
Operator Overloading                         
• Which C++ operators can be overloaded?
• Implement functions in your classes that 

overloaded operators
• Overloaded operator functions as member 

function in class
• Assignment operators
• Define type conversions as operator functions
• Smart pointers



Principals of
Operator Overloading

• Reasonability
• Consistency
• Instinct 
• Cannot create a new operator
• Preserve precedents
• Preserve unary, binary, trinary



Operators That Can and 
Cannot Be Overloaded

• Every operator list in Appendix D, 
excluding
– Domain operator – ::
– Conditional operator – ?:
– Direct access operator – .
– Dereference operator – .*
– sizeof operator – sizeof
– Preprocessor symbol – # or ##



The operator<()

• Program 14.1



Implementing Full Support for 
an Operator<()

• Previous define of operator<() is able to 
implement box1 < box2, but not 

• box1<25.6 or 10<box2

inline bool operator<(const double d) const 
{ return volume() < d; }
inline bool operator<(const double d, const Box& b)
{ return d < b.volume();   }
• Program 14.2



Binary OperatorX()

• Member function
– Type operatorX(Type RightOperand);
– Type operatorX(Other_Type RightOperand);

• Non-member function
– Type operator X(Other_Type leftOperand, Type 

RightOperand);



Complier Supported Member 
Functions

• Default constructor 
• Destructor 
• Copy constructor
• Assignment operator



Copy Constructor and 
Assignment Operator

• New space is generated during copy 
constructor, no new space is generated 
during assignment

• Copy constructor is called when
– Box aBox(bBox); // Box aBox = bBox;
– TruckLoad aLoad1(aLoad2);

• Assignment operator is called when
– aBox = bBox;
– aLoad1 = aLoad2;



Overloading the Assignment 
Operator

Compiler 
supports



Assignment Operators

load1 = load2 = load3;
load1 = (load2 = load3);
load1.operator=(load2.operator=(load3));



Overloading the Assignment 
Operator

TrunckLoad& TrunckLoad::operator=(const TrunkLoad& load)
{

if (this == &load) return *this;
while (pCurrent = pHead)
{

pHead = pHead->pNext;
delete pCurrent;

}
pHead = pTail = pCurrent = 0;
if (load.pHead == 0) return;
package* pTemp = load.pHead;
do { addBox(pTemp->pBox); } while (pTemp = pTemp->pNext);
return *this;

}



Process of Overloading the 
Assignment Operator

• Remove the memory using in the left 
operand, create identical memory space 
of the right operand for the left operand

• Copy the content of the right operand to 
the left operand

• Return *this
• Program 14.3



Overloading the Arithmetic 
Operators

• +, -, *, /, %
• Program 14.4



Implementing One Operator in 
Terms of Another

• Such as operator+ can be applied in 
operator+=

• Program 14.5a



Rules
• return by value

– ex: +, -, *, /, %
– a = b+c; 
– return temp object

• return by reference
– ex: +=, -=, /=, []
– a+=b;
– return *this



Overloading The Subscript 
Operator [ ] 

class TruckLoad
{ public:
// For left value

Box& operator[](int index); 
// For right value

const Box& operator[](int index) const;
…

private:
class Package { …};

};



Revised The Package Class

class Package
{ public:

Box theBox; 
Package* pNext;                            
void setNext(Package* pPackage); 
Package(const Box& NewBox);                     
~Package();

};



Subscript Operator [ ]
Box& TruckLoad::operator[](int index)
{

if (index<0)
{ cout << endl << “Negative index”;  exit(1); }
Package* pPackage = pHead;
int count = 0;
do 
{  if (index == count++)  return pPackage->theBox;
} while (pPackage = pPackage->pNext);
cout << endl << “Out of range index”;
exit(1);

} // Revised Program 14.5



Lvalues and Overloaded 
Subscript Operator [ ]

• To deal with
load[0] = load[1];

• Solution
– Redefine [ ] operator to return a reference Box
– Box& TruckLoad::operator[](int index);
– const Box& TruckLoad::operator[](int index) const;



Overloading Type 
Conversions

class Object
{
public: 

operator Type(); 
// conversion from Object to Type

};



Type Conversion From TruckLoad 
to Box

class TruckLoad
{
public:

operator Box() const;
// reset of TruckLoad class definition

};



Type Conversion from Box to 
double

class Box
{
public:

operator double() const
{ return volume(); }

// reset Box class definition
};
Box theBox;
double boxVolume = theBox;  // double(theBox)
double total = 10 + static_cast<double>(theBox);



Ambiguity with Conversions
• Make constructor as a type conversion, 

should be carefully use
class Type2
{

Type2(const Type1& theObject);
// constructor converting Type1 to Type2

operator Type1();
// conversion from Type2 to Type1
};

• Use ‘explicit’ in constructor



Overloading ++, -- Operators

• Prefix ++ and Postfix ++
class Object
{
public:

Object& operator++(); // prefix
const Object operator++(int); // postfix 

};



Smart Pointer

• We are able to overload the 
dereference operator, *, and the indirect 
operator, ->

• Define a type that represents a smart 
pointer, something that behaves like a 
pointer but is really a class object

• Smart pointers referred to as class 
iterators



BoxPtr Class
class BoxPtr
{  public:

BoxPtr(TruckLoad& load); // constructor
Box& operator*() const; // overload *
Box* operator->() const; // overload ->
Box* operator++(); // prefix increment
const Box* operator++(int);// postfix increment
operator bool();  // conversion to bool

private:
Box* pBox;  TruckLoad& rLoad; …

}; // Revised Program 14.6



Overloading Operators new and 
delete

• Memory allocation and deallocation faster 
and more economical for a particular class of 
objects
class Data
{public:

void* operator new(size_t size);
void operator delete(void* obj, size_t size);

};
void* operator new(size_t size)
{  pSpace = ::new char(size); 
} // allocated by global new



Fine-Tuning for Overloading 
Operators

overloading 
operators

Return Argument passed 
by

Function

Arithmetic +,-,*,/,% by value const reference const

Assignment =,+=,-= by reference (*this) const reference non-const
Comparison <,== by value (boolean) const reference const
Unary prefix  ++,-- by reference (*this) none non-const

Unary  -,+ by value none const

Subscript  [ ] by reference integer non-const

<< by reference const reference non-const

>> by reference const reference const



Refinement of prefix ++
airtime& operator++ () 
{

++minutes;
if(minutes >= 60)
{

++hours;
minutes -= 60;

}
return *this;         

}



Refinement of postfix ++
airtime operator++ (int) 
{

airtime temp(hours, minutes);  
++minutes;            
if(minutes >= 60)
{

++hours;
minutes -= 60;

}
return temp; 

}
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