normal
array

vertex-array NULL

GL_COLOR_ARRAY RGBA color
array enable

vertex-array GL_FALSE

GL_COLOR_ARRAY_SIZE Colors per
vertex

vertex-array 4

GL_COLOR_ARRAY_TYPE Type of
color
components

vertex-array GL_FLOAT

GL_COLOR_ARRAY_STRIDE Stride
between
colors

vertex-array 0

GL_COLOR_ARRAY_POINTER Pointer to
the color
array

vertex-array NULL

GL_INDEX_ARRAY Color-index
array enable

vertex-array GL_FALSE

GL_INDEX_ARRAY_TYPE Type of
color
indices

vertex-array GL_FLOAT

GL_INDEX_ARRAY_STRIDE Stride
between
color
indices

vertex-array 0

GL_INDEX_ARRAY_POINTER Pointer to
the index
array

vertex-array NULL

GL_TEXTURE_COORD_ARRAY Texture
coordinate
array enable

vertex-array GL_FALSE

GL_TEXTURE_COORD_ARRAY_SIZE Texture
coordinates
per element

vertex-array 4

GL_TEXTURE_COORD_ARRAY_TYPE Type of
texture
coordinates

vertex-array GL_FLOAT

GL_TEXTURE_COORD_ARRAY_STRIDE Stride
between
texture
coordinates

vertex-array 0

GL_TEXTURE_COORD_ARRAY_POINTER Pointer to
the texture
coordinate
array

vertex-array NULL

GL_EDGE_FLAG_ARRAY Edge flag
array enable

vertex-array GL_FALSE

GL_EDGE_FLAG_ARRAY_STRIDE Stride
between
edge flags

vertex-array 0

GL_EDGE_FLAG_ARRAY_POINTER Pointer to
the edge
flag array

vertex-array NULL

Transformation

Table B-3 : Transformation State Variables

State Variable Description Attribute
Group

Initial Value Get Command

GL_MODELVIEW_MATRIX Modelview
matrix stack

- Identity glGetFloatv()

GL_PROJECTION_MATRIX Projection
matrix stack

- Identity glGetFloatv()

GL_TEXTURE_MATRIX Texture
matrix stack

- Identity glGetFloatv()

GL_VIEWPORT Viewport
origin and
extent

viewport - glGetIntegerv()

GL_DEPTH_RANGE Depth range
near and far

viewport 0, 1 glGetFloatv()

GL_MODELVIEW_STACK_DEPTH Modelview
matrix stack
pointer

- 1 glGetIntegerv()

GL_PROJECTION_STACK_DEPTH Projection
matrix stack
pointer

- 1 glGetIntegerv()

GL_TEXTURE_STACK_DEPTH Texture
matrix stack
pointer

- 1 glGetIntegerv()

GL_MATRIX_MODE Current
matrix mode

transform GL_MODELVIEW glGetIntegerv()

GL_NORMALIZE Current
normal
normalization
on/off

transform/
enable

GL_FALSE glIsEnabled()

GL_CLIP_PLANEi User clipping
plane
coefficients

transform 0, 0, 0, 0 glGetClipPlane()

GL_CLIP_PLANEi ith user
clipping plane
enabled

transform/
enable

GL_FALSE glIsEnabled()

Coloring

Table B-4 : Coloring State Variables

State Variable Description Attribute
Group

Initial Value Get Command

GL_FOG_COLOR Fog color fog 0, 0, 0, 0 glGetFloatv()

GL_FOG_INDEX Fog index fog 0 glGetFloatv()

GL_FOG_DENSITY Exponential fog
density

fog 1.0 glGetFloatv()

GL_FOG_START Linear fog start fog 0.0 glGetFloatv()

GL_FOG_END Linear fog end fog 1.0 glGetFloatv()

GL_FOG_MODE Fog mode fog GL_EXP glGetIntegerv()

GL_FOG True if fog
enabled

fog/enable GL_FALSE glIsEnabled()

GL_SHADE_MODEL glShadeModel()
setting

lighting GL_SMOOTH glGetIntegerv()

Lighting

See also Table 5-1 and Table 5-3 for initial values.

Table B-5 : (continued) Lighting State Variables

State Variable Description Attribute
Group

Initial Value Get Command

GL_LIGHTING True if
lighting is
enabled

lighting/e
nable

GL_FALSE glIsEnabled()

GL_COLOR_MATERIAL True if
color
tracking is
enabled

lighting GL_FALSE glIsEnabled()

GL_COLOR_MATERIAL_PARAMETER Material
properties
tracking
current
color

lighting GL_AMBIENT_
AND_DIFFUSE

glGetIntegerv()

GL_COLOR_MATERIAL_FACE Face(s)
affected by
color
tracking

lighting GL_FRONT_
AND_BACK

glGetIntegerv()

GL_AMBIENT Ambient
material
color

lighting (0.2, 0.2, 0.2,
1.0)

glGetMaterialfv()

GL_DIFFUSE Diffuse
material
color

lighting (0.8, 0.8, 0.8,
1.0)

glGetMaterialfv()

GL_SPECULAR Specular
material
color

lighting (0.0, 0.0, 0.0,
1.0)

glGetMaterialfv()

GL_EMISSION Emissive
material
color

lighting (0.0, 0.0, 0.0,
1.0)

glGetMaterialfv()

GL_SHININESS Specular
exponent of
material

lighting 0.0 glGetMaterialfv()

GL_LIGHT_MODEL_AMBIENT Ambient
scene color

lighting (0.2, 0.2, 0.2,
1.0)

glGetFloatv()

GL_LIGHT_MODEL_LOCAL_VIEWER Viewer is
local

lighting GL_FALSE glGetBooleanv()

GL_LIGHT_MODEL_TWO_SIDE Use
two-sided
lighting

lighting GL_FALSE glGetBooleanv()

GL_AMBIENT Ambient
intensity of
light i

lighting (0.0,0.0,0.0,1.0) glGetLightfv()

GL_DIFFUSE Diffuse
intensity of
light i

lighting - glGetLightfv()

GL_SPECULAR Specular
intensity of
light i

lighting - glGetLightfv()

GL_POSITION Position of
light i

lighting (0.0, 0.0, 1.0,
0.0)

glGetLightfv()

GL_CONSTANT_ATTENUATION Constant
attenuation
factor

lighting 1.0 glGetLightfv()

GL_LINEAR_ATTENUATION Linear
attenuation
factor

lighting 0.0 glGetLightfv()

GL_QUADRATIC_ATTENUATION Quadratic
attenuation
factor

lighting 0.0 glGetLightfv()

GL_SPOT_DIRECTION Spotlight
direction of
light i

lighting (0.0, 0.0, -1.0) glGetLightfv()

GL_SPOT_EXPONENT Spotlight
exponent of
light i

lighting 0.0 glGetLightfv()

GL_SPOT_CUTOFF Spotlight
angle of
light i

lighting 180.0 glGetLightfv()

GL_LIGHTi True if light
i enabled

lighting/e
nable

GL_FALSE glIsEnabled()

GL_COLOR_INDEXES ca, cd, and
cs for
color-index
lighting

lighting/e
nable

0, 1, 1 glGetMaterialfv()

Rasterization

Table B-6 : (continued) Rasterization State Variables

State Variable Description Attribute
Group

Initial
Value

GL_POINT_SIZE Point size point 1.0

GL_POINT_SMOOTH Point antialiasing
on

point/enable GL_FALSE

GL_LINE_WIDTH Line width line 1.0

GL_LINE_SMOOTH Line antialiasing
on

line/enable GL_FALSE

GL_LINE_STIPPLE_PATTERN Line stipple line 1’s

GL_LINE_STIPPLE_REPEAT Line stipple repeat line 1

GL_LINE_STIPPLE Line stipple
enable

line/enable GL_FALSE

GL_CULL_FACE Polygon culling
enabled

polygon/enable GL_FALSE

GL_CULL_FACE_MODE Cull
front-/back-facing
polygons

polygon GL_BACK

GL_FRONT_FACE Polygon front-face
CW/CCW
indicator

polygon GL_CCW

GL_POLYGON_SMOOTH Polygon
antialiasing on

polygon/enable GL_FALSE

GL_POLYGON_MODE Polygon
rasterization mode
(front and back)

polygon GL_FILL

GL_POLYGON_OFFSET_FACTOR Polygon offset
factor

polygon 0

GL_POLYGON_OFFSET_BIAS Polygon offset
bias

polygon 0

GL_POLYGON_OFFSET_POINT Polygon offset
enable for
GL_POINT mode
rasterization

polygon/enable GL_FALSE

GL_POLYGON_OFFSET_LINE Polygon offset
enable for
GL_LINE mode
rasterization

polygon/enable GL_FALSE

GL_POLYGON_OFFSET_FILL Polygon offset
enable for
GL_FILL mode
rasterization

polygon/enable GL_FALSE

GL_POLYGON_STIPPLE Polygon stipple
enable

polygon/enable GL_FALSE

- Polygon stipple
pattern

polygon-stipple 1’s

Texturing

Table B-7 : (continued) Texturing State Variables

State Variable Description Attribute
Group

Initial Value Get Command

GL_TEXTURE_x True if x-D
texturing enabled
(x is 1D or 2D)

texture/e
nable

GL_FALSE glIsEnabled()

GL_TEXTURE_BINDING_x Texture object
bound to
GL_TEXTURE_x
(x is 1D or 2D)

texture GL_FALSE glGetIntegerv()

GL_TEXTURE x-D texture image
at level of detail i

- - glGetTexImage()

GL_TEXTURE_WIDTH x-D texture image
i’s width

- 0 glGetTexLevelParameter*()

GL_TEXTURE_HEIGHT x-D texture image
i’s height

- 0 glGetTexLevelParameter*()

GL_TEXTURE_BORDER x-D texture image
i’s border width

- 0 glGetTexLevelParameter*()

GL_TEXTURE_INTERNAL
_FORMAT

x-D texture image
i’s internal image
format

- 1 glGetTexLevelParameter*()

GL_TEXTURE_RED_SIZE x-D texture image
i’s red resolution

- 0 glGetTexLevelParameter*()

GL_TEXTURE_GREEN_SIZE x-D texture image
i’s green
resolution

- 0 glGetTexLevelParameter*()

GL_TEXTURE_BLUE_SIZE x-D texture image
i’s blue resolution

- 0 glGetTexLevelParameter*()

GL_TEXTURE_ALPHA_SIZE x-D texture image
i’s alpha
resolution

- 0 glGetTexLevelParameter*()

GL_TEXTURE_LUMINANCE_SIZE x-D texture image
i’s luminance
resolution

- 0 glGetTexLevelParameter*()

GL_TEXTURE_INTENSITY_SIZE x-D texture image
i’s intensity
resolution

- 0 glGetTexLevelParameter*()

GL_TEXTURE_BORDER_COLOR Texture border
color

texture 0, 0, 0, 0 glGetTexParameter*()

GL_TEXTURE_MIN_FILTER Texture
minification
function

texture GL_
NEAREST_
MIPMAP_
LINEAR

glGetTexParameter*()

GL_TEXTURE_MAG_FILTER Texture
magnification
function

texture GL_LINEAR glGetTexParameter*()

GL_TEXTURE_WRAP_x Texture wrap
mode (x is S or T)

texture GL_REPEAT glGetTexParameter*()

GL_TEXTURE_PRIORITY Texture object
priority

texture 1 glGetTexParameter*()

GL_TEXTURE_RESIDENCY Texture residency texture GL_FALSE glGetTexParameteriv()

GL_TEXTURE_ENV_MODE Texture
application
function

texture GL_
MODULATE

glGetTexEnviv()

