Creating Your Own
Data Type

Object
Structure

Define, declare and using structure
object

Structure members
Union

Objects

Object Is an physical instance
struct and union in C

class in C++

Examples

—Iinta = 4;

—Human Mary, John;

— Furniture chair, table;

Members In struct

struct Book

{

char title[80];

char author[80];
char publisher[80];
Int year,

%

Declaring Variables of a
Structure Type

Book paperback; a- same
struct Book paperback;

Boo
Boo
Boo
Boo

K hovel, B
K *pTravelGuide; - — salme

K languageGuide[10];

K hovel, *pTravelGuide, languageGuide[10];

Defining Structure Members
and Variables

struct Book

{
char title[80],

char author[80];

char publisher[80];
Int year;

} dictionary, thesaurus;

Creating Objects of a
Structure Type

Book PDtextbook = { “C++ Beginning”,
“lvor Horton”, “Wrox”, 2000},

Book novels[] = {
{"ZFeTs” | e, “EFE" |, 1980},
{*Our Game”, “John Le Garre”, “Hodder
& Stoughton”, 1995},

{*lllywhacker”, “Peter Carey”, “Faber &
Faber”, 1985} ¥

Accessing the Members of a
Structure Object

novels|2].year = 1900;
PDtextbook.year += 2;
e Program 11.1

Member Functions of a Structure

struct Box

{

ouble length;
ouble breadth;
ouble height;
ouble volume();

O O O o

b
double Box::volume()
{ return length * breadth * height; }

Using Pointers with a Structure

Box * pBox = 0, abox; // NULL pointer

pBox = &abox,;

Box theBox = {80.0, 50.0, 40.0};

Box *pBox = &theBox;

Book *pDictionary = new Book;

Delete pDictionary;

(*pBox).height += 10; // theBox.height = 50.0;
*(pBox.height) += 10; // compiler error
pBox->height += 10; // dereferencing operator
e Program 11.2

Unions

e A union is a data type that allows you to
use the same block of memory to store
values of different types at different
times.

e Advantage
— Memory saving

e Disadvantage

— Access members without type casting can
lead to an unexpected result

Using a Union

e Tyree ways of using a union

— Enable the same block of memory to store
different variables (possibly of different
types)

— Memory saving on a larger scale involves
arrays

— To Iinterpret the same data in two or more
different ways.

Declaring Unions

union shareDL
{
double dVal;
long lval,
} myUnion; // 8 bytes

Initializing a Union

sl bytes ———p

union ShareDLF e @]E

{ 1val
double dVal; :
long IVal,
float fVal; dval
}; A union with three variables sharing the same memory

ShareDLF unist = {1.5}; // Initial the first member
ShareDLF unist; uinst.l\VVal=10;

Anonymous Union

union
{
char* pVal,
double dVal;
long IVal;
} uvalue;
uvalue.dVal = 10.0;

Content in a Union

union item

{
double dData;
float fData;
long |IData;
short IData;

} value;

value.dData = 25.0;

value.lData = 32768L;

cout << value.iData,;
/[l -32768

cout << value.dData;

Complex Structure

enum Type {Double, Float, Long, Int};
struct SharedData

{ union
{ double dData;
E)Onagl;t TBZ:Z_’ SharedData value = {25.0, Float};
- iData: " |SharedData value = {25.0};
| ’ /1 {25.0, Double};
},ype o value.lData = 10;
_ ’ value.type = Long;
f If (value.type == Long)
value.|Data++

Structures with Structures As

Members
struct Person struct Name
{ { char firstname[80];
Name name: char surname[80]; };

Date birthdate:
Phone number;

struct Date
{ int day; int month; int year; };

5

struct Phone
{ Int areacode; int number; };

Member Functions In a
Structure

struct Name
{

char firstname[80];

char surname[80];

void show()

{ cout << firstname << ** << surname; }

N
e Program 11.3

	Creating Your Own Data Type
	Objects
	Members in struct
	Declaring Variables of a Structure Type
	Defining Structure Members and Variables
	Creating Objects of a Structure Type
	Accessing the Members of a Structure Object
	Member Functions of a Structure
	Using Pointers with a Structure
	Unions
	Using a Union
	Declaring Unions
	Initializing a Union
	Anonymous Union
	Content in a Union
	Complex Structure
	Structures with Structures As Members
	Member Functions in a Structure

