
Operator Overloading
• Which C++ operators can be overloaded?
• Implement functions in your classes that

overloaded operators
• Overloaded operator functions as member

function in class
• Assignment operators
• Define type conversions as operator functions
• Smart pointers

Principals of
Operator Overloading

• Reasonability
• Consistency
• Instinct
• Cannot create a new operator
• Preserve precedents
• Preserve unary, binary, trinary

Operators That Can and
Cannot Be Overloaded

• Every operator list in Appendix D,
excluding
– Domain operator – ::
– Conditional operator – ?:
– Direct access operator – .
– Dereference operator – .*
– sizeof operator – sizeof
– Preprocessor symbol – # or ##

The operator<()

• Program 14.1

Implementing Full Support for
an Operator<()

• Previous define of operator<() is able to
implement box1 < box2, but not

• box1<25.6 or 10<box2

inline bool operator<(const double d) const
{ return volume() < d; }
inline bool operator<(const double d, const Box& b)
{ return d < b.volume(); }
• Program 14.2

Binary OperatorX()

• Member function
– Type operatorX(Type RightOperand);
– Type operatorX(Other_Type RightOperand);

• Non-member function
– Type operator X(Other_Type leftOperand, Type

RightOperand);

Complier Supported Member
Functions

• Default constructor
• Destructor
• Copy constructor
• Assignment operator

Copy Constructor and
Assignment Operator

• New space is generated during copy
constructor, no new space is generated
during assignment

• Copy constructor is called when
– Box aBox(bBox); // Box aBox = bBox;
– TruckLoad aLoad1(aLoad2);

• Assignment operator is called when
– aBox = bBox;
– aLoad1 = aLoad2;

Overloading the Assignment
Operator

Compiler
supports

Assignment Operators

load1 = load2 = load3;
load1 = (load2 = load3);
load1.operator=(load2.operator=(load3));

Overloading the Assignment
Operator

TrunckLoad& TrunckLoad::operator=(const TrunkLoad& load)
{

if (this == &load) return *this;
while (pCurrent = pHead)
{

pHead = pHead->pNext;
delete pCurrent;

}
pHead = pTail = pCurrent = 0;
if (load.pHead == 0) return;
package* pTemp = load.pHead;
do { addBox(pTemp->pBox); } while (pTemp = pTemp->pNext);
return *this;

}

Process of Overloading the
Assignment Operator

• Remove the memory using in the left
operand, create identical memory space
of the right operand for the left operand

• Copy the content of the right operand to
the left operand

• Return *this
• Program 14.3

Overloading the Arithmetic
Operators

• +, -, *, /, %
• Program 14.4

Implementing One Operator in
Terms of Another

• Such as operator+ can be applied in
operator+=

• Program 14.5a

Rules
• return by value

– ex: +, -, *, /, %
– a = b+c;
– return temp object

• return by reference
– ex: +=, -=, /=, []
– a+=b;
– return *this

Overloading The Subscript
Operator []

class TruckLoad
{ public:
// For left value

Box& operator[](int index);
// For right value

const Box& operator[](int index) const;
…

private:
class Package { …};

};

Revised The Package Class

class Package
{ public:

Box theBox;
Package* pNext;
void setNext(Package* pPackage);
Package(const Box& NewBox);
~Package();

};

Subscript Operator []
Box& TruckLoad::operator[](int index)
{

if (index<0)
{ cout << endl << “Negative index”; exit(1); }
Package* pPackage = pHead;
int count = 0;
do
{ if (index == count++) return pPackage->theBox;
} while (pPackage = pPackage->pNext);
cout << endl << “Out of range index”;
exit(1);

} // Revised Program 14.5

Lvalues and Overloaded
Subscript Operator []

• To deal with
load[0] = load[1];

• Solution
– Redefine [] operator to return a reference Box
– Box& TruckLoad::operator[](int index);
– const Box& TruckLoad::operator[](int index) const;

Overloading Type
Conversions

class Object
{
public:

operator Type();
// conversion from Object to Type

};

Type Conversion From TruckLoad
to Box

class TruckLoad
{
public:

operator Box() const;
// reset of TruckLoad class definition

};

Type Conversion from Box to
double

class Box
{
public:

operator double() const
{ return volume(); }

// reset Box class definition
};
Box theBox;
double boxVolume = theBox; // double(theBox)
double total = 10 + static_cast<double>(theBox);

Ambiguity with Conversions
• Make constructor as a type conversion,

should be carefully use
class Type2
{

Type2(const Type1& theObject);
// constructor converting Type1 to Type2

operator Type1();
// conversion from Type2 to Type1
};

• Use ‘explicit’ in constructor

Overloading ++, -- Operators

• Prefix ++ and Postfix ++
class Object
{
public:

Object& operator++(); // prefix
const Object operator++(int); // postfix

};

Smart Pointer

• We are able to overload the
dereference operator, *, and the indirect
operator, ->

• Define a type that represents a smart
pointer, something that behaves like a
pointer but is really a class object

• Smart pointers referred to as class
iterators

BoxPtr Class
class BoxPtr
{ public:

BoxPtr(TruckLoad& load); // constructor
Box& operator*() const; // overload *
Box* operator->() const; // overload ->
Box* operator++(); // prefix increment
const Box* operator++(int);// postfix increment
operator bool(); // conversion to bool

private:
Box* pBox; TruckLoad& rLoad; …

}; // Revised Program 14.6

Overloading Operators new and
delete

• Memory allocation and deallocation faster
and more economical for a particular class of
objects
class Data
{public:

void* operator new(size_t size);
void operator delete(void* obj, size_t size);

};
void* operator new(size_t size)
{ pSpace = ::new char(size);
} // allocated by global new

Fine-Tuning for Overloading
Operators

overloading
operators

Return Argument passed
by

Function

Arithmetic +,-,*,/,% by value const reference const

Assignment =,+=,-= by reference (*this) const reference non-const
Comparison <,== by value (boolean) const reference const
Unary prefix ++,-- by reference (*this) none non-const

Unary -,+ by value none const

Subscript [] by reference integer non-const

<< by reference const reference non-const

>> by reference const reference const

Refinement of prefix ++
airtime& operator++ ()
{

++minutes;
if(minutes >= 60)
{

++hours;
minutes -= 60;

}
return *this;

}

Refinement of postfix ++
airtime operator++ (int)
{

airtime temp(hours, minutes);
++minutes;
if(minutes >= 60)
{

++hours;
minutes -= 60;

}
return temp;

}

	Operator Overloading
	Principals of�Operator Overloading
	Operators That Can and Cannot Be Overloaded
	The operator<()
	Implementing Full Support for an Operator<()
	Binary OperatorX()
	Complier Supported Member Functions
	Copy Constructor and Assignment Operator
	Overloading the Assignment Operator
	Assignment Operators
	Overloading the Assignment Operator
	Process of Overloading the Assignment Operator
	Overloading the Arithmetic Operators
	Implementing One Operator in Terms of Another
	Rules
	Overloading The Subscript Operator []
	Revised The Package Class
	Subscript Operator []
	Lvalues and Overloaded Subscript Operator []
	Overloading Type Conversions
	Type Conversion From TruckLoad to Box
	Type Conversion from Box to double
	Ambiguity with Conversions
	Overloading ++, -- Operators
	Smart Pointer
	BoxPtr Class
	Overloading Operators new and delete
	Fine-Tuning for Overloading Operators
	Refinement of prefix ++
	Refinement of postfix ++