GL_TEXTURE_ENV_COLOR Texture
environment color

texture 0, 0, 0, 0 glGetTexEnvfv()

GL_TEXTURE_GEN_x Texgen enabled (x
is S, T, R, or Q)

texture/e
nable

GL_FALSE glIsEnabled()

GL_EYE_PLANE Texgen plane
equation
coefficients

texture - glGetTexGenfv()

GL_OBJECT_PLANE Texgen object
linear coefficients

texture - glGetTexGenfv()

GL_TEXTURE_GEN_MODE Function used for
texgen

texture GL_EYE_
LINEAR

glGetTexGeniv()

Pixel Operations

Table B-8 : (continued) Pixel Operations

State Variable Description Attribute
Group

Initial Value Get
Command

GL_SCISSOR_TEST Scissoring
enabled

scissor/enable GL_FALSE glIsEnabled()

GL_SCISSOR_BOX Scissor box scissor - glGetIntegerv()

GL_ALPHA_TEST Alpha test
enabled

color-buffer/
enable

GL_FALSE glIsEnabled()

GL_ALPHA_TEST_FUNC Alpha test
function

color-buffer GL_ALWAYS glGetIntegerv()

GL_ALPHA_TEST_REF Alpha test
reference
value

color-buffer 0 glGetIntegerv()

GL_STENCIL_TEST Stenciling
enabled

stencil-buffer/en
able

GL_FALSE glIsEnabled()

GL_STENCIL_FUNC Stencil
function

stencil-buffer GL_ALWAYS glGetIntegerv()

GL_STENCIL_VALUE_MASK Stencil
mask

stencil-buffer 1’s glGetIntegerv()

GL_STENCIL_REF Stencil
reference
value

stencil-buffer 0 glGetIntegerv()

GL_STENCIL_FAIL Stencil fail
action

stencil-buffer GL_KEEP glGetIntegerv()

GL_STENCIL_PASS_DEPTH_FAIL Stencil
depth buffer
fail action

stencil-buffer GL_KEEP glGetIntegerv()

GL_STENCIL_PASS_DEPTH_PASS Stencil
depth buffer
pass action

stencil-buffer GL_KEEP glGetIntegerv()

GL_DEPTH_TEST Depth
buffer
enabled

depth-buffer/ena
ble

GL_FALSE glIsEnabled()

GL_DEPTH_FUNC Depth
buffer test
function

depth-buffer GL_LESS glGetIntegerv()

GL_BLEND Blending
enabled

color-buffer/
enable

GL_FALSE glIsEnabled()

GL_BLEND_SRC Blending
source
function

color-buffer GL_ONE glGetIntegerv()

GL_BLEND_DST Blending
destination
function

color-buffer GL_ZERO glGetIntegerv()

GL_DITHER Dithering
enabled

color-buffer/
enable

GL_TRUE glIsEnabled()

GL_INDEX_LOGIC_OP Color index
logical
operation
enabled

color-buffer/
enable

GL_FALSE glIsEnabled()

GL_COLOR_LOGIC_OP RGBA
color
logical
operation
enabled

color-buffer/
enable

GL_FALSE glIsEnabled()

GL_LOGIC_OP_MODE Logical
operation
function

color-buffer GL_COPY glGetIntegerv()

Framebuffer Control

Table B-9 : Framebuffer Control State Variables

State Variable Description Attribute
Group

Initial
Value

Get Command

GL_DRAW_BUFFER Buffers selected for
drawing

color-buffer - glGetIntegerv()

GL_INDEX_WRITEMASK Color-index
writemask

color-buffer 1’s glGetIntegerv()

GL_COLOR_WRITEMASK Color write enables;
R, G, B, or A

color-buffer GL_TRUE glGetBooleanv()

GL_DEPTH_WRITEMASK Depth buffer
enabled for writing

depth-buffer GL_TRUE glGetBooleanv()

GL_STENCIL_WRITEMASK Stencil-buffer
writemask

stencil-buffer 1’s glGetIntegerv()

GL_COLOR_CLEAR_VALUE Color-buffer clear
value (RGBA mode)

color-buffer 0, 0, 0, 0 glGetFloatv()

GL_INDEX_CLEAR_VALUE Color-buffer clear
value (color-index
mode)

color-buffer 0 glGetFloatv()

GL_DEPTH_CLEAR_VALUE Depth-buffer clear
value

depth-buffer 1 glGetIntegerv()

GL_STENCIL_CLEAR_VALUE Stencil-buffer clear
value

stencil-buffer 0 glGetIntegerv()

GL_ACCUM_CLEAR_VALUE Accumulation-buffer
clear value

accum-buffer 0 glGetFloatv()

Pixels

Table B-10 : (continued) Pixel State Variables

State Variable Description Attribute
Group

Initial
Value

GL_UNPACK_SWAP_BYTES Value of
GL_UNPACK_SWAP_BYTES

pixel-store GL_FALSE

GL_UNPACK_LSB_FIRST Value of
GL_UNPACK_LSB_FIRST

pixel-store GL_FALSE

GL_UNPACK_ROW_LENGTH Value of
GL_UNPACK_ROW_LENGTH

pixel-store 0

GL_UNPACK_SKIP_ROWS Value of
GL_UNPACK_SKIP_ROWS

pixel-store 0

GL_UNPACK_SKIP_PIXELS Value of
GL_UNPACK_SKIP_PIXELS

pixel-store 0

GL_UNPACK_ALIGNMENT Value of
GL_UNPACK_ALIGNMENT

pixel-store 4

GL_PACK_SWAP_BYTES Value of
GL_PACK_SWAP_BYTES

pixel-store GL_FALSE

GL_PACK_LSB_FIRST Value of
GL_PACK_LSB_FIRST

pixel-store GL_FALSE

GL_PACK_ROW_LENGTH Value of
GL_PACK_ROW_LENGTH

pixel-store 0

GL_PACK_SKIP_ROWS Value of
GL_PACK_SKIP_ROWS

pixel-store 0

GL_PACK_SKIP_PIXELS Value of
GL_PACK_SKIP_PIXELS

pixel-store 0

GL_PACK_ALIGNMENT Value of
GL_PACK_ALIGNMENT

pixel-store 4

GL_MAP_COLOR True if colors are mapped pixel GL_FALSE

GL_MAP_STENCIL True if stencil values are mapped pixel GL_FALSE

GL_INDEX_SHIFT Value of GL_INDEX_SHIFT pixel 0

GL_INDEX_OFFSET Value of GL_INDEX_OFFSET pixel 0

GL_x_SCALE Value of GL_x_SCALE; x is
GL_RED, GL_GREEN,
GL_BLUE, GL_ALPHA, or
GL_DEPTH

pixel 1

GL_x_BIAS Value of GL_x_BIAS; x is one
of GL_RED, GL_GREEN,
GL_BLUE, GL_ALPHA, or
GL_DEPTH

pixel 0

GL_ZOOM_X x zoom factor pixel 1.0

GL_ZOOM_Y y zoom factor pixel 1.0

GL_x glPixelMap() translation tables; x
is a map name from Table 8-1

- 0’s

GL_x_SIZE Size of table x - 1

GL_READ_BUFFER Read source buffer pixel -

Evaluators

Table B-11 : Evaluator State Variables

State Variable Description Attribute
Group

Initial
Value

Get
Command

GL_ORDER 1D map
order

- 1 glGetMapiv()

GL_ORDER 2D map
orders

- 1, 1 glGetMapiv()

GL_COEFF 1D control
points

- - glGetMapfv()

GL_COEFF 2D control
points

- - glGetMapfv()

GL_DOMAIN 1D domain
endpoints

- - glGetMapfv()

GL_DOMAIN 2D domain
endpoints

- - glGetMapfv()

GL_MAP1_x 1D map
enables: x is
map type

eval/enable GL_FALSE glIsEnabled()

GL_MAP2_x 2D map
enables: x is
map type

eval/enable GL_FALSE glIsEnabled()

GL_MAP1_GRID_DOMAIN 1D grid
endpoints

eval 0, 1 glGetFloatv()

GL_MAP2_GRID_DOMAIN 2D grid
endpoints

eval 0, 1; 0, 1 glGetFloatv()

GL_MAP1_GRID_SEGMENTS 1D grid
divisions

eval 1 glGetFloatv()

GL_MAP2_GRID_SEGMENTS 2D grid
divisions

eval 1,1 glGetFloatv()

GL_AUTO_NORMAL True if
automatic
normal
generation
enabled

eval GL_FALSE glIsEnabled()

Hints

Table B-12 : Hint State Variables

State Variable Description Attribute
Group

Initial Value

GL_PERSPECTIVE_CORRECTION_HINT Perspective
correction
hint

hint GL_DONT_CARE

GL_POINT_SMOOTH_HINT Point
smooth hint

hint GL_DONT_CARE

GL_LINE_SMOOTH_HINT Line
smooth hint

hint GL_DONT_CARE

GL_POLYGON_SMOOTH_HINT Polygon
smooth hint

hint GL_DONT_CARE

GL_FOG_HINT Fog hint hint GL_DONT_CARE

Implementation-Dependent Values

Table B-13 : (continued) Implementation-Dependent State Variables

State Variable Description Attribute
Group

Minimum
Value

GL_MAX_LIGHTS Maximum number
of lights

- 8

GL_MAX_CLIP_PLANES Maximum number
of user clipping
planes

- 6

GL_MAX_MODELVIEW_STACK_DEPTH Maximum
modelview-matrix
stack depth

- 32

GL_MAX_PROJECTION_STACK_DEPTH Maximum
projection-matrix
stack depth

- 2

GL_MAX_TEXTURE_STACK_DEPTH Maximum depth
of texture matrix
stack

- 2

GL_SUBPIXEL_BITS Number of bits of
subpixel precision
in x and y

- 4

GL_MAX_TEXTURE_SIZE See discussion in
"Texture Proxy" in
Chapter 9

- 64

GL_MAX_PIXEL_MAP_TABLE Maximum size of
a glPixelMap()
translation table

- 32

GL_MAX_NAME_STACK_DEPTH Maximum
selection-name
stack depth

- 64

GL_MAX_LIST_NESTING Maximum
display-list call
nesting

- 64

GL_MAX_EVAL_ORDER Maximum
evaluator
polynomial order

- 8

GL_MAX_VIEWPORT_DIMS Maximum
viewport
dimensions

- -

GL_MAX_ATTRIB_STACK_DEPTH Maximum depth
of the attribute
stack

- 16

GL_MAX_CLIENT_ATTRIB_STACK_DEPTH Maximum depth
of the client
attribute stack

- 16

GL_AUX_BUFFERS Number of
auxiliary buffers

- 0

GL_RGBA_MODE True if color
buffers store
RGBA

- -

GL_INDEX_MODE True if color
buffers store
indices

- -

GL_DOUBLEBUFFER True if front and
back buffers exist

- -

GL_STEREO True if left and
right buffers exist

- -

GL_POINT_SIZE_RANGE Range (low to
high) of
antialiased point
sizes

- 1, 1

GL_POINT_SIZE_GRANULARITY Antialiased
point-size
granularity

- -

GL_LINE_WIDTH_RANGE Range (low to
high) of
antialiased line
widths

- 1, 1

GL_LINE_WIDTH_GRANULARITY Antialiased
line-width
granularity

- -

Implementation-Dependent Pixel Depths

Table B-14 : Implementation-Dependent Pixel-Depth State Variables (continued)

State Variable Description Attribute
Group

Minimum
Value

Get Command

GL_RED_BITS Number of bits
per red
component in
color buffers

- - glGetIntegerv()

GL_GREEN_BITS Number of bits
per green
component in
color buffers

- - glGetIntegerv()

