Class Operations

Pointer and References with class types
Class destructor

Dynamic Memory Allocation within a
class

Copy constructor
Limit access to a class
Nested class

Pointers and References to
Class Objects

* Pointers and references to class objects
are key features of OOP

* Three basic contexts to use a pointer to

a class
— Calling functions using the dereference
operator, ->
— As an argument to a function
— As a data member of a class

How to pass parameters?

* Function parameters

— Small size of object (pass by value, pointer
or reference)

— Array object (pass by pointer)

— struct object (pass by either pointer or
reference)

— class object (pass by reference)

Contalner class

e Aclass is defined to contain other
classes in private members

Pointers as data members

* The contents of a Package object

Fackage object

Box
Object |

Fointer to Another
Package object

* Another Package object

A Package object can contain a Box object, and can be linked
to another Package object that contains another Box object.

TruckLoad

* Alinked list of three objects
TrucklLoad Object

The First
Dbject

L Package Object Package Object Package Object

Box theBoox; Box theBox; Box thebox;:
Package* phext; Package® pMext; Package* plext;

Defining the Package Class

class Package {
public:
Package(Box* pBox): theBox(*pBox), pMext(0){} // Constructor

Box getBox() const { return theBox; } /! Retrieve the Box object
Package* getNext() const { return pMext; } /1 Get next package address
void setMext(Package* pPackage){ pMext = pPackage; | // Add to end of list

private:
Box theBox; /! The Box object
Package* pNext; /! Pointer to the next Package

b

Copies of Box objects everywhere

aBox

Original

Box Object -_‘ﬁqhuﬁxh

When you create a Package object,
you pass SaBox to the constructer

I Duplicate
of aBox

The Package object

Package created will contain
Constructor a copy of the —-

origimal Box object.

_ Calling the Box() meaber will
Duplicate ErﬂteE:tmpy of the getbox()

of aBox duplicate abox. - Function

Revised Package Class

class Package {
public:
Package(Box* pewBox):pBox(pNewBox), pNext(0){} // Constructor
Box* getBox() const { return pBox; } /] Retrieve the Box pointer
Package* gethext() const { return phext; } /1 Get next package address
void setMext(Package* pPackage) { pNext = pPackage; | // Add to end of list

private:
Box* pBox; /1 Pointer to the Box
Package* phext, /1 Pointer to the next Package

b

A list of packages containing
only pointers

Package cbject ' Package object Package cbject

Pointer to a ' Poanter to a Pointer to a
Bax object Box obiject ' Box object

Pointer to Another _ Painter ta Another r Pointer ta Another
Package object Package object | Package object

A Package object now only contains pointers.
The Box objects are independent, and outside the Package objects.

Defining the TruckLoad Class

The List ot Packages

T I
T |

The First Package The Last Package
in the List in the List

Truckload Object The Most Recently
Retrieved Package

Package®pHead;
Package*pCurrent;
Package*pTail;

Class TruckLoad

class Truckload {
public:
Truckload(Box* pBox = 0, int count = 1): // Constructor

Box* getFirstBox(); // Retrieve the first Box
Box* getNextBox(); // Retrieve the next Box

void addBox(Box* pBox); /! Add a new Box to the list
private:

Packape* pHead; // First in the list

Package* pTail; // Last in the list

Package* pCurrent; /1 Last retrieved from the list

5

Implementing the TrucklLoad
Class

TrucklLoad: :Truckload(Box* pBox, int count) {
pHead = pTail = plurrent = 0;

if({(count > 0) && (pBox != 0))
for(int i = 0 ; i<count ; i++)
addBox(pBox+1i);

Defining the Member Functions

oid Truckload::addRev/Bav® alav) [
e Box* Truckload::getNextBox() {

if(plurrent)

| pCurrent = pCurrent->getMext();
if(pHead) else

pTail-»sethext| pCurrent = pHead;

