
Classes: Defining Your
Own Data Types

• Basic principles in OOP
• Define a new data type as a class and

use objects of a class
• Member Functions

– Constructors
– Default constructors
– Copy constructor

• Friend class/function
• The ‘this’ pointer

Object-Oriented Programming

• Encapsulation
• Data hiding

– Data Member ⇒ state, feature
– Member function ⇒ interface, method

• Inheritance
– Base class
– Derived class

• Polymorphism

Encapsulation

Data Hiding

Inheritance

Polymorphism

Terminology
• A class is a user-defined data type
• Variables of a class are called data

members, and the functions are called
member functions which is referred to
methods

• One declares variables of the class type
also called instances of the class. Each
instance is an object of the class.

Terminology

• Defining an instance of a class is
sometimes referred to as instantiation

• Object-oriented programming involves
the ideas of encapsulation of data,
polymorphism

Defining a Class

• Access specifier
– private
– public
– protected

• class and struct
• Program 12.1

Constructors

• Memory space generating
• Program 12.2
• Rewrite program 12.2a

– box.h, box.cpp, use_box.cpp

Default Constructor
• If you don’t define a constructor for your class,

then the compiler supplies a default constructor
that is used to create objects of your class

int main()
{

Box smallBox(80.0, 50.0. 40.0);
Box mediaBox;

// compiler error, constructor already specified
…
}
• Program 12.3

Default Value
class Box
{ …

Box();
Box(double length = 1.0,

double breadth = 1.0, double height = 1.0);
};
int main()
{ Box smallBox; // Compiler error, ambiguity

… }

Default Initialization Values
Using initializer list

// Constructor Definition
Box::Box(double la, double lb, double h):

length(la), breadth(lb), height(h)
{
cout << “Box Constructor called” << endl;
}

The explicit Keyword

• Prevent automatically data type cast
• Program 12.4a

Private Members of a Class

• Proper initialized list
• Prevent improper modification

Box theBox(10.0, 10.0, 5.0);
theBox.length = -20.0;

• Private members are not accessible
• Program 12.4

Private Members

Accessing Private Class
Members

• The private members can be accessed
by public member functions, accessor

• Program 12.5a

The Default Copy Constructor

• If you don’t define copy constructor, the
compiler supplies a default constructor
that allows an object to be created

• Copy constructor: create a new instance
by copying the exist one

• Program 12.5

Friends

• Friend classes – a whole class can be
specified as a friend of a class

• Friend functions – an individual function
can be specified as a friend of a class

The Friend Functions of a Class
• A function that is not a member of a

class but nonetheless can access all its
members is called a friend function

• Friend function is declared in one class
• Friend function can be declare as a

global function or a member of a class
• Program 12.6

The Pointer Named ‘this’
// usually ‘this’ pointer is hidden
double Box::volume()
{ return length * breadth * height; }
// Same as
double Box::volume()
{ return this->length * this->breadth *

this->height; }
• Program 12.7

const Objects and
const Member Functions

class Box
{
int compareVolume(const Box& otherBox) const;
}
// in main()
Box theBox(17.0, 11.0, 4.4), otherBox(8.0, 4.0. 20.0);
if (theBox.compareVolume(otherBox))
{ … }
• Program 12.8a

Mutable Data Members of a Class
• If you declare an object as const, you can’t

change the values of the data members of
the object because they’ll also be effectively
const. However, you may find situations in
which you need to allow certain, selected
data members of a class to be altered, even
if the object was declared as const

• How?
– By declaring a data member as mutable

Mutable Data Members of a Class
class SecureAccess
{
public: …

bool isLocked() const;
private: …

mutable int time;
};
bool SecureAccess::isLocked() const // definition
{ time = getCurrentTime(); return lockStatus(); }
const SecureAccess mainDoor; // in main()
bool doorState = mainDoor.isLocked(); // calling

Casting Away const

• Very rare situations to use it
• A function is dealing with a const object,

either passed as an argument of the
object pointed to by this, and it is
necessary to make it non-const

• Make const type to non-const, the
expression must be a const Type
const_cast<Type>(expression)

Arrays of Objects of a Class

• Construct every element in an object
array by calling default constructor

• Program 12.8

Boundary Alignment

• For the reasons of efficiency, a 2-byte
and a 4-byte variables must be placed
at the addresses that is a multiple of two,
and four respectively.

• The size needed for variable is larger
than it truly used

• Program 12.9

Static Data Members of a Class

• When you declare a data member of a
class as static, the effect is that the
static data memeber is defined only
once, and will exist even if no objects of
the class have been created

Defining a static Member
class Box
{
pirvate:

static int objectCount;
double length;
double breadth;
double height;

};
// should be define in global region
int Box::objectCount = 0;
• Program 12.10

Access Static Data Members

• Access the static variable in a class
• Program 12.10a (in case doesn’t exist,

the following two snaps can create
12.10a)

A Static Data Member of the
Same Type As the Class

• A static member function is a full
member of the class in terms of access
privileges

	Classes: Defining Your Own Data Types
	Object-Oriented Programming
	Encapsulation
	Data Hiding
	Inheritance
	Polymorphism
	Terminology
	Terminology
	Defining a Class
	Constructors
	Default Constructor
	Default Value
	Default Initialization Values�Using initializer list
	The explicit Keyword
	Private Members of a Class
	Private Members
	Accessing Private Class Members
	The Default Copy Constructor
	Friends
	The Friend Functions of a Class
	The Pointer Named ‘this’
	const Objects and �const Member Functions
	Mutable Data Members of a Class
	Mutable Data Members of a Class
	Casting Away const
	Arrays of Objects of a Class
	Boundary Alignment
	Static Data Members of a Class
	Defining a static Member
	Access Static Data Members
	A Static Data Member of the Same Type As the Class
	投影片編號 32
	投影片編號 33