GL_BLUE_BITS Number of bits
per blue
component in
color buffers

- - glGetIntegerv()

GL_ALPHA_BITS Number of bits
per alpha
component in
color buffers

- - glGetIntegerv()

GL_INDEX_BITS Number of bits
per index in
color buffers

- - glGetIntegerv()

GL_DEPTH_BITS Number of
depth-buffer
bitplanes

- - glGetIntegerv()

GL_STENCIL_BITS Number of
stencil
bitplanes

- - glGetIntegerv()

GL_ACCUM_RED_BITS Number of bits
per red
component in
the
accumulation
buffer

- - glGetIntegerv()

GL_ACCUM_GREEN_BITS Number of bits
per green
component in
the
accumulation
buffer

- - glGetIntegerv()

GL_ACCUM_BLUE_BITS Number of bits
per blue
component in
the
accumulation
buffer

- - glGetIntegerv()

GL_ACCUM_ALPHA_BITS Number of bits
per alpha
component in
the
accumulation
buffer

- - glGetIntegerv()

Miscellaneous

Table B-15 : Miscellaneous State Variables

State Variable Description Attribute
Group

Initial Value Get
Command

GL_LIST_BASE Setting of
glListBase()

list 0 glGetIntegerv()

GL_LIST_INDEX Number of
display list
under
construction; 0
if none

- 0 glGetIntegerv()

GL_LIST_MODE Mode of display
list under
construction;
undefined if
none

- 0 glGetIntegerv()

GL_ATTRIB_STACK_DEPTH Attribute stack
pointer

- 0 glGetIntegerv()

GL_CLIENT_ATTRIB_STACK_DEPTH Client attribute
stack pointer

- 0 glGetIntegerv()

GL_NAME_STACK_DEPTH Name stack
depth

- 0 glGetIntegerv()

GL_RENDER_MODE glRenderMode()
setting

- GL_RENDER glGetIntegerv()

GL_SELECTION_BUFFER_POINTER Pointer to
selection buffer

select 0 glGetPointerv()

GL_SELECTION_BUFFER_SIZE Size of selection
buffer

select 0 glGetIntegerv()

GL_FEEDBACK_BUFFER_POINTER Pointer to
feedback buffer

feedback 0 glGetPointerv()

GL_FEEDBACK_BUFFER_SIZE Size of
feedback buffer

feedback 0 glGetIntegerv()

GL_FEEDBACK_BUFFER_TYPE Type of
feedback buffer

feedback GL_2D glGetIntegerv()

- Current error
code(s)

- 0 glGetError()

 OpenGL Programming Guide
(Addison-Wesley Publishing Company)

 OpenGL Programming Guide
(Addison-Wesley Publishing Company)

Appendix C
OpenGL and Window Systems
OpenGL is available on many different platforms and works with many different window systems.
OpenGL is designed to complement window systems, not duplicate their functionality. Therefore,
OpenGL performs geometric and image rendering in two and three dimensions, but it does not
manage windows or handle input events.

However, the basic definitions of most window systems don’t support a library as sophisticated as
OpenGL, with its complex and diverse pixel formats, including depth, stencil, and accumulation
buffers, as well as double-buffering. For most window systems, some routines are added to extend
the window system to support OpenGL.

This appendix introduces the extensions defined for several window and operating systems: the X
Window System, the Apple Mac OS, OS/2 Warp from IBM, and Microsoft Windows NT and
Windows 95. You need to have some knowledge of the window systems to fully understand this
appendix.

This appendix has the following major sections:

"GLX: OpenGL Extension for the X Window System"

"AGL: OpenGL Extension to the Apple Macintosh"

"PGL: OpenGL Extension for IBM OS/2 Warp"

"WGL: OpenGL Extension for Microsoft Windows NT and Windows 95"

GLX: OpenGL Extension for the X Window System

In the X Window System, OpenGL rendering is made available as an extension to X in the formal
X sense. GLX is an extension to the X protocol (and its associated API) for communicating
OpenGL commands to an extended X server. Connection and authentication are accomplished with
the normal X mechanisms.

As with other X extensions, there is a defined network protocol for OpenGL’s rendering commands
encapsulated within the X byte stream, so client-server OpenGL rendering is supported. Since
performance is critical in three-dimensional rendering, the OpenGL extension to X allows OpenGL
to bypass the X server’s involvement in data encoding, copying, and interpretation and instead
render directly to the graphics pipeline.

The X Visual is the key data structure to maintain pixel format information about the OpenGL
window. A variable of data type XVisualInfo keeps track of pixel information, including pixel type
(RGBA or color index), single or double-buffering, resolution of colors, and presence of depth,
stencil, and accumulation buffers. The standard X Visuals (for example, PseudoColor, TrueColor)
do not describe the pixel format details, so each implementation must extend the number of X
Visuals supported.

The GLX routines are discussed in more detail in the OpenGL Reference Manual. Integrating
OpenGL applications with the X Window System and the Motif widget set is discussed in great
detail in OpenGL Programming for the X Window System by Mark Kilgard (Reading, MA:
Addison-Wesley Developers Press, 1996), which includes full source code examples. If you
absolutely want to learn about the internals of GLX, you may want to read the GLX specification,
which can be found at

ftp://sgigate.sgi.com/pub/opengl/doc/

Initialization

Use glXQueryExtension() and glXQueryVersion() to determine whether the GLX extension is
defined for an X server and, if so, which version is present. glXQueryExtensionsString() returns
extension information about the client-server connection. glXGetClientString() returns
information about the client library, including extensions and version number.
glXQueryServerString() returns similar information about the server.

glXChooseVisual() returns a pointer to an XVisualInfo structure describing the visual that meets
the client’s specified attributes. You can query a visual about its support of a particular OpenGL
attribute with glXGetConfig().

Controlling Rendering

Several GLX routines are provided for creating and managing an OpenGL rendering context. You
can use such a context to render off-screen if you want. Routines are also provided for such tasks as
synchronizing execution between the X and OpenGL streams, swapping front and back buffers, and
using an X font.

Managing an OpenGL Rendering Context

An OpenGL rendering context is created with glXCreateContext(). One of the arguments to this
routine allows you to request a direct rendering context that bypasses the X server as described
previously. (Note that to do direct rendering, the X server connection must be local, and the
OpenGL implementation needs to support direct rendering.) glXCreateContext() also allows
display-list and texture-object indices and definitions to be shared by multiple rendering contexts.
You can determine whether a GLX context is direct with glXIsDirect().

To make a rendering context current, use glXMakeCurrent(); glXGetCurrentContext() returns
the current context. You can also obtain the current drawable with glXGetCurrentDrawable() and
the current X Display with glXGetCurrentDisplay(). Remember that only one context can be
current for any thread at any one time. If you have multiple contexts, you can copy selected groups
of OpenGL state variables from one context to another with glXCopyContext(). When you’re
finished with a particular context, destroy it with glXDestroyContext().

Off-Screen Rendering

To render off-screen, first create an X Pixmap and then pass this as an argument to
glXCreateGLXPixmap(). Once rendering is completed,
you can destroy the association between the X and GLX Pixmaps with glXDestroyGLXPixmap().
(Off-screen rendering isn’t guaranteed to be supported for direct renderers.)

Synchronizing Execution

To prevent X requests from executing until any outstanding OpenGL rendering is completed, call
glXWaitGL(). Then, any previously issued OpenGL commands are guaranteed to be executed
before any X rendering calls made after glXWaitGL(). Although the same result can be achieved
with glFinish(), glXWaitGL() doesn’t require a round trip to the server and thus is more efficient
in cases where the client and server are on separate machines.

To prevent an OpenGL command sequence from executing until any outstanding X requests are
completed, use glXWaitX(). This routine guarantees that previously issued X rendering calls are
executed before any OpenGL calls made after glXWaitX().

Swapping Buffers

For drawables that are double-buffered, the front and back buffers can be exchanged by calling
glXSwapBuffers(). An implicit glFlush() is done as part of this routine.

Using an X Font

A shortcut for using X fonts in OpenGL is provided with the command glXUseXFont(). This
routine builds display lists, each of which calls glBitmap(), for each requested character from the
specified font and font size.

GLX Prototypes

Initialization

Determine whether the GLX extension is defined on the X server:

Bool glXQueryExtension (Display *dpy, int *errorBase, int *eventBase);

Query version and extension information for client and server:

Bool glXQueryVersion (Display *dpy, int *major, int *minor);

const char* glXGetClientString (Display *dpy, int name);

const char* glXQueryServerString (Display *dpy, int screen, int name);

const char* glXQueryExtensionsString (Display *dpy, int screen);

Obtain the desired visual:

XVisualInfo* glXChooseVisual (Display *dpy, int screen,
int *attribList);

int glXGetConfig (Display *dpy, XVisualInfo *visual, int attrib,
int *value);

Controlling Rendering

Manage or query an OpenGL rendering context:

GLXContext glXCreateContext (Display *dpy, XVisualInfo *visual,
GLXContext shareList, Bool direct);

void glXDestroyContext (Display *dpy, GLXContext context);

void glXCopyContext (Display *dpy, GLXContext source,
GLXContext dest, unsigned long mask);

Bool glXIsDirect (Display *dpy, GLXContext context);

Bool glXMakeCurrent (Display *dpy, GLXDrawable draw,
GLXContext context);

GLXContext glXGetCurrentContext (void);

Display* glXGetCurrentDisplay (void);

GLXDrawable glXGetCurrentDrawable (void);

Perform off-screen rendering:

GLXPixmap glXCreateGLXPixmap (Display *dpy, XVisualInfo *visual,
Pixmap pixmap);

void glXDestroyGLXPixmap (Display *dpy, GLXPixmap pix);

Synchronize execution:

void glXWaitGL (void);

void glXWaitX (void);

Exchange front and back buffers:

void glXSwapBuffers (Display *dpy, GLXDrawable drawable);

Use an X font:

void glXUseXFont (Font font, int first, int count, int listBase);

AGL: OpenGL Extension to the Apple Macintosh

This section covers the routines defined as the OpenGL extension to the Apple Macintosh (AGL),
as defined by Template Graphics Software. An understanding of the way the Macintosh handles
graphics rendering (QuickDraw) is required. The Macintosh Toolbox Essentials and Imaging With
QuickDraw manuals from the Inside Macintosh series are also useful to have at hand.

For more information (including how to obtain the OpenGL software library for the Power
Macintosh), you may want to check out the web site for OpenGL information at Template Graphics
Software:

http://www.sd.tgs.com/Products/opengl.htm

For the Macintosh, OpenGL rendering is made available as a library that is either compiled in or
resident as an extension for an application that wishes to make use of it. OpenGL is implemented in
software for systems that do not possess hardware acceleration. Where acceleration is available
(through the QuickDraw 3D Accelerator), those capabilities that match the OpenGL pipeline are
used with the remaining functionality being provided through software rendering.

The data type AGLPixelFmtID (the AGL equivalent to XVisualInfo) maintains pixel information,
including pixel type (RGBA or color index), single- or double-buffering, resolution of colors, and
presence of depth, stencil, and accumulation buffers.

In contrast to other OpenGL implementations on other systems (such as the X Window System),
the client/server model is not used. However, you may still need to call glFlush() since some
hardware accelerators buffer the OpenGL pipeline and require a flush to empty it.

Initialization

Use aglQueryVersion() to determine what version of OpenGL for the Macintosh is available.

The capabilities of underlying graphics devices and your requirements for rendering buffers are
resolved using aglChoosePixelFmt(). Use aglListPixelFmts() to find the particular formats
supported by a graphics device. Given a pixel format, you can determine which attributes are
available by using aglGetConfig().

