
Creating Your Own
Data Type

• Object
• Structure
• Define, declare and using structure

object
• Structure members
• Union

Objects

• Object is an physical instance
• struct and union in C
• class in C++
• Examples

– int a = 4;
– Human Mary, John;
– Furniture chair, table;

Members in struct
struct Book
{

char title[80];
char author[80];
char publisher[80];
int year;

};

Declaring Variables of a
Structure Type

Book paperback; same
struct Book paperback;
Book novel;
Book *pTravelGuide; same
Book languageGuide[10];
Book novel, *pTravelGuide, languageGuide[10];

Defining Structure Members
and Variables

struct Book
{

char title[80];
char author[80];
char publisher[80];
int year;

} dictionary, thesaurus;

Creating Objects of a
Structure Type

Book PDtextbook = { “C++ Beginning”,
“Ivor Horton”, “Wrox”, 2000};

Book novels[] = {
{“笑傲江湖”, “金庸”, “港龍”, 1980},
{“Our Game”, “John Le Garre”, “Hodder
& Stoughton”, 1995},
{“Illywhacker”, “Peter Carey”, “Faber &
Faber”, 1985} };

Accessing the Members of a
Structure Object

novels[2].year = 1900;
PDtextbook.year += 2;
• Program 11.1

Member Functions of a Structure
struct Box
{

double length;
double breadth;
double height;
double volume();

};
double Box::volume()
{ return length * breadth * height; }

Using Pointers with a Structure
Box * pBox = 0, abox; // NULL pointer
pBox = &abox;
Box theBox = {80.0, 50.0, 40.0};
Box *pBox = &theBox;
Book *pDictionary = new Book;
Delete pDictionary;
(*pBox).height += 10; // theBox.height = 50.0;
*(pBox.height) += 10; // compiler error
pBox->height += 10; // dereferencing operator
• Program 11.2

Unions
• A union is a data type that allows you to

use the same block of memory to store
values of different types at different
times.

• Advantage
– Memory saving

• Disadvantage
– Access members without type casting can

lead to an unexpected result

Using a Union

• Tyree ways of using a union
– Enable the same block of memory to store

different variables (possibly of different
types)

– Memory saving on a larger scale involves
arrays

– To interpret the same data in two or more
different ways.

Declaring Unions

union shareDL
{

double dVal;
long lval;

} myUnion; // 8 bytes

Initializing a Union

union ShareDLF
{

double dVal;
long lVal;
float fVal;

};
ShareDLF unist = {1.5}; // initial the first member
ShareDLF unist; uinst.lVal=10;

Anonymous Union

union
{

char* pVal;
double dVal;
long lVal;

} uvalue;
uvalue.dVal = 10.0;

Content in a Union
union item
{

double dData;
float fData;
long lData;
short iData;

} value;

value.dData = 25.0;
value.lData = 32768L;
cout << value.iData;

// -32768
cout << value.dData;

// ??????.????

Complex Structure
enum Type {Double, Float, Long, Int};
struct SharedData
{ union

{ double dData;
float fData;
long lData;
int iData;

};
Type type;

};

SharedData value = {25.0, Float};
SharedData value = {25.0};

// {25.0, Double};
value.lData = 10;
value.type = Long;
if (value.type == Long)

value.lData++

Structures with Structures As
Members

struct Person
{

Name name;
Date birthdate;
Phone number;

};

struct Name
{ char firstname[80];

char surname[80]; };

struct Date
{ int day; int month; int year; };

struct Phone
{ int areacode; int number; };

Member Functions in a
Structure

struct Name
{

char firstname[80];
char surname[80];
void show()

{ cout << firstname << “ “ << surname; }
};
• Program 11.3

	Creating Your Own Data Type
	Objects
	Members in struct
	Declaring Variables of a Structure Type
	Defining Structure Members and Variables
	Creating Objects of a Structure Type
	Accessing the Members of a Structure Object
	Member Functions of a Structure
	Using Pointers with a Structure
	Unions
	Using a Union
	Declaring Unions
	Initializing a Union
	Anonymous Union
	Content in a Union
	Complex Structure
	Structures with Structures As Members
	Member Functions in a Structure