Package* pPackage

else
pHead = pPackag return pCurrent ? pCurrent->getBox() : 0; |

pTail = pPackage;
}

Box* Truckload::getFirstBox() {

pCurrent = pHead;
return pCurrent->getBox(); * Program 13.1

}

-— o - - ol

Three problems in progl3.1

 The Package class Is accessible to all,
even though one only use this class in
the context of the TruckLoad class

 The duplication of a TruckLoad object

« Avery serious memory leak with
memory management

class TruckLoad {

public:
TruckLoad(Box* pBox = 0, int count = 1);

N

Box* getFirstBox();

Box* getNextBox();

void addBox(Box* pBox);
« Anested C

private:

(iEBfif]iti()r1 i // Class defining a list element er
class Package {
class blics
Box* pBox;

* One class Packares ohext: €
ClaSS (Tr void setNext(Package* pPackage);
the TrUCk Package(Box* pNewBox);

};
others

Package* pHead;
Package* pTail;
Package* plurrent;

void Truckload::addBox(Box* pBox) {
Package* pPackage = new Package(pBox);

if(pHead)
pTail-»pNext = pPackage;
else
pHead = pPackage;
pTail = pPackage;
}

Box* TruckLoad::getFirstBox() { Box* TrucklLoad::getNextBox() {

pCurrent = pHead; if(pCurrent)
return pCurrent->pBox; o ::ment = pCurrent->pNext;

}

pCurrent = pHead;

 Revised program 1
return pCurrent ? pCurrent->pBox : 0;

}

Nested Classes with Public
Assess Specifiers

Truckload::Package aPackage(abox); // Define a variable of type Package

The Copy Constructor

 Copy one object from an existent one
— TruckLoad tLoad2(tLoadl);

* If copy constructor is not defined then
compiler would create a default one, but no
practical space Is created for the pointer
member which can cause memory problem

* A self-defined copy constructor IS
necessary when pointer members are
declared in a class

Duplicating an object using the
default copy constructor

TrucklLoad tlLoad2(tLoad1):

E
o e

Shared Chain of Package Objects

Self-defined Copy Constructor

TruckLoad::TruckLoad(const TruckLoad& load)
{
pHead = pTail = pCurrent = 0O;

If (load.pHead) return;

// save address for new chain
Package* pTemp = load.pHead,;
do
{ addBox(pTemp->pBox);}
while (pTemp = pTemp->pNext);

}

* Revised program 13.2

Dynamic Memory Allocation
Within an Object

Constructor without ‘new’, preset
destructor executed automatically

Constructor with ‘new’, destructor
should self-defined it by ‘delete’

The default destructor

Re TruckLoad: :~TruckLoad() {
f/ Code to destroy the object

}

Implementing a Destructor

TruckLoad: :~Truckload() {
cout ¢¢ "Truckload destructor called.” << endl;
while(pCurrent = pHead->pNext) {
delete pHead; /1 Delete the previous

pHead = plurrent; {1/ Store address of next

}
delete pHead; /1 Delete the last

}

References in Classes

TI”ELEu:*-Téhckiﬁad:EgetFirgiHni{j { load) {
PP pCurrent = pHead;
it return &pCurrent->rBox;

}

PaBox* Truckload::getNextBox() {

do if(pCurrent)
plurrent = pCurrent->pNext;

} n else

hssign a
pCurrent = pHead; g

return plurrent ! &pCurrent->rBox :

	Class Operations
	Pointers and References to Class Objects
	How to pass parameters?
	Container class
	Pointers as data members
	TruckLoad
	Defining the Package Class
	Copies of Box objects everywhere
	Revised Package Class
	A list of packages containing only pointers
	Defining the TruckLoad Class
	Class TruckLoad
	Implementing the TruckLoad Class
	Defining the Member Functions
	Three problems in prog13.1
	Nested Classes
	投影片編號 17
	Nested Classes with Public Assess Specifiers
	The Copy Constructor
	Duplicating an object using the default copy constructor
	Self-defined Copy Constructor
	Dynamic Memory Allocation Within an Object
	Implementing a Destructor
	References in Classes