Rendering and Contexts

Several AGL routines are provided for creating and managing an OpenGL rendering context. You
can use such a context to render into either a window or an off-screen graphics world. Routines are
also provided that allow you to swap front and back rendering buffers, adjust buffers in response to
a move, resize or graphics device change event, and use Macintosh fonts. For software rendering
(and in some cases, hardware-accelerated rendering) the rendering buffers are created in your
application memory space. For the application to work properly you must provide sufficient
memory for these buffers in your application’s SIZE resource.

Managing an OpenGL Rendering Context

An OpenGL rendering context is created (at least one context per window being rendered into) with
aglCreateContext(). This takes the pixel format you selected as a parameter and uses it to initialize
the context.

Use aglMakeCurrent() to make a rendering context current. Only one context can be current for a
thread of control at any time. This indicates which drawable is to be rendered into and which
context to use with it. It’s possible for more than one context to be used (not simultaneously) with a
particular drawable. Two routines allow you to determine which is the current rendering context
and drawable being rendered into: aglGetCurrentContext() and aglGetCurrentDrawable().

If you have multiple contexts, you can copy selected groups of OpenGL state variables from one
context to another with aglCopyContext(). When a particular context is finished with, it should be
destroyed by calling aglDestroyContext().

On-screen Rendering

With the OpenGL extensions for the Apple Macintosh you can choose whether window clipping is
performed when writing to the screen and whether the cursor is hidden during screen writing
operations. This is important since these two items may affect how fast rendering can be performed.
Call aglSetOptions() to select these options.

Off-screen Rendering

To render off-screen, first create an off-screen graphics world in the usual way, and pass the handle
into aglCreateAGLPixmap(). This routine returns a drawable that can be used with
aglMakeCurrent(). Once rendering is completed, you can destroy the association with
aglDestroyAGLPixmap().

Swapping Buffers

For drawables that are double-buffered (as per the pixel format of the current rendering context),
call aglSwapBuffers() to exchange the front and back buffers. An implicit glFlush() is performed
as part of this routine.

Updating the Rendering Buffers

The Apple Macintosh toolbox requires you to perform your own event handling and does not
provide a way for libraries to automatically hook in to the event stream. So that the drawables
maintained by OpenGL can adjust to changes in drawable size, position and pixel depth,
aglUpdateCurrent() is provided.

This routine must be called by your event processing code whenever one of these events occurs in
the current drawable. Ideally the scene should be rerendered after a update call to take into account
the changes made to the rendering buffers.

Using an Apple Macintosh Font

A shortcut for using Macintosh fonts is provided with aglUseFont(). This routine builds display
lists, each of which calls glBitmap(), for each requested character from the specified font and font
size.

Error Handling

An error-handling mechanism is provided for the Apple Macintosh OpenGL extension. When an

error occurs you can call aglGetError() to get a more precise description of what caused the error.

AGL Prototypes

Initialization

Determine AGL version:

GLboolean aglQueryVersion (int *major, int *minor);

Pixel format selection, availability, and capability:

AGLPixelFmtID aglChoosePixelFmt (GDHandle *dev, int ndev,
int *attribs);

int aglListPixelFmts (GDHandle dev, AGLPixelFmtID ** fmts);

GLboolean aglGetConfig (AGLPixelFmtID pix, int attrib, int *value);

Controlling Rendering

Manage an OpenGL rendering context:

AGLContext aglCreateContext (AGLPixelFmtID pix,
AGLContext shareList);

GLboolean aglDestroyContext (AGLContext context);

GLboolean aglCopyContext (AGLContext source, AGLContext dest,
GLuint mask);

GLboolean aglMakeCurrent (AGLDrawable drawable,
AGLContext context);

GLboolean aglSetOptions (int opts);

AGLContext aglGetCurrentContext (void);

AGLDrawable aglGetCurrentDrawable (void);

Perform off-screen rendering:

AGLPixmap aglCreateAGLPixmap (AGLPixelFmtID pix,
GWorldPtr pixmap);

GLboolean aglDestroyAGLPixmap (AGLPixmap pix);

Exchange front and back buffers:

GLboolean aglSwapBuffers (AGLDrawable drawable);

Update the current rendering buffers:

GLboolean aglUpdateCurrent (void);

Use a Macintosh font:

GLboolean aglUseFont (int familyID, int size, int first, int count,
int listBase);

Find the cause of an error:

GLenum aglGetError (void);

PGL: OpenGL Extension for IBM OS/2 Warp

OpenGL rendering for IBM OS/2 Warp is accomplished by using PGL routines added to integrate
OpenGL into the standard IBM Presentation Manager. OpenGL with PGL supports both a direct
OpenGL context (which is often faster) and an indirect context (which allows some integration of
Gpi and OpenGL rendering).

The data type VISUALCONFIG (the PGL equivalent to XVisualInfo) maintains the visual
configuration, including pixel type (RGBA or color index), single- or double-buffering, resolution
of colors, and presence of depth, stencil, and accumulation buffers.

To get more information (including how to obtain the OpenGL software library for IBM OS/2
Warp, Version 3.0), you may want to start at

http://www.austin.ibm.com/software/OpenGL/

Packaged along with the software is the document, OpenGL On OS/2 Warp, which provides more
detailed information. OpenGL support is included with the base operating system with OS/2 Warp
Version 4.

Initialization

Use pglQueryCapability() and pglQueryVersion() to determine whether the OpenGL is supported
on this machine and, if so, how it is supported and which version is present. pglChooseConfig()
returns a pointer to an VISUALCONFIG structure describing the visual configuration that best
meets the client’s specified attributes. A list of the particular visual configurations supported by a
graphics device can be found using pglQueryConfigs().

Controlling Rendering

Several PGL routines are provided for creating and managing an OpenGL rendering context,
capturing the contents of a bitmap, synchronizing execution between the Presentation Manager and
OpenGL streams, swapping front and back buffers, using a color palette, and using an OS/2 logical
font.

Managing an OpenGL Rendering Context

An OpenGL rendering context is created with pglCreateContext(). One of the arguments to this
routine allows you to request a direct rendering context that bypasses the Gpi and render to a PM
window, which is generally faster. You can determine whether a OpenGL context is direct with
pglIsIndirect().

To make a rendering context current, use pglMakeCurrent(); pglGetCurrentContext() returns the
current context. You can also obtain the current window with pglGetCurrentWindow(). You can
copy some OpenGL state variables from one context to another with pglCopyContext(). When
you’re finished with a particular context, destroy it with pglDestroyContext().

Access the Bitmap of the Front Buffer

To lock access to the bitmap representation of the contents of the front buffer, use
pglGrabFrontBitmap(). An implicit glFlush() is performed, and you can read the bitmap, but its
contents are effectively read-only. Immediately after access is completed, you should call
pglReleaseFrontBitmap() to restore write access to the front buffer.

Synchronizing Execution

To prevent Gpi rendering requests from executing until any outstanding OpenGL rendering is
completed, call pglWaitGL(). Then, any previously issued OpenGL commands are guaranteed to
be executed before any Gpi rendering calls made after pglWaitGL().

To prevent an OpenGL command sequence from executing until any outstanding Gpi requests are
completed, use pglWaitPM(). This routine guarantees that previously issued Gpi rendering calls
are executed before any OpenGL calls made after pglWaitPM().

Note: OpenGL and Gpi rendering can be integrated in the same window only if the OpenGL
context is an indirect context.

Swapping Buffers

For windows that are double-buffered, the front and back buffers can be exchanged by calling
pglSwapBuffers(). An implicit glFlush() is done as part of this routine.

Using a Color Index Palette

When you are running in 8-bit (256 color) mode, you have to worry about color palette
management. For windows with a color index Visual Configuration, call
pglSelectColorIndexPalette() to tell OpenGL what color-index palette you want to use with
your context. A color palette must be selected before the context is initially bound to a
window. In RGBA mode, OpenGL sets up a palette automatically.

Using an OS/2 Logical Font

A shortcut for using OS/2 logical fonts in OpenGL is provided with the command pglUseFont().
This routine builds display lists, each of which calls glBitmap(), for each requested character from
the specified font and font size.

PGL Prototypes

Initialization

Determine whether OpenGL is supported and, if so, its version number:

long pglQueryCapability (HAB hab);

void pglQueryVersion (HAB hab, int *major, int *minor);

Visual configuration selection, availability and capability:

PVISUALCONFIG pglChooseConfig (HAB hab, int *attribList);

PVISUALCONFIG * pglQueryConfigs (HAB hab);

Controlling Rendering

Manage or query an OpenGL rendering context:

HGC pglCreateContext (HAB hab, PVISUALCONFIG pVisualConfig,
HGC shareList, Bool isDirect);

Bool pglDestroyContext (HAB hab, HGC hgc);

Bool pglCopyContext (HAB hab, HGC source, HGC dest, GLuint mask);

Bool pglMakeCurrent (HAB hab, HGC hgc, HWND hwnd);

long pglIsIndirect (HAB hab, HGC hgc);

HGC pglGetCurrentContext (HAB hab);

HWND pglGetCurrentWindow (HAB hab);

Access and release the bitmap of the front buffer:

Bool pglGrabFrontBitmap (HAB hab, HPS *hps, HBITMAP *phbitmap);

Bool pglReleaseFrontBitmap (HAB hab);

Synchronize execution:

HPS pglWaitGL (HAB hab);

void pglWaitPM (HAB hab);

Exchange front and back buffers:

void pglSwapBuffers (HAB hab, HWND hwnd);

Finding a color-index palette:

void pglSelectColorIndexPalette (HAB hab, HPAL, hpal, HGC hgc);

Use an OS/2 logical font:

Bool pglUseFont (HAB hab, HPS hps, FATTRS *fontAttribs,
long logicalId, int first, int count, int listBase);

WGL: OpenGL Extension for Microsoft Windows NT and
Windows 95

OpenGL rendering is supported on systems that run Microsoft Windows NT and Windows 95. The
functions and routines of the Win32 library are necessary to initialize the pixel format and control
rendering for OpenGL. Some routines, which are prefixed by wgl, extend Win32 so that OpenGL
can be fully supported.

For Win32/WGL, the PIXELFORMATDESCRIPTOR is the key data structure to maintain pixel
format information about the OpenGL window. A variable of data type
PIXELFORMATDESCRIPTOR keeps track of pixel information, including pixel type (RGBA or
color index), single- or double- buffering, resolution of colors, and presence of depth, stencil, and
accumulation buffers.

To get more information about WGL, you may want to start with technical articles available
through the Microsoft Developer Network at

http://www.microsoft.com/msdn/

Initialization

Use GetVersion() or the newer GetVersionEx() to determine version information.
ChoosePixelFormat() tries to find a PIXELFORMATDESCRIPTOR with specified attributes. If a
good match for the requested pixel format is found, then SetPixelFormat() should be called to
actually use the pixel format. You should select a pixel format in the device context before calling
wglCreateContext().

If you want to find out details about a given pixel format, use DescribePixelFormat() or, for
overlays or underlays, wglDescribeLayerPlane().

Controlling Rendering

Several WGL routines are provided for creating and managing an OpenGL rendering context,
rendering to a bitmap, swapping front and back buffers, finding a color palette, and using either
bitmap or outline fonts.

Managing an OpenGL Rendering Context

wglCreateContext() creates an OpenGL rendering context for drawing on the device in the
selected pixel format of the device context. (To create an OpenGL rendering context for overlay or
underlay windows, use wglCreateLayerContext() instead.) To make a rendering context current,

use wglMakeCurrent(); wglGetCurrentContext() returns the current context. You can also obtain
the current device context with wglGetCurrentDC(). You can copy some OpenGL state variables
from one context to another with wglCopyContext() or make two contexts share the same display
lists and texture objects with wglShareLists(). When you’re finished with a particular context,
destroy it with wglDestroyContext().

