Class Operations

Pointer and References with class types
Class destructor

Dynamic Memory Allocation within a
class

Copy constructor
Limit access to a class
Nested class



Pointers and References to
Class Objects

* Pointers and references to class objects
are key features of OOP

* Three basic contexts to use a pointer to

a class
— Calling functions using the dereference
operator, ->
— As an argument to a function
— As a data member of a class



How to pass parameters?

* Function parameters

— Small size of object (pass by value, pointer
or reference)

— Array object (pass by pointer)

— struct object (pass by either pointer or
reference)

— class object (pass by reference)



Contalner class

e Aclass is defined to contain other
classes in private members



Pointers as data members

* The contents of a Package object

Fackage object

Box
Object |

Fointer to Another
Package object

* Another Package object

A Package object can contain a Box object, and can be linked
to another Package object that contains another Box object.




TruckLoad

* Alinked list of three objects
TrucklLoad Object

The First
Dbject

L Package Object Package Object Package Object

Box theBoox; Box theBox; Box thebox;:
Package* phext; Package® pMext; Package* plext;




Defining the Package Class

class Package {
public:
Package(Box* pBox): theBox(*pBox), pMext(0){} // Constructor

Box getBox() const { return theBox; } /! Retrieve the Box object
Package* getNext() const { return pMext; } /1 Get next package address
void setMext(Package* pPackage){ pMext = pPackage; | // Add to end of list

private:
Box theBox; /! The Box object
Package* pNext; /! Pointer to the next Package

b




Copies of Box objects everywhere

aBox

Original

Box Object -_‘ﬁqhuﬁxh

When you create a Package object,
you pass SaBox to the constructer

I Duplicate
of aBox

The Package object

Package created will contain
Constructor a copy of the —-

origimal Box object.

_ Calling the Box() meaber will
Duplicate ErﬂteE:tmpy of the getbox()

of aBox duplicate abox. - Function




Revised Package Class

class Package {
public:
Package(Box* pewBox):pBox(pNewBox), pNext(0){} // Constructor
Box* getBox() const { return pBox; } /] Retrieve the Box pointer
Package* gethext() const { return phext; } /1 Get next package address
void setMext(Package* pPackage) { pNext = pPackage; | // Add to end of list

private:
Box* pBox; /1 Pointer to the Box
Package* phext, /1 Pointer to the next Package

b




A list of packages containing
only pointers

Package cbject ' Package object Package cbject

Pointer to a ' Poanter to a Pointer to a
Bax object Box obiject ' Box object

Pointer to Another _ Painter ta Another r Pointer ta Another
Package object Package object | Package object

A Package object now only contains pointers.
The Box objects are independent, and outside the Package objects.




Defining the TruckLoad Class

The List ot Packages

T I
T |

The First Package The Last Package
in the List in the List

Truckload Object The Most Recently
Retrieved Package

Package®pHead;
Package*pCurrent;
Package*pTail;




Class TruckLoad

class Truckload {
public:
Truckload(Box* pBox = 0, int count = 1): // Constructor

Box* getFirstBox(); // Retrieve the first Box
Box* getNextBox(); // Retrieve the next Box

void addBox(Box* pBox); /! Add a new Box to the list
private:

Packape* pHead; // First in the list

Package* pTail; // Last in the list

Package* pCurrent; /1 Last retrieved from the list
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Implementing the TrucklLoad
Class

TrucklLoad: :Truckload(Box* pBox, int count) {
pHead = pTail = plurrent = 0;

if({(count > 0) && (pBox != 0))
for(int i = 0 ; i<count ; i++)
addBox(pBox+1i);




Defining the Member Functions

oid Truckload::addRev/Bav® alav) [
e Box* Truckload::getNextBox() {

if(plurrent)

| pCurrent = pCurrent->getMext();
if(pHead) else

pTail-»sethext| pCurrent = pHead;

Package* pPackage

else
pHead = pPackag return pCurrent ? pCurrent->getBox() : 0; |

pTail = pPackage;
}

Box* Truckload::getFirstBox() {

pCurrent = pHead;
return pCurrent->getBox(); * Program 13.1

}

-— o - - ol




Three problems in progl3.1

 The Package class Is accessible to all,
even though one only use this class in
the context of the TruckLoad class

 The duplication of a TruckLoad object

« Avery serious memory leak with
memory management



class TruckLoad {

public:
TruckLoad(Box* pBox = 0, int count = 1);

N

Box* getFirstBox();

Box* getNextBox();

void addBox(Box* pBox);
« Anested C

private:

(iEBfif]iti()r1 i // Class defining a list element er
class Package {
class blics
Box* pBox;

* One class Packares ohext: €
ClaSS (Tr void setNext(Package* pPackage);
the TrUCk Package(Box* pNewBox);

};
others

Package* pHead;
Package* pTail;
Package* plurrent;



void Truckload::addBox(Box* pBox) {
Package* pPackage = new Package(pBox);

if(pHead)
pTail-»pNext = pPackage;
else
pHead = pPackage;
pTail = pPackage;
}

Box* TruckLoad::getFirstBox() { Box* TrucklLoad::getNextBox() {

pCurrent = pHead; if(pCurrent)
return pCurrent->pBox; o ::ment = pCurrent->pNext;

}

pCurrent = pHead;

 Revised program 1
return pCurrent ? pCurrent->pBox : 0;

}



Nested Classes with Public
Assess Specifiers

Truckload::Package aPackage(abox);  // Define a variable of type Package




The Copy Constructor

 Copy one object from an existent one
— TruckLoad tLoad2(tLoadl);

* If copy constructor is not defined then
compiler would create a default one, but no
practical space Is created for the pointer
member which can cause memory problem

* A self-defined copy constructor IS
necessary when pointer members are
declared in a class



Duplicating an object using the
default copy constructor

TrucklLoad tlLoad2(tLoad1):

E
o e

Shared Chain of Package Objects



Self-defined Copy Constructor

TruckLoad::TruckLoad(const TruckLoad& load)
{
pHead = pTail = pCurrent = 0O;

If (load.pHead) return;

// save address for new chain
Package* pTemp = load.pHead,;
do
{ addBox(pTemp->pBox);}
while (pTemp = pTemp->pNext);

}

* Revised program 13.2




Dynamic Memory Allocation
Within an Object

Constructor without ‘new’, preset
destructor executed automatically

Constructor with ‘new’, destructor
should self-defined it by ‘delete’

The default destructor

Re TruckLoad: :~TruckLoad() {
f/ Code to destroy the object

}



Implementing a Destructor

TruckLoad: :~Truckload() {
cout ¢¢ "Truckload destructor called.” << endl;
while(pCurrent = pHead->pNext) {
delete pHead; /1 Delete the previous

pHead = plurrent; {1/ Store address of next

}
delete pHead; /1 Delete the last

}



References in Classes

TI”ELEu:*-Téhckiﬁad:EgetFirgiHni{j { load) {
PP pCurrent = pHead;
it return &pCurrent->rBox;

}

PaBox* Truckload::getNextBox() {

do if(pCurrent)
plurrent = pCurrent->pNext;

} n else

hssign a
pCurrent = pHead; g

return plurrent ! &pCurrent->rBox :
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