OpenGL Rendering to a Bitmap

Win32 has a few routines to allocate (and deallocate) bitmaps, to which you can render OpenGL
directly. CreateDIBitmap() creates a device-dependent bitmap (DDB) from a device-independent
bitmap (DIB). CreateDIBSection() creates a device-independent bitmap (DIB) that applications
can write to directly. When finished with your bitmap, you can use DeleteObject() to free it up.

Synchronizing Execution

If you want to combine GDI and OpenGL rendering, be aware there are no equivalents to functions
like glXWaitGL(), glXWaitX(), or pglWaitGL() in Win32. Although glXWaitGL() has no
equivalent in Win32, you can achieve the same effect by calling glFinish(), which waits until all
pending OpenGL commands are executed, or by calling GdiFlush(), which waits until all GDI
drawing has completed.

Swapping Buffers

For windows that are double-buffered, the front and back buffers can be exchanged by calling
SwapBuffers() or wglSwapLayerBuffers(); the latter for overlays and underlays.

Finding a Color Palette

To access the color palette for the standard (non-layer) bitplanes, use the standard GDI functions to
set the palette entries. For overlay or underlay layers, use wglRealizeLayerPalette(), which maps
palette entries from a given color-index layer plane into the physical palette or initializes the palette
of an RGBA layer plane. wglGetLayerPaletteEntries() is used to query the entries in palettes of
layer planes.

Using a Bitmap or Outline Font

WGL has two routines, wglUseFontBitmaps() and wglUseFontOutlines(), for converting system
fonts to use with OpenGL. Both routines build a display list for each requested character from the
specified font and font size.

WGL Prototypes

Initialization

Determine version information:

BOOL GetVersion (LPOSVERSIONINFO lpVersionInformation);

BOOL GetVersionEx (LPOSVERSIONINFO lpVersionInformation);

Pixel format availability, selection, and capability:

int ChoosePixelFormat (HDC hdc,
CONST PIXELFORMATDESCRIPTOR * ppfd);

BOOL SetPixelFormat (HDC hdc, int iPixelFormat,
CONST PIXELFORMATDESCRIPTOR * ppfd);

int DescribePixelFormat (HDC hdc, int iPixelFormat, UINT nBytes,
LPPIXELFORMATDESCRIPTOR ppfd);

BOOL wglDescribeLayerPlane (HDC hdc, int iPixelFormat,
int iLayerPlane, UINT nBytes, LPLAYERPLANEDESCRIPTOR plpd);

Controlling Rendering

Manage or query an OpenGL rendering context:

HGLRC wglCreateContext (HDC hdc);

HGLRC wglCreateLayerContext (HDC hdc, int iLayerPlane);

BOOL wglShareLists (HGLRC hglrc1, HGLRC hglrc2);

BOOL wglDeleteContext (HGLRC hglrc);

BOOL wglCopyContext (HGLRC hglrcSource, HGLRC hlglrcDest,
UINT mask);

BOOL wglMakeCurrent (HDC hdc, HGLRC hglrc);

HGLRC wglGetCurrentContext (VOID) ;

HDC wglGetCurrentDC (VOID);

Access and release the bitmap of the front buffer:

HBITMAP CreateDIBitmap (HDC hdc,
CONST BITMAPINFOHEADER *lpbmih, DWORD fdwInit,
CONST VOID *lpbInit, CONST BITMAPINFO *lpbmi, UINT fuUsage);

HBITMAP CreateDIBSection (HDC hdc, CONST BITMAPINFO *pbmi,
UINT iUsage, VOID *ppvBits, HANDLE hSection, DWORD dwOffset);

BOOL DeleteObject (HGDIOBJ hObject);

Exchange front and back buffers:

BOOL SwapBuffers (HDC hdc);

BOOL wglSwapLayerBuffers (HDC hdc, UINT fuPlanes);

Finding a color palette for overlay or underlay layers:

int wglGetLayerPaletteEntries (HDC hdc, int iLayerPlane, int iStart,
int cEntries, CONST COLORREF *pcr);

BOOL wglRealizeLayerPalette (HDC hdc, int iLayerPlane,
BOOL bRealize);

Use a bitmap or an outline font:

BOOL wglUseFontBitmaps (HDC hdc, DWORD first, DWORD count,
DWORD listBase);

BOOL wglUseFontOutlines (HDC hdc, DWORD first, DWORD count,
DWORD listBase, FLOAT deviation, FLOAT extrusion, int format,
LPGLYPHMETRICSFLOAT lpgmf);

 OpenGL Programming Guide
(Addison-Wesley Publishing Company)

 OpenGL Programming Guide
(Addison-Wesley Publishing Company)

Appendix D

Basics of GLUT: The OpenGL Utility Toolkit
This appendix describes a subset of Mark Kilgard’s OpenGL Utility Toolkit (GLUT), which is fully
documented in his book, OpenGL Programming for the X Window System (Reading, MA:
Addison-Wesley Developers Press, 1996). GLUT has become a popular library for OpenGL
programmers, because it standardizes and simplifies window and event management. GLUT has
been ported atop a variety of OpenGL implementations, including both the X Window System and
Microsoft Windows NT.

This appendix has the following major sections:

"Initializing and Creating a Window"

"Handling Window and Input Events"

"Loading the Color Map"

"Initializing and Drawing Three-Dimensional Objects"

"Managing a Background Process"

"Running the Program"

(See "How to Obtain the Sample Code" in the Preface for information about how to obtain the
source code for GLUT.)

With GLUT, your application structures its event handling to use callback functions. (This method
is similar to using the Xt Toolkit, also known as the X Intrinsics, with a widget set.) For example,
first you open a window and register callback routines for specific events. Then, you create a main
loop without an exit. In that loop, if an event occurs, its registered callback functions are executed.
Upon completion of the callback functions, flow of control is returned to the main loop.

Initializing and Creating a Window

Before you can open a window, you must specify its characteristics: Should it be single-buffered or
double-buffered? Should it store colors as RGBA values or as color indices? Where should it
appear on your display? To specify the answers to these questions, call glutInit(),
glutInitDisplayMode(), glutInitWindowSize(), and glutInitWindowPosition() before you call
glutCreateWindow() to open the window.

void glutInit(int argc, char **argv);
glutInit() should be called before any other GLUT routine, because it initializes the GLUT
library. glutInit() will also process command line options, but the specific options are
window system dependent. For the X Window System, -iconic, -geometry, and -display are
examples of command line options, processed by glutInit(). (The parameters to the glutInit()
should be the same as those to main().)

void glutInitDisplayMode(unsigned int mode);
Specifies a display mode (such as RGBA or color-index, or single- or double-buffered) for
windows created when glutCreateWindow() is called. You can also specify that the window
have an associated depth, stencil, and/or accumulation buffer. The mask argument is a
bitwise ORed combination of GLUT_RGBA or GLUT_INDEX, GLUT_SINGLE or
GLUT_DOUBLE, and any of the buffer-enabling flags: GLUT_DEPTH, GLUT_STENCIL, or
GLUT_ACCUM. For example, for a double-buffered, RGBA-mode window with a depth and
stencil buffer, use GLUT_DOUBLE | GLUT_RGBA | GLUT_DEPTH | GLUT_STENCIL. The
default value is GLUT_RGBA | GLUT_SINGLE (an RGBA, single-buffered window).

void glutInitWindowSize(int width, int height);
void glutInitWindowPosition(int x, int y);

Requests windows created by glutCreateWindow() to have an initial size and position. The
arguments (x, y) indicate the location of a corner of the window, relative to the entire display.
The width and height indicate the window’s size (in pixels). The initial window size and
position are hints and may be overridden by other requests.

int glutCreateWindow(char *name);
Opens a window with previously set characteristics (display mode, width, height, and so on).
The string name may appear in the title bar if your window system does that sort of thing. The
window is not initially displayed until glutMainLoop() is entered, so do not render into the
window until then.
The value returned is a unique integer identifier for the window. This identifier can be used
for controlling and rendering to multiple windows (each with an OpenGL rendering context)
from the same application.

Handling Window and Input Events

After the window is created, but before you enter the main loop, you should register callback
functions using the following routines.

void glutDisplayFunc(void (* func)(void));
Specifies the function that’s called whenever the contents of the window need to be redrawn.
The contents of the window may need to be redrawn when the window is initially opened,
when the window is popped and window damage is exposed, and when glutPostRedisplay() is
explicitly called.

void glutReshapeFunc(void (* func)(int width, int height));
Specifies the function that’s called whenever the window is resized or moved. The argument
func is a pointer to a function that expects two arguments, the new width and height of the
window. Typically, func calls glViewport(), so that the display is clipped to the new size, and
it redefines the projection matrix so that the aspect ratio of the projected image matches the
viewport, avoiding aspect ratio distortion. If glutReshapeFunc() isn’t called or is
deregistered by passing NULL, a default reshape function is called, which calls glViewport(0,
0, width, height).

void glutKeyboardFunc(void (* func)(unsigned int key, int x, int y);
Specifies the function, func, that’s called when a key that generates an ASCII character is
pressed. The key callback parameter is the generated ASCII value. The x and y callback
parameters indicate the location of the mouse (in window-relative coordinates) when the key
was pressed.

void glutMouseFunc(void (* func)(int button, int state, int x, int y));
Specifies the function, func, that’s called when a mouse button is pressed or released. The
button callback parameter is one of GLUT_LEFT_BUTTON, GLUT_MIDDLE_BUTTON, or
GLUT_RIGHT_BUTTON. The state callback parameter is either GLUT_UP or
GLUT_DOWN, depending upon whether the mouse has been released or pressed. The x and y
callback parameters indicate the location (in window-relative coordinates) of the mouse when
the event occurred.

void glutMotionFunc(void (* func)(int x, int y));
Specifies the function, func, that’s called when the mouse pointer moves within the window
while one or more mouse buttons is pressed. The x and y callback parameters indicate the
location (in window-relative coordinates) of the mouse when the event occurred.

void glutPostRedisplay(void);
Marks the current window as needing to be redrawn. At the next opportunity, the callback
function registered by glutDisplayFunc() will be called.

Loading the Color Map

If you’re using color-index mode, you might be surprised to discover there’s no OpenGL routine to
load a color into a color lookup table. This is because the process of loading a color map depends
entirely on the window system. GLUT provides a generalized routine to load a single color index
with an RGB value, glutSetColor().

void glutSetColor(GLint index, GLfloat red, GLfloat green, GLfloat blue);
Loads the index in the color map, index, with the given red, green, and blue values. These
values are normalized to lie in the range [0.0,1.0].

Initializing and Drawing Three-Dimensional Objects

Many sample programs in this guide use three-dimensional models to illustrate various rendering
properties. The following drawing routines are included in GLUT to avoid having to reproduce the
code to draw these models in each program. The routines render all their graphics in immediate
mode. Each three-dimensional model comes in two flavors: wireframe without surface normals, and
solid with shading and surface normals. Use the solid version when you’re applying lighting. Only
the teapot generates texture coordinates.

void glutWireSphere(GLdouble radius, GLint slices, GLint stacks);
void glutSolidSphere(GLdouble radius, GLint slices, GLint stacks);

void glutWireCube(GLdouble size);
void glutSolidCube(GLdouble size);

void glutWireTorus(GLdouble innerRadius, GLdouble outerRadius,
GLint nsides, GLint rings);
void glutSolidTorus(GLdouble innerRadius, GLdouble outerRadius,
GLint nsides, GLint rings);

void glutWireIcosahedron(void);
void glutSolidIcosahedron(void);

void glutWireOctahedron(void);
void glutSolidOctahedron(void);

void glutWireTetrahedron(void);
void glutSolidTetrahedron(void);

void glutWireDodecahedron(GLdouble radius);
void glutSolidDodecahedron(GLdouble radius);

void glutWireCone(GLdouble radius, GLdouble height, GLint slices,
GLint stacks);
void glutSolidCone(GLdouble radius, GLdouble height, GLint slices,
GLint stacks);

void glutWireTeapot(GLdouble size);
void glutSolidTeapot(GLdouble size);

Managing a Background Process

You can specify a function that’s to be executed if no other events are pending - for example, when
the event loop would otherwise be idle - with glutIdleFunc(). This is particularly useful for
continuous animation or other background processing.

void glutIdleFunc(void (* func)(void));
Specifies the function, func, to be executed if no other events are pending. If NULL (zero) is
passed in, execution of func is disabled.

Running the Program

After all the setup is completed, GLUT programs enter an event processing loop, glutMainLoop().

void glutMainLoop(void);
Enters the GLUT processing loop, never to return. Registered callback functions will be
called when the corresponding events instigate them.

 OpenGL Programming Guide
(Addison-Wesley Publishing Company)

 OpenGL Programming Guide
(Addison-Wesley Publishing Company)

Appendix E
Calculating Normal Vectors
This appendix describes how to calculate normal vectors for surfaces. You need to define normals
to use the OpenGL lighting facility, which is described in Chapter 5. "Normal Vectors" in Chapter 2
introduces normals and the OpenGL command for specifying them. This appendix goes through the
details of calculating them. It has the following major sections:

"Finding Normals for Analytic Surfaces"

"Finding Normals from Polygonal Data"

Since normals are perpendicular to a surface, you can find the normal at a particular point on a
surface by first finding the flat plane that just touches the surface at that point. The normal is the
vector that’s perpendicular to that plane. On a perfect sphere, for example, the normal at a point on
the surface is in the same direction as the vector from the center of the sphere to that point. For
other types of surfaces, there are other, better means for determining the normals, depending on
how the surface is specified.

Recall that smooth curved surfaces are approximated by a large number of small flat polygons. If
the vectors perpendicular to these polygons are used as the surface normals in such an
approximation, the surface appears faceted, since the normal direction is discontinuous across the
polygonal boundaries. In many cases, however, an exact mathematical description exists for the
surface, and true surface normals can be calculated at every point. Using the true normals improves
the rendering considerably, as shown in Figure E-1. Even if you don’t have a mathematical
description, you can do better than the faceted look shown in the figure. The two major sections in
this appendix describe how to calculate normal vectors for these two cases:

"Finding Normals for Analytic Surfaces" explains what to do when you have a mathematical
description of a surface.

"Finding Normals from Polygonal Data" covers the case when you have only the polygonal
data to describe a surface.

Figure E-1 : Rendering with Polygonal Normals vs. True Normals

Finding Normals for Analytic Surfaces

Analytic surfaces are smooth, differentiable surfaces that are described by a mathematical equation
(or set of equations). In many cases, the easiest surfaces to find normals for are analytic surfaces for
which you have an explicit definition in the following form:

V(s,t) = [X(s,t) Y(s,t) Z(s,t)]

where s and t are constrained to be in some domain, and X, Y, and Z are differentiable functions of
two variables. To calculate the normal, find

which are vectors tangent to the surface in the s and t directions. The cross product

is perpendicular to both and, hence, to the surface. The following shows how to calculate the cross
product of two vectors. (Watch out for the degenerate cases where the cross product has zero
length!)

You should probably normalize the resulting vector. To normalize a vector [x y z], calculate its
length

and divide each component of the vector by the length.

As an example of these calculations, consider the analytic surface

V(s,t) = [s2 t3 3-st]

From this we have

So, for example, when s=1 and t=2, the corresponding point on the surface is (1, 8, 1), and the
vector (-24, 2, 24) is perpendicular to the surface at that point. The length of this vector is 34, so the
unit normal vector is (-24/34, 2/34, 24/34) = (-0.70588, 0.058823, 0.70588).

For analytic surfaces that are described implicitly, as F(x, y, z) = 0, the problem is harder. In some
cases, you can solve for one of the variables, say z = G(x, y), and put it in the explicit form given
previously:

Then continue as described earlier.

If you can’t get the surface equation in an explicit form, you might be able to make use of the fact
that the normal vector is given by the gradient

evaluated at a particular point (x, y, z). Calculating the gradient might be easy, but finding a point
that lies on the surface can be difficult. As an example of an implicitly defined analytic function,
consider the equation of a sphere of radius 1 centered at the origin:

x2 + y2 + z2 - 1 = 0)

This means that

F (x, y, z) = x2 + y2 + z2 - 1

which can be solved for z to yield

Thus, normals can be calculated from the explicit form

as described previously.

If you could not solve for z, you could have used the gradient

as long as you could find a point on the surface. In this case, it’s not so hard to find a point - for
example, (2/3, 1/3, 2/3) lies on the surface. Using the gradient, the normal at this point is (4/3, 2/3,
4/3). The unit-length normal is (2/3, 1/3, 2/3), which is the same as the point on the surface, as
expected.

Finding Normals from Polygonal Data

As mentioned previously, you often want to find normals for surfaces that are described with
polygonal data such that the surfaces appear smooth rather than faceted. In most cases, the easiest
way for you to do this (though it might not be the most efficient way) is to calculate the normal
vectors for each of the polygonal facets and then to average the normals for neighboring facets. Use
the averaged normal for the vertex that the neighboring facets have in common. Figure E-2 shows a
surface and its polygonal approximation. (Of course, if the polygons represent the exact surface and
aren’t merely an approximation - if you’re drawing a cube or a cut diamond, for example - don’t do
the averaging. Calculate the normal for each facet as described in the following paragraphs, and use
that same normal for each vertex of the facet.)

Figure E-2 : Averaging Normal Vectors

To find the normal for a flat polygon, take any three vertices v1, v2, and v3 of the polygon that do
not lie in a straight line. The cross product

[v1 - v2] × [v2 - v3]

is perpendicular to the polygon. (Typically, you want to normalize the resulting vector.) Then you
need to average the normals for adjoining facets to avoid giving too much weight to one of them.
For instance, in the example shown in Figure E-2, if n1, n2, n3, and n4 are the normals for the four
polygons meeting at point P, calculate n1+n2+n3+n4 and then normalize it. (You can get a better
average if you weight the normals by the size of the angles at the shared intersection.) The resulting

vector can be used as the normal for point P.

Sometimes, you need to vary this method for particular situations. For instance, at the boundary of a
surface (for example, point Q in Figure E-2), you might be able to choose a better normal based on
your knowledge of what the surface should look like. Sometimes the best you can do is to average
the polygon normals on the boundary as well. Similarly, some models have some smooth parts and
some sharp corners (point R is on such an edge in Figure E-2). In this case, the normals on either
side of the crease shouldn’t be averaged. Instead, polygons on one side of the crease should be
drawn with one normal, and polygons on the other side with another.

 OpenGL Programming Guide
(Addison-Wesley Publishing Company)

 OpenGL Programming Guide
(Addison-Wesley Publishing Company)

Appendix F
Homogeneous Coordinates and
Transformation Matrices
This appendix presents a brief discussion of homogeneous coordinates. It also lists the form of the
transformation matrices used for rotation, scaling, translation, perspective projection, and
orthographic projection. These topics are introduced and discussed in Chapter 3. For a more
detailed discussion of these subjects, see almost any book on three-dimensional computer graphics -
for example, Computer Graphics: Principles and Practice by Foley, van Dam, Feiner, and Hughes
(Reading, MA: Addison-Wesley, 1990) - or a text on projective geometry - for example, The Real
Projective Plane, by H. S. M. Coxeter, 2nd ed. (Cambridge: Cambridge University Press, 1961). In
the discussion that follows, the term homogeneous coordinates always means three-dimensional
homogeneous coordinates, although projective geometries exist for all dimensions.

This appendix has the following major sections:

"Homogeneous Coordinates"

"Transformation Matrices"

Homogeneous Coordinates

OpenGL commands usually deal with two- and three-dimensional vertices, but in fact all are treated
internally as three-dimensional homogeneous vertices comprising four coordinates. Every column
vector (x, y, z, w)T represents a homogeneous vertex if at least one of its elements is nonzero. If the
real number a is nonzero, then (x, y, z, w)T and (ax, ay, az, aw)T represent the same homogeneous
vertex. (This is just like fractions: x/y = (ax)/(ay).) A three-dimensional euclidean space point (x, y,
z)T becomes the homogeneous vertex with coordinates (x, y, z, 1.0)T, and the two-dimensional
euclidean point (x, y)T becomes (x, y, 0.0, 1.0)T.

As long as w is nonzero, the homogeneous vertex (x, y, z, w)T corresponds to the three-dimensional
point (x/w, y/w, z/w)T. If w = 0.0, it corresponds to no euclidean point, but rather to some idealized
"point at infinity." To understand this point at infinity, consider the point (1, 2, 0, 0), and note that
the sequence of points (1, 2, 0, 1), (1, 2, 0, 0.01), and (1, 2.0, 0.0, 0.0001), corresponds to the
euclidean points (1, 2), (100, 200), and (10000, 20000). This sequence represents points rapidly
moving toward infinity along the line 2x = y. Thus, you can think of (1, 2, 0, 0) as the point at
infinity in the direction of that line.

Note: OpenGL might not handle homogeneous clip coordinates with w < 0 correctly. To be sure
that your code is portable to all OpenGL systems, use only nonnegative w values.

Transforming Vertices

Vertex transformations (such as rotations, translations, scaling, and shearing) and projections (such
as perspective and orthographic) can all be represented by applying an appropriate 4 × 4 matrix to
the coordinates representing the vertex. If v represents a homogeneous vertex and M is a 4 × 4
transformation matrix, then Mv is the image of v under the transformation by M. (In
computer-graphics applications, the transformations used are usually nonsingular - in other words,
the matrix M can be inverted. This isn’t required, but some problems arise with nonsingular
transformations.)

After transformation, all transformed vertices are clipped so that x, y, and z are in the range [-
&ohgr; , w] (assuming w > 0). Note that this range corresponds in euclidean space to [-1.0, 1.0].

Transforming Normals

Normal vectors aren’t transformed in the same way as vertices or position vectors. Mathematically,
it’s better to think of normal vectors not as vectors, but as planes perpendicular to those vectors.
Then, the transformation rules for normal vectors are described by the transformation rules for
perpendicular planes.

A homogeneous plane is denoted by the row vector (a, b, c, d), where at least one of a, b, c, or d is
nonzero. If q is a nonzero real number, then (a, b, c, d) and (qa, qb, qc, qd) represent the same
plane. A point (x, y, z, w)T is on the plane (a, b, c, d) if ax+by+cz+dw = 0. (If w = 1, this is the
standard description of a euclidean plane.) In order for (a, b, c, d) to represent a euclidean plane, at
least one of a, b, or c must be nonzero. If they’re all zero, then (0, 0, 0, d) represents the "plane at
infinity," which contains all the "points at infinity."

If p is a homogeneous plane and v is a homogeneous vertex, then the statement "v lies on plane p"
is written mathematically as pv = 0, where pv is normal matrix multiplication. If M is a nonsingular
vertex transformation (that is, a 4 × 4 matrix that has an inverse M-1), then pv = 0 is equivalent to
pM-1Mv = 0, so Mv lies on the plane pM-1. Thus, pM-1 is the image of the plane under the vertex
transformation M.

If you like to think of normal vectors as vectors instead of as the planes perpendicular to them, let v
and n be vectors such that v is perpendicular to n. Then, nTv = 0. Thus, for an arbitrary nonsingular
transformation M, nTM-1Mv = 0, which means that nTM-1 is the transpose of the transformed
normal vector. Thus, the transformed normal vector is (M-1)Tn. In other words, normal vectors are
transformed by the inverse transpose of the transformation that transforms points. Whew!

Transformation Matrices

Although any nonsingular matrix M represents a valid projective transformation, a few special
matrices are particularly useful. These matrices are listed in the following subsections.

Translation

The call glTranslate*(x, y, z) generates T, where

Scaling

The call glScale*(x, y, z) generates S, where

Notice that S-1 is defined only if x, y, and z are all nonzero.

Rotation

The call glRotate*(a, x, y, z) generates R as follows:

Let v = (x, y, z)T, and u = v/||v|| = (x’, y’, z’)T.

Also let

Then

The R matrix is always defined. If x=y=z=0, then R is the identity matrix. You can obtain the
inverse of R, R-1, by substituting - &agr; for a, or by transposition.

The glRotate*() command generates a matrix for rotation about an arbitrary axis. Often, you’re
rotating about one of the coordinate axes; the corresponding matrices are as follows:

As before, the inverses are obtained by transposition.

Perspective Projection

The call glFrustum(l, r, b, t, n, f) generates R, where

R is defined as long as l ≠ r, t ≠ b, and n ≠ f .

Orthographic Projection

The call glOrtho(l, r, b, t, n, f) generates R, where

R is defined as long as l ≠ r, t ≠ b, and n ≠ f .

 OpenGL Programming Guide

(Addison-Wesley Publishing Company)

 OpenGL Programming Guide
(Addison-Wesley Publishing Company)

Appendix G
Programming Tips
This appendix lists some tips and guidelines that you might find useful. Keep in mind that these tips
are based on the intentions of the designers of the OpenGL, not on any experience with actual
applications and implementations! This appendix has the following major sections:

"OpenGL Correctness Tips"

"OpenGL Performance Tips"

"GLX Tips"

OpenGL Correctness Tips

Perform error checking often. Call glGetError() at least once each time the scene is rendered
to make certain error conditions are noticed.

Do not count on the error behavior of an OpenGL implementation - it might change in a
future release of OpenGL. For example, OpenGL 1.1 ignores matrix operations invoked
between glBegin() and glEnd() commands, but a future version might not. Put another way,
OpenGL error semantics may change between upward-compatible revisions.

If you need to collapse all geometry to a single plane, use the projection matrix. If the
modelview matrix is used, OpenGL features that operate in eye coordinates (such as lighting
and application-defined clipping planes) might fail.

Do not make extensive changes to a single matrix. For example, do not animate a rotation by
continually calling glRotate*() with an incremental angle. Rather, use glLoadIdentity() to
initialize the given matrix for each frame, then call glRotate*() with the desired complete
angle for that frame.

Count on multiple passes through a rendering database to generate the same pixel fragments
only if this behavior is guaranteed by the invariance rules established for a compliant
OpenGL implementation. (See Appendix H for details on the invariance rules.) Otherwise, a
different set of fragments might be generated.

Do not expect errors to be reported while a display list is being defined. The commands
within a display list generate errors only when the list is executed.

Place the near frustum plane as far from the viewpoint as possible to optimize the operation

of the depth buffer.

Call glFlush() to force all previous OpenGL commands to be executed. Do not count on
glGet*() or glIs*() to flush the rendering stream. Query commands flush as much of the
stream as is required to return valid data but don’t guarantee completing all pending rendering
commands.

Turn dithering off when rendering predithered images (for example, when glCopyPixels() is
called).

Make use of the full range of the accumulation buffer. For example, if accumulating four
images, scale each by one-quarter as it’s accumulated.

If exact two-dimensional rasterization is desired, you must carefully specify both the
orthographic projection and the vertices of primitives that are to be rasterized. The
orthographic projection should be specified with integer coordinates, as shown in the
following example:

gluOrtho2D(0, width, 0, height);

where width and height are the dimensions of the viewport. Given this projection matrix,
polygon vertices and pixel image positions should be placed at integer coordinates to rasterize
predictably. For example, glRecti(0, 0, 1, 1) reliably fills the lower left pixel of the viewport,
and glRasterPos2i(0, 0) reliably positions an unzoomed image at the lower left of the
viewport. Point vertices, line vertices, and bitmap positions should be placed at half-integer
locations, however. For example, a line drawn from (x1, 0.5) to (x2, 0.5) will be reliably
rendered along the bottom row of pixels into the viewport, and a point drawn at (0.5, 0.5) will
reliably fill the same pixel as glRecti(0, 0, 1, 1).

An optimum compromise that allows all primitives to be specified at integer positions, while
still ensuring predictable rasterization, is to translate x and y by 0.375, as shown in the
following code fragment. Such a translation keeps polygon and pixel image edges safely
away from the centers of pixels, while moving line vertices close enough to the pixel centers.

glViewport(0, 0, width, height);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluOrtho2D(0, width, 0, height);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glTranslatef(0.375, 0.375, 0.0);
/* render all primitives at integer positions */

Avoid using negative w vertex coordinates and negative q texture coordinates. OpenGL might
not clip such coordinates correctly and might make interpolation errors when shading
primitives defined by such coordinates.

Do not assume the precision of operations, based upon the data type of parameters to OpenGL
commands. For example, if you are using glRotated(), you should not assume that geometric
processing pipeline operates with double-precision floating point. It is possible that the
parameters to glRotated() are converted to a different data type before processing.

OpenGL Performance Tips

Use glColorMaterial() when only a single material property is being varied rapidly (at each
vertex, for example). Use glMaterial() for infrequent changes, or when more than a single
material property is being varied rapidly.

Use glLoadIdentity() to initialize a matrix, rather than loading your own copy of the identity
matrix.

Use specific matrix calls such as glRotate*(), glTranslate*(), and glScale*() rather than
composing your own rotation, translation, or scale matrices and calling glMultMatrix().

Use query functions when your application requires just a few state values for its own
computations. If your application requires several state values from the same attribute group,
use glPushAttrib() and glPopAttrib() to save and restore them.

Use display lists to encapsulate potentially expensive state changes.

Use display lists to encapsulate the rendering calls of rigid objects that will be drawn
repeatedly.

Use texture objects to encapsulate texture data. Place all the glTexImage*() calls (including
mipmaps) required to completely specify a texture and the associated glTexParameter*()
calls (which set texture properties) into a texture object. Bind this texture object to select the
texture.

If the situation allows it, use gl*TexSubImage() to replace all or part of an existing texture
image rather than the more costly operations of deleting and creating an entire new image.

If your OpenGL implementation supports a high-performance working set of resident
textures, try to make all your textures resident; that is, make them fit into the
high-performance texture memory. If necessary, reduce the size or internal format resolution
of your textures until they all fit into memory. If such a reduction creates intolerably fuzzy
textured objects, you may give some textures lower priority, which will, when push comes to
shove, leave them out of the working set.

Use evaluators even for simple surface tessellations to minimize network bandwidth in
client-server environments.

Provide unit-length normals if it’s possible to do so, and avoid the overhead of
GL_NORMALIZE. Avoid using glScale*() when doing lighting because it almost always
requires that GL_NORMALIZE be enabled.

Set glShadeModel() to GL_FLAT if smooth shading isn’t required.

Use a single glClear() call per frame if possible. Do not use glClear() to clear small
subregions of the buffers; use it only for complete or near-complete clears.

Use a single call to glBegin(GL_TRIANGLES) to draw multiple independent triangles rather
than calling glBegin(GL_TRIANGLES) multiple times, or calling glBegin(GL_POLYGON).

Even if only a single triangle is to be drawn, use GL_TRIANGLES rather than
GL_POLYGON. Use a single call to glBegin(GL_QUADS) in the same manner rather than
calling glBegin(GL_POLYGON) repeatedly. Likewise, use a single call to
glBegin(GL_LINES) to draw multiple independent line segments rather than calling
glBegin(GL_LINES) multiple times.

Some OpenGL implementations benefit from storing vertex data in vertex arrays. Use of
vertex arrays reduces function call overhead. Some implementations can improve
performance by batch processing or reusing processed vertices.

In general, use the vector forms of commands to pass precomputed data, and use the scalar
forms of commands to pass values that are computed near call time.

Avoid making redundant mode changes, such as setting the color to the same value between
each vertex of a flat-shaded polygon.

Be sure to disable expensive rasterization and per-fragment operations when drawing or
copying images. OpenGL will even apply textures to pixel images if asked to!

Unless absolutely needed, avoid having different front and back polygon modes.

GLX Tips

Use glXWaitGL() rather than glFinish() to force X rendering commands to follow GL
rendering commands.

Likewise, use glXWaitX() rather than XSync() to force GL rendering commands to follow X
rendering commands.

Be careful when using glXChooseVisual(), because boolean selections are matched exactly.
Since some implementations won’t export visuals with all combinations of boolean
capabilities, you should call glXChooseVisual() several times with different boolean values
before you give up. For example, if no single-buffered visual with the required characteristics
is available, check for a double-buffered visual with the same capabilities. It might be
available, and it’s easy to use.

 OpenGL Programming Guide
(Addison-Wesley Publishing Company)

 OpenGL Programming Guide
(Addison-Wesley Publishing Company)

Appendix H
OpenGL Invariance
OpenGL is not a pixel-exact specification. It therefore doesn’t guarantee an exact match between
images produced by different OpenGL implementations. However, OpenGL does specify exact
matches, in some cases, for images produced by the same implementation. This appendix describes
the invariance rules that define these cases.

The obvious and most fundamental case is repeatability. A conforming OpenGL implementation
generates the same results each time a specific sequence of commands is issued from the same
initial conditions. Although such repeatability is useful for testing and verification, it’s often not
useful to application programmers, because it’s difficult to arrange for equivalent initial conditions.
For example, rendering a scene twice, the second time after swapping the front and back buffers,
doesn’t meet this requirement. So repeatability can’t be used to guarantee a stable, double-buffered
image.

A simple and useful algorithm that counts on invariant execution is erasing a line by redrawing it in
the background color. This algorithm works only if rasterizing the line results in the same fragment
x,y pairs being generated in both the foreground and background color cases. OpenGL requires that
the coordinates of the fragments generated by rasterization be invariant with respect to framebuffer
contents, which color buffers are enabled for drawing, the values of matrices other than those on the
top of the matrix stacks, the scissor parameters, all writemasks, all clear values, the current color,
index, normal, texture coordinates, and edge-flag values, the current raster color, raster index, and
raster texture coordinates, and the material properties. It is further required that exactly the same
fragments be generated, including the fragment color values, when framebuffer contents, color
buffer enables, matrices other than those on the top of the matrix stacks, the scissor parameters,
writemasks, or clear values differ.

OpenGL further suggests, but doesn’t require, that fragment generation be invariant with respect to
the matrix mode, the depths of the matrix stacks, the alpha test parameters (other than alpha test
enable), the stencil parameters (other than stencil enable), the depth test parameters (other than
depth test enable), the blending parameters (other than enable), the logical operation (but not logical
operation enable), and the pixel-storage and pixel-transfer parameters. Because invariance with
respect to several enables isn’t recommended, you should use other parameters to disable functions
when invariant rendering is required. For example, to render invariantly with blending enabled and
disabled, set the blending parameters to GL_ONE and GL_ZERO to disable blending rather than
calling glDisable(GL_BLEND). Alpha testing, stencil testing, depth testing, and the logical
operation all can be disabled in this manner.

Finally, OpenGL requires that per-fragment arithmetic, such as blending and the depth test, is
invariant to all OpenGL state except the state that directly defines it. For example, the only
OpenGL parameters that affect how the arithmetic of blending is performed are the source and
destination blend parameters and the blend enable parameter. Blending is invariant to all other state
changes. This invariance holds for the scissor test, the alpha test, the stencil test, the depth test,

blending, dithering, logical operations, and buffer writemasking.

As a result of all these invariance requirements, OpenGL can guarantee that images rendered into
different color buffers, either simultaneously or separately using the same command sequence, are
pixel identical. This holds for all the color buffers in the framebuffer or all the color buffers in an
off-screen buffer, but it isn’t guaranteed between the framebuffer and off-screen buffers.

 OpenGL Programming Guide
(Addison-Wesley Publishing Company)

	Main Index
	Jeff Molofee's OpenGL tutorial series
	1. OpenGL setup
	 OpenGL on MacOS
	 OpenGL on Solaris
	 OpenGL on Windows
	 OpenGL on MacOS X

	2. Create Triangles and Quads
	3. Using Colors
	4. Rotations
	5. 3D Objects
	6. Texture Mapping
	7. Texture Filtering
	8. Simple Transparency
	9. Bitmaps and animation
	10. Loading a 3D world from file
	11. Moving Flag animation
	12. Display Lists
	13. Bitmap Fonts
	14. Outline Fonts
	15. Texture Mapped Fonts
	16. Adding Fog !
	17. 2D Texture Fonts
	18. Quadratics
	19. Particles Engines
	20. Masking
	21. Lines, Anti-Aliasing, Orthographic Proj, Timing
	22. Bump-Mapping, Multi-Texturing & Extensions
	23. Advanced Input with Direct Input and Windows
	24. Sphere Environment Mapping
	25. Tokens, Extensions, Scissor Testing And TGA Loading
	26. Morphing & Loading Objects From A File
	27. Clipping & Reflections Using The Stencil Buffer
	28. Shadows
	29. Bezier Patches / Fullscreen Fix
	30. Blitter Function, RAW Texture Loading
	31. Collision Detection
	32. Model Loading

	
	Other tutorials
	3D case study using OpenGL (tutorial !)

	Mac : OpenGL and DrawSprocket

	OpenGL Redbook : official tutorial

	
	Specifications
	 OpenGL 1.2.1
	 Glu 1.3
	 Glut 3
	1 Introduction
	1.1 Background
	1.2 Design Philosophy
	1.3 API Version 2
	1.4 API Version 3
	1.5 Conventions
	1.6 Terminology

	2 Initialization
	2.1 glutInit
	2.2 glutInitWindowPosition, glutInitWindowSize
	2.3 glutInitDisplayMode

	3 Beginning Event Processing
	3.1 glutMainLoop

	4 Window Management
	4.1 glutCreateWindow
	4.2 glutCreateSubWindow
	4.3 glutSetWindow, glutGetWindow
	4.4 glutDestroyWindow
	4.5 glutPostRedisplay
	4.6 glutSwapBuffers
	4.7 glutPositionWindow
	4.8 glutReshapeWindow
	4.9 glutFullScreen
	4.10 glutPopWindow, glutPushWindow
	4.11 glutShowWindow, glutHideWindow, glutIconifyWindow
	4.12 glutSetWindowTitle, glutSetIconTitle
	4.13 glutSetCursor

	5 Overlay Management
	5.1 glutEstablishOverlay
	5.2 glutUseLayer
	5.3 glutRemoveOverlay
	5.4 glutPostOverlayRedisplay
	5.5 glutShowOverlay, glutHideOverlay

	6 Menu Management
	6.1 glutCreateMenu
	6.2 glutSetMenu, glutGetMenu
	6.3 glutDestroyMenu
	6.4 glutAddMenuEntry
	6.5 glutAddSubMenu
	6.6 glutChangeToMenuEntry
	6.7 glutChangeToSubMenu
	6.8 glutRemoveMenuItem
	6.9 glutAttachMenu, glutDetachMenu

	7 Callback Registration
	7.1 glutDisplayFunc
	7.2 glutOverlayDisplayFunc
	7.3 glutReshapeFunc
	7.4 glutKeyboardFunc
	7.5 glutMouseFunc
	7.6 glutMotionFunc, glutPassiveMotionFunc
	7.7 glutVisibilityFunc
	7.8 glutEntryFunc
	7.9 glutSpecialFunc
	7.10 glutSpaceballMotionFunc
	7.11 glutSpaceballRotateFunc
	7.12 glutSpaceballButtonFunc
	7.13 glutButtonBoxFunc
	7.14 glutDialsFunc
	7.15 glutTabletMotionFunc
	7.16 glutTabletButtonFunc
	7.17 glutMenuStatusFunc
	7.18 glutIdleFunc
	7.19 glutTimerFunc

	8 Color Index Colormap Management
	8.1 glutSetColor
	8.2 glutGetColor
	8.3 glutCopyColormap

	9 State Retrieval
	9.1 glutGet
	9.2 glutLayerGet
	9.3 glutDeviceGet
	9.4 glutGetModifiers
	9.5 glutExtensionSupported

	10 Font Rendering
	10.1 glutBitmapCharacter
	10.2 glutBitmapWidth
	10.3 glutStrokeCharacter
	10.4 glutStrokeWidth

	11 Geometric Object Rendering
	11.1 glutSolidSphere, glutWireSphere
	11.2 glutSolidCube, glutWireCube
	11.3 glutSolidCone, glutWireCone
	11.4 glutSolidTorus, glutWireTorus
	11.5 glutSolidDodecahedron, glutWireDodecahedron
	11.1 glutSolidSphere, glutWireSphere
	11.6 glutSolidOctahedron, glutWireOctahedron
	11.7 glutSolidTetrahedron, glutWireTetrahedron
	11.8 glutSolidIcosahedron, glutWireIcosahedron
	11.9 glutSolidTeapot, glutWireTeapot

	12 Usage Advice
	13 FORTRAN Binding
	13.1 Names for the FORTRAN GLUT Binding
	13.2 Font Naming Caveat
	13.3 NULL Callback

	14 Implementation Issues
	14.1 Name Space Conventions
	14.2 Modular Implementation
	14.3 Error Checking and Reporting
	14.4 Avoid Unspecified GLUT Usage Restrictions

	A GLUT State
	A.1 Types of State
	A.2 Global State
	A.2.1 Program Controlled State
	A.2.2 Fixed System Dependent State

	A.3 Window State
	A.3.1 Basic State
	A.3.2 Frame Buffer Capability State
	A.3.3 Layer State

	A.4 Menu State

	B glut.h ANSI C Header File
	C fglut.h FORTRAN Header File
	References
	Index

	 Glx1.3
	 OpenGL state machine

	
	Various
	Mesa
	Mesa faq
	Mesa user guide

	Performance optimisations
	16 Common OpenGL pitfalls
	3d_study.pdf
	Table of Contents
	Disclaimer
	 Chapter 1 - Introduction
	 1.1 About this report
	1.2 Style Conventions
	 1.3 Background Material
	1.4 Aims And Objectives
	1.5 What is OpenGL?
	1.6 Discussions With The Supervisor-Time Plan
	1.7 The structure of this project

	Chapter 2 - Opening a window and drawing simple graphics with OpenGL
	2.1 Opening a window using OpenGL
	2.2 Creating and showing a cube
	2.3 Difference between flat and smooth shading
	2.4 Modelling and projection transformations

	Chapter 3 - Creating a hierarchical, 3D, wire frame model
	3.1 Building a basic hierarchical model
	3.2 Improving the basic model

	Chapter 4- Lighting
	4.1 Getting started with lighting
	4.2 Colour Tracking
	4.3 Setting up an object™s material properties and shininess
	4.4 The Material Œ Lights program
	4.5 Adding lights to the basic model

	Chapter 5 - Improving the model: ﬁA more elaborate geometrical example
	5.2 Creating the complex model

	Chapter 6 - Texture Mapping
	6.2 Opening several windows with OpenGL
	6.3 Creating a texture
	6.4 A texture mapped man

	Chapter 7 - Conclusions Œ Future possibilities
	Appendix I - Using Borland C++ 5.02
	Appendix II - Using The FLTK Library
	Appendix III - Using Paint Shop Pro 5.0
	Appendix IV - Bibliography

	OpenIL
	specs
	short tut

	Coding hints
	
	FAQs
	Official OpenGL Faq
	Table of Contents
	OpenGL FAQ and Troubleshooting Guide v1.2000.10.15
	1 About the FAQ
	2 Getting Started
	3 GLUT
	4 GLU
	5 Microsoft Windows Specifics
	6 Windows, Buffers, and Rendering Contexts
	7 Interacting with the Window System, Operating System, and Input Devices
	8 Using Viewing and Camera Transforms, and gluLookAt()
	9 Transformations
	10 Clipping, Culling, and Visibility Testing
	11 Color
	12 The Depth Buffer
	13 Drawing Lines over Polygons and Using Polygon Offset
	14 Rasterization and Operations on the Framebuffer
	15 Transparency, Translucency, and Blending
	16 Display Lists and Vertex Arrays
	17 Using Fonts
	18 Lights and Shadows
	19 Curves, Surfaces, and Using Evaluators
	20 Picking and Using Selection
	21 Texture Mapping
	22 Performance
	23 Extensions and Versions
	24 Miscellaneous
	Appendix A Microsoft OpenGL Information
	Windows Driver Development Kits
	Preliminary Windows 2000 DDK

	Windows Driver and Hardware Development
	Fluff articles
	MSDN Library
	Platform SDK
	OpenGL technical articles
	Useful other articles

	Knowledge Base
	Current
	Archive

	Appendix B Source Code Index

	GLUT faq
	NVIDIA OpenGL Performance faq
	I.	Geometry
	II.	Lighting
	III.	Texture Coordinate Generation
	IV.	Clipping and Culling
	V.	Texturing
	VI.	Other Fragment Operations
	VII.	 Pixel Transfers
	VIII. Miscellaneous
	I.	Geometry
	Currently, you should only use the vertex_array_range with memory allocated by wglAllocateMemoryNV (or glXAllocateMemoryNV) given the following settings:
	Memory Allocated

	9.	Is there an optimal size vertex array to define/use?
	
	II.	Lighting

	16.	Should I turn normalization on or off for maximum performance?
	17.	Should I use the rescale normal extension to increase performance?
	18. Is it faster if I only want to calculate the diffuse component, not the specular?
	
	II.	Texture Coordinate Generation

	19.	Which TexGen modes are hardware accelerated?
	20.	Is the texture matrix hardware accelerated?
	21.	Is there hardware acceleration for two sets of texture coordinates?
	
	III.	Clipping and Culling

	23. Are user-defined clip planes hardware accelerated?
	24. How many user-defined clip planes are hardware accelerated?
	
	IV. Texturing

	25. How can I maximize texture downloading performance?
	
	
	GL_RGBA

	26. Should I use texture compression?
	27. How can I maximize texture rendering performance?
	28. What filtering modes should I use?
	29. How much performance will anisotropic filtering take away?
	30. What kind of performance increase can I expect from using paletted textures?
	
	VI. Other Fragment Operations

	31. What are the performance implications of polygon stippling?
	32. What fragment operations should I avoid?
	
	VII. Pixel Transfers

	33. What are the best formats/types to use with glReadPixels and glDrawPixels?
	34. I want to read back the depth buffer for incremental updates; how should I do this?
	
	VIII. Miscellaneous

	35. How much will Full Scene Anti-Aliasing (FSAA) slow me down?
	36. Is context switching expensive?
	37.	What about state changes?
	38.	Why is my GeForce 256 running at a fraction of the speed of my TNT2?
	39. Should I use a unified back buffer (UBB) or not?

	
	About this document